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Abstract

Mixture of Experts (MoE) has great potential
in scaling up the capacity of large models while
maintaining low computational costs. Recent
works have focused on reducing expert-level re-
dundancy by designing various token allocation
strategies within gating functions. Whereas,
the intricate internal relationships between ex-
perts cause knowledge redundancy at the fine-
grained neuron level, and research on collab-
oration among experts remains scarce. In this
paper, we propose a Information Bottleneck
based MoE (IBMoE) for parameter-efficient
fine-tuning, which reduces neuron-level redun-
dancy within each expert and fosters internal
collaboration among all experts. Specifically,
a sparse neuronal activation strategy is intro-
duced to dynamically activate the relevant neu-
rons while reducing the redundancy when pro-
cessing different tasks. In addition, a diversity
constraint is imposed among experts, which
maximizes the knowledge difference to enable
all experts cooperative more efficiently. Ex-
tensive experiments demonstrate the great ad-
vantages of our method. We achieve superior
performance while reducing inference time by
63% and memory consumption by 48.5% com-
pared to the recent baselines. Our code will be
publicly accessible in the future.

1 Introduction

Large language models (LLMs) (OpenAl, 2023;
Touvron et al., 2023a; Guo et al., 2025) demon-
strate impressive results across various Natural
Language Processing (NLP) tasks (Agarwal et al.,
2025; Tang et al., 2025), benefiting from their out-
standing capabilities in language comprehension
and text generation. Nevertheless, the significant
computational resources required for training and
inference across diverse tasks present ongoing chal-
lenges. Thus, various parameter-efficient methods
are proposed to reduce the computation costs, such
as P-tuning (Liu et al., 2021), Low-Rank Adaption
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Figure 1: The differences between classical MoE and
IBMoE. MoE focuses on expert-level specialization,
while IBMoE enhances fine-grained, neuron-level spe-
cialization within each expert through sparse neuron
activation and neuron collaboration.

(LoRA) (Hu et al., 2021) and Mixture of Experts
(MoE) (Shazeer et al., 2017; Lepikhin et al., 2020;
Zadouri et al., 2023; Gao et al., 2024). MoE is a
conditional computation framework that divides a
dense model into multiple specialized experts. It
employs a gating mechanism to dynamically select
the relevant experts for computing inputs, which
maintains a constant computational cost even as
the model scales continuously grow in size.

One key challenge in MoE is how to make the ex-
perts specialized on certain tasks. Liu et al. (2024);
Zhang et al. (2024) designed specialized routing
mechanisms based on the task features for the gate
unit. Zuo et al. (2022) and Zhu et al. (2024b) seg-
mented the weights of dense models to obtain pa-
rameter separated experts, and invoke certain ex-
perts by measuring the correlation with tasks. How-
ever, these efforts struggle to address the issue of
knowledge redundancy among experts that emerges
during training. From the perspective of expert’s
training, Dai et al. (2024) devised a shared expert
to preserve common knowledge and other experts
to focus on specific knowledge. Do et al. (2025)
reduced representation similarity to address repre-
sentational collapse among experts, which helps
alleviate knowledge redundancy. Whereas, these
methods primarily focus on reducing the expert-



level redundancy, while the internal neuron-level
redundancy of each expert remains rarely studied.

Another challenge lies in enabling all experts
to collaborate efficiently (Cai et al., 2024). Most
existing methods rely on routing mechanisms to ac-
tivate the relevant experts with different weights to
perform tasks collaboratively. For example, when
tokens arrive, the router generates a probability
distribution indicating each expert’s contribution,
thereby assigning tokens accordingly. Some ap-
proaches also incorporate balance loss to encourage
collaborative behavior (Zhu et al., 2023). However,
such mechanisms are limited to the expert level,
ignoring the cooperation within each expert’s inter-
nal neurons. Moreover, the knowledge difference
among experts remains vague. How to explicitly
model these differences for more efficient collabo-
ration is still an open question.

To resolve the above challenges, we propose a
parameter-efficient MoE method under the Infor-
mation Bottleneck framework (Tishby et al., 2000;
Alemi et al., 2016), namely IBMoE. As shown in
Figure 1, IBMOoE integrates sparse neuron activa-
tion and collaboration with IB theory, aiming to
only retain the most relevant information in a com-
plementary fashion for task completion. For each
expert, a learnable query under the IB constraint is
set to activate task-related neurons sparsely, com-
pressing hidden representations. In this way, the
knowledge characteristics of different experts are
explicitly modeled by queries’ distribution. Then,
a neuron collaboration module is introduced to fur-
ther diversify knowledge differences across experts,
enhancing complementary specialization. This
dual mechanism ensures parameter efficiency with-
out sacrificing task performance.

The major contributions of our work can be sum-
marized as follows:

* We propose a parameter-efficient MoE
method under the information bottleneck
framework, which reduces the neuron-level
redundancy within each expert, and fosters
internal collaboration among all experts.

* We present a sparse neuron activation mecha-
nism to retain task-specific knowledge while
reducing irrelevant information by masking
out the unimportant neurons. Additionally, a
neuron collaboration module is introduced to
explicitly guide all experts to cooperate at the
neuron-level with higher efficiency.

* We conduct extensive experiments to val-
idate the effectiveness and superiority of
our method. The experiments indicate that
IBMOoE achieves the state-of-the-art perfor-
mance across various datasets, while reducing
the inference time by 25% and the memory
consumption by 48.5%.

2 Related work

2.1 Parameter Efficient Fine-Tuning

Parameter Efficient Fine-Tuning (PEFT) aims to
reduce the expensive computational cost of train-
ing base models to adapt to various downstream
tasks. These methods generally add trainable sub-
modules, called adapters, to the dense model. The
model is fine-tuned by updating the adaptor while
keeping the base model frozen. Specifically, IA3
(Liu et al., 2022) adds three sets of learnable vectors
in the key, value, and linear layers. Llama-Adapter
(Zhang et al., 2023) introduces learnable adaptation
prompts and zero-init attention to adaptively inject
new instruction cues into Llama while effectively
retaining its pre-trained knowledge. LoRA (Hu
et al., 2021) uses two decomposed low-rank ma-
trices to perform incremental updates. Adakron
(Braga et al., 2024) leverages Kronecker prod-
ucts for improved efficiency and expressiveness.
MELoRA (Ren et al., 2024) introduces a method
that stacks multiple mini-LoRAs in parallel, effec-
tively increasing the overall rank and enhancing
performance potential. IBMoE utilizes the concept
of PEFT to effectively reduce the training cost of
traditional MoE methods while preserving the task
specialization advantage of MoE.

2.2 Mixture of Experts

Mixture of Experts (MoE) is a framework that uti-
lizes a gate unit to allocate different inputs to the
most relevant expert modules, which reduces com-
putational resources. Early efforts, such as GShard
(Lepikhin et al., 2020) and Switch Transformer
(Fedus et al., 2022), achieve this by replacing ev-
ery other MLP layer with MoE layers and allo-
cating tokens to experts using a top-k mechanism.
DeepSeekMOoE (Dai et al., 2024) introduces shared
experts and smaller experts to achieve more fine-
grained specialization. Llama-MoE (Zhu et al.,
2024b) segments the weights of the dense model to
initialize the experts by measuring their relevance
to different tasks. MoLoRA (Zadouri et al., 2023)
splits the LoRA adapters into multiple fine-grained
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Figure 2: The overall framework of IBMOoE consists of two components: Sparse Neuron Activation (SNA) and
Neuron Collaboration (NC). SNA utilizes the IB to learn a neuron-level query vector for discarding irrelevant details.
The NC strategy is then introduced to reduce redundant knowledge by modeling interactions among experts.

experts, allowing tiny experts to handle different
tasks. Further, MoLA (Gao et al., 2024) introduces
a method for layer-wise expert allocation to reduce
knowledge redundancy. MoR1E (Liu et al., 2024)
proposes a task-level routing mechanism to achieve
expert specialization in rank-1 LoRA. HMoRA
(Liao et al., 2025) introduces hybrid token- and
task-level routing mechanism to capture features
at varying levels of granularity, which improves
expert specialization and generalization. However,
research on neuron-level knowledge redundancy
is still rare. Our IBMOE effectively measures the
knowledge differences among experts from a fea-
ture perspective.

2.3 Information Bottleneck

Previous studies have shown that controlling the un-
necessary information in the hidden layer through
the information bottleneck can effectively con-
trol the generalization error in deep learning
(Kawaguchi et al., 2023). IB-related work on deep
neural networks (DNNs) dates back to 2015, when
Tishby et al. demonstrated the feasibility of 1B
application in deep neural networks using infor-
mation plane visualization (Tishby and Zaslavsky,
2015). However, optimizing IB in DNNs poses
challenges due to the non-convex and intractable
of the conventional IB. DIB (Strouse and Schwab,
2017) optimizes the compression term in conven-
tional IB, significantly improving computational
efficiency. Currently, several works based on Deep-

VIB have achieved convincing results in various
domains, such as graph representation learning (Yu
etal., 2021; Zhang et al., 2025), adversarial training
(Chen et al., 2021), network compression (Loren-
zen et al., 2021), and representation compression
(Sheng et al., 2022), etc. For example, Zhu et
al. introduced IB to suppress noise by maximiz-
ing the mutual information with the target output
while minimizing that with the retrieved content
to improve answer accuracy and conciseness by
suppressing noise (Zhu et al., 2024a).

3 Preliminaries

Mixture of Experts: In general, the MoE architec-
ture consists of N feed-forward neural networks,
denoted as { E}¥_ |, which process various inputs
through a gating mechanism. Specifically, the gat-
ing mechanism is a function equipped with the
trainable parameters W, € R%»*N For each in-
put z € R%n*x1 the gate function maps it to an
N-dimensional discrete probability vector, which
represents the contribution of each expert. Then, a
routing algorithm, such as the top-k or soft routing
method, is used to allocate the input to the experts.
The output y; at i-th token is calculated as:

Gi = TopK (softmaz(W,' z;) (1)

N
yi =Y GicBe(;) (2)
e=1



where G . represents the contribution of e-th ex-
pert at ¢-th token.

Low-Rank Adaptation: Inspired by the natural
low intrinsic dimension, LoRA introduces low-rank
decomposition for optimizing the weight matrix of
pre-trained LLMs to reduce the number of training
parameters. Let the weight matrix of a pre-trained
linear layer be W € R%n*dout 1 oRA learns two
low-rank matrices A € R"™*%n and B € Routx"
to update Wy, where r < min(d;y,, doyt ). During
training, Wy is frozen and only matrices A and B
are updated. Given an input z;, the output of the
LoRA layer can be expressed as:

T
=Wy i + AWz, (3)

where « is a scale hyper-parameter.

MoE and LoRA: Some studies integrate the ad-
vantages of LoRA and MoE by constructing mul-
tiple LoRA adapters as experts, known as LoRA-
MOoE, to achieve expert specialization on different
tasks. Combining Equations 2 and 3, we have:

N
hi =Wy mi+ > Gie AW, 4)

e=1

where AW, is the weight matrix of e-th LoRA
expert.

4 Our Proposed Approach

In this section, we describe the details of the IB-
MOoE framework with Sparse Neuron Activation
(SNA) and Neuron Collaboration (NC) (Figure 2).
Specifically, SNA first introduces the IB into the
MOoE framework to improve expert specialization.
Then, we further design NC to reduce redundant in-
formation among multiple experts by maximizing
their knowledge diversity.

4.1 Sparse Neuron Activation

Similar to the idea of expert-level sparse activation
that only partial knowledge of LLM is utilized to
process a task. Not all neurons in an expert con-
tribute equally to a task, so we expect each expert
to activate only the most relevant neurons. In this
way, SNA not only enhances fine-grained special-
ization but also captures knowledge characteristics
by measuring the distribution differences in neuron
activations across experts. Following the mutual
information theory of IB. Let the inputs and labels

be denoted as X and Y, respectively. The standard
objective function is expressed as:

Ly =BI(X,H)—I(H,Y)

= E R
(:C,h)fvp(l‘,h)

S log

- E log
(hyy)~p(hy)

&)

where H is the compressed representation of X,
I(.,.) denotes mutual information, and £3 is a hyper-
parameter that used to controls the compression of
X. The experts are required to discard information
from X that is not crucial for their tasks, while
retaining sufficient task-related information to pre-
dict the label Y.

However, computing p(h) and p(y|h) directly
is intractable. To solve this, with the concept of
Variational Information Bottleneck (VIB) (Alemi
et al., 2016), we use two variational distributions
r(h) and q(y|h) to approximate p(h) and p(y|h),
which allows us to optimize the upper bound of
L. Based on the fact that K L{p(h)||r(h)] > 0,
we have:

~—

B —1og 2P < ©6)
hep(h) r(h)

For the former term in Equation 5, the upper
bound is calculated as:

 p(hla)
(i)

< mN]E(w)KL[P(ﬁIw)IIT(ﬁ)] o

p(h|z)
iy p(h) :

(z,h)~p(a,h)

(z,h)~p(a,h)

Similarly, for the latter term in Equation 5 and

based on the fact that K L[p(y|h)||q(y|h)] > 0, the
lower bound is calculated as:

A g p(ylh) > A q(ylh)
(hy)~p(hoy) P(Y) T (hy)~p(hy) p(y)
> E log q(ylh) + C (8)

(A ~p(hy)

where C' is a constant that corresponds to the en-
tropy of Y.

Then, for optimizing Equation 7, we first add a
task-specific query V; € R%ut for E; to represent
the importance of the neurons in AW;. Before the
forward process, F; uses V; to generate a binary
mask M; = [my1,ma,...,mq,,,]" € {0,1}%ut via
a Bernoulli-based importance sampling, where M;



indicates which neurons should be dropped. M; is
generated as follows:

Vi — min(V;)

M; =B
er(max(Vi) — min(V})

)= Ber(V)
)

where Ber(.) is a function used for Bernoulli sam-
pling. Then, the compressed hidden representation
can be expressed as:

dout G eAW Z;
h—%%+z‘@mﬁr*

(10)
where AW, = M,o/AW.,, o denotes element-wise
multiplication at the column level, and sum(.) is a
summation function.

In this paper, Bernoulli sampling is used as the
prior distribution, denoted as (k) = Ber(r). We
aim for the expected number of activated neurons
to follow a Bernoulli distribution with a probability
of 7, which enables controllable compression of
invalid information. Compared with h, the com-
putation of h additionally depends on the query
V' of each expert, where V' is independent of x.
Consequently, we have p(h|z) = p(M|V) and
r(h) = r(M). Therefore, a sparsity constraint is
designed to minimize K L[p(h|z)||r(h)]:

N _ _
ZV 1og— +(1-V;)- logl_vz} (11)
— 1—m
where V; represents the mean value of VZ

In practical, considering the non-differentiability
of Bernoulli sampling during training, we use
Gumbel-Softmax reparameterization trick to ap-
proximate the Bernoulli distribution (Jang et al.,
2017). The sampling process for Vi is computed as
follows: R
logVi +g

T

M; =o( ) (12)

where ¢ = —log(—log(u)),u ~ U(0,1), T =
0.5 is a hyper-parameter for controlling sampling
randomization, and o (.) is sigmoid function.
Finally, for Equation 8, ¢(y|h) is typically
achieved by a network g (h) used for the next to-
ken prediction task, with the loss function being
cross-entropy. The loss function is defined as:

Ly =Y —yilog(as(ps(w:)))

r,€X

13)

where py(.) represents a learnable neural network.

4.2 Neuron Collaboration

In this section, we introduce Neuron Collaboration
(NC) to enhance the knowledge diversity among
experts. Traditional MoE frameworks suffer from
knowledge redundancy due to task similarity, but in
IBMOoE, we tackle this by applying a feature-level
diversity loss. It controls the knowledge differ-
ences among experts, promoting task specializa-
tion. Specifically, a query’s distribution represents
the knowledge characteristics of an expert. For two
queries V; and VJ, we minimize their similarity, en-
couraging experts to focus on different feature di-
mensions through diverse query distributions. The
diversity constraint is expressed as:

N
Lg= Z cosine(Vi, V;)
i,J

(14)

where cosine(., .) is a function for computing the
cosine similarity between two vectors.

We add an auxiliary loss for the router to ensure
differentiated token allocation. Let P, represent
the probability distribution of tokens assigned to
the experts. The objective function is defined as:

Lb _ e[std(meant(PT))—mean(stdE(Pr))] (15)
where mean,(.) represents the token-wise mean
value, and std,(.) represents the expert-wise stan-
dard deviation. Combining Equations 11, 13, 14
and 15, the finally loss function is expressed as:

L=L,+ BLs+~vLqg+ ALy (16)

5 Experimental Setup

In this section, we conduct extensive experiments
to evaluate the superiority and effectiveness of our
method on various NLP tasks. Additionally, we
also perform further analyses to investigate the in-
fluence of various details in our method.

5.1 Datasets

The General Language Understanding Evaluation
(GLUE) is a popular benchmark comprising three
types of NLP tasks: single-sentence tasks, similar-
ity and paraphrase tasks, and inference tasks. In
this paper, we select one task from each category
to evaluate the effectiveness of IBMOoE, includes
Recognizing Textual Entailment (RTE)(Wang
et al., 2019), Corpus of Linguistic Acceptabil-
ity (CoLA)(Warstadt et al., 2019), Microsoft Re-
search Paraphrase Corpus (MRPC)(Dolan and



Datasets (Acc %1)

Models Methods Act Params | Average
MRPC CoLA RTE SQA OBQA CSQA
LoRA 19.9M 83.13 86.29 8592 91.01 7551 77.00 83.14
MoLoRA 107.8M 86.13 86.19 87.00 92.03 82.00 79.52 8547
MoLAT 43.12M 83.48 86.87 86.28 92.36 78.95 79.60  84.59
LLaMA AlphaMoLAf 43.12M 84.23 86.67 87.36 92.71 80.80 78.05 84.97
AdaMoLE dynamic 83.88 86.52 87.73 91.00 8240 78.71 85.04
HMoRA 43.85M 84.63 86.56 87.36 93.61 79.40 79.36  85.15
IBMoE 7.89M 87.25 87.15 8843 9334 8240 79.77 86.39
LoRA 20.50M 85.86 86.23 90.97 9486 86.2  79.85 87.32
MoLoRA 111.1M 86.14 87.53 89.16 9496 86.8 82.15 87.79
MoLAT 43.40M 86.95 87.44 88.80 95.14 88.20 83.37 88.32
Mistral ~ AlphaMoLA T 43.40M 87.13 8791 91.70 95.00 89.20 84.00 89.16
AdaMoLE dynamic 8591 86.10 92.05 9490 87.80 82.55 88.22
HMoRA 44.20M 87.48 87.53 90.28 94.60 88.60 82.64  88.52
IBMoE 8.22M 88.58 87.53 9277 95.68 90.40 83.05 89.67

Table 1: Comparison of performance and parameter efficiency with other SOTA methods across different model
architectures. Average accuracy across six datasets (Average) is reported to evaluate overall performance. Best
results are highlighted in bold, { denotes results reported by the original methods.

Brockett, 2005). We also use three common Ques-
tion Answering (QA) tasks to evaluate our IBMoE,
includes ScienceQA (SQA)(Lu et al., 2022), Open-
bookQA (OBQA)(Mihaylov et al., 2018), Com-
monSenseQA (CSQA)(Talmor et al., 2019).

5.2 Base models and Baselines

In the experiment, we use LLaMA2-7B (Touvron
et al., 2023b) and Mistral-7B-v0.1 (Jiang et al.,
2023) models as our base models. To evaluate
the effectiveness of our model, we compare our
IBMOoE with recent parameter-efficient fine-tuning
(PEFT)-based and MoE-based methods. For PEFT-
based methods, we select LoORA (Hu et al., 2021).
For MoE-based methods, we employ MoLoRA
(Zadouri et al., 2023), MoLA (Gao et al., 2024),
AlphaMoLA (Qing et al., 2024), AdaMoLE (Liu
and Luo, 2024) and HMoRA (Liao et al., 2025).

5.3 Evaluation Metrics

We use multiple metrics to comprehensively eval-
uate IBMoE’s performance. For traditional NLP
tasks, we assess accuracy (ACC) and activated pa-
rameters (Act Params) to evaluate generalization
performance and parameter usage of the adapters.
Additionally, we measure the model’s inference ef-
ficiency by assessing Time and Peak Memory for
the memory consumption of the added adapters.

5.4 Implementation Details

The hyper-parameters are set as follows: (1) Train-
ing Parameters: We use the Adafactor optimizer
with a learning rate of 2%, a batch size of 128.
The number of epochs is set to 10. (2) LoRA
adapter: We adopt the default LoRA configura-
tion, with the intrinsic LORA rank of experts set
to 8 for all the baselines. (3) IBMoE Parameters:
We apply 5 LoRA experts to every other MLP layer,
with one shared expert handling all inputs. During
forward processing, the top-k is set to 2, selecting
one specific expert and the shared expert for each
token. We set 7 = 0.6, 5 = 0.1, v = 0.1, and
A = 0.01. All experiments are conducted on the
NVIDIA A800 GPU.

6 Experimental Results

6.1 Main Results

Table 1 compares the performance of IBMoE with
other PEFT and MoE baselines. The table shows
that IBMOoE achieves the best performance across
all models, while using the fewest activated param-
eters. MoLA and AlphaMoLA reduce knowledge
redundancy by assigning fewer experts to lower lay-
ers and more to higher layers for better specializa-
tion, but its performance is limited without explicit
specialization constraints. Although HMoRA intro-
duces features at varying levels of granularity, its
performance remains suboptimal because it fails to



account for knowledge differences among experts.
Moreover, IBMoE enhances performance by lever-
aging both task-level and neuron-level sparse acti-
vation, significantly reducing computational costs,
as indicated by Act Params in Table 1.

6.2 Ablation Studies

We conduct ablation studies (Table 2) to evaluate
the effectiveness of IBMoE’s components. First,
we experiment without L;. We find that imbal-
anced routing leads to some experts handling dis-
proportionate amounts of data by activating more
neurons, which increases the Act Params. Next,
we remove the sparsity constraint, which makes
the experts fail to focus on the most relevant in-
formation, and unstable neuron sampling further
reduces performance. Finally, we remove the di-
versity loss, which worsens IBMoE’s performance.
Without L4, knowledge redundancy occurs among
the experts. Additionally, without any loss con-
straints, the number of activated parameters in IB-
MOoE approximately doubles because the inactive
SNA module causes the model to activate all neu-
rons to complete the tasks.

Model RTE

Acc (%1)  ActParams |
IBMoE 88.43 7.89M
—Ly 87.95 7.91M
—Ly — L 87.06 7.07TM
—Ly—Ls— Ly 86.29 13.16M

Table 2: Ablation results of IBMoE on the RTE dataset.

6.3 Further Analyses

Analysis of Compression Ratio. In IBMOoE, the
parameter 7 controls the proportion of activated
neurons. The results in Figure 3 illustrate the
model’s performance under various compression
ratios across multiple datasets. We observe that
model performance generally improves as more
neurons are activated. However, this improvement
gradually diminishes and may eventually reverse
as 7 continues to increase. This observation sug-
gests the presence of neuron redundancy in conven-
tional MoE methods, which can potentially degrade
model performance by activating task-irrelevant
neurons. Moreover, the model’s performance on
the RTE dataset drops by approximately 3% when
7 is set to 0.2, indicating that an excessively low
activation ratio may limit the model’s capacity to
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capture task-relevant information.

Analysis of hyper-parameters. The IBMoE
framework introduces three hyper-parameters (), 3,
and ~y) for the components of the loss function. To
analyze the sensitivity of these hyper-parameters,
we conduct experiments by varying their values
within the range of [0, 0.1, 0.01, 0.001]. Specifi-
cally, we adjust one parameter (e.g., \) while fixing
the others to their default values. This approach
eliminates potential confounding effects from other
factors. The same procedure is repeated for 5 and
~. As shown in Figure 4, the proposed method
exhibits strong robustness to hyper-parameter vari-
ations. Notably, setting lower values (e.g., 0.01 or
0.001) leads to a slight improvement in model per-
formance. However, when A is set to 0.1, the model
fails to converge. This instability arises because
the scaling of the balance loss L, dominates the
primary task loss L.

Analysis of the Greedy Sampling. As men-
tioned above, each expert drops a large number
of neurons by performing Bernoulli sampling on V.
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In this section, we activate neurons using greedy
sampling to analyze the impact of neuron activation.
Similar to the gating mechanism, we apply top-p
sampling on V' to activate the most task-related neu-
rons for forward processing. Figure 5 shows the
performance of IBMoE—¢ 2 with greedy sampling
during inference, where top-p = 0.2 denotes that
the top 20% of neurons are activated. We observe
that the performance of the greedy sampling is
lower than that of Bernoulli-based importance sam-
pling at an equal activation scale. This is because
importance sampling inherently combines neurons
of varying importance levels, enabling a global
planning of feature selection, whereas greedy sam-
pling focuses on partial information of the feature.
As p increases, greedy sampling achieves a compa-
rable performance to importance sampling, indicat-
ing that importance sampling effectively balances
performance and computational cost.

Analysis of the Inference Efficiency. We also
compare the inference performance of IBMoE
with other sparse MoE methods, including MoLA,
AdaMoLE and HMoRA, to evaluate its efficiency.
These methods are selected because they are de-
signed for more efficient parameter allocation or
expert specialization. Specifically, we use one
NVIDIA A800 GPU with 80GB of memory to per-
form inference on 1,000 randomly sampled test set
examples, measuring the inference time and peak
memory usage of the adapters with a batch size
of 16. In Table 3, our proposed method achieves
the best performance in both time and memory ef-
ficiency, with improvements of 63% in time and
48.5% in memory efficiency compared to the SOTA
methods. We attribute this advantage to the fact
that the trained IBMOE significantly reduces com-
putational cost and memory consumption by com-
pressing the weight matrices of LoRA experts.

Inference with 1,000 Samples

Model

Time (s) | Peak Memory (MB) |
MoLA 739.3 1452.6
AdaMoLE 329.8 146.2
HMoRA 295.6 842.1
IBMoE 109.3 75.7

Table 3: Inference efficiency of IBMoE.

Analysis of the Training Complexity. Consider-
ing that IBMoE introduces additional complexity
compared to vanilla MoE methods, we also pro-
vide a brief theoretical analysis of its computational
cost. Specifically, let the size of a weight matrix be
N x M (e.g., 11,048 and 4,096 in LLaMA2-7B),
where N > M. The number of experts be K, and
the rank of a LoRA expert be r (e.g., 7 = 64). The
computational complexity of a vanilla LoRA ex-
pert is O(NrM). In IBMoE, the dimensionality
of each expert’s learnable parameters is bounded
by V € RN, and two novel loss terms, Lsand Lg,
must be computed. To compute L4, we calculate
the cosine similarity for each pair of V', which in-
volves computing the L2 norm for each V' and the
dot product for every pair. This results in a com-
plexity of Ly is O(KN)+ O(K (K —1)N/2). For
L, we needs to compute mean value of each V,
and the complexity is O(K N). Therefore, the total
complexity is O(2KN) + O(K (K —1)N/2) <
O(KN)+O(K?N) = O(K(K +2)N). In prac-
tice, K is generally much smaller than M, we have
O(K(K + 2)N) < O(MrN). This indicates
that the additional computation introduced by the
loss functions is less than that required by a LoRA
adapter. Hence, our method achieves a favorable
trade-off between performance improvement and
computational overhead.

7 Conclusions and Future Work

In this paper, we propose a novel parameter-
efficient MoE method that introduces an IB frame-
work and multiple constraints to achieve fine-
grained reduction of neuronal redundancy, foster-
ing closer collaboration among experts. Extensive
experiments show that our method achieves su-
perior performance comparable to state-of-the-art
methods, and reduces inference time by 63% and
memory consumption by 48.5%. Furthermore, ab-
lation studies validate the effectiveness of each IB-
MoE component. In future work, we will explore
applications in continual learning by capitalizing
on the knowledge specialization inherent in MoE.



8 Limitations

For the sparsity constraint, we simply set the com-
pression ratio 7 = 0.6 uniformly for all experts.
However, experts in different layers typically need
to perform varying levels of feature abstraction on
the inputs, which leads to unstable model perfor-
mance in complex tasks. A potential solution is to
design an adaptive compression strategy for each
expert, allowing dynamic adjustment of the num-
ber of activated neurons, or to vary the number of
experts across layers.
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