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ABSTRACT

The famous Schrödinger bridge (SB) has gained renewed attention in the gener-
ative machine learning field these days for its successful applications in various
areas including unsupervised image-to-image translation and particle crowd mod-
eling. Recently, a promising algorithm dubbed GSBM was proposed to solve the
generalized SB (GSB) problem, an extension of SB to deal with additional path
constraints. Therein the SB is formulated as a minimal kinetic energy conditional
flow matching problem, and an additional task-specific stage cost is introduced
as the conditional stochastic optimal control (CondSOC) problem. The GSB is a
new emerging problem with considerable room for research contributions, and we
introduce a novel Gaussian process pinned marginal path posterior inference as a
meaningful contribution in this area. Our main motivation is that the stage cost in
GSBM, typically representing task-specific obstacles in the particle paths and other
congestion penalties, can be potentially noisy and uncertain. Whereas the current
GSBM approach regards this stage cost as a noise-free deterministic quantity in the
CondSOC optimization, we instead model it as a stochastic quantity. Specifically,
we impose a Gaussian process (GP) prior on the pinned marginal path, view the
CondSOC objective as a (noisy) likelihood function, and infer the posterior path
via sparse variational free-energy GP approximate inference. The main benefit is
more flexible marginal path modeling that takes into account the uncertainty in
the stage cost such as more realistic noisy observations. On some image-to-image
translation and crowd navigation problems under noisy scenarios, we show that our
proposed GP-based method yields more robust solutions than the original GSBM.

1 INTRODUCTION

The bridge matching problem is to find a stochastic/ordinary differential equation (SDE/ODE) that
bridges two given distributions (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Neklyudov
et al., 2023; Villani, 2009; Peyré & Cuturi, 2017). Its application areas are enormous, which also
subsumes the recent generative modeling (e.g., conditional or unconditional image generation) (Sohl-
Dickstein et al., 2015; Chen et al., 2018; Ho et al., 2020; Song et al., 2021). The famous Schrödinger
bridge (SB) problem (Fortet, 1940; Kullback, 1968; Rüschendorf, 1995; De Bortoli et al., 2021;
Vargas et al., 2021; Shi et al., 2023), a widely known problem for a century, is a special instance of the
bridge problem. The SB problem has recently received renewed attention in the generative machine
learning and related fields for its applications to unsupervised image-to-image translation (Kim
et al., 2024), image inpainting (Wang et al., 2021), fluid modeling (Shi et al., 2023), molecular
simulations (Noé et al., 2020), robot navigation (Liu et al., 2018), and more.

Among these recent trends and a large body of works, the generalization of SB (GSB), incorporating
additional costs on marginal paths, has started drawing attention as an extension of the SB problem.
One of the most promising methods called GSBM (Liu et al., 2024) was proposed, in which the
SB is formulated as a minimal kinetic energy conditional flow matching problem (Lipman et al.,
2023; Tong et al., 2023), and an additional task-specific stage cost is introduced in the conditional
stochastic optimal control (CondSOC) problem. Incorporation of task-specific stage costs can give
better guidance towards desired probability paths, or penalize prohibitive paths, which is desirable
for realistic crowd navigation problems and latent-variable generative modeling problems.

GSBM opens up intriguing research possibilities, among which in this paper we are particularly
interested in the CondSOC path optimization part. Although GSBM originally adopted deterministic
spline-based optimization for CondSOC, which can be effective in many existing domains, there are
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several rooms to improve. One is more flexible modeling. However, simply increasing polynomial
degrees (e.g., cubic splines) is often prone to fail in practice mainly due to numerical issues, while path
integral resampling (Kappen, 2005) for non-Gaussian path modeling is computationally expensive
with some technical issues as discussed in Sec. 2. Another option for improvement is to take into
account uncertainty in path modeling in order to lead to more robust GSB solutions.

The Bayesian Gaussian process (GP) approach can nicely fulfill these two desiderata. To this end, we
view the CondSOC objective as the likelihood function, and impose a GP prior path measure to the
mean and stdev paths. With sparse variational free energy formulation adapted from (Titsias, 2009),
we can infer the posterior path measure effectively. Although this can incur additional computational
complexity in the CondSOC optimization compared to GSBM’s spline optimization, we are able to
achieve significantly more flexible and robust solutions than GSBM by properly handling uncertainty
in potentially noisy stage cost observation. Also, our variational GP inducing variables merely take
up roughly twice as many as in GSBM’s. Tested on several crowd navigation and image-to-image
translation problems in noisy observation scenarios, we show that our GP-based approach is more
robust to noise than GSBM by capturing uncertainty that may reside in the GSB problems.

2 BACKGROUND

While here we briefly provide background material required to understand our approach, for more
comprehensive and detailed background, we refer the readers who are less familiar with this topic to
our unified bridge algorithm (UBA) framework in Appendix A. It not only gives introduction to the
(conditional) flow matching (CFM) and Schrödinger bridge (SB) problems, but also offers a unified
SDE framework that subsumes both CFM and SB into one.

Bridge problems. The SB is a special instance of the more general problem class called the bridge
problem which aims to find an SDE (or sometimes an ODE) that bridges two given distributions.
More specifically, given two distributions π0(·) and π1(·), the goal is to find an SDE, specifically the
drift function ut(x), with a specified diffusion coefficient σ (σ=0 for ODE),

dxt = ut(xt)dt+ σdWt, x0∼π0(·) (1)
with the constraint that the state at time t=1 conforms to the other target π1, that is, x1∼π1(·). We
can also find the reverse-time SDE for the bridge the other way around, i.e., starting from π1 and
landing at π0. Once solved, the solution to the bridge problem can give us the ability to sample from
one of π{0,1} given the samples from the other. For instance, in typical generative modeling, π0 is
usually a tractable density like Gaussian, while π1 is a target distribution that we want to sample from.
In the bridge problem, however, π0 can also be an arbitrary distribution beyond tractable densities.

Schrödinger bridge (SB) has an additional constraint that the probability path measure should be the
one that is closest to a given reference path measure (Appendix A.2.2). Denoting the path measure of
(1) by Pu and the reference measure by P ref , the SB can be defined as the following optimization:

min
u

KL(Pu||P ref ) s.t. Pu
0 (x0) = π0(x0), P

u
1 (x1) = π1(x1) (2)

Without loss of generality, we use the Brownian SDE, dxt = σdWt, as a reference measure P ref .
Several algorithms have been proposed to solve the SB: the traditional iterative filtering (IPF)
algorithm, its extensions with modern deep neural nets, and mini-batch versions of (entropic) optimal
transport couplings in CFMs. See details and related references in Appendix A.2.3 and A.2.1. The
computational overheads and known drawbacks of these methods were addressed in the recent iterative
projection method (IMF) also known as the DSBM algorithm (Shi et al., 2023) (Appendix A.2.4).

Generalized Schrödinger bridge (GSB) problem. The standard SB has been extended by certain
state costs introduced to express application-specific preferences or penalties for state paths {xt} in
SB (Chen et al., 2015; Liu et al., 2022; Chen, 2023; Liu et al., 2024). For instance, the state cost can
encode particle interaction costs (Gaitonde et al., 2021), quantum potentials (Philippidis et al., 1979),
or geometric costs (Liu et al., 2024). The GSB problem is what we mainly deal with in this paper,
and we particularly focus on the recent GSB matching (GSBM) algorithm (Liu et al., 2024) for its
superiority to its predecessors including (Liu et al., 2022) in terms of the quality of solutions.

For smooth exposition, we describe the GSBM algorithm within our UBA framework (Appendix A),
in particular by showing how it can be extended from the minimal kinetic UBA form of the IM-
F/DSBM algorithm (Shi et al., 2023) described in Alg. 4. The following is a concise summary.
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For the given state (or stage) cost Vt(x), we repeat the following two steps (A and B) for a sufficient
number of times to find a neural-net based SDE, dxt = vθ(t, xt)dt+ σdWt:

(Step-A) arg min
{µt,γt}t

∫ 1

0

EPt(x|x0,x1)

[
1

2
||αt(x|x0, x1)||2 + Vt(x)

]
dt, (x0, x1)∼Q(x0, x1) (3)

where Pt(x|x0, x1) = N (x;µt, γ
2
t I) is the pinned marginal at t for coupling (x0, x1) sampled from:

Q(x0, x1) :=

{
π0(x0)π1(x1) initially (when the previous iterate θold is not available)
P v

θold (x0, x1) driven by dxt = vθold(t, xt)dt+ σdWt, x0 ∼ π0
(4)

and αt(xt|x0, x1) is determined from Pt(x|x0, x1) by the following formula (ḟt is time derivative):

αt(x|x0, x1) = µ̇t + at(x− µt), at = γ̇t/γt − σ2/(2γt
2) (5)

Once Pt(x|x0, x1) is optimized for each coupling (x0, x1), we update the neural net by:

(Step-B) θ ← argmin
θ

Et,Q(x0,x1)Pt(xt|x0,x1)||αt(xt|x0, x1)− vθ(t, xt)||2 (6)

The rationale behind this stochastic optimal control (SOC) formulation is detailed in Appendix A.3.3.
The appearance of the stage cost Vt(x) in (3) is the only difference between DSBM and GSBM (i.e.,
it can be shown that the above procedure recovers DSBM exactly if V = 0). Following (Liu et al.,
2024) we call the optimization (3) the CondSOC problem. In CondSOC, the stage cost V is added
to the kinetic energy term where the stage cost is task-specific, and expresses our problem-specific
preferences or penalties (e.g., obstacles in crowd navigation or desired particle paths). In the GSBM
algorithm, the mean µt and stdev γt functions of the Gaussian1 Pt(x|x0, x1), i.e., the optimization
variables of CondSOC, are parametrized as splines at some knot points.

3 GAUSSIAN PROCESS MODELING FOR PINNED MARGINAL PATHS

We denote the CondSOC objective in GSBM as J(P•;V•) where P• := {Pt(·|x0, x1)}t is the pinned
marginal path, and V• := {Vt(·)}t is the task-specific stage cost function. That is,

J(P•;V•) =

∫ 1

0

EPt(xt|x0,x1)

[
1

2
||αt(xt|x0, x1)||2 + Vt(xt)

]
dt (7)

where αt(xt|x0, x1) is determined from P• by (5). So, GSBM aims to find P• by solving:
argminP• J(P•;V•). Note that in GSBM the pinned marginal path P• is the deterministic op-
timization variables of the CondSOC, and they aim to find a point estimate. We instead treat P• as
a random variate, and place some prior distribution Pprior(P•). For instance, we can impose our
preference of the SB’s linear pinned marginal path over other less smooth ones through this prior.
Then “− logPprior(P•)” can be introduced as a regularizer to enforce our prior preference. With
some balancing coefficient τ (≥ 0), what we call the regularized-path GSBM can be written as:

argmin
P•

J(P•;V•)− τ logPprior(P•) ≡ argmax
P•
Pprior(P•)︸ ︷︷ ︸

Prior

· exp(−J(P•;V•)/τ)︸ ︷︷ ︸
Likelihood

(8)

where the equivalence comes from exponentiation. This can be seen as a maximum-a-posteriori
(MAP) solution. But we go one step further to consider the posterior distribution,

Ppost(P•) ∝ Pprior(P•) · exp(−J(P•;V•)/τ) (9)

We specifically consider a Gaussian process (GP) prior for the mean and stdev functions (µ• :=
{µt}t and γ• := {γt}t). For computational tractability, we impose independent prior modeling
with dimension-wise factorization for µt. To ensure positivity of γt we use the parameterization
γt = σ

√
t(1−t) log(1 + eγ̃t), in which we impose a GP prior on the unconstrained γ̃. Specifically,

Pprior(P•) = GP(µ•) · GP(γ̃•) =
d∏

j=1

GP(µj
•;m

µ,j
• , kµ,j•,• ) · GP(γ̃j

•;m
γ̃
• , k

γ̃
•,•) (10)

1Although in (Liu et al., 2024) they also proposed a non-Gaussian path modeling using the so-called path
integral resampling, there are several technical issues, including: i) the related αt(x|x0, x1) may not admit the
non-Gaussian Pt(x|x0, x1) as its marginal distribution, and ii) the importance sampling resampling procedure is
computationally very overwhelming in practice. So, we adhere to the Gaussian path recipe as described here.
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where m{µ,γ̃} and k{µ,γ̃} are mean and covariance functions of GP for µ• and γ̃•. We use superscript
j for the j-th dimension (e.g., µj

• is the j-th function of the d-dimensional vector function µ•). A main
benefit of this Bayesian path modeling is that by treating the potentially noisy CondSOC objective
(e.g., resulting from noisy stage cost V ) as a (stochastic) likelihood function, we can have a more
robust path solution as a posterior process than simply a point estimate that fully trusts the objective
J . Another benefit is that GP can lead to more natural and flexible path modeling.

Since we deal with (x0, x1)-pinned marginal paths, we need to ensure µ0 = x0, µ1 = x1, γ0 = γ1 =
0 for consistency with conditioning. For γt we already meet these boundary conditions due to our
construction. For µt, we deal with the conditional process by conditioning µj

0 = xj
0 and µj

1 = xj
1 for

each j, which is also a GP. More specifically, the conditional GP prior for µj
• can be expressed as:

µj
• | (µ

j
0 = xj

0, µ
j
1 = xj

1) ∼ GP(Mµ,j
• , Lµ,j

•,•) where (11)

Mµ,j
t = mµ,j

t + kµ,jt,{0,1}(k
µ,j
{0,1},{0,1})

−1[xj
0−m

j
0, x

j
1−m

j
1]

⊤ (12)

Lµ,j
s,t = kµ,js,t − kµ,js,{0,1}(k

µ,j
{0,1},{0,1})

−1kµ,j{0,1},t (13)

where kA,B for index sets A, B is defined to be the (|A| × |B|) matrix whose (i, j) entry is kAi,Bj
.

In all our experiments, the mean function for µt is chosen as the linear interpolation, mµ
t = (1−t)x0+

tx1, and the mean function of mγ̃
t is set to constant log(e − 1), which in turn leads to σ

√
t(1−t)

for γt. This choice makes the prior mean coincide with the solution of DSBM in the original SB
problem. For the covariance functions, we use the squared exponential kernel function (See ablation
study on different kernel choices in Sec. 5.4), where the related kernel hyperparameters, denoted
by η, are chosen by empirical Bayes (as discussed in the variational inference section below). For
simplicity, we assume the same kernel function and hyperparameters for all dimensions of µt.

3.1 SPARSE VARIATIONAL (FREE-ENERGY) GP POSTERIOR INFERENCE

Due to the intractability of the posterior Ppost(P•) defined in (9), we adopt the sparse variational
GP approximate inference (Titsias, 2009; Dezfouli & Bonilla, 2015; Matthews et al., 2016; Bauer
et al., 2016) that is based on the variational free energy principle. First off, we consider the fully
factorized GP as a tractable variational process family, specifically Q(P•) = Q(µ•) · Q(γ̃•) =∏d

j=1Q(µ
j
•) · Q(γ̃•). Both Q(µj

•) and Q(γ̃•) are chosen to be Gaussian processes parametrized by
the inducing-point processes. For exposition we focus on Q(µj

•) here since derivations for Q(γ̃•) are
similar. For notational simplicity we will often drop superscript dependency on µ (and also j).

We choose n inducing input (time) points Z = (t1, . . . , tn) with 0<t1< · · ·<tn<1. These pseudo
inputs can be seen as representative time points for the posterior process in that knowing the values of
µt at t ∈ Z has decisive effects on inferring function values at the other input points. Further insights
underlying the principle can be found in the nice survey (Quiñonero-Candela & Rasmussen, 2005).
Although the inducing input points can be learned as well as model and variational parameters in
the ELBO learning, we instead fix them as equal-spaced points in [0, 1] for simplicity (Sec. 5.4 for
ablation on n). Following the variational free-energy principle (Titsias, 2009), we define Q(µ•) as:

Q(µ•) =

∫
Q(µZ)Q(µ•|µZ)dµZ (14)

where µZ = [µt1 , . . . , µtn ]
⊤, known as the inducing variables, is a n-dimensional vector of function

values at the inducing inputs Z. The key idea is that we model only Q(µZ) as a n-variate learnable
Gaussian distribution while having Q(µ•|µZ) equal to Pprior(µ•|µZ), the conditional process
induced from the prior GP, which is also a GP. This not only helps us avoid modeling difficult
conditional process Q(µ•|µZ), but also the integration in (14) becomes tractable leading to closed-
form GP Q(µ•). More specifically, we define:

Q(µj
Z) = N (µj

Z ;C
µ,j , Sµ,j) for j = 1, . . . , d (15)

where Cµ,j , Sµ,j are n-dimensional variational parameter vectors by assuming a diagonal covariance.
Note that when compared to GSBM’s spline parametrization, assuming the number of spline knot
points is the same as n here, as they require O(n) parameters to represent knot function and derivative
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Algorithm 1 Our GP-GSBM algorithm for robust generalized Schrödinger bridge matching.
Input: The end-point distributions π0 and π1 (i.e., samples from them) and the state cost Vt(x).
Repeat until convergence or a sufficient number of times:

0. Collect batch pairs (x0, x1) sampled from the current estimate Q(x0, x1) in (4).
1. Solve the ELBO optimization in (21) to get variational parameters Λ and model parameters (η, τ).
2. Prepare a batch of (x0, x1, t, xt) and αt(xt|x0, x1) as follows:

1) Sample t ∼ [0, 1] uniformly at random.
2) Sample (µt, γt) ∼ Q(P•) using (17–20) with the learned parameters Λ and η forQ.
3) Sample xt ∼ N (xt;µt, γ

2
t I).

4) Compute αt(xt|x0, x1) in (5) using approximate time derivatives.
3. Update the neural net of the SDE by running the following for Nnnet iterations:

θ ← θ − β∇θEbatch||αt(xt|x0, x1)− vθ(t, xt)||2 (22)

values for each dimension j, we have the same complexity in terms of parametrization. And the
conditional prior Pprior(µ•|µZ) is also a GP with mean and covariance functions written as:

E[µt] = Mt + Lt,ZL
−1
Z,Z(µZ −MZ), Cov(µs, µt) = Ls,t − Ls,ZL

−1
Z,ZLZ,t (16)

where M and L are the mean and covariance functions of the boundary-conditioned prior GP (11).

Due to the Gaussianity of both terms, the integration (14) can be solved analytically, yielding a
Gaussian process Q(µ•) whose mean and covariance functions are:

EQ[µt] = Mt + Lt,ZL
−1
Z,Z(C −MZ), (17)

CovQ(µs, µt) = Ls,t − Ls,ZL
−1
Z,ZSL

−1
Z,ZLZ,t − Ls,ZL

−1
Z,ZLZ,t (18)

The variational posterior of the stdev function Q(γ̃•), following the same derivations, becomes a
Gaussian process as well, with the following mean and covariances:

EQ[γ̃t] = mγ̃
t + kγ̃t,Z′(k

γ̃
Z′,Z′)

−1(C γ̃ −mγ̃
Z′), (19)

CovQ(γ̃s, γ̃t) = kγ̃s,t − kγ̃s,Z′(k
γ̃
Z′,Z′)

−1Sγ̃(kγ̃Z′,Z′)
−1kγ̃Z′,t − kγ̃s,Z′(k

γ̃
Z′,Z′)

−1kγ̃Z′,t (20)

where Z ′ is the inducing input times for γt, and (C γ̃ , Sγ̃) are the variational parameters for the induc-
ing variables γ̃Z′ . Overall, Λ := {{Cµ,j , Sµ,j}j , C γ̃ , Sγ̃} constitute all our variational parameters.

ELBO learning. The ELBO objective can be derived from the non-negativity of the KL divergence
between Q(P•) and Ppost(P•) (Appendix B for derivations). We minimize the negative ELBO,

min
Λ,η,τ

EQ(P•)[J(P•;V•)/τ ] + KL(Q(PZ,Z′)||Pprior(PZ,Z′)) (21)

with respect to the variational parameters Λ as well as the model parameters η (prior) and τ (likeli-
hood). The variational-prior KL divergence, the second term in (21), is confined to n-dim Gaussians,
and easy to compute in closed forms (Appendix B for details). The first term of (21) can be computed
and optimized by reparametrized Monte-Carlo sampling using (17–20) (Kingma & Welling, 2014).
For the reparametrized samples P•, that is, (µ•, γ•), we apply (5) to compute J(P•;V•) where
the time derivatives (e.g., µ̇t) are computed2 as (µt+∆t − µt)/∆t utilizing the nearby covariance
structure (say, CovQ(µt, µt+∆t)) and ∆t → 0. This ensures maintaining computational graphs
for backpropagation. Since the (log-)evidence, a sole function of the model parameters (η, τ), is
lower bounded by the ELBO where the gap is exactly KL(Q(P•)||Ppost(P•)), minimizing (21) with
respect to Λ with fixed (η, τ) guarantees to reduce the gap, while minimizing it with respect to (η, τ)
with fixed Λ potentially improves the (log-)evidence. The latter optimization essentially amounts to
performing empirical Bayes (evidence maximization), a principled way to do model selection. Our
algorithm, dubbed GP-GSBM, is summarized in Alg. 1.

4 RELATED WORK

The core related works on Schrödinger bridge and generalized SB were discussed in Sec. 2 and
Appendix A. Since our work is on application of Gaussian processes (Rasmussen & Williams, 2006)

2Since µ• is GP (17–18), µ̇• is also GP whose mean and cov functions involve time derivatives of (17–18).
But, we used approximation (µt+∆t−µt)/∆t with small ∆t=0.01, which we found numerically more stable.
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to the generalized Schrödinger bridge problem, here we briefly highlight two recent papers that
applied GP to the bridge/flow problem, and discuss how they are different from ours.

Stream-level flow-matching with GP (Wei & Ma, 2025). This work is based on Tong et al. (2023)’s
CFM framework whereas in our GP-GSBM the probability path GP is applied to the GSB problem.
They have conditional GP derived by conditioning the prior GP on several fixed observed stream
points. So this is the key difference. Recall that we take the sparse variational GP posterior inference
while turning the CondSOC objective into a likelihood function. A limitation of their approach is that
if there are some task-specific costs on the marginal paths (e.g., obstacles specified by the stage cost
V ), there is no way to penalize the GP path that passes through the obstacles systematically. That is,
their GP framework may not be applicable to GSB problems unless one manually marks and provides
the stream points to circumvent the obstacles, which is cumbersome and costly.

Flow matching with GP prior (Kollovieh et al., 2025). The setup and goal of this work are highly
different from ours. They introduce GP as an additional prior structure on the distribution π0 for
generation of the time-series data x1. Hence x0 is the same dimensional time-series. Then they
use either Langevin dynamics (Durmus & Éric Moulines, 2017) or posterior sampling (Dhariwal &
Nichol, 2021; Kollovieh et al., 2023) in denoising diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021) with the mini-batch-OT-CFM learned from π0. Hence this work is
highly different from our approach of imposing a GP prior on the pinned marginal paths.

5 EXPERIMENTS

We test the performance of our GP-GSBM on several crowd navigation and image generation/transla-
tion problems. We mainly compare ours with GSBM (Liu et al., 2024) and DSBM (Shi et al., 2023):
the former deals with the stage cost deterministically while the latter ignores the stage cost. The de-
tails of experimental setups including hyperparameters and neural net architectures are in Appendix C.
Due to the lack of space, some parts of our experimental results are moved to Appendix D.

5.1 CROWD NAVIGATION PROBLEMS

We follow the problem setups and experimental settings from (Liu et al., 2022; 2024) where we focus
on the geometric surface LiDAR problem (Sec. 5.1.1) and 2D obstacle problems (Sec. 5.1.2).

5.1.1 LIDAR GEOMETRIC SURFACE STAGE COSTS

We tackle the crowd navigation problem where the path cost is incurred through a complex geometric
surface. Similar to the setup in (Liu et al., 2024), we deal with the surfaces observed through the
LiDAR 3D scans of the Mt. Rainier (Legg & Anderson, 2013), where the surfaces form a manifold.
We define the closeness to the manifold and the height as the path cost. Formally,

Vt(x) = ||ΠM(x)− x||2 + exp(ΠM(x)[z]) (23)

where ΠM(x) is the projection of the 3D point x on to the manifoldM, which is done by tangent
plane projection estimated by x’s k-nearest neighbor points (k = 20) on M. The height of the
projected point is the z-coordinate value ΠM(x)[z].

This stage cost function encourages the navigation path to stay close to the surfaces and avoid high
altitudes. Fig. 1 shows the sample paths from the competing models after training. We see that DSBM
(leftmost), as expected, yields straight linear paths due to its ignorance of the stage cost, resulting
in high CondSOC loss as summarized in Table 1. Our GP-GSBM successfully discovers the low
altitude regions bypassing the saddle points as shown in the second column. GSBM (Liu et al., 2024)
is also able to find out the desired two viable pathways similarly as ours (figure omitted here due to
the similarity as ours). However, our GP-GSBM achieves even lower CondSOC cost perhaps due to
more flexible pinned marginal path modeling than GSBM’s deterministic spline optimization. Table 1
summarizes the CondSOC objective values for the learned models, averaged over 10 random runs.

Noisy observation setup. Since the projection to the manifold and reading the projected point can be
a noisy process in practice, we mimic this noisy process by injecting random noise to the projected
points. The results in Table 1 show that our GP-GSBM attains the lowest loss among the competing
methods, signifying its benefit of robust path estimation through the Gaussian process inference under
this noisy likelihood scenario. The visualized path samples in Fig. 1 (rightmost column) also shows
that the desired two viable pathways are still well discovered by our model.
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Figure 1: LiDAR path samples for different models in 3D (top rows) and 2D (bottom) views. Starting
from the samples of π0 shown as red points on the left, we generate samples for π1 as blue points on
the right. Path samples are visualized in 5 uniform time points from t=0 (red) to t=1 (blue).

Table 1: LiDAR results. CondSOC objective values for the learned models. Figures in parentheses
are the Wasserstein distances between the true target π1 and the learned ones.

DSBM GSBM STREAM-LEVEL GP GP-GSBM (OURS)
NOISE-FREE OBS. 7747.0 ± 76.4 (0.04) 6199.3 ± 47.3 (0.04) 7012.6 ± 61.9 (0.15) 5925.05925.05925.0 ± 65.4 (0.03)

NOISY OBS. 12686.9 ± 150.9 (0.04) 8506.1 ± 65.6 (0.04) 12679.1 ± 579.9 (0.16) 8300.08300.08300.0 ± 67.6 (0.04)

5.1.2 STAGE COSTS FROM OBSTACLES AND MEAN-FIELD INTERACTIONS

We next consider the crowd navigation problems with stage costs driven by obstacles and mean-field
interactions. Similar to previous works (Liu et al., 2022; 2024), the stage cost is defined as:

Vt(x) = λobsLobs(x) + λent log pt(x) + λcgstEx,x′∼pt
(1 + ||x− x′||2)−1 (24)

where pt(x) is the path marginal distributions obtained from the pinned marginals pt(x|x0, x1) and
the coupling Q(x0, x1). The obstacle cost Lobs is defined as the distance between the state x and
the problem-specific obstacle. We may have the log pt(x) term as the entropy cost encouraging
diversified paths, and the congestion term to penalize densely packed particles along the paths. We
test the competing models on two problem sets, Stunnel that has two ellipsoidal obstacles (Fig. 4)
and GMM with three Gaussian blobs as obstacles (Fig. 5).

The learned µt, γt of the pinned marginals are shown in Fig. 4 and Fig. 5 while Table 2 reports
the final CondSOC loss values averaged over 10 random runs. DSBM always finds a straight line,
and incurs high CondSOC loss due to its ignorance of obstacles, i.e., the stage cost V . For Stunnel
(Fig. 4), in the deterministic obstacle scenario, GSBM identifies an optimal path that circumvents the
obstacles sharply while retaining minimal kinetic energy. Our GP-GSBM also finds a similar solution
as GSBM’s, and the posterior stdevs (red-shaded areas) are small in this case due to the deterministic
nature of the problem. The model selection empirical Bayes finds small τ (≈ 0.1), implying that the
model that puts more emphasis on the likelihood than the prior. This is reasonable and promising
considering that the likelihood in this scenario is quite trustworthy.

Unlike in the original setup where the obstacles were always present, and the bridge matching
algorithms can learn the stage cost function deterministically, we devise an uncertain setup by
regarding the presence of obstacles as a random process. Specifically we randomly turn on and off the
obstacles with probability p=0.5. This has the effect of turning the CondSoc objective function into
an uncertain quantity, and we aim to judge which models are the most robust to such a noisy CondSOC
objective function. We anticipate that our GP-GSBM will be more robust to GSBM (Liu et al., 2024)
since we treat the CondSOC loss as a likelihood function, that is, a probabilistic model, rather than
GSBM’s deterministic treatment. As shown in Table 2, GSBM incurs even higher CondSOC loss
than the deterministic case. GSBM is baffled in this case because it only optimizes the cost without
taking into account the prior preference of straight line interpolation between π0 and π1, which is
preferred for the obstacle absent cases. On the other hand, our GP-GSBM learns higher prior weight
τ (≈ 1.0) from model selection, which encourages the marginal path to stay closer to the straight line
interpolation (prior), preferable for obstacle absent cases. Furthermore, the uncertain stage cost is
reflected in the stdev shading in our GP posterior where we observe even higher posterior uncertainty
shown as larger red-shaded areas in Fig. 4 (the rightmost column).
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Table 2: Stunnel and GMM results. CondSOC objective values for the learned models. Figures in
parentheses are the Wasserstein distances between the true target π1 and the learned ones.

DSBM GSBM GP-GSBM (OURS)

STUNNEL
DETERMINISTIC 18628.8 (0.02) 492.94± 1.13 (0.03) 488.78488.78488.78± 1.07 (0.02)

UNCERTAIN 9549.2 (0.03) 502.20± 1.76 (0.04) 452.30452.30452.30± 1.78 (0.03)

GMM DETERMINISTIC 19824.2 (2.91) 97.4± 0.67 (2.31) 85.385.385.3± 0.54 (1.81)
UNCERTAIN 13232.4 (2.96) 101.6± 1.02 (2.83) 89.289.289.2± 0.62 (2.19)

Table 3: AFHQ dog→ cat image generation FID scores. Figures for DSBM (Shi et al., 2023) and
GSBM (Liu et al., 2024) are excerpted from (Liu et al., 2024).

DSBM GSBM STREAM-LEVEL GP GP-GSBM (OURS)
14.16 12.39 18.77 10.2110.2110.21

5.2 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section we test the performance of our GP-GSBM on unsupervised image-to-image translation
problem. Specifically, we deal with images of cats (regarded as π0) and dogs (as π1) from the AFHQ
dataset (Choi et al., 2020). Although SB’s optimal transport objective guides a bridge matching
algorithm to learn a coupling between samples from π0 and π1 that is optimal in the ambient pixel-
space L2 distance sense, this can often incur artifacts in the bridging paths. In other words, more
intrinsic (latent) structure of the image manifolds cannot be taken into account.

To this end, following the latent space guidance proposed in (Liu et al., 2024), we incorporate the
latent spherical-linear interpolated reconstruction error as the stage cost. More specifically,

Vt(xt) = ||xt − dec(zt)||1, zt = slerp(t, enc(x0), enc(x1)) (25)

where z = enc(x) and x = dec(z) are the encoder and decoder of the pre-trained VAE model (Kingma
& Welling, 2014). As claimed in (Liu et al., 2024), this stage cost helps preserving the underlying
latent structures through semantically meaningful pinned marginal Pt(xt|x0, x1), yielding a faster
training convergence and better couplings than models without the V term such as DSBM (Shi et al.,
2023). In addition to this observation, we further conjecture that the cost Vt(x) itself is inherently
noisy for several reasons, most notably that the learned VAE model may not be perfect in representing
the true image manifold, and also the SLERP interpolation is only a proxy for the optimal latent
paths. This is where our GP-GSBM can be especially beneficial for more robust path learning and
bridging by handling such uncertainty in the stage cost in a principled Bayesian manner.

We trained our GP-GSBM with images of size (64× 64) from cats and dogs, roughly 5K images
from each. We first visualize how the prior and posterior pinned marginals Pt(x|x0, x1) differ for dog
(t=1) to cat (t=0) translation. After training the model, we pair the coupling of (x1, x0) by running
the trained (reverse-time) SDE model starting from x1∼π1, which is shown in Fig. 2(a) (more and
magnified images in Fig. 6). From this coupling, we show the mean images from Pt(x|x0, x1) for
the prior and posterior (before and after the variational GP inference) in the middle. Visually clearly,
the posterior exhibits semantically more meaningful path samples than the prior with less artifacts
since the posterior takes into account the latent-preserving stage cost, forcing the samples to stay
closer to the image manifold. In Fig. 2(b) (also Fig. 7), the SDE generation progress is shown with
intermediate time steps. We also visualize the generated cat images in Fig. 2(c) (also Fig. 8). As a
quantitative comparison, the FID scores of the generated cat images are reported in Table 3. Our
GP-GSBM attains the lowest FID score, better than (deterministic) GSBM by capturing potential
uncertainty/inaccuracy that may reside in the stage cost observation.

5.3 COMPARISON TO STREAM-LEVEL GP

As discussed in Sec. 4, our approach has several key differences from the conditional GP path
modeling for CFM models in the recent work (Wei & Ma, 2025). Most notably, we regard GSBM’s
CondSOC objective as a likelihood function for GP posterior inference, whereas they used the linear
interpolation velocity αt(xt|x0, x1) = ẋt as a conditional GP prior, thus difficult to incorporate
task-specific stage costs. Here we perform some empirical tests to highlight the differences. We
compare ours with the stream-level GP method on the LiDAR crowd navigation (Fig. 1, Table 1)
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Figure 2: Results of GP-GSBM on AFHQ dog (t=1, rightmost columns in (a), (b))→ cat (t=0,
leftmost columns in (a), (b)) translation. See Appendix D.1 for more and enlarged images.

Table 4: CondSOC objectives for different kernels on Stunnel (left) and LiDAR (right).
STUNNEL SQUARED EXP. POLYNOMIAL

DETERMINISTIC 488.78 ± 1.07 556.50 ± 1.47

UNCERTAIN 452.30 ± 1.78 435.37 ± 9.31

LIDAR SQUARED EXP. POLYNOMIAL

NOISE-FREE 5925.0 ± 65.4 6604.8 ± 55.4

NOISY 8300.0 ± 67.6 8625.2 ± 65.8

and AFHQ image-to-image translation (Table 3). We adapted the stream-level GP within our UBA
framework for these bridge matching problems. Overall the stream-level GP incurs high costs with
lower distribution matching performance due to the ignorance of the stage costs. For additional
results on a non-GSB problem, refer to Appendix D.2 for CIFAR-10 image generation experiments.

5.4 ABLATION STUDY AND RUNNING TIME (COMPUTATIONAL COMPLEXITY)

Figure 3: Sensitivity to the number of inducing points (n).

Sensitivity to the number of induc-
ing points (n) and the kernel func-
tion. We used the default n = 15
(Stunnel) and n = 30 (LiDAR). To
see how sensitive our GP-GSBM is
to this hyperparameter, we vary n
in Fig. 3, which shows that the per-
formance is not very sensitive to n
unless it is too small. We also test kernel types other than the default squared exponential kernel. As
shown in Table 4 the polynomial kernel (degree selected from a grid of 1 to 10) slightly lags behind it.

Running time. In Appendix B.2 we analyzed asymptotic complexity of GP-GSBM compared to
GSBM. Due to the GP modeling, our algorithm has extra cost of O(n2d) (also O(n3) kernel inversion
cost when we do model selection). Even though n (the number of inducing points) is constant and
usually no greater than 30 in practice, this may be computationally demanding especially for high-
dimensional states. However, we suggested some workaround to reduce this cost in Appendix B.2.
In this case, on LiDAR we got comparable time, GP-GSBM: 1.70 second per ELBO iteration, and
GSBM: 1.61 second per CondSOC iteration, when run on a single RTX-4090 GPU. We conduct more
theoretical and empirical study to reduce further computational overhead as ongoing/future research.

6 CONCLUSION AND LIMITATION

We have proposed a novel Gaussian process approach to marginal path modeling for the generalized
Schrödinger bridge problem. By imposing a GP prior on the pinned marginal path and viewing
the CondSOC objective as a noisy likelihood function, the inferred posterior path in our model
can lead to more flexible and robust solutions than the existing methods on problems under noisy
observations and uncertainty. On several crowd navigation and image-to-image translation problems
we have empirically demonstrated these benefits. A limitation of our current approach, however,
is that it incurs higher computational complexity arising from GP posterior inference involving
kernel inversion. Although we suggested some heuristic workarounds, further study on finding more
principled solutions to reduce time complexity is needed, which we leave as future research.
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Appendix

Table of Contents
• A Unified Framework for Diffusion Bridge Problems (UBA) (Sec. A)

• Technical Details of Gaussian Process GSBM (GP-GSBM) (Sec. B)

• Experimental Details (Sec. C)

• Additional Experimental Results (Sec. D)

A A UNIFIED FRAMEWORK FOR DIFFUSION BRIDGE PROBLEMS: FLOW
MATCHING AND SCHRÖDINGER MATCHING INTO ONE

The bridge problem is to find a stochastic differential equation (SDE), or sometimes an ordinary
differential equation (ODE), that bridges two given distributions. The application areas of the
bridge problem are enormous, among which the recent generative modeling (e.g., conditional or
unconditional image generation) is the most popular. Also the famous Schrödinger bridge problem, a
widely known problem for a century, is a special instance of the bridge problem. Two most popular
algorithms to tackle the bridge problems in the deep learning era are: (conditional) flow matching and
iterative fitting algorithms, where the former confined to ODE solutions, and the latter specifically
for the Schrödinger bridge problem. The main contribution of this section is in two folds: i) We
provide concise reviews of these algorithms with technical details to some extent; ii) We propose
a novel unified perspective and framework that subsumes these seemingly unrelated algorithms
(and their variants) into one. In particular, we show that our unified framework can instantiate the
Flow Matching (FM) algorithm, the (mini-batch) optimal transport FM algorithm, the (mini-batch)
Schrödinger bridge FM algorithm, and the deep Schrödinger bridge matching (DSBM) algorithm
as its special cases. We believe that this unified framework will be useful for viewing the bridge
problems in a more general and flexible perspective, and in turn can help researchers and practitioners
to develop new bridge algorithms in their fields.

A.1 (DIFFUSION) BRIDGE PROBLEMS

The diffusion bridge problem, or simply the bridge problem, can be defined as follows.

• Bridge problem. Given two distributions π0(·) and π1(·) in Rd, find an SDE, more specifically,
find the drift function ut(x) where u : R[0, 1]× Rd → Rd with a specified diffusion coefficient σ,

dxt = ut(xt)dt+ σdWt, x0∼π0(·) (26)

that yields x1∼π1(·). Here {Wt}t is the Wiener process or the Brownian motion. Alternatively one
can aim to find a reverse-time SDE (or both). That is, find ut(x) in

←−
d xt = ut(xt)dt+ σ

←−
d Wt, x1∼π1(·) (27)

that yields x0∼π0(·).
Note that if we specify σ = 0, then our goal is to find an ODE that bridges the two distributions
π0(·) and π1(·). Once solved, the solution to the bridge problem can give us the ability to sample
from one of the π{0,1} given the samples from the other, simply by integrating the learned SDE. The
application areas of the bridge problem are enormous, among which the generative modeling (e.g.,
conditional or unconditional image generation) is the most popular. For instance, in typical generative
modeling, π0 is usually a tractable density like Gaussian, while π1 is a target distribution that we
want to sample from. In the bridge problem, however, π0 can also be an arbitrary distribution beyond
tractable densities like Gaussians, and we do not make any particular assumption on π0 and π1 as
long as we have samples from the two distributions.

• Two instances of the bridge problem. There are two interesting special instances of the bridge
problem: the Schrödinger bridge problem and the ODE bridge problem.
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• ODE bridge problem. We strictly restrict ourselves to ODEs, i.e., σ = 0.
• Schrödinger bridge problem. With σ>0, there is an additional constraint that the path

measure of the SDE (26), denoted by Pu, is closest to a given reference SDE path measure
P ref . That is,

min
u

KL(Pu||P ref ) s.t. Pu
0 (x0) = π0(x0), P

u
1 (x1) = π1(x1) (28)

where Pt of a path measure P indicates the marginal distribution at time t. In this case to
have finite KL divergence, σ of Pu has to be set equal to σref of P ref , i.e., σ = σref , (from
the Girsanov theorem).

A.2 FLOW MATCHING AND SCHRÖDINGER BRIDGE MATCHING ALGORITHMS

Among several existing algorithms that aim to solve the bridge problems, here we focus on two recent
matching algorithms: (conditional) flow matching (Lipman et al., 2023; Tong et al., 2023; Albergo &
Vanden-Eijnden, 2023; Liu et al., 2023) and Schrödinger bridge matching algorithms (De Bortoli
et al., 2021; Vargas et al., 2021; Shi et al., 2023). These algorithms were developed independently:
the former aimed to solve the ODE bridge problem while the latter the Schrödinger bridge problem.
In this section we review the algorithms focusing mainly on the key ideas with some technical details,
but being mathematically less rigorous for better readability.

In Sec. A.3, we propose a novel unified framework that subsumes these two seemingly unrelated
algorithms and their variants into one.

A.2.1 (CONDITIONAL) FLOW MATCHING FOR ODE BRIDGE PROBLEMS

The Flow Matching (FM) (Lipman et al., 2023) or its extension Conditional Flow Matching
(CFM) (Tong et al., 2023) is one promising way to solve the ODE bridge problem. The key
idea of the FM is quite intuitive. We first design some marginal distribution path {Pt(xt)}t with
the boundary conditions P0 = π0, P1 = π1. We then derive the ODE dxt = ut(xt)dt that yields
{Pt(xt)}t as its marginal distributions. The drift ut(xt) is approximated by a neural network vθ(t, xt)
with parameters θ by solving:

min
θ

Et,xt∼Pt
||ut(xt)− vθ(t, xt)||2 (29)

Once solved, we can generate samples from π1 (or π0) approximately by simulating: dxt =
vθ(t, xt)dt, x0 ∼ π0 (resp., x1 ∼ π1). However, one of the main limitations of this strategy is
that designing the marginal path {Pt(xt)}t satisfying the boundary condition is often difficult. And it
is this issue that motivated the CFM.

• Conditional Flow Matching (CFM). To make the path design easier, we introduce some latent
random variable z to condition xt. Although CFM derivations hold regardless of the choice of z, it
is typically chosen as the terminal random variates z = (x0, x1), and we will follow this practice
and notation. Specifically, in CFM we design the so-called pinned marginal path {P (xt|x0, x1)}t
and the coupling distribution Q(x0, x1) subject to the condition P0(x0) = π0(x0), P1(x1) = π1(x1)
where Pt(xt) is defined as

Pt(xt) :=

∫
Pt(xt|x0, x1)Q(x0, x1)d(x0, x1) (30)

Then we derive the ODE dxt = ut(xt|x0, x1)dt that yields {P (xt|x0, x1)}t as its marginal distribu-
tions for each (x0, x1), which admits a closed form if {P (xt|x0, x1)}t are Gaussians (Lipman et al.,
2023). We then approximate E[ut(xt|x0, x1)|xt], the conditional expectation derived from the joint
P (xt|x0, x1)Q(x0, x1), by a neural network vθ(t, xt) by solving the following optimization:

min
θ

E ||ut(xt|x0, x1)− vθ(t, xt)||2 (31)

where the expectation is taken with respect to the joint P (xt|x0, x1)Q(x0, x1) and uniform t. Sur-
prisingly, it can be shown (Tong et al., 2023) that the gradient of the objective in (31) coincides with
that in (29) for ut(xt) defined as:

ut(x) =
1

Pt(xt)
EQ(x0,x1)[ut(xt|x0, x1)Pt(xt|x0, x1)] (32)
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hence sharing the same training dynamics as (29). Therefore the optimal vθ(t, xt) of (31) is a good
estimate for ut(xt). Since the ODE dxt = ut(xt)dt admits {Pt(xt)}t as its marginal distributions,
so does dxt = vθ(t, xt)dt approximately.

Many existing flow matching variants including FM (Lipman et al., 2023), Stochastic Interpola-
tion (Albergo & Vanden-Eijnden, 2023), and Rectified FM (Liu et al., 2023) can be viewed as special
instances of this CFM framework. For instance, these models can be realized by having a straight line
(linear interpolation) pinned marginal path (33) with vanishing variance while one boundary (e.g.,
π0) is fixed as standard normal N (0, I).

• Limitations of CFM. A reasonable choice for the coupling distribution Q(x0, x1) is the Optimal
Transport (OT) or the entropic OT between π0 and π1. The pinned marginal Pt(xt|x0, x1) can be
chosen as a Gaussian with the linear interpolation between x0 and x1 as its mean, more specifically,

Pt(xt|x0, x1) = N (tx1 + (1− t)x0, β
2
t I) (33)

for some scheduled variances β2
t . When the combination of the entropic OT Q(x0, x1) and βt =

σref

√
t(1− t) is used, it can be shown that the marginals {Pt(xt)}t coincide with the marginals

of the Schrödinger bridge with the Brownian motion reference P ref : dxt = σrefdWt. However,
the main limitations of CFM (Tong et al., 2023) are: i) CFM solutions are confined to ODEs, hence
unable to find the optimal SDE solution to general bridge problems including the Schrödinger bridge
problem; ii) CFM itself does not provide a recipe about how to solve the entropic OT problem exactly –
what is called SB-CFM proposed in (Tong et al., 2023) only approximates it with the Sinkhorn-Knopp
solution for minibatch data, which is usually substantially different from the population entropic OT
solution, that is, the solution to the Schrödinger bridge problem (See the SB static view in Sec. A.2.2).

A.2.2 SCHRÖDINGER BRIDGE PROBLEM

The Schrödinger bridge problem can be defined as (28) where we assume a zero-drift Brownian SDE
with diffusion coefficient σref for the reference path measure P ref . That is,

P ref : dxt = σrefdWt, x0∼π0(·) (34)

We denote by PSB the Schrödinger bridge path measure, i.e., the solution to (28). In the literature,
there are two well-known views for PSB : the static view and the optimal control view.

The static view has a direct link to the entropic optimal transport (EOT) solution, more specifically

PSB({xt}t∈[0,1]) = PEOT (x0, x1) · P ref ({xt}t∈(0,1)|x0, x1) (35)

where PEOT (x0, x1) is the EOT joint distribution solution with the negative entropy regularizing
coefficient 2σ2

ref . More formally,

PEOT (x0, x1) = arg min
P (x0,x1)

EP (x0,x1)||x0 − x1||2 − 2σ2
refH(P (x0, x1)) (36)

s.t. P (x0) = π0(x0), P (x1) = π1(x1) (37)

where H indicates the Shannon entropy. We call P ref (·|x0, x1) the pinned reference process, which
admits a closed-form Gaussian expression for the specific choice (34). Although the product form
(35), i.e., the product of the boundary joint distribution and the pinned path measure, does not in
general become Markovian (e.g., Itô SDE representable), the Schrödinger bridge is a well-known
exception where there exists a unique SDE that yields PSB as its path measure.

Alternatively, it is not difficult to derive an optimal control formulation for the Schrödinger bridge
problem. Specifically, PSB can be described by the SDE that has the minimum kinetic energy among
those that satisfy the bridge constraint. Letting

P v : dxt = vt(xt)dt+ σrefdWt, x0∼π0(·) (38)

we have PSB = P v∗
where v∗ is the minimizer of the following problem:

min
v

EPv

[∫ 1

0

1

2σ2
ref

||vt(xt)||2dt

]
s.t. P v

1 (x1) = π1(x1) (39)

Next we summarize two recent algorithms that solve the Schrödinger bridge problem exactly (at least
in theory): Iterative Proportional Filtering (IPF) and Iterative Markovian Fitting (IMF).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.3 ITERATIVE PROPORTIONAL FILTERING (IPF)

IPF aims to solve the Schrödinger bridge problem (28) by alternating the forward and reverse half
bridge (HB) problems until convergence. More specifically, with initial P 0 = P ref , we solve the
followings for n = 1, 2, . . .

(Reverse HB) P 2n−1 = argmin
P

KL(P ||P 2n−2) s.t. P1(x1) = π1(x1) (40)

(Forward HB) P 2n = argmin
P

KL(P ||P 2n−1) s.t. P0(x0) = π0(x0) (41)

It can be shown that limn→∞ Pn → PSB (Fortet, 1940; Kullback, 1968; Rüschendorf, 1995). It is
not difficult to show that the optimal solution of (40) or (41) can be attained by time-reversing the
SDE of the previous iteration. This fact was exploited recently in (De Bortoli et al., 2021; Vargas
et al., 2021) to yield neural-network based IPF algorithms where the score ∇ logPn(x) that appears
in time reversal is estimated either by regression estimation (De Bortoli et al., 2021) or maximum
likelihood estimation (Vargas et al., 2021). However, the main drawback of these IPF algorithms is
that they are simulation-based methods, thus very expensive to train.

A.2.4 ITERATIVE MARKOVIAN FITTING (IMF)

Recently in (Shi et al., 2023), the concept of path measure projection was introduced, specifically the
Markovian and reciprocal projections that preserve the boundary marginals of the path measure. This
idea was developed into a novel matching algorithm called the iterative Markovian fitting (IMF) that
alternates applying the two projections starting from the initial path measure. Not only is it shown to
converge to PSB , but the algorithm is computationally more efficient than IPF without relying on
simulation-based learning. A practical version of the algorithm is dubbed Deep Schrödinger Bridge
Matching (DSBM).

We begin with discussing the two projections.

• Reciprocal projection. They define the reciprocal class of path measures to be the set of path
measures that admit P ref (·|x0, x1) as their pinned conditional path measures. That is, the reciprocal
classR is defined as:

R = {P : P (x0, x1)P
ref (·|x0, x1)} (42)

The reciprocal projection of a path measure P , denoted by ΠR(P ), is defined as the path measure in
the reciprocal class that is closest to P in the KL divergence sense. Formally,

ΠR(P ) = arg min
R∈R

KL(P ||R) = P (x0, x1)P
ref (·|x0, x1) (43)

where the latter equality can be easily derived from the KL decomposition property. So it basically
says that the reciprocal projection of P is simply done by replacing P (·|x0, x1) by that of PRef

while keeping the coupling P (x0, x1).

•Markovian projection. They also define the Markovian class as the set of any SDE-representable
path measures with diffusion coefficient σref . That is,

M = {P : dxt = gt(xt)dt+ σrefdWt for any vector field g} (44)

The Markovian projection of a path measure P , denoted by ΠM(P ), is defined similarly as the path
measure in the Markovian class that is closest to P in the KL divergence sense,

ΠM(P ) = arg min
M∈M

KL(P ||M) (45)

In (Shi et al., 2023) (Proposition 2 therein), it was shown that ΠM(P ) can be expressed succinctly
for reciprocal path measures P . Specifically, for P ∈ R, we have ΠM(P ) = P v∗

where P v∗
is

described by the SDE: dxt = v∗t (xt)dt+ σrefdWt, x0∼P (x0) where

v∗t (xt) = EP (x1|xt)

[
σ2
ref∇xt

logP ref (x1|xt)
]
= EP (x1|xt)

[
x1 − xt

1− t

]
(46)

where the latter equality comes immediately from the closed-form P ref (x1|xt) = N (xt, σ
2
ref (1−

t)I). Also it was shown that the marginals are preserved after the projection, that is, P v∗

t (·) = Pt(·)
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for all t ∈ [0, 1]. This means that applying any number of Markovian (and also reciprocal) projections
to a path measure P always preserves the boundary marginals P0(x0) and P1(x1). And this is one
of the key theoretical underpinnings of their algorithms called IMF and its practical version DSBM
(details below) to solve the Schrödinger bridge problem.

• IMF and DSBM algorithms. Conceptually the IMF algorithm can be seen as a successive alternat-
ing application of the Markovian and reciprocal projections, starting from any initial path measure
P 0 that satisfies P 0(x0) = π0(x0) and P 0(x1) = π1(x1) (e.g., P 0 = π0(x0)π1(x1)P

ref (·|x0, x1)
is a typical choice). That is, for n = 1, 2, . . .

P 2n−1 = ΠM(P 2n−2), P 2n = ΠR(P 2n−1) (47)

Not only do all {Pn}n≥0 meet the boundary conditions (i.e., Pn
0 = π0, Pn

1 = π1), it can be
also shown that they keep getting closer to PSB , and converge to PSB (i.e., KL(Pn+1||PSB) ≤
KL(Pn||PSB) and limn→∞ Pn = PSB) (Shi et al., 2023) (Proposition 7 and Theorem 8 therein).
The reciprocal projection is straightforward as it only requires sampling from the pinned process
P ref (·|x0, x1) that is done by running dxt = x1−xt

1−t dt + σrefdWt with (x0, x1) taken from the
previous path measure. However, the Markovian projection involves the difficult P (x1|xt) in (46)
from the previous path measure P . To circumvent P (x1|xt), they used the regression theorem by
introducing a neural network vθ(t, x) to approximate v∗t (x) and optimizing the following:

argmin
θ

∫ 1

0

EP (xt,x1)

∣∣∣∣vθ(t, xt)− σ2
ref∇xt

logP ref (x1|xt)
∣∣∣∣2dt (48)

where now the cached samples (x1, xt) from the previous path measure P can be used to solve
(48). Although theoretically vθ∗(t, x) = v∗t (x) with ideally rich neural network capacity and perfect
optimization, in practice due to the neural network approximation error, the boundary condition is
not satisfied, i.e., P 2n−1

1 ̸= π1. Hence to mitigate the issue, they proposed IMF’s practical version,
called the Diffusion Schrodinger Bridge Matching (DSBM) algorithm (Shi et al., 2023). The idea
is to do Markovian projections with both forward and reverse-time SDEs in an alternating fashion
where the former starts from π0 and the latter from π1, which was shown to mitigate the boundary
condition issue.

A.3 A UNIFIED FRAMEWORK FOR DIFFUSION BRIDGE MATCHING PROBLEMS

Our proposed unified framework is described in Alg. 2. It can be seen as an extension of the CFM
algorithm (Tong et al., 2023) where the difference is that we consider the SDE bridge instead of
the ODE bridge (i.e., the diffusion term in step 2). But this difference is crucial, as will be shown,
allowing us to resolve the limitations of the CFM discussed in Sec. A.2.1. It also makes the framework
general enough to subsume the IMF/DSBM algorithm for the Schrödinger bridge problem and various
ODE bridge algorithms as special cases. We also emphasize that even though this small change of
adding the diffusion term in step 2 may look minor, its theoretical consequence, specifically our
theoretical result in Theorem A.1, has rarely been studied in the literature by far.

We call the unified framework Unified Bridge Algorithm (UBA for short). Note that UBA described in
Alg. 2 can deal with both ODE and SDE bridge problems, and if the diffusion coefficient σ vanishes,
it reduces to CFM for ODE bridge. Similarly as CFM, under the assumption of rich enough neural
network functional capacity and perfect optimization solutions, our framework guarantees to solve
the bridge problem. More formally, we have the following theorem.

Theorem A.1 (Our Unified Bridge Algorithm (UBA) solves the bridge problem). If the neural
network vθ(t, x) functional space is rich enough to approximate any function arbitrarily closely, and
if the optimization in step 3 can be solved perfectly, then each iteration of going through steps 1–3 in
Alg. 2 ensures that dxt = vθ(t, xt)dt+ σdWt, x0∼π0(·) (after the optimization in step 3) admits
{Pt(xt)}t of (49) as its marginal distributions.

The proof can be found in Sec. A.4. The theorem says that after each iteration of going through steps
1–3, it is always guaranteed that the current SDE admits {Pt(xt)}t defined in step 1 as marginal
distributions. Since P0(·) = π0(·) and P1(·) = π1(·), the bridge problem is solved. Depending on
the design choice, one can have just one iteration to solve the bridge problem. Under certain choices,
however, it might be necessary to run the iterations many times to find the desired bridge solutions

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Our Unified Bridge Algorithm (UBA) for bridge problems.
Input: The end-point distributions π0 and π1 (i.e., samples from them).
Repeat until convergence or a sufficient number of times:

1. Choose a pinned marginal path {Pt(x|x0, x1)}t and a coupling distribution Q(x0, x1) such that
P0(·) = π0(·) and P1(·) = π1(·) where

Pt(xt) :=

∫
Pt(xt|x0, x1)Q(x0, x1)d(x0, x1) (49)

2. Choose σ ≥ 0, and find ut(x|x0, x1) such that the SDE

dxt = ut(xt|x0, x1)dt+ σdWt (50)

admits {Pt(x|x0, x1)}t as its marginals. (Note: many possible choices for σ and ut(x|x0, x1))
3. Solve the following optimization problem with respect to the neural network vθ(t, x):

min
θ

Et,Q(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1)− vθ(t, xt)||2 (51)

Return: The learned SDE dxt = vθ(t, xt)dt+ σdWt as the bridge problem solution.

(e.g., mini-batch OT-CFM (Tong et al., 2023) and the IMF/DSBM Schrödinger bridge matching
algorithm (Shi et al., 2023) as we illustrate in Sec. A.3.1 and Sec. A.3.3, respectively).

In the subsequent sections, we illustrate how several popular ODE bridge and Schrödinger bridge
algorithms can be instantiated as special cases of our UBA framework.

A.3.1 A SPECIAL CASE: (MINI-BATCH) OPTIMAL TRANSPORT CFM (TONG ET AL., 2023)

Within our general Unified Bridge Algorithm (UBA) framework (Alg. 2), we select Pt(x|x0, x1),
Q(x0, x1) and ut(x|x0, x1) as follows. First in step 1,

Pt(xt|x0, x1) = N (xt; (1− t)x0 + tx1, σ
2
minI) (52)

Q(x0, x1) = PmOT (x0, x1) :=
∑
i∈B0

∑
j∈B1

δ(x0 = xi
0)δ(x1 = xj

1)p
mOT
ij (53)

where σmin → 0, and ({xi
0}i∈B0

, {xj
1}j∈B1

) is the mini-batch data, and {pmOT
ij }ij is a (|B0|×|B1|)

mini-batch OT solution matrix learned with the mini-batch as training data. That is,

pmOT = argmin
p

∑
i,j

pij ||xi
0 − xj

1||2 s.t.
∑
j∈B1

pij =
1

|B0|
,
∑
i∈B0

pij =
1

|B1|
(54)

It is worth mentioning that σmin → 0 is required to have boundary consistency for Pt(xt|x0, x1) at
t = 0 and t = 1. Note also that Pt(x|x0, x1) is always fixed over iterations while Q(x0, x1) varies
over iterations depending on the mini-batch data sampled. Note that in our UBA framework, each
iteration allows for different choices of Pt(x|x0, x1) and Q(x0, x1).

In step 2, we choose σ = 0, and define ut(xt|x0, x1) to be a constant (independent on t) straight line
vector from x0 to x1, i.e.,

ut(xt|x0, x1) = x1 − x0 (55)

which can be shown to make the ODE dxt = ut(xt|x0, x1)dt admit Pt(xt|x0, x1) as its marginal
distributions (Tong et al., 2023).

The above choices precisely yield the (mini-batch) optimal transport CFM (OT-CFM) introduced
in (Tong et al., 2023).

A.3.2 A SPECIAL CASE: (MINI-BATCH) SCHRÖDINGER BRIDGE CFM (TONG ET AL., 2023)

Within our general Unified Bridge Algorithm (UBA) framework (Alg. 2), we select Pt(x|x0, x1),
Q(x0, x1) and ut(x|x0, x1) as follows. First in step 1,

Pt(xt|x0, x1) = P ref
t (xt|x0, x1) = N (xt; (1− t)x0 + tx1, σ

2
ref t(1− t)I) (56)
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Q(x0, x1) = PmEOT (x0, x1) :=
∑
i∈B0

∑
j∈B1

δ(x0 = xi
0)δ(x1 = xj

1)p
mEOT
ij (57)

where ({xi
0}i∈B0

, {xj
1}j∈B1

) is the mini-batch data, and {pmEOT
ij }ij is a (|B0| × |B1|) is the mini-

batch entropic OT solution matrix with the negative entropy regularizing coefficient 2σ2
ref (e.g., from

the Sinkhorn-Knopp algorithm) learned with the mini-batch as training data. Although the samples
from the coupling distribution Q(x0, x1) in (57) over the iterations in Alg. 2 conform to the data
distributions π0 and π1 marginally, the mini-batch entropic OT solution is generally substantially
different from the population entropic OT solution (the optimal solution of the Schrödinger Bridge).

In step 2, we choose σ = 0, and define ut(xt|x0, x1) to be:

ut(xt|x0, x1) =
1− 2t

2t(1− t)
(xt − (tx1 + (1− t)x0)) + x1 − x0 (58)

which can be shown to make the ODE dxt = ut(xt|x0, x1)dt admit Pt(xt|x0, x1) as its marginal
distributions (Tong et al., 2023).

The above choices precisely yield the (mini-batch) Schrödinger Bridge CFM (SB-CFM) introduced
in (Tong et al., 2023). Although the marginals of SB-CFM match those of the Schrödinger bridge
solution, the entire path measure not since it only finds an ODE bridge solution.

A.3.3 A SPECIAL CASE: DEEP SCHRÖDINGER BRIDGE MATCHING (DSBM) (SHI ET AL.,
2023)

As discussed in A.2.4, the IMF/DSBM algorithm is based on the IMF principle where starting from
P ({xt}t∈[0,1]) = π0(x0)π1(x1)P

ref ({xt}t∈(0,1)|x0, x1), repeatedly and alternatively applying the
projections P ← ΠM(P ) and P ← ΠR(P ) leads to convergence to the Schrödinger bridge solution.
How does this algorithm fit in the framework of our Unified Bridge Algorithm (UBA) in Alg. 2?
We will see that a specific choice of Pt(x|x0, x1), Q(x0, x1) (in step 1) and ut(x|x0, x1) (in step 2)
precisely leads to the IMF algorithm. We describe the algorithm in Alg. 3.

In step 1, the pinned path marginals Pt(x|x0, x1) are set to be equal to P ref
t (x|x0, x1) which can be

written analytically as Gaussian (59). The coupling Q(x0, x1) is defined to be the coupling distribution
P vθ (x0, x1) that is induced from the SDE in the previous iteration (step 3), P vθ : dxt = vθ(t, xt)dt+
σdWt. In the first iteration where no θ is available yet, we set Q(x0, x1) := π0(x0)π1(x1). We need
to check if the boundary condition for (49) is satisfied. This will be done shortly in the following
paragraph. In step 2, we fix σ := σref , and set ut(xt|x0, x1) := σ2

ref∇xt
logP ref (x1|xt) =

x1−xt

1−t .
In step 3 we update θ by solving the optimization (62), the same as (51), with the chosen Pt(x|x0, x1),
Q(x0, x1) and ut(xt|x0, x1).

Now we see how this choice leads to the IMF algorithm precisely. First, due to Doob’s h-
transform (Rogers & Williams, 2000), the SDE dxt = ut(xt|x0, x1)dt+ σdWt with the choice (61)
admits {P ref

t (x|x0, x1)}t as its marginals for any (x0, x1). Next, the step 3, if optimized perfectly
and ideally with zero neural net approximation error, is equivalent to ΠM(ΠR(P vθold )) where θold is
the optimized θ in the previous iteration3. This can be easily understood by looking at the Markovian
projection ΠM(P ) written in the optimization form (48): The expectation is taken with respect to
P (xt, x1) that matches Q(x0, x1)P

ref
t (xt|x0, x1) in (62), and which is exactly the reciprocal projec-

tion of P vθold since Q(x0, x1) = P vθold (x0, x1) by construction. Lastly, we can verify that the choice
in step 1 ensures the boundary conditions P0(·) = π0(·), P1(·) = π1(·). This is because Q(x0, x1)
always satisfies Q(x0) = π0(x0) and Q(x1) = π0(x1): initially Q(x0, x1) = π0(x0)π1(x1) obvi-
ously, and later as Q(x0, x1) = P vθ (x0, x1) results from the Markovian projection (from step 3
in the previous iteration). We recall from Sec. A.2.4 that the Markovian projection preserves the
boundary conditions.

• IMF/DSBM algorithm as a UBA in minimal kinetic energy forms. We can reformulate the IMF
algorithm within our UBA framework using the minimal kinetic form as described in Alg. 4. In fact
it can be shown that Alg. 3 and Alg. 4 are indeed equivalent, as stated in Theorem A.5 in Sec. A.4.2.

3Initially when there is no previous θold available, the step 3 is equivalent to ΠM(P init) where P init =
π0(x0)π1(x1)P

ref (·|x0, x1) which is already in the reciprocal classR.
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Algorithm 3 IMF/DSBM algorithm (Shi et al., 2023) as a special instance of our UBA.
Input: The end-point distributions π0 and π1 (i.e., samples from them).
Repeat until convergence or a sufficient number of times:

1. Choose a pinned marginal path {Pt(x|x0, x1)}t and a coupling distribution Q(x0, x1) as follows:

Pt(xt|x0, x1) := P ref
t (xt|x0, x1) = N (xt; (1− t)x0 + tx1, σ

2
ref t(1− t)I) (59)

Q(x0, x1) :=

{
π0(x0)π1(x1) initially (if θ is not available)
P vθ (x0, x1) otherwise

(60)

2. Choose σ := σref , and set ut(x|x0, x1) as:

ut(xt|x0, x1) := σ2
ref∇xt logP

ref (x1|xt) =
x1 − xt

1− t
(61)

3. Solve the following optimization problem with respect to the neural network vθ(t, x):

min
θ

Et,Q(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1)− vθ(t, xt)||2 (62)

Return: The learned SDE dxt = vθ(t, xt)dt+ σdWt as the bridge problem solution.

Algorithm 4 IMF/DSBM algorithm (Shi et al., 2023) as a minimal kinetic energy form in our UBA.
Input: The end-point distributions π0 and π1 (i.e., samples from them).
Repeat until convergence or a sufficient number of times:

1. Choose Pt(x|x0, x1) = N (x;µt, γ
2
t I) where (µt, γt) are solutions to the following optimization:

arg min
{µt,γt}t

∫ 1

0

EPt(x|x0,x1)

[
1

2
||αt(x|x0, x1)||2

]
dt where (63)

αt(x|x0, x1) =
dµt

dt
+ at(x− µt), at =

1

γt

(
dγt
dt
−

σ2
ref

2γt

)
(64)

Choose a coupling distribution Q(x0, x1) as follows:

Q(x0, x1) :=

{
π0(x0)π1(x1) initially (if θ is not available)
P vθ (x0, x1) otherwise

(65)

2. Choose σ := σref , and set ut(x|x0, x1) := αt(x|x0, x1).
3. Solve the following optimization problem with respect to the neural network vθ(t, x):

min
θ

Et,Q(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1)− vθ(t, xt)||2 (66)

Return: The learned SDE dxt = vθ(t, xt)dt+ σdWt as the bridge problem solution.

Our proof in Sec. A.4.2 relies on some results from the stochastic optimal control theory (Tzen &
Raginsky, 2019). Then what is the benefit of having this stochastic optimal control formulation for
the IMF algorithm? Compared to Alg 3, it has more flexibility allowing us to extend or re-purpose
the bridge matching algorithm for different goals. For instance, the Generalized Schrödinger Bridge
Matching (GSBM) (Liu et al., 2024) adopted a formulation similar to Alg. 4, in which they introduced
the stage cost function that is minimized together with the control norm term. The final solution SDE
would not be the Schrödinger bridge solution, but can be seen as a generalized solution that takes
into account problem-specific stage costs. Hence the algorithmic framework in Alg. 4 is especially
beneficial for developing new problem setups and novel bridge algorithms.

A.4 THEOREMS AND PROOFS FOR UNIFIED BRIDGE ALGORITHM (UBA)

A.4.1 PROOF OF THEOREM A.1.

To prove Theorem A.1, we show the following three lemmas in turn:
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1. First, in Lemma A.2, we show that after step 2 of Alg. 2 is done, the SDE dxt =
ut(xt)dt + σdWt, x0 ∼ π0(·) admits {Pt(xt)}t as its marginal distributions where
ut(x) =

1
Pt(x)

EQ[ut(x|x0, x1)Pt(x|x0, x1)].

2. Under the assumptions made in the theorem, that is, i) the neural network vθ(t, x)’s func-
tional space is rich enough to approximate any function arbitrarily closely; ii) the step
3 of Alg. 2 is solved perfectly, we will show that the solution to step 3 is vθ(t, x) =
E[ut(x|x0, x1)|xt=x]. This straightforwardly comes from the regression theorem, but we
will elaborate it in greater detail in Lemma A.3 below. We then show that this conditional
expectation equals ut(x) defined in (68), i.e., vθ(t, x) = ut(x). This will complete the
proof, and we assert that dxt = vθ∗(t, xt)dt + σrefdWt, x0∼π0(·) admits {Pt(xt)}t as
its marginals.

3. Practically, the training dynamics of the gradient descent for step 3 of Alg. 2 can be shown
to be identical to that of minimizing E||vθ(t, x) − ut(x)||2. This is done in Lemma A.4
although the proof is very similar to the result in (Tong et al., 2023). Hence, in practice, even
without the assumptions of the ideal rich neural network functional capacity and perfect
optimization, we can continue to reduce the error between vθ(t, x) and ut(x) in the course
of gradient descent for step 3.

Lemma A.2. Suppose {Pt(x|x0, x1)}t be the marginal distributions of the SDE dxt =
ut(xt|x0, x1)dt+ σdWt for given x0 and x1. In other words, step 2 of Alg. 2 is done. For

Pt(x) :=

∫
Pt(x|x0, x1)Q(x0, x1)d(x0, x1) (67)

ut(x) :=
1

Pt(x)
EQ(x0,x1)[ut(x|x0, x1)Pt(x|x0, x1)], (68)

the SDE dxt = ut(xt)dt+ σdWt, x0∼π0(·) has marginal distributions {Pt(x)}t.

Proof. For the given x0 and x1, we apply the Fokker-Planck equation to the SDE dxt =
ut(xt|x0, x1)dt+ σdWt with its marginals {Pt(x|x0, x1)}t.

∂

∂t
Pt(x|x0, x1) = −div{Pt(x|x0, x1)ut(x|x0, x1)}+

σ2

2
∆Pt(x|x0, x1) (69)

where div is the divergence operator and ∆ is the Laplace operator. Now we derive the Fokker-Planck
equation for the target SDE as follows:

∂

∂t
Pt(x) =

∂

∂t

∫
Pt(x|x0, x1)Q(x0, x1)d(x0, x1) (70)

=

∫
∂

∂t
Pt(x|x0, x1)Q(x0, x1)d(x0, x1) (71)

=

∫ (
− div{Pt(x|x0, x1)ut(x|x0, x1)}+

σ2

2
∆Pt(x|x0, x1)

)
Q(x0, x1)d(x0, x1) (72)

= −divEQ

[
ut(x|x0, x1)Pt(x|x0, x1)

]
+

σ2

2
∆

∫
Pt(x|x0, x1)Q(x0, x1)d(x0, x1) (73)

= −div

{
Pt(x)

1

Pt(x)
EQ

[
ut(x|x0, x1)Pt(x|x0, x1)

]}
+

σ2

2
∆Pt(x) (74)

= −div{Pt(x)ut(x)}+
σ2

2
∆Pt(x) (75)

This establishes the Fokker-Planck equation for the SDE dxt = ut(xt)dt + σdWt, x0∼ π0(·), to
which {Pt(x)}t is the solution. This completes the proof of Lemma A.2.

Lemma A.3. Under the assumptions of ideal rich neural network capacity and perfect optimization
made in the theorem, the solution to step 3 of Alg. 2, that is,

θ∗ = argmin
θ

Et,Q(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1)− vθ(t, xt)||2 (76)

satisfies vθ∗(t, x) = E[ut(x|x0, x1)|xt=x] = ut(x) where ut(x) is defined in (68).
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Proof. We prove the second equality first. The expectation E[ut(xt|x0, x1)|xt] is taken with respect
to the distribution R(x0, x1|xt) defined to be proportional to Pt(xt|x0, x1)Q(x0, x1).

E[ut(xt|x0, x1)|xt] =

∫
R(x0, x1|xt)ut(xt|x0, x1)d(x0, x1) (77)

=

∫
Pt(xt|x0, x1)Q(x0, x1)∫

Pt(xt|x0, x1)Q(x0, x1)d(x0, x1)
ut(xt|x0, x1)d(x0, x1) (78)

=

∫
Pt(xt|x0, x1)Q(x0, x1)

Pt(xt)
ut(xt|x0, x1)d(x0, x1) (79)

=
1

Pt(xt)

∫
Pt(xt|x0, x1)Q(x0, x1)ut(xt|x0, x1)d(x0, x1) (80)

=
1

Pt(xt)
EQ(x0,x1)

[
ut(xt|x0, x1)Pt(xt|x0, x1)

]
(81)

= ut(xt) (82)
We now prove the first equality. Although this straightforwardly comes from the regression theorem,
but here we will elaborate it in greater detail. Due to the assumptions, the optimization (76) can be
written in a functional form as:

v∗ = arg min
v(·,·)

Et,Q(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1)− v(t, xt)||2 (83)

where its optimizer v∗(t, x) equals the optimizer vθ∗(t, x) of (76). In the functional optimiza-
tion (83), the objective is completely decomposed over t, and we can equivalently minimize
EQ(x0,x1)Pt(xt|x0,x1)||ut(xt|x0, x1) − v(t, xt)||2 for each t. We take the functional gradient with
respect to v(t, ·). For ease of exposition, we will use simpler notation where we minimize
Ep(y,z)||f(y, z)− g(y)||2 with respect to the function g(·). Hence there is direct correspondence: y
is to xt, z to (x0, x1), f(y, z) to ut(xt|x0, x1), and g to v. We see that at optimum,

∂g(y) =

∫
2p(y, z)(g(y)− f(y, z))dz = 0 (84)

leading to g∗(y) = E[f(y, z)|y]. This regression theorem implies v∗(t, xt) = E[ut(xt|x0, x1)|xt].
This completes the proof Lemma A.3.

Lemma A.4. ∇θEPt(x)||vθ(t, x) − ut(x)||2 = ∇θEPt(x|x0,x1)Q(x0,x1)||vθ(t, x) − ut(x|x0, x1)||2
for each t, where Pt(x) and ut(x) are defined as (67) and (68), respectively.

Proof.

∇θEPt(x)||vθ(t, x)− ut(x)||2 = ∇θEPt(x)

[
||vθ(t, x)||2 − 2vθ(t, x)

⊤ut(x)
]

(85)

= ∇θEPt(x)||vθ(t, x)||
2 − 2∇θEPt(x)

[
vθ(t, x)

⊤ut(x)
]

(86)

The first term can be written as:

∇θEPt(x)||vθ(t, x)||
2 = ∇θ

∫
||vθ(t, x)||2Pt(x)dx (87)

= ∇θ

∫
||vθ(t, x)||2Pt(x|x0, x1)Q(x0, x1)d(x, x0, x1) (88)

= ∇θEPt(x|x0,x1)Q(x0,x1)||vθ(t, x)||
2 (89)

The second term can be derived as:

∇θEPt(x)

[
vθ(t, x)

⊤ut(x)
]
= ∇θ

∫
vθ(t, x)

⊤ut(x)Pt(x)dx (90)

= ∇θ

∫
vθ(t, x)

⊤EQ(x0,x1)[ut(x|x0, x1)Pt(x|x0, x1)]dx (91)

= ∇θ

∫
vθ(t, x)

⊤ut(x|x0, x1)Pt(x|x0, x1)Q(x0, x1)d(x, x0, x1) (92)

= ∇θEPt(x|x0,x1)Q(x0,x1)

[
vθ(t, x)

⊤ut(x|x0, x1)
]

(93)
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Combining (89) and (93), and noting that ||ut(x|x0, x1)||2 is independent of θ, we complete the
proof of Lemma A.4.

A.4.2 EQUIVALENCE BETWEEN ALG. 3 AND ALG. 4

Theorem A.5. Under the same assumptions as those in Theorem A.1, Alg. 3 and Alg. 4 lead to the
same SDE solution, which is the Schrödinger bridge matching.

Proof. The proof goes as follows: i) We first show that the optimization problem (63–64) in step
1 in Alg. 4 can be seen as a constrained minimal kinetic energy optimal control problem with the
constraint of Gaussian marginals {Pt(x|x0, x1)}t; ii) We then relax it to an unconstrained version,
and view the unconstrained problem as an instance of stochastic optimal control problem with fixed
initial; iii) The latter is then shown to admit Gaussian pinned marginal solutions following the theory
developed in (Tzen & Raginsky, 2019), thus proving that Gaussian constraining does not essentially
restrict the problem. It turns out that the optimal pinned marginals and the optimal control have
exactly the linear interpolation forms in (59) and (61), respectively, which completes the proof.

In step 2, since we set ut(x|x0, x1) = αt(x|x0, x1) where α is the solution to (63–64), we will use the
notation u in place of α throughout the proof. First, we show that the SDE dxt = ut(xt|x0, x1)dt+
σdWt with initial state x0 at t=0 and u satisfying (64), admits {Pt(xt|x0, x1) = N (xt;µt, γ

2
t I)}t

as marginal distributions. Note that we must have µ0 = x0, µ1 = x1, γ0 → 0, and γ1 → 0 due to
the conditioning (pinned process). This fact is in fact an extension of the similar one for ODE cases
in (Tong et al., 2023). We will do the proof here for SDE cases. We will establish the Fokker-Planck
equation for the SDE, and we derive:

∂Pt(x|x0, x1)

∂t
= Pt(x|x0, x1) ·

∂ logN (x;µt, γ
2
t I)

∂t
(94)

= Pt(x|x0, x1) ·

(
− γ′

t

γt
d+

(x− µt)
⊤µ′

t

γ2
t

+
||x− µt||2γ′

t

γ3
t

)
(95)

where µ′
t and γ′

t are the time derivatives. We also derive the divergence and Laplacian as follows:

div{Pt(x|x0, x1)ut(x|x0, x1)} =

− Pt(x|x0, x1) ·

(
− γ′

t

γt
d+

(x− µt)
⊤µ′

t

γ2
t

+
||x− µt||2

(
γ′
t − σ2

2γt

)
γ3
t

+
σ2

2γ2
t

d

)
(96)

∆Pt(x|x0, x1) = Tr
(
∇2

xPt(x|x0, x1)
)
= Pt(x|x0, x1) ·

(
||x− µt||2

γ4
t

− d

γ2
t

)
(97)

From (95), (96) and (97), we can establish the following equality, and it proves the fact.

∂Pt(x|x0, x1)

∂t
= −div{Pt(x|x0, x1)ut(x|x0, x1)}+

σ2

2
∆Pt(x|x0, x1) (98)

From the above fact, we can re-state the step 1 of Alg. 4 as follows:

(Step 1 re-stated) Choose Pt(x|x0, x1) as the marginals of the SDE, dxt = ut(xt|x0, x1)dt+ σdWt

with initial state x0 at t=0 where u is the solution to the constrained optimization:

min
u

∫ 1

0

EPt(x|x0,x1)

[
1

2
||ut(x|x0, x1)||2

]
dt s.t. {Pt(x|x0, x1)}t are Gaussians (99)

Instead of solving (99) directly, we try to deal with its unconstrained version, i.e., without the
Gaussian marginal constraint. To this end we utilize the theory of stochastic optimal control with the
fixed initial state (Tzen & Raginsky, 2019), which we adapted for our purpose below in Lemma A.6.

In Lemma A.6, we adopt the Dirac’s delta function g(·) = δx1 for the terminal cost to ensure that
the SDE dxt = ut(xt|x0, x1)dt+ σdWt with initial state x0 lands at x1 as the final state. Then the
unconstrained version of (99), which is perfectly framed as an optimal control problem in Lemma A.6,
has the optimal solution written as:

ut(x|x0, x1) = σ2∇x logEP ref [δx1
|xt = x] = σ2∇x logP

ref (x1|xt = x) (100)
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which coincides with (61) in Alg. 3. Now, due to Doob’s h-transform (Rogers & Williams, 2000),
the SDE dxt = ut(xt|x0, x1)dt+ σdWt with the choice (61) or (100) admits {P ref

t (x|x0, x1)}t as
its marginals. In other words, Pt(x|x0, x1) = P ref

t (x|x0, x1), which is Gaussian, meaning that the
constrained optimization (99) and its unconstrained version essentially solve the same problem.

Noting that (59) and (61) in Alg. 3 are equivalent to (63) and (64) in Alg. 4, we conclude that Alg. 3
and Alg. 4 are equivalent.

Now we describe Lemma A.6.
Lemma A.6 (Stochastic optimal control with fixed initial state; Adapted from Theorem 2.1 in (Tzen
& Raginsky, 2019)). Let P b be the path measure of the SDE: dxt = bt(x)dt + σdWt, starting
from the fixed initial state x0. For the stochastic optimal control problem with the immediate cost
1

2σ2 ||bt(xt)||2 at time t and the terminal cost log 1/g(x1) at final time t = 1 for any function g, the
cost-to-go function defined as:

Jb
t (x) := EP b

[∫ 1

t

1

2σ2
||bt(xt)||2 − log g(x1)

∣∣∣∣xt = x

]
(101)

has the optimal control (i.e., the optimal drift bt(x))

b∗t (x) = argmin
b

Jb
t (x) = σ2∇x logEP ref [g(x1)|xt = x] (102)

where P ref is the Brownian path measure with diffusion coefficient σ.

Proof. We utilize the (simplified) Feynman–Kac formula, saying that the PDE,

∂ht(x)

∂t
+ µt(x)

⊤∇xht(x) +
1

2
Tr
(
σ2∇2

xht(x)
)
= 0, h1(·) = q(·) (103)

has a solution ht(x) = E[q(x1)|xt = x] where the expectation is taken with respect to the SDE,
dxt = µt(xt)dt+ σdWt.

Now we plug in µt = 0, q = g, and let vt(x) := − log ht(x). Note that ht(x) is always positive
since g is positive, and hence vt(x) is well defined. Then by some algebra, we see the following PDE:

∂vt(x)

∂t
+

1

2
Tr
(
σ2∇2

xvt(x)
)
=

σ2

2
||∇xvt(x)||2, v1(·) = − log g(·) (104)

has a solution vt(x) = − logEP ref [g(x1)|xt = x]. Note that we can write σ2

2 ||∇xvt(x)||2 as the
following variational form,

σ2

2
||∇xvt(x)||2 = −min

b
b⊤∇xvt(x) +

||b||2

2σ2
(105)

where the minimum is attained at b∗ = −σ2∇xvt(x). So vt(x) = − logEP ref [g(x1)|xt = x] is the
solution to:

∂vt(x)

∂t
+

1

2
Tr
(
σ2∇2

xvt(x)
)
= −min

b
b⊤∇xvt(x) +

||b||2

2σ2
, v1(·) = − log g(·) (106)

Note that (106) is the Hamilton-Jacobi-Bellman equation for the stochastic optimal control prob-
lem with the immediate cost 1

2σ2 ||bt(xt)||2 and the terminal cost log 1/g(x1). In fact, vt(x) =
− logEP ref [g(x1)|xt = x] is the (optimal) value function, and the optimal control, i.e., the solution
to (105) in a function form, is: b∗t (x) = −σ2∇xvt(x) = σ2∇x logEP ref [g(x1)|xt = x].

B TECHNICAL DETAILS OF GAUSSIAN PROCESS GSBM

B.1 ELBO DERIVATIONS

First, the posterior path measure can be written as:

Ppost(P•) =
Pprior(P•) · exp(−J(P•;V•)/τ)

E(η, τ)
(107)
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where E(η, τ) is the evidence that depends only on the model parameters η (prior kernel hyperpa-
rameters) and τ (the likelihood hyperparameter), and defined as a normalizer:

E(η, τ) = EPprior(P•)

[
exp(−J(P•;V•)/τ)

]
(108)

We start with the KL divergence between the variational posterior and the true posterior measures.

KL(Q(P•)||Ppost(P•)) = EQ(P•)

[
log

dQ(P•)

dPpost(P•)

]
(109)

= logE(η, τ) + EQ(P•)

[
J(P•;V•)/τ

]
+ KL(Q(P•)||Pprior(P•)) (110)

Now let Y and Y ′ be arbitrary time index sets in [0, 1]. The last term in (110) can be written as:

KL(Q(µY , µZ , γ̃Y ′ , γ̃Z′)||Pprior(µY , µZ , γ̃Y ′ , γ̃Z′)) = (111)

= EQ

[
log

Q(µZ) ·(((((((Pprior(µY |µZ) · Q(γ̃Z′) ·(((((((Pprior(γ̃Y ′ |γ̃Z′)

Pprior(µZ) ·(((((((Pprior(µY |µZ) · Pprior(γ̃Z′) ·(((((((Pprior(γ̃Y ′ |γ̃Z′)

]
(112)

= EQ

[
log

Q(µZ) · Q(γ̃Z′)

Pprior(µZ) · Pprior(γ̃Z′)

]
(113)

= KL(Q(µZ)||Pprior(µZ)) + KL(Q(γ̃Z′)||Pprior(γ̃Z′)) (114)

=

d∑
j=1

KL
(
N (Cµ,j , Sµ,j)||N (Mµ,j

Z , Lµ,j
Z,Z)

)
+ KL

(
N (C γ̃ , Sγ̃)||N (mγ̃

Z′ , k
γ̃
Z′,Z′)

)
(115)

where (112) comes from our construction of the variational density in (14) with Q(µ•|µZ) set
equal to Pprior(µ•|µZ) (and similarly for γ̃). Eq. (115) is due to our Gaussian modeling of the
inducing variables in (15). Note that this derivation starting from index sets Y and Y ′ results in
the quantity (115) that does not depend on them. That is, (115) can be safely plugged in for the
last term of (110), which we denote by KL(Q(PZ,Z′)||Pprior(PZ,Z′)). Due to the non-negativity of
KL(Q(P•)||Ppost(P•)), we have:

logE(η, τ) ≥ −
(
EQ(P•)

[
J(P•;V•)/τ

]
+ KL(Q(PZ,Z′)||Pprior(PZ,Z′))

)
(116)

where the right hand side is the evidence lower bound objective (ELBO).

Lastly, the variational-prior KL divergence KL(Q(PZ,Z′)||Pprior(PZ,Z′)), is confined to n-dim
Gaussians, and can be written in closed forms as follows:

KL(Q(PZ,Z′)||Pprior(PZ,Z′)) = (117)
d

2

(
Tr
(
(Lµ

Z,Z)
−1
(
S
µ
+R

µ))− n+ log |Lµ
Z,Z | −G

µ
)
+ (118)

1

2

(
Tr
(
(kγ̃Z′,Z′)

−1
(
Sγ̃ + (C γ̃ −mγ̃

Z′)(C
γ̃ −mγ̃

Z′)
⊤))− n′ + log |kγ̃Z′,Z′ | − log |Sγ̃ |

)
(119)

where we assumed the same kernel functions over all dimensions j of µt, denoted by Lµ
Z,Z := Lµ,j

Z,Z

∀j, n′ := |Z ′|, and defined as:

S
µ
=

1

d

d∑
j=1

Sµ,j , R
µ
=

1

d

d∑
j=1

(Cµ,j −Mµ,j
Z )(Cµ,j −Mµ,j

Z )⊤, G
µ
=

1

d

d∑
j=1

log |Sµ,j | (120)

B.2 COMPLEXITY ANALYSIS

In this section we analyze the computational complexity of our GP-GSBM and GSBM. Since the SDE
training part in both methods are identical, we mainly compare the ELBO learning of our GP-GSBM
with the corresponding CondSOC optimization in GSBM. As described in Sec. 3, the key steps
in ELBO learning consist of: i) sampling (µt, γt) from the variational posterior Q, ii) computing
αt(xt|x0, x1) which involves time derivatives (e.g., µ̇t), iii) evaluate the likelihood J(P•;V•), and
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Table 5: Complexity analysis for ELBO learning in our GP-GSBM and CondSOC optimization in
GSBM (Liu et al., 2024).

GSBM (LIU ET AL., 2024) GP-GSBM (OURS)
SAMPLE/ESTIMATE (µt, γt) O(NTnd) O(NTnd+ ÑTn3)

COMPUTE αt(xt|x0, x1) O(Td) O(Td)

EVALUATE LIKELIHOOD/LOSS O(T · (d+ TV )) O(T · (d+ TV ))

EVALUATE KL(Q(PZ)||Pprior(PZ)) − O(Ñn3 +Nn2d)

iv) evaluate the variational-prior KL term. The former three steps decide the first term of (21) while
the latter determines the second term. The first three steps have corresponding counterparts in GSBM:
i) estimating (µt, γt) from the spline model, ii) computing αt(xt|x0, x1) , and iii) evaluating the loss
in (3). It does not have the KL computation.

First, the (µt, γt) sampling step in our GP-GSBM. Following (17–20) and recalling that we used
diagonal S and the same kernel function across all dimensions j, sampling (µt, γt) takes O(NTnd+

ÑTn3) time where T is the batch size, N is the number of ELBO learning iterations, and Ñ = 1

if no model selection for the kernel hyperparameters η is required, and Ñ = N otherwise. This is
because if the kernel function is fixed, the kernel matrix inversion can be amortized over iterations by
caching inverse kernel matrices. Using the same notation in GSBM, where n denotes the number of
spline knot points, the spline estimation of (µt, γt), corresponding to the sampling in our case, takes
O(NTnd).

Computing αt(xt|x0, x1) in (5) takes O(Td) for both our approximate time derivatives and GSBM’s
auto-differentiation. Evaluating J(P•;V•) in (7) takes O(T · (d + TV )) where TV is the cost of
computing Vt(xt). GSBM incurs the same cost for the loss evaluation. The variational-prior KL term,
only appearing in our GP-GSBM, takes O(Ñn3 +Nn2d) complexity following (117–120).

We summarize these results in Table 5. Comparing with GSBM, we have additional cost, mainly
O(n3) kernel inversion cost when model selection is performed for the kernel hyperparameters η
and O(n2d) in the KL divergence computation. This may be costly for large d even though we have
constant n (usually no greater than 30). One work around is to use diagonalized kernels in (118–119),
which reduces the complexity to linear in n. In practice, we observed no significant difference from
using full kernel matrices. In this case, GP-GSBM incurs the same asymptotic complexity as GSBM
when we do not use model selection during ELBO learning.

C EXPERIMENTAL DETAILS

We mostly follow the experimental settings, default hyperparameters, and network architectures
from GSBM (Liu et al., 2024) and their official code base4. DSBM (Shi et al., 2023) is performed
by turning off the CondSOC optimization in GSBM, which initializes the marginal path as linear
interpolation of DSBM. Our GP-GSBM is also implemented based on their code base where we
similarly take alternating forward and backward SDE training and integration for coupling Q(x0, x1)
samples. For the kernel implementation, we adopted the GPyTorch5 library (Gardner et al., 2018).

Problem setups. For the stage cost for crowd navigation in (24), we use λobs = 1500, λent =
0, λcgst = 50 for Stunnel, and λobs = 1500, λent = 5, λcgst = 0 for GMM. For the noisy scenario in
LiDAR, the manifold projection is altered by (I + 0.5ϵ) in a multiplicative way where ϵ ∼ N (0, I).

Hyperparameters. The numbers of inducing points in our GP-GSBM, n for µt and n′ for γt,
correspond to the numbers of spline knot points in GSBM. And we match them for both models for
fair comparison. Specifically we chose: Stunnel and GMM (n = 15, n′ = 30), LiDAR (n = 30,
n′ = 30), and CIFAR-10 and AFHQ (n = 8, n′ = 8). For all experiments, our variational inference
ELBO learning, corresponding to the CondSOC optimization in GSBM, takes the number of iterations:
1000 (Stunnel), 2000 (GMM), 200 (LiDAR), and 100 (CIFAR-10 and AFHQ). Following (Liu et al.,
2024), we use the Adam optimizer (Kingma & Ba, 2015) for AFHQ (and CIFAR-10), SGD with
momentum for LiDAR, and SGD for the rest. For the SDE noise level, σ = 1.0 is used for crowd

4https://github.com/facebookresearch/generalized-schrodinger-bridge-matching
5https://github.com/cornellius-gp/gpytorch
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Figure 4: Stunnel results. The two ellipsoidal obstacles are shown as gray regions. For each panel,
we show µt, γt (top and middle rows) of the learned pinned marginals Pt(xt|x0, x1) = N (µt, γ

2
t I),

and samples from the pinned marginal at 5 uniform time points (bottom row). The two boundary
distributions are isotropic Gaussians where π0 is shown as blue points, and π1 as purple. For
DSBM (Shi et al., 2023) and GSBM (Liu et al., 2024), the learned µt, γt are shown. For our GP-
GSBM the learned variational posteriors Q(µt) and Q(γt) are depicted as means and 2× pointwise
stdevs (95% confidence intervals), the latter as red-shaded regions.

navigation tasks, and σ = 0.5 for AFHQ. For CIFAR-10 (a non-GSB task), small σ is known to be
preferred as alluded in (Shi et al., 2023), and we use σ = 0.001. For SDE integration, we take 1000
time steps. For any other hyperparameters that are not discussed here, we take the default values in
the official code base of (Liu et al., 2024).

Model selection. Due to the extra cost of the gradient-based kernel hyperparameter (η) search, we
use a grid-based empirical Bayes. More specifically, for the squared exponential kernel that we
used in our experiments, the width parameter η is chosen from the candidate set {0.05, 0.1, 0.5, 1.0},
where we select the one that yields the highest ELBO score. This allows for expedited GP inference
since the kernel inversion can be done only once at the beginning and amortized over variational
inference iterations. For the likelihood hyperparameter τ we use gradient-based empirical Bayes.

Network architectures. We describe the architectures for the SDE network vθ(t, x). For the crowd
navigation problems, we adopt the fully connected network, the same as (Liu et al., 2022), that
has 4 to 5 residual blocks with sinusoidal time embeddings. For the AFHQ task, we use the U-
Net (Ronneberger et al., 2015) architecture with implementation from (Dhariwal & Nichol, 2021). For
the CIFAR-10 experiment, we follow the same U-Net architecture as that implemented in CFM (Tong
et al., 2023), which uses 4 heads and 16 attention resolutions with two residual blocks. All networks
except for the CIFAR-10 case are trained from scratch, and optimized with AdamW (Loshchilov &
Hutter, 2019). For CIFAR-10, we warm-started training with the trained CFM checkpoint similarly
as (Shi et al., 2023). For inference, we use the exponential moving average with rate 0.9999.

Computing platforms. All experiments for Stunnel and GMM were conducted on a single RTX-2080-
Ti GPU while two RTX-2080-Ti GPUs were used for CIFAR-10. For LiDAR, a single RTX-4090
GPU was used. For AFHQ, we train our GP-GSBM on 32 V100 GPUs (4 nodes and 8 GPUs per
node) where a similar setup was used in GSBM training in (Liu et al., 2024).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE FIGURES FOR AFHQ IMAGE-TO-IMAGE TRANSLATION (DOG→ CAT)

After training the model, we pair the coupling of (x1, x0) by running the trained (reverse-time) SDE
model starting from x1 ∼ π1, which is shown in Fig. 6, where x1 (data) samples are on the rightmost
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Figure 5: GMM results. The three blob obstacles are shown as gray regions. For each panel, we
show µt, γt (top and middle rows) of the learned pinned marginals Pt(xt|x0, x1) = N (µt, γ

2
t I),

and samples from the pinned marginal at 5 uniform time points (bottom row). The two boundary
distributions are mixtures of isotropic Gaussians where π0 is shown as blue points (4 Gaussian blobs
in the center), and π1 as purple (8 outer Gaussian blobs). For DSBM (Shi et al., 2023) and GSBM (Liu
et al., 2024), the learned µt, γt are shown. For our GP-GSBM, the learned variational posteriors
Q(µt) and Q(γt) are depicted as means and 2× pointwise stdevs (95% confidence intervals), the
latter as red-shaded regions.

Table 6: (CIFAR-10) FID scores on this non-GSB image generation problem. The results from CFM
and Stream-level GP are excerpted from (Wei & Ma, 2025).

CFM STREAM-LEVEL GP GP-GSBM (OURS)
I-CFM OT-CFM I-CFM OT-CFM

3.75± 0.006 3.74± 0.009 3.62± 0.008 3.75± 0.009 3.65± 0.008

columns, and x0 (generated) samples on the leftmost. From this coupling, we show the mean images
from Pt(x|x0, x1) for the prior and posterior (before and after the variational GP inference) in the
middle. Visually clearly, the posterior exhibits semantically more meaningful path samples than the
prior with less artifacts since the posterior takes into account the latent-preserving stage cost, forcing
the samples to stay closer to the image manifold. In Fig. 7, the SDE generation progress is shown
with intermediate time steps. We also visualize the generated cat images in Fig. 8.

D.2 CIFAR-10 RESULTS (NON-GSB COMPARISON TO STREAM-LEVEL GP)

We follow the typical CIFAR-10 experimental setup from (Tong et al., 2023; Wei & Ma, 2025) where
π0 = N (0, I) and π1 is the CIFAR-10 data. First we note that this experimental setting may not
be an ideal example for SB matching problem as indicated by the fact that CFM with independent
coupling (I-CFM) is comparable or sometimes better than mini-batch OT-based coupling (OT-CFM).

For the FID computation, we use 50K samples generated and averaged over 20 random runs. The
results are summarized in Table 6 where means and standard errors are reported. Comparing our
GP-GSBM, stream-level GP, and CFM, most methods perform equally well on this (non-GSB) noise-
to-image generation problem. Some images generated by our model are shown in Fig. 9 (diffusion
from π0 to π1) and Fig. 10 (final generated samples).
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Figure 6: GP-GSBM on AFHQ dog (t=1, rightmost columns)→ cat (t=0, leftmost columns). Mean
images from Pt(x|x0, x1) for the prior and posterior (before and after the variational GP inference).
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Figure 7: GP-GSBM on AFHQ dog (t=1, rightmost columns)→ cat (t=0, leftmost columns). The
(reverse-time) SDE generation progress.
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Figure 8: GP-GSBM on AFHQ dog (t= 1, rightmost columns) → cat (t= 0, leftmost columns).
Generated cat images starting from dog data samples.
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Figure 9: (CIFAR-10) SDE generation snapshots by our GP-GSBM. From the leftmost columns
(samples from π0 = N (0, I)) to the generated images π1 on the rightmost columns.

Figure 10: (CIFAR-10) Generated images from N (0, I) by our GP-GSBM.
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E REVISION

This section contains added materials and new results from the reviews/rebuttal. We thank all the
reviewers for their insightful and constructive comments and suggestions.

E.1 TOY (THOUGHT) EXPERIMENT: WHY GP-GSBM IS ROBUST COMPARED TO GSBM

In this section we provide the key intuition on our (Bayesian) GP path modeling for the generalized
Schrödinger bridge problem, illustrating why our GP-GSBM is more robust to noise than the
(deterministic) GSBM (Liu et al., 2024) algorithm.

To focus on the core insight, we consider a highly simplified scenario, in particular, we make the
following simplifications: i) the CondSOC cost (or the negative log-likelihood score in our Bayesian
model) in (7) is queried from a black box oracle, meaning that it returns (stochastic) cost for a path
query, ii) the posterior inference in our GP-GSBM is done exactly without resorting to approximation
strategies like the sparse variational GP. For the former, although the CondSOC cost is composed of
the kinetic cost and the problem-specific cost Vt(x), we treat it as a single number retrieved from the
oracle for simplicity.

In the 2D state space, we have two end points x0 = (−1, 0) and x1 = (+1, 0) sampled from the
coupling distribution Q(x0, x1). Let’s consider N = 1001 paths connecting the two end points
whose trajectories are given by parabolic functions Y = a(X2 − 1), that is, [xt]2 = a([xt]

2
1 − 1) for

a = i/500, i ∈ {0,±1, . . . ,±500} where xt = ([xt]1, [xt]2). They are visualized in Fig. 11. We
assume that only these N paths incur finite (< ∞) cost (to be defined shortly), whereas any other
path connecting x0 and x1 incurs +∞ CondSOC cost.

Among these N = 1001 paths, let’s say all paths incur CondSOC cost +1 except for the horizontal
line path Y = 0 (i.e., a = 0, shown as red in Fig. 11) that incurs 1− ϵ where ϵ = 0.001 most of the
time. Specifically, the CondSOC cost for the horizontal line path is stochastic/noisy defined as:

JY=0 =

{
1− ϵ with prob. 0.999
106 with prob. 0.001

(121)

Whereas the other 1000 paths incur cost +1 with probability 1, the path Y = 0 gives us slightly
lower cost 1− ϵ most of the time, but can have the rare event of incurring extremely high cost 106.

Now we are going to train the GSBM model and our GP-GSBM model, but let’s assume that this rare
event of the horizontal line path Y = 0 was not observed in the training data due to its rare event
probability (0.001). We also note that due to the finite number of distinct paths with finite (< ∞)
cost, the optimal variance of the pinned marginal paths P (xt|x0, x1) for any sensible model must be
0 (i.e., γt = 0), and hence we only focus on the mean µt.

First, GSBM is a deterministic point estimator, and thus it will learn the horizontal line Y = 0 path
as its optimal path since it incurs slightly lower cost than any other 1000 paths, and we didn’t observe
the rare event in the training data. We can compute GSBM’s (population) expected cost at test time
(denoted by risk), which is

RiskGSBM = Enoise[JY=0] = (1− ϵ) · 0.999 + 106 · 0.001 ≈ 1001 (122)

Apart from GSBM’s deterministic solution that only finds a point estimate (a single path) and exclude
all the other possibility, the posterior in our Bayesian model offers us a distribution over a set of
plausible paths under the given observations (observed costs). When we consider a very flat GP prior
(i.e., nearly uniform prior over those N paths), and if we use the temperature τ = 1 for the likelihood
model, the posterior will be proportional to eJ , more specifically,

Ppost(path) =


e−1+ϵ

(N−1)e−1+e−1+ϵ if path = “Y =0”
e−1

(N−1)e−1+e−1+ϵ if path = “Y =a(X2−1)” for a ∈
{
± 1

500 , . . . ,±
500
500

}
0 otherwise

(123)
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Figure 11: Toy (thought) experiment setup. N = 1001 paths connecting x0 = (−1, 0) and x1 =
(+1, 0) are shown, which incur finite (<∞) CondSOC costs. The horizontal line path Y = 0 (shown
as red) incurs stochastic noisy cost JY=0 as defined in (121). The rest 1000 paths (blue) incur fixed
cost J = 1. The GSBM (deterministic) algorithm finds the red Y = 0 path as a point estimate, which
yields the risk ≈ 1001. Our (Bayesian) GP-GSBM learns the near-uniform posterior distribution over
those 1001 paths as in (123), achieving the risk ≈ 2.

The risk of GP-GSBM is then computed as:

RiskGP-GSBM = EPpost(path)[Enoise[Jpath]] (124)

=
e−1+ϵ

(N − 1)e−1 + e−1+ϵ
· ((1− ϵ) · 0.999 + 106 · 0.001) + (N − 1) · e−1

(N − 1)e−1 + e−1+ϵ
· 1 ≈ 2

This thought experiment, albeit quite simplified, provides the key intuition on why our Bayesian
(GP) formulation for the generalized Schrödinger bridge problem is more robust to noise than
(deterministic) GSBM (Liu et al., 2024).

E.2 BACKGROUND ON GAUSSIAN PROCESSES (GP)

The GP models are special Bayesian models where we impose a prior distribution over a function,
and the distribution has the property that for any input index set, the function values on the set follow
Gaussian. Specifically, we consider the latent function f : X → R where f(x), the function value at
input point x ∈ X , is a latent variable. The Gaussian process is characterized by the mean function
m : X → R and the positive definite covariance (or kernel) function k : X × X → R, defined as:

E[f(x)] = m(x), Cov(f(x), f(x′)) = k(x, x′) (125)

for any x, x′ ∈ X . For any input set X = {x1, . . . , xn}, the latent variables (f(x1), . . . , f(xn))
jointly follow the multivariate Gaussian with mean (m(x1), . . . ,m(xn)) and the covariance ma-
trix K(X) whose (i, j) entry is k(xi, xj). The GP prior distribution P (f(·)) is often denoted by
GP(f(·);m(·), k(·, ·)), and we used this notation in our main paper.

Once we impose a GP prior on a latent function f(·), and once we have a likelihood model P (D|f(·))
that defines the likelihood of the observation (or observed data) D with respect to the function f(·),
we can follow the Bayes rule to infer the posterior distribution over the functions. That is,

P (f(·)|D) ∝ GP(f(·)) · P (D|f(·)) (126)

Note that there is no restriction on how the likelihood model P (D|f(·)) is defined. Each observed
instance in D can be dependent on some or all of the function values {f(x)}x∈A for some A ⊆ X .
For instance, in the traditional GP regression (Rasmussen & Williams, 2006) where we model
each input/output pair as y = f(x) + ϵ for some noise ϵ, the likelihood of each observed instance
(x, y) ∈ D depends on f(x) at the point x alone. However, for the CondSOC-based likelihood model
(7) and (9) in our GP-GSBM, we have two types of latent functions µ• (or µ(·)) and γ• (or γ(·)),
and the likelihood at each time t depends on not just (µ(t), γ(t)), but also those in their infinitesimal
neighborhood (µ(t+∆t), γ(t+∆t)) with ∆t→ 0. This is because of the term αt defined in (5).

Except for a few special cases (e.g., GP regression with Gaussian noise), most likelihood models
in practice including the one in our GP-GSBM, lead to non-GP posterior P (f(·)|D). For tractable
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solutions, one has to resort to approximate GP inference algorithms (Rasmussen & Williams, 2006).
In this paper, we adopted the sparse variational free-energy approximate inference algorithm which is
known to take various advantages (Titsias, 2009; Dezfouli & Bonilla, 2015; Matthews et al., 2016;
Bauer et al., 2016).

E.3 ENLARGED VERSION OF FIG. 1

In Fig. 12, we show an enlarged version of the images in Fig. 1 for better readability.

Figure 12: LiDAR path samples for different models in 3D (top rows) and 2D (bottom) views.
Starting from the samples of π0 (red points on the left), we generate samples for π1 as blue points on
the right. Path samples are visualized in 5 uniform time points from t=0 (red) to t=1 (blue).
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