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Abstract001

Mixture of Experts (MoE) has great potential002
in scaling up the capacity of large models while003
maintaining low computational costs. Recent004
works have focused on reducing expert-level re-005
dundancy by designing various token allocation006
strategies within gating functions. Whereas,007
the intricate internal relationships between ex-008
perts cause knowledge redundancy at the fine-009
grained neuron level, and research on collab-010
oration among experts remains scarce. In this011
paper, we propose a Information Bottleneck012
based MoE (IBMoE) for parameter-efficient013
fine-tuning, which reduces neuron-level redun-014
dancy within each expert and fosters internal015
collaboration among all experts. Specifically,016
a sparse neuronal activation strategy is intro-017
duced to dynamically activate the relevant neu-018
rons while reducing the redundancy when pro-019
cessing different tasks. In addition, a diversity020
constraint is imposed among experts, which021
maximizes the knowledge difference to enable022
all experts cooperative more efficiently. Ex-023
tensive experiments demonstrate the great ad-024
vantages of our method. We achieve superior025
performance while reducing inference time by026
63% and memory consumption by 48.5% com-027
pared to the recent baselines. Our code will be028
publicly accessible in the future.029

1 Introduction030

Large language models (LLMs) (OpenAI, 2023;031

Touvron et al., 2023a; Guo et al., 2025) demon-032

strate impressive results across various Natural033

Language Processing (NLP) tasks (Agarwal et al.,034

2025; Tang et al., 2025), benefiting from their out-035

standing capabilities in language comprehension036

and text generation. Nevertheless, the significant037

computational resources required for training and038

inference across diverse tasks present ongoing chal-039

lenges. Thus, various parameter-efficient methods040

are proposed to reduce the computation costs, such041

as P-tuning (Liu et al., 2021), Low-Rank Adaption042
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Figure 1: The differences between classical MoE and
IBMoE. MoE focuses on expert-level specialization,
while IBMoE enhances fine-grained, neuron-level spe-
cialization within each expert through sparse neuron
activation and neuron collaboration.

(LoRA) (Hu et al., 2021) and Mixture of Experts 043

(MoE) (Shazeer et al., 2017; Lepikhin et al., 2020; 044

Zadouri et al., 2023; Gao et al., 2024). MoE is a 045

conditional computation framework that divides a 046

dense model into multiple specialized experts. It 047

employs a gating mechanism to dynamically select 048

the relevant experts for computing inputs, which 049

maintains a constant computational cost even as 050

the model scales continuously grow in size. 051

One key challenge in MoE is how to make the ex- 052

perts specialized on certain tasks. Liu et al. (2024); 053

Zhang et al. (2024) designed specialized routing 054

mechanisms based on the task features for the gate 055

unit. Zuo et al. (2022) and Zhu et al. (2024b) seg- 056

mented the weights of dense models to obtain pa- 057

rameter separated experts, and invoke certain ex- 058

perts by measuring the correlation with tasks. How- 059

ever, these efforts struggle to address the issue of 060

knowledge redundancy among experts that emerges 061

during training. From the perspective of expert’s 062

training, Dai et al. (2024) devised a shared expert 063

to preserve common knowledge and other experts 064

to focus on specific knowledge. Do et al. (2025) 065

reduced representation similarity to address repre- 066

sentational collapse among experts, which helps 067

alleviate knowledge redundancy. Whereas, these 068

methods primarily focus on reducing the expert- 069
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level redundancy, while the internal neuron-level070

redundancy of each expert remains rarely studied.071

Another challenge lies in enabling all experts072

to collaborate efficiently (Cai et al., 2024). Most073

existing methods rely on routing mechanisms to ac-074

tivate the relevant experts with different weights to075

perform tasks collaboratively. For example, when076

tokens arrive, the router generates a probability077

distribution indicating each expert’s contribution,078

thereby assigning tokens accordingly. Some ap-079

proaches also incorporate balance loss to encourage080

collaborative behavior (Zhu et al., 2023). However,081

such mechanisms are limited to the expert level,082

ignoring the cooperation within each expert’s inter-083

nal neurons. Moreover, the knowledge difference084

among experts remains vague. How to explicitly085

model these differences for more efficient collabo-086

ration is still an open question.087

To resolve the above challenges, we propose a088

parameter-efficient MoE method under the Infor-089

mation Bottleneck framework (Tishby et al., 2000;090

Alemi et al., 2016), namely IBMoE. As shown in091

Figure 1, IBMoE integrates sparse neuron activa-092

tion and collaboration with IB theory, aiming to093

only retain the most relevant information in a com-094

plementary fashion for task completion. For each095

expert, a learnable query under the IB constraint is096

set to activate task-related neurons sparsely, com-097

pressing hidden representations. In this way, the098

knowledge characteristics of different experts are099

explicitly modeled by queries’ distribution. Then,100

a neuron collaboration module is introduced to fur-101

ther diversify knowledge differences across experts,102

enhancing complementary specialization. This103

dual mechanism ensures parameter efficiency with-104

out sacrificing task performance.105

The major contributions of our work can be sum-106

marized as follows:107

• We propose a parameter-efficient MoE108

method under the information bottleneck109

framework, which reduces the neuron-level110

redundancy within each expert, and fosters111

internal collaboration among all experts.112

• We present a sparse neuron activation mecha-113

nism to retain task-specific knowledge while114

reducing irrelevant information by masking115

out the unimportant neurons. Additionally, a116

neuron collaboration module is introduced to117

explicitly guide all experts to cooperate at the118

neuron-level with higher efficiency.119

• We conduct extensive experiments to val- 120

idate the effectiveness and superiority of 121

our method. The experiments indicate that 122

IBMoE achieves the state-of-the-art perfor- 123

mance across various datasets, while reducing 124

the inference time by 25% and the memory 125

consumption by 48.5%. 126

2 Related work 127

2.1 Parameter Efficient Fine-Tuning 128

Parameter Efficient Fine-Tuning (PEFT) aims to 129

reduce the expensive computational cost of train- 130

ing base models to adapt to various downstream 131

tasks. These methods generally add trainable sub- 132

modules, called adapters, to the dense model. The 133

model is fine-tuned by updating the adaptor while 134

keeping the base model frozen. Specifically, IA3 135

(Liu et al., 2022) adds three sets of learnable vectors 136

in the key, value, and linear layers. Llama-Adapter 137

(Zhang et al., 2023) introduces learnable adaptation 138

prompts and zero-init attention to adaptively inject 139

new instruction cues into Llama while effectively 140

retaining its pre-trained knowledge. LoRA (Hu 141

et al., 2021) uses two decomposed low-rank ma- 142

trices to perform incremental updates. Adakron 143

(Braga et al., 2024) leverages Kronecker prod- 144

ucts for improved efficiency and expressiveness. 145

MELoRA (Ren et al., 2024) introduces a method 146

that stacks multiple mini-LoRAs in parallel, effec- 147

tively increasing the overall rank and enhancing 148

performance potential. IBMoE utilizes the concept 149

of PEFT to effectively reduce the training cost of 150

traditional MoE methods while preserving the task 151

specialization advantage of MoE. 152

2.2 Mixture of Experts 153

Mixture of Experts (MoE) is a framework that uti- 154

lizes a gate unit to allocate different inputs to the 155

most relevant expert modules, which reduces com- 156

putational resources. Early efforts, such as GShard 157

(Lepikhin et al., 2020) and Switch Transformer 158

(Fedus et al., 2022), achieve this by replacing ev- 159

ery other MLP layer with MoE layers and allo- 160

cating tokens to experts using a top-k mechanism. 161

DeepSeekMoE (Dai et al., 2024) introduces shared 162

experts and smaller experts to achieve more fine- 163

grained specialization. Llama-MoE (Zhu et al., 164

2024b) segments the weights of the dense model to 165

initialize the experts by measuring their relevance 166

to different tasks. MoLoRA (Zadouri et al., 2023) 167

splits the LoRA adapters into multiple fine-grained 168
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Figure 2: The overall framework of IBMoE consists of two components: Sparse Neuron Activation (SNA) and
Neuron Collaboration (NC). SNA utilizes the IB to learn a neuron-level query vector for discarding irrelevant details.
The NC strategy is then introduced to reduce redundant knowledge by modeling interactions among experts.

experts, allowing tiny experts to handle different169

tasks. Further, MoLA (Gao et al., 2024) introduces170

a method for layer-wise expert allocation to reduce171

knowledge redundancy. MoR1E (Liu et al., 2024)172

proposes a task-level routing mechanism to achieve173

expert specialization in rank-1 LoRA. HMoRA174

(Liao et al., 2025) introduces hybrid token- and175

task-level routing mechanism to capture features176

at varying levels of granularity, which improves177

expert specialization and generalization. However,178

research on neuron-level knowledge redundancy179

is still rare. Our IBMoE effectively measures the180

knowledge differences among experts from a fea-181

ture perspective.182

2.3 Information Bottleneck183

Previous studies have shown that controlling the un-184

necessary information in the hidden layer through185

the information bottleneck can effectively con-186

trol the generalization error in deep learning187

(Kawaguchi et al., 2023). IB-related work on deep188

neural networks (DNNs) dates back to 2015, when189

Tishby et al. demonstrated the feasibility of IB190

application in deep neural networks using infor-191

mation plane visualization (Tishby and Zaslavsky,192

2015). However, optimizing IB in DNNs poses193

challenges due to the non-convex and intractable194

of the conventional IB. DIB (Strouse and Schwab,195

2017) optimizes the compression term in conven-196

tional IB, significantly improving computational197

efficiency. Currently, several works based on Deep-198

VIB have achieved convincing results in various 199

domains, such as graph representation learning (Yu 200

et al., 2021; Zhang et al., 2025), adversarial training 201

(Chen et al., 2021), network compression (Loren- 202

zen et al., 2021), and representation compression 203

(Sheng et al., 2022), etc. For example, Zhu et 204

al. introduced IB to suppress noise by maximiz- 205

ing the mutual information with the target output 206

while minimizing that with the retrieved content 207

to improve answer accuracy and conciseness by 208

suppressing noise (Zhu et al., 2024a). 209

3 Preliminaries 210

Mixture of Experts: In general, the MoE architec- 211

ture consists of N feed-forward neural networks, 212

denoted as {E}Ni=1, which process various inputs 213

through a gating mechanism. Specifically, the gat- 214

ing mechanism is a function equipped with the 215

trainable parameters Wr ∈ Rdin×N . For each in- 216

put x ∈ Rdin×1, the gate function maps it to an 217

N -dimensional discrete probability vector, which 218

represents the contribution of each expert. Then, a 219

routing algorithm, such as the top-k or soft routing 220

method, is used to allocate the input to the experts. 221

The output yi at i-th token is calculated as: 222

Gi = TopK(softmax(W⊤
r xi) (1) 223

224

yi =
N∑
e=1

Gi,eEe(xi) (2) 225
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where Gi,e represents the contribution of e-th ex-226

pert at i-th token.227

Low-Rank Adaptation: Inspired by the natural228

low intrinsic dimension, LoRA introduces low-rank229

decomposition for optimizing the weight matrix of230

pre-trained LLMs to reduce the number of training231

parameters. Let the weight matrix of a pre-trained232

linear layer be W0 ∈ Rdin×dout . LoRA learns two233

low-rank matrices A ∈ Rr×din and B ∈ Rdout×r234

to update W0, where r ≪ min(din, dout). During235

training, W0 is frozen and only matrices A and B236

are updated. Given an input xi, the output of the237

LoRA layer can be expressed as:238

hi = W⊤
0 xi +

α

r
BAxi239

= W⊤
0 xi +△Wxi (3)240

where α is a scale hyper-parameter.241

MoE and LoRA: Some studies integrate the ad-242

vantages of LoRA and MoE by constructing mul-243

tiple LoRA adapters as experts, known as LoRA-244

MoE, to achieve expert specialization on different245

tasks. Combining Equations 2 and 3, we have:246

hi = W⊤
0 xi +

N∑
e=1

Gi,e△Wexi (4)247

where △We is the weight matrix of e-th LoRA248

expert.249

4 Our Proposed Approach250

In this section, we describe the details of the IB-251

MoE framework with Sparse Neuron Activation252

(SNA) and Neuron Collaboration (NC) (Figure 2).253

Specifically, SNA first introduces the IB into the254

MoE framework to improve expert specialization.255

Then, we further design NC to reduce redundant in-256

formation among multiple experts by maximizing257

their knowledge diversity.258

4.1 Sparse Neuron Activation259

Similar to the idea of expert-level sparse activation260

that only partial knowledge of LLM is utilized to261

process a task. Not all neurons in an expert con-262

tribute equally to a task, so we expect each expert263

to activate only the most relevant neurons. In this264

way, SNA not only enhances fine-grained special-265

ization but also captures knowledge characteristics266

by measuring the distribution differences in neuron267

activations across experts. Following the mutual268

information theory of IB. Let the inputs and labels269

be denoted as X and Y , respectively. The standard 270

objective function is expressed as: 271

Lib = βI(X, Ĥ)− I(Ĥ, Y ) 272

= E
(x,ĥ)∼p(x,ĥ)

β log
p(ĥ|x)
p(ĥ)

273

− E
(ĥ,y)∼p(ĥ,y)

log
p(y|ĥ)
p(y)

(5) 274

where Ĥ is the compressed representation of X , 275

I(., .) denotes mutual information, and β is a hyper- 276

parameter that used to controls the compression of 277

X . The experts are required to discard information 278

from X that is not crucial for their tasks, while 279

retaining sufficient task-related information to pre- 280

dict the label Y . 281

However, computing p(ĥ) and p(y|ĥ) directly 282

is intractable. To solve this, with the concept of 283

Variational Information Bottleneck (VIB) (Alemi 284

et al., 2016), we use two variational distributions 285

r(ĥ) and q(y|ĥ) to approximate p(ĥ) and p(y|ĥ), 286

which allows us to optimize the upper bound of 287

Lib. Based on the fact that KL[p(ĥ)||r(ĥ)] ≥ 0, 288

we have: 289

E
ĥ∼p(ĥ)

− log
p(ĥ)

r(ĥ)
≤ 0 (6) 290

For the former term in Equation 5, the upper 291
bound is calculated as: 292

E
(x,ĥ)∼p(x,ĥ)

log
p(ĥ|x)
p(ĥ)

≤ E
(x,ĥ)∼p(x,ĥ)

log
p(ĥ|x)
r(ĥ)

293

≤ E
x∼p(x)

KL[p(ĥ|x)||r(ĥ)] (7) 294

Similarly, for the latter term in Equation 5 and 295

based on the fact that KL[p(y|ĥ)||q(y|ĥ)] ≥ 0, the 296
lower bound is calculated as: 297

E
(ĥ,y)∼p(ĥ,y)

log
p(y|ĥ)
p(y)

≥ E
(ĥ,y)∼p(ĥ,y)

log
q(y|ĥ)
p(y)

298

≥ E
(ĥ,y)∼p(ĥ,y)

log q(y|ĥ) + C (8) 299

where C is a constant that corresponds to the en- 300

tropy of Y . 301

Then, for optimizing Equation 7, we first add a 302

task-specific query Vi ∈ Rdout for Ei to represent 303

the importance of the neurons in △Wi. Before the 304

forward process, Ei uses Vi to generate a binary 305

mask Mi = [m1,m2, ...,mdout ]
⊤ ∈ {0, 1}dout via 306

a Bernoulli-based importance sampling, where Mi 307
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indicates which neurons should be dropped. Mi is308

generated as follows:309

Mi = Ber(
Vi −min(Vi)

max(Vi)−min(Vi)
) = Ber(V̂ )

(9)310

where Ber(.) is a function used for Bernoulli sam-311

pling. Then, the compressed hidden representation312

can be expressed as:313

ĥi = W⊤
0 xi +

N∑
e=1

doutGi,e△Ŵexi
sum(Me)

(10)314

where △Ŵe = Me◦△We, ◦ denotes element-wise315

multiplication at the column level, and sum(.) is a316

summation function.317

In this paper, Bernoulli sampling is used as the318

prior distribution, denoted as r(ĥ) = Ber(π). We319

aim for the expected number of activated neurons320

to follow a Bernoulli distribution with a probability321

of π, which enables controllable compression of322

invalid information. Compared with h, the com-323

putation of ĥ additionally depends on the query324

V of each expert, where V is independent of x.325

Consequently, we have p(ĥ|x) = p(M |V ) and326

r(ĥ) = r(M). Therefore, a sparsity constraint is327

designed to minimize KL[p(ĥ|x)||r(ĥ)]:328

Ls =

N∑
i=1

[V̄i · log
V̄i

π
+(1− V̄i) · log

1− V̄i

1− π
] (11)329

where V̄i represents the mean value of V̂i.330

In practical, considering the non-differentiability331

of Bernoulli sampling during training, we use332

Gumbel-Softmax reparameterization trick to ap-333

proximate the Bernoulli distribution (Jang et al.,334

2017). The sampling process for V̂i is computed as335

follows:336

Mi = σ(
logV̂i + g

τ
) (12)337

where g = −log(−log(u)), u ∼ U(0, 1), τ =338

0.5 is a hyper-parameter for controlling sampling339

randomization, and σ(.) is sigmoid function.340

Finally, for Equation 8, q(y|ĥ) is typically341

achieved by a network qθ(ĥ) used for the next to-342

ken prediction task, with the loss function being343

cross-entropy. The loss function is defined as:344

Lp =
∑
xi∈X

−yi log(qθ(pϕ(xi))) (13)345

where pϕ(.) represents a learnable neural network.346

4.2 Neuron Collaboration 347

In this section, we introduce Neuron Collaboration 348

(NC) to enhance the knowledge diversity among 349

experts. Traditional MoE frameworks suffer from 350

knowledge redundancy due to task similarity, but in 351

IBMoE, we tackle this by applying a feature-level 352

diversity loss. It controls the knowledge differ- 353

ences among experts, promoting task specializa- 354

tion. Specifically, a query’s distribution represents 355

the knowledge characteristics of an expert. For two 356

queries V̂i and V̂j , we minimize their similarity, en- 357

couraging experts to focus on different feature di- 358

mensions through diverse query distributions. The 359

diversity constraint is expressed as: 360

Ld =
N∑
i,j

cosine(V̂i, V̂j) (14) 361

where cosine(., .) is a function for computing the 362

cosine similarity between two vectors. 363

We add an auxiliary loss for the router to ensure 364

differentiated token allocation. Let Pr represent 365

the probability distribution of tokens assigned to 366

the experts. The objective function is defined as: 367

Lb = e[std(meant(Pr))−mean(stde(Pr))] (15) 368

where meant(.) represents the token-wise mean 369

value, and stde(.) represents the expert-wise stan- 370

dard deviation. Combining Equations 11, 13, 14 371

and 15, the finally loss function is expressed as: 372

L = Lp + βLs + γLd + λLb (16) 373

5 Experimental Setup 374

In this section, we conduct extensive experiments 375

to evaluate the superiority and effectiveness of our 376

method on various NLP tasks. Additionally, we 377

also perform further analyses to investigate the in- 378

fluence of various details in our method. 379

5.1 Datasets 380

The General Language Understanding Evaluation 381

(GLUE) is a popular benchmark comprising three 382

types of NLP tasks: single-sentence tasks, similar- 383

ity and paraphrase tasks, and inference tasks. In 384

this paper, we select one task from each category 385

to evaluate the effectiveness of IBMoE, includes 386

Recognizing Textual Entailment (RTE)(Wang 387

et al., 2019), Corpus of Linguistic Acceptabil- 388

ity (CoLA)(Warstadt et al., 2019), Microsoft Re- 389

search Paraphrase Corpus (MRPC)(Dolan and 390
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Models Methods Act Params ↓ Datasets (Acc %↑) Average
MRPC CoLA RTE SQA OBQA CSQA

LLaMA

LoRA 19.9M 83.13 86.29 85.92 91.01 75.51 77.00 83.14
MoLoRA 107.8M 86.13 86.19 87.00 92.03 82.00 79.52 85.47
MoLA† 43.12M 83.48 86.87 86.28 92.36 78.95 79.60 84.59

AlphaMoLA† 43.12M 84.23 86.67 87.36 92.71 80.80 78.05 84.97
AdaMoLE dynamic 83.88 86.52 87.73 91.00 82.40 78.71 85.04
HMoRA 43.85M 84.63 86.56 87.36 93.61 79.40 79.36 85.15
IBMoE 7.89M 87.25 87.15 88.43 93.34 82.40 79.77 86.39

Mistral

LoRA 20.50M 85.86 86.23 90.97 94.86 86.2 79.85 87.32
MoLoRA 111.1M 86.14 87.53 89.16 94.96 86.8 82.15 87.79
MoLA† 43.40M 86.95 87.44 88.80 95.14 88.20 83.37 88.32

AlphaMoLA† 43.40M 87.13 87.91 91.70 95.00 89.20 84.00 89.16
AdaMoLE dynamic 85.91 86.10 92.05 94.90 87.80 82.55 88.22
HMoRA 44.20M 87.48 87.53 90.28 94.60 88.60 82.64 88.52
IBMoE 8.22M 88.58 87.53 92.77 95.68 90.40 83.05 89.67

Table 1: Comparison of performance and parameter efficiency with other SOTA methods across different model
architectures. Average accuracy across six datasets (Average) is reported to evaluate overall performance. Best
results are highlighted in bold, † denotes results reported by the original methods.

Brockett, 2005). We also use three common Ques-391

tion Answering (QA) tasks to evaluate our IBMoE,392

includes ScienceQA (SQA)(Lu et al., 2022), Open-393

bookQA (OBQA)(Mihaylov et al., 2018), Com-394

monSenseQA (CSQA)(Talmor et al., 2019).395

5.2 Base models and Baselines396

In the experiment, we use LLaMA2-7B (Touvron397

et al., 2023b) and Mistral-7B-v0.1 (Jiang et al.,398

2023) models as our base models. To evaluate399

the effectiveness of our model, we compare our400

IBMoE with recent parameter-efficient fine-tuning401

(PEFT)-based and MoE-based methods. For PEFT-402

based methods, we select LoRA (Hu et al., 2021).403

For MoE-based methods, we employ MoLoRA404

(Zadouri et al., 2023), MoLA (Gao et al., 2024),405

AlphaMoLA (Qing et al., 2024), AdaMoLE (Liu406

and Luo, 2024) and HMoRA (Liao et al., 2025).407

5.3 Evaluation Metrics408

We use multiple metrics to comprehensively eval-409

uate IBMoE’s performance. For traditional NLP410

tasks, we assess accuracy (ACC) and activated pa-411

rameters (Act Params) to evaluate generalization412

performance and parameter usage of the adapters.413

Additionally, we measure the model’s inference ef-414

ficiency by assessing Time and Peak Memory for415

the memory consumption of the added adapters.416

5.4 Implementation Details 417

The hyper-parameters are set as follows: (1) Train- 418

ing Parameters: We use the Adafactor optimizer 419

with a learning rate of 2e−4, a batch size of 128. 420

The number of epochs is set to 10. (2) LoRA 421

adapter: We adopt the default LoRA configura- 422

tion, with the intrinsic LoRA rank of experts set 423

to 8 for all the baselines. (3) IBMoE Parameters: 424

We apply 5 LoRA experts to every other MLP layer, 425

with one shared expert handling all inputs. During 426

forward processing, the top-k is set to 2, selecting 427

one specific expert and the shared expert for each 428

token. We set π = 0.6, β = 0.1, γ = 0.1, and 429

λ = 0.01. All experiments are conducted on the 430

NVIDIA A800 GPU. 431

6 Experimental Results 432

6.1 Main Results 433

Table 1 compares the performance of IBMoE with 434

other PEFT and MoE baselines. The table shows 435

that IBMoE achieves the best performance across 436

all models, while using the fewest activated param- 437

eters. MoLA and AlphaMoLA reduce knowledge 438

redundancy by assigning fewer experts to lower lay- 439

ers and more to higher layers for better specializa- 440

tion, but its performance is limited without explicit 441

specialization constraints. Although HMoRA intro- 442

duces features at varying levels of granularity, its 443

performance remains suboptimal because it fails to 444
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account for knowledge differences among experts.445

Moreover, IBMoE enhances performance by lever-446

aging both task-level and neuron-level sparse acti-447

vation, significantly reducing computational costs,448

as indicated by Act Params in Table 1.449

6.2 Ablation Studies450

We conduct ablation studies (Table 2) to evaluate451

the effectiveness of IBMoE’s components. First,452

we experiment without Lb. We find that imbal-453

anced routing leads to some experts handling dis-454

proportionate amounts of data by activating more455

neurons, which increases the Act Params. Next,456

we remove the sparsity constraint, which makes457

the experts fail to focus on the most relevant in-458

formation, and unstable neuron sampling further459

reduces performance. Finally, we remove the di-460

versity loss, which worsens IBMoE’s performance.461

Without Ld, knowledge redundancy occurs among462

the experts. Additionally, without any loss con-463

straints, the number of activated parameters in IB-464

MoE approximately doubles because the inactive465

SNA module causes the model to activate all neu-466

rons to complete the tasks.

Model RTE

Acc (%↑) Act Params ↓

IBMoE 88.43 7.89M
−Lb 87.95 7.91M
−Lb − Ls 87.06 7.07M
−Lb − Ls − Ld 86.29 13.16M

Table 2: Ablation results of IBMoE on the RTE dataset.467

6.3 Further Analyses468

Analysis of Compression Ratio. In IBMoE, the469

parameter π controls the proportion of activated470

neurons. The results in Figure 3 illustrate the471

model’s performance under various compression472

ratios across multiple datasets. We observe that473

model performance generally improves as more474

neurons are activated. However, this improvement475

gradually diminishes and may eventually reverse476

as π continues to increase. This observation sug-477

gests the presence of neuron redundancy in conven-478

tional MoE methods, which can potentially degrade479

model performance by activating task-irrelevant480

neurons. Moreover, the model’s performance on481

the RTE dataset drops by approximately 3% when482

π is set to 0.2, indicating that an excessively low483

activation ratio may limit the model’s capacity to484
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Figure 3: Compression Ratio π with different values.
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Figure 4: Sensitivity of hyper-parameters.

capture task-relevant information. 485

Analysis of hyper-parameters. The IBMoE 486

framework introduces three hyper-parameters (λ, β, 487

and γ) for the components of the loss function. To 488

analyze the sensitivity of these hyper-parameters, 489

we conduct experiments by varying their values 490

within the range of [0, 0.1, 0.01, 0.001]. Specifi- 491

cally, we adjust one parameter (e.g., λ) while fixing 492

the others to their default values. This approach 493

eliminates potential confounding effects from other 494

factors. The same procedure is repeated for β and 495

γ. As shown in Figure 4, the proposed method 496

exhibits strong robustness to hyper-parameter vari- 497

ations. Notably, setting lower values (e.g., 0.01 or 498

0.001) leads to a slight improvement in model per- 499

formance. However, when λ is set to 0.1, the model 500

fails to converge. This instability arises because 501

the scaling of the balance loss Lb dominates the 502

primary task loss Lp. 503

Analysis of the Greedy Sampling. As men- 504

tioned above, each expert drops a large number 505

of neurons by performing Bernoulli sampling on V . 506
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Figure 5: Impact of p on the different tasks.

In this section, we activate neurons using greedy507

sampling to analyze the impact of neuron activation.508

Similar to the gating mechanism, we apply top-p509

sampling on V to activate the most task-related neu-510

rons for forward processing. Figure 5 shows the511

performance of IBMoEπ=0.2 with greedy sampling512

during inference, where top-p = 0.2 denotes that513

the top 20% of neurons are activated. We observe514

that the performance of the greedy sampling is515

lower than that of Bernoulli-based importance sam-516

pling at an equal activation scale. This is because517

importance sampling inherently combines neurons518

of varying importance levels, enabling a global519

planning of feature selection, whereas greedy sam-520

pling focuses on partial information of the feature.521

As p increases, greedy sampling achieves a compa-522

rable performance to importance sampling, indicat-523

ing that importance sampling effectively balances524

performance and computational cost.525

Analysis of the Inference Efficiency. We also526

compare the inference performance of IBMoE527

with other sparse MoE methods, including MoLA,528

AdaMoLE and HMoRA, to evaluate its efficiency.529

These methods are selected because they are de-530

signed for more efficient parameter allocation or531

expert specialization. Specifically, we use one532

NVIDIA A800 GPU with 80GB of memory to per-533

form inference on 1,000 randomly sampled test set534

examples, measuring the inference time and peak535

memory usage of the adapters with a batch size536

of 16. In Table 3, our proposed method achieves537

the best performance in both time and memory ef-538

ficiency, with improvements of 63% in time and539

48.5% in memory efficiency compared to the SOTA540

methods. We attribute this advantage to the fact541

that the trained IBMoE significantly reduces com-542

putational cost and memory consumption by com-543

pressing the weight matrices of LoRA experts.544

Model Inference with 1,000 Samples

Time (s) ↓ Peak Memory (MB) ↓

MoLA 739.3 1452.6
AdaMoLE 329.8 146.2
HMoRA 295.6 842.1
IBMoE 109.3 75.7

Table 3: Inference efficiency of IBMoE.

Analysis of the Training Complexity. Consider- 545

ing that IBMoE introduces additional complexity 546

compared to vanilla MoE methods, we also pro- 547

vide a brief theoretical analysis of its computational 548

cost. Specifically, let the size of a weight matrix be 549

N ×M (e.g., 11,048 and 4,096 in LLaMA2-7B), 550

where N > M . The number of experts be K, and 551

the rank of a LoRA expert be r (e.g., r = 64). The 552

computational complexity of a vanilla LoRA ex- 553

pert is O(NrM). In IBMoE, the dimensionality 554

of each expert’s learnable parameters is bounded 555

by V ∈ RN, and two novel loss terms, Ld and Ls, 556

must be computed. To compute Ld, we calculate 557

the cosine similarity for each pair of V , which in- 558

volves computing the L2 norm for each V and the 559

dot product for every pair. This results in a com- 560

plexity of Ld is O(KN)+O(K(K−1)N/2). For 561

Ls, we needs to compute mean value of each V , 562

and the complexity is O(KN). Therefore, the total 563

complexity is O(2KN) + O(K(K − 1)N/2) < 564

O(2KN)+O(K2N) = O(K(K+2)N). In prac- 565

tice, K is generally much smaller than M , we have 566

O(K(K + 2)N) ≪ O(MrN). This indicates 567

that the additional computation introduced by the 568

loss functions is less than that required by a LoRA 569

adapter. Hence, our method achieves a favorable 570

trade-off between performance improvement and 571

computational overhead. 572

7 Conclusions and Future Work 573

In this paper, we propose a novel parameter- 574

efficient MoE method that introduces an IB frame- 575

work and multiple constraints to achieve fine- 576

grained reduction of neuronal redundancy, foster- 577

ing closer collaboration among experts. Extensive 578

experiments show that our method achieves su- 579

perior performance comparable to state-of-the-art 580

methods, and reduces inference time by 63% and 581

memory consumption by 48.5%. Furthermore, ab- 582

lation studies validate the effectiveness of each IB- 583

MoE component. In future work, we will explore 584

applications in continual learning by capitalizing 585

on the knowledge specialization inherent in MoE. 586
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8 Limitations587

For the sparsity constraint, we simply set the com-588

pression ratio π = 0.6 uniformly for all experts.589

However, experts in different layers typically need590

to perform varying levels of feature abstraction on591

the inputs, which leads to unstable model perfor-592

mance in complex tasks. A potential solution is to593

design an adaptive compression strategy for each594

expert, allowing dynamic adjustment of the num-595

ber of activated neurons, or to vary the number of596

experts across layers.597
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