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ABSTRACT

Deep generative models (DGMs) aim at characterizing the distribution of the
training set by maximizing the marginal likelihood of inputs in an unsupervised
manner, making them a promising option for unsupervised out-of-distribution
(OOD) detection. However, recent works have reported that DGMs often assign
higher likelihoods to OOD data than in-distribution (ID) data, i.e., overestima-
tion, leading to their failures in OOD detection. Although several pioneer works
have tried to analyze this phenomenon, and some VAE-based methods have also
attempted to alleviate this issue by modifying their score functions for OOD detec-
tion, the root cause of the overestimation in VAE has never been revealed to our
best knowledge. To fill this gap, this paper provides a thorough theoretical analysis
on the overestimation issue of VAE, and reveals that this phenomenon arises from
two aspects: 1) the improper design of prior distribution; 2) the gap of dataset
entropy-mutual integration (sum of dataset entropy and mutual information gap
terms) between ID and OOD datasets. Based on these findings, we propose a novel
score function to Alleviate VAE’s Overestimation In unsupervised OOD Detection,
named “AVOID”, which contains two novel techniques, specifically post-hoc prior
and dataset entropy-mutual calibration. Experimental results verify our theoret-
ical analysis, demonstrating that the proposed method is effective in alleviating
overestimation and improving unsupervised OOD detection performance.

1 INTRODUCTION

The detection of out-of-distribution (OOD) data, i.e., identifying data that differ from the in-
distribution (ID) training set, is crucial for ensuring the reliability and safety of real-world applications
(Hendrycks & Gimpel, 2017; Goodfellow et al., 2015; Nguyen et al., 2015; Wei et al., 2022b). While
the most commonly used OOD detection methods rely on supervised classifiers (Alemi et al., 2018;
Liu et al., 2020; Wei et al., 2022a; Huang et al., 2022; Wei et al., 2022c; Yu et al., 2023; Galil et al.,
2023), which require labeled data, this paper focuses on designing an unsupervised OOD detector.
Unsupervised OOD detection refers to the task of designing a detector, based solely on the unlabeled
training data, that can determine whether an input is ID or OOD (Ren et al., 2019a; Serrà et al., 2020;
Xiao et al., 2020; Maaløe et al., 2019; Floto et al., 2023; Havtorn et al., 2021; Li et al., 2022). This
unsupervised approach is more practical for real-world scenarios where the data lack labels.

Deep generative models (DGMs) are a highly attractive option for unsupervised OOD detection.
DGMs, mainly including the auto-regressive model (van den Oord et al., 2016; Salimans et al.,
2017), flow model (Dinh et al., 2017; Kingma & Dhariwal, 2018), diffusion model (Ho et al., 2020),
generative adversarial network (Goodfellow et al., 2020), and variational autoencoder (VAE) (Kingma
& Welling, 2014), are designed to model the distribution of the training set by explicitly or implicitly
maximizing the likelihood estimation of p(x) for its input x without category label supervision or
additional OOD auxiliary data. They have achieved great success in a wide range of applications,
such as image and text generation. Since generative models are promising at modeling the distribution
of the training set, they could be seen as an ideal unsupervised OOD detector, where the likelihood of
the unseen OOD data output by the model should be lower than that of the in-distribution data.

Unfortunately, developing a flawless unsupervised OOD detector using DGMs is not as easy as it
seems to be. Recent experiments have revealed a paradoxical phenomenon that directly applying
the likelihood of generative models as an OOD detector can result in overestimation, i.e., DGMs
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assign higher likelihoods to OOD data than ID data (Ren et al., 2019a; Serrà et al., 2020; Havtorn
et al., 2021; Li et al., 2022). For instance, a generative model trained on the FashionMNIST
dataset could assign higher likelihoods to data samples from the MNIST dataset (OOD) than those
from the FashionMNIST dataset (ID), as shown in Figure 5(a). Since OOD detection can be
viewed as a verification of whether a generative model has learned to model the distribution of the
training set accurately, the counterfactual phenomenon of overestimation not only poses challenges to
unsupervised OOD detection but also raises doubts about the generative model’s fundamental ability
in modeling the data distribution. Therefore, it highlights the need for developing more effective
methods for unsupervised OOD detection and, more importantly, a more thorough understanding of
the reasons behind the overestimation in deep generative models.

To develop more effective methods for unsupervised OOD detection, some approaches modified
the likelihood to new score functions with empirical assumptions, such as likelihood-ratio methods
(Havtorn et al., 2021; Li et al., 2022) and ensemble approaches (Choi et al., 2018). While these
methods, particularly the VAE-based ones (Li et al., 2022), have achieved state-of-the-art (SOTA)
performance in unsupervised OOD detection, none of them provides a clear explanation for the
overestimation issue. To gain insight into the overestimation issue in DGMs, some works attribute
the overestimation to the typical set hypothesis, where ID and OOD data have overlapping supports
(Choi et al., 2018; Wang et al., 2020; Morningstar et al., 2021). However, Zhang et al. (2021) prove
that this hypothesis is not correct and appeal for more future works on analyzing the estimation
error of the DGMs. In contrast to the analysis for exact-marginal-likelihood DGMs like flow and
auto-regressive models (Nalisnick et al., 2019a; Kirichenko et al., 2020), VAE utilizes a variational
evidence lower bound (ELBO) of the likelihood, making it difficult to analyze. Overall, the reasons
behind the overestimation issue of VAE are still not fully understood, especially for a trained VAE in
practice without assuming the model distribution could exactly converge to the true data distribution.

In this paper, we try to address the research gap by providing a theoretical analysis of VAE’s
overestimation issue in unsupervised OOD detection and corresponding methods for alleviating it.
Our contributions can be summarized as follows:

1. Through theoretical analyses, we are the first to identify two factors that cause the overestima-
tion issue of VAE: 1) the improper design of prior distribution; 2) the intrinsic gap of dataset
entropy-mutual integration (sum of the dataset entropy and the mutual information gap terms
between the inputs and latent variables) between ID and OOD datasets;

2. Focused on these two discovered factors, we propose a new score function, named “AVOID”,
to alleviate the overestimation issue by ensembling two remedies for each factor: i) post-hoc
prior (PHP) for the improper design of prior distribution, i.e., replacing the Gaussian prior
p(z) with the approximated ID training set’s aggregated posterior distribution q̂id(z) in the
ELBO; ii) dataset entropy-mutual calibration (DEC) for the second factor, which employs a
data compression method to calibrate the gap of entropy-mutual integration between ID and
OOD datasets and designs a regularized scale to balance the weight of PHP method;

3. Extensive experiments, including the commonly acknowledged “harder” tasks, demonstrate
our method’s theoretically guaranteed effectiveness in improving the performance of VAE-
based methods on unsupervised OOD detection.

2 PRELIMINARIES

2.1 UNSUPERVISED OUT-OF-DISTRIBUTION DETECTION

Problem statement. While deploying a machine learning system, it is possible to encounter inputs
from unknown distributions that are semantically (e.g., category) and/or statistically (e.g., data
complexity) different from the training data, and such inputs are referred to as OOD data (Choi
et al., 2018; Serrà et al., 2020). Processing OOD data could potentially introduce critical errors that
compromise the safety of the system (Hendrycks & Gimpel, 2017). Thus, the OOD detection task is
to identify these OOD data, which could be seen as a binary classification task: determining whether
an input x is more likely ID or OOD. An ID-OOD classifier D(x) could be formalized as a level-set
estimation:

D(x) =

{
ID, if S(x) > λ,

OOD, if S(x) ≤ λ,
(1)
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where S(x) denotes the score function, i.e., OOD detector, and the threshold λ is commonly chosen
to make a high fraction (e.g., 95%) of ID data correctly classified (Wei et al., 2022c). In conclusion,
OOD detection aims at designing the S(x) that could assign higher scores to ID data than OOD data.

Setup. Denoting the input space with X , an unlabeled training dataset Dtrain = {xi}Ni=1 containing
of N data points can be obtained by sampling i.i.d. from a data distribution PX . Typically, we treat
the PX as pid, which represents the in-distribution (ID) (Havtorn et al., 2021; Nalisnick et al., 2019a).
With this unlabeled training set, unsupervised OOD detection is to design a score function S(x) that
can determine whether an input is ID or OOD. This is different from supervised OOD detection,
which typically leverages a classifier that is trained on labeled data and primarily focuses on semantic
difference (Wei et al., 2022a;b;c). We provide a detailed discussion in Appendix A.

2.2 VAE-BASED UNSUPERVISED OOD DETECTION

Among DGMs, VAE can offer great flexibility and strong representation ability (Xiao et al., 2022),
leading to a series of unsupervised OOD detection methods based on VAE that have achieved
SOTA performance (Havtorn et al., 2021; Li et al., 2022). Specifically, VAE estimates the marginal
likelihood by training with the variational evidence lower bound (ELBO), i.e.,

ELBO(x) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (2)

where posterior qϕ(z|x) is modeled by an encoder, decoder distribution pθ(x|z) is modeled by a
decoder, and prior p(z) is set as a Gaussian distribution N (0, I). After training, ELBO(x) is an
estimation of true data distribution p(x) that could be seen as S(x) to do OOD detection. However,
it would suffer from the overestimation issue. More Related Work, especially a comprehensive
literature about analyzing DGMs’ failure in OOD detection, can be seen in Appendix B.

3 ANALYSIS OF VAE’S overestimation IN UNSUPERVISED OOD DETECTION

We will first conduct an analysis to identify the factors contributing to VAE’s overestimation, i.e., the
improper design of prior distribution and the gap of dataset entropy-mutual integration.

3.1 IDENTIFYING FACTORS OF VAE’S Overestimation ISSUE

Following the common analysis procedure (Nalisnick et al., 2019a), an ideal score function S(x) that
could achieve well-behaved OOD detection performance with VAEs is expected to have the following
property for any OOD dataset:

G = Ex∼pid(x)[S(x)]− Ex∼pood(x)[S(x)] > 0, (3)

where pid(x) and pood(x) denote the true distribution of the ID and OOD dataset, respectively. A
larger gap between these two expectation terms can usually lead to better OOD detection performance.

Using the ELBO(x) as the score function S(x), we could give a formal definition of the repeatedly
reported VAE’s overestimation issue in the context of unsupervised OOD detection (Choi et al., 2018;
Havtorn et al., 2021; Li et al., 2022).

Definition 1 (VAE’s overestimation in unsupervised OOD Detection). Assume we have a VAE
trained on a training set and we use the ELBO(x) as the score function to distinguish data points
sampled i.i.d. from the in-distribution testing set pid(x) and an OOD dataset pood(x). When

G = Ex∼pid(x)[ELBO(x)]− Ex∼pood(x)[ELBO(x)] ≤ 0, (4)

which is called VAE’s overestimation in unsupervised OOD detection.

With a clear set-level definition of overestimation (a discussion on the instance-level definition could
be seen in Appendix K.8), we could now investigate the underlying factors causing the overestimation
in VAE. After training a VAE, we could reformulate the expectation terms of Ex∼p(x)[ELBO(x)]
from the perspective of information theory (Cover, 1999), i.e.,

Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)] = Ep(x)qϕ(z|x)[log
pθ(z|x)
p(z)

p(x)] = Îq,p(x, z)−Hp(x),

Ex∼p(x)[DKL(qϕ(z|x)||p(z))] = Ep(x)qϕ(z|x)[log
qϕ(z|x)
q(z)

q(z)

p(z)
] = Îq(x, z) +DKL(q(z)||p(z)),
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where q(z) = Ex∼p(x)qϕ(z|x) denotes the aggregated posterior distribution of the latent variables
z, and Îq,p(x, z) and Îq(x, z) is defined as

Îq,p(x, z) = −Ĥq,p(z|x) + Ĥq,p(z) = Ep(x)qϕ(z|x)[log pθ(z|x)]− Eq(z)[log p(z)], (5)

Îq(x, z) = −Ĥq(z|x) + Ĥq(z) = Ep(x)qϕ(z|x)[log qϕ(z|x)]− Eq(z)[log q(z)], (6)

Therefore, the expectation of the ELBO(x) on the data distribution p(x) could be rewritten as

Ex∼p(x)[ELBO(x)] = Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]− Ex∼p(x)[DKL(qϕ(z|x)||p(z))] (7)

= −DKL(q(z)||p(z))− [Hp(x)+ Îq(x, z)− Îq,p(x, z)] = −DKL(q(z)||p(z))−Ent-Mut(θ, ϕ, p),

where we term the dataset entropy-mutual integration as Ent-Mut(θ, ϕ, p), which is a constant that is
only related to the data distribution and the model parameters, and its value would not be changed
with our proposed methods. Thus, the gap G in Eq. 4 could be rewritten as

G = [−DKL(qid(z)||p(z)) +DKL(qood(z)||p(z))]− [Ent-Mut(θ, ϕ, pid)− Ent-Mut(θ, ϕ, pood)], (8)

where the prior p(z) is typically set as a standard (multivariate) Gaussian distribution N (0, I) to
enable reparameterization for efficient gradient descent optimization (Kingma & Welling, 2014).
Please kindly note that this work focuses on developing a general post-hoc method that could be
directly applied to alleviate the VAE’s overestimation regardless of its model architecture or training
scheme, so we do not develop methods to change the value of the Ent-Mut(θ, ϕ, p) term in this paper.
We leave the detailed definition and derivation in Appendix C.1.

Through analyzing the most widely used criterion, specifically the expectation of ELBO reformulated
in Eq. 8, for VAE-based unsupervised OOD detection, we find that there will be two potential factors
that lead to the overestimation issue of VAE, i.e., G ≤ 0:

Factor I: The improper design of prior distribution p(z). Several studies have also argued that the
aggregated posterior distribution of latent variables q(z) cannot always equal N (0, I), particularly
when the dataset exhibits intrinsic multimodality (Xiao et al., 2022; Rosca et al., 2018; Sohl-Dickstein
et al., 2015; Feller, 2015). Thus, the value of DKL(qid(z)||p(z)) could be overestimated, potentially
contributing to G ≤ 0. Please note that our analysis is applicable to all trained VAEs in practice
because we do not assume that the ELBO(x), a lower bound of the model distribution pθ(x), can
converge exactly to the true one p(x). Even if it is possible in theory, the observations in (Dai &
Wipf, 2019; Dai et al., 2021) will prevent this from happening in practice.

Factor II: The gap of dataset entropy-mutual integration Ent-Mut(θ, ϕ, p) between ID and OOD
datasets . Considering the dataset’s statistics, such as the variance of pixel values, different datasets
exhibit various levels of entropy. As an example, the FashionMNIST dataset should possess higher
entropy compared to the MNIST dataset. Therefore, when the entropy of an observed ID dataset is
too high, the value of −Hpid(x) +Hpood(x) could be small, potentially leading to overestimation.
The mutual information term Îq,p(x, z)− Îq(x, z) measures the optimality of the parameters θ and
ϕ on data distribution p and it could also cause overestimation for OOD detection since the trained
VAEs in practice are always not optimal (Dai & Wipf, 2019; Dai et al., 2021).

3.2 FURTHER ANALYSIS ON FACTOR I
Since factor I can be counter-intuitive and challenging to comprehend, we provide a further analysis.

When the design of prior is proper? Assuming a dataset {xi}Ni=1 sampled i.i.d. from p(x) =
N (x|0,Σx) as shown in Figure 1(a), and we construct a linear VAE to estimate p(x), formulated as:

p(z) = N (z|0, I), qϕ(z|x) = N (z|Ax+B,C), pθ(x|z) = N (x|Ez + F, σ2I), (9)

where all learnable parameters’ optimal values can be obtained by the derivation in Appendix C.3.
As depicted in Figure 1(c), we find that the linear VAE can accurately estimate the p(x). Figures 1(b)
and 1(d) indicate that the design of the prior distribution is proper, where q(z) equals p(z).
When the design of prior is NOT proper? Consider a more complex data distribution, e.g., a
mixture of Gaussians as shown in Figure 1(e) (More details are in Appendix C.2), we could also get
the optimal parameters of the same linear VAE in Eq. 9. After the derivation in Appendix C.4, Figure
1(f) illustrates that q(z) is a multi-modal distribution instead of p(z) = N (z|0, I), i.e., the design of
the prior is not proper, which leads to overestimation as seen in Figure 1(g). However, as analyzed in
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Figure 1: (a-d): Visualization of modeling a single-modal data distribution with a linear VAE; (e-h):
Visualization of modeling a multi-modal data distribution with a linear VAE.

Factor I, we find that the overestimation issue is mitigated when replacing p(z) in the KL term of the
ELBO with q(z), which is shown in Figure 1(h).

More empirical studies on non-linear VAEs for the improper design of prior. For more practical
cases, we use non-linear deep VAEs to model qϕ(z|x) and pθ(x|z) with p(z) = N (0, I) on the
same multi-modal dataset in Figure 1(e) and image datasets. Implementation details are in C.5.
For the low-dimensional multi-modal dataset, we observed that q(z) still differs from p(z), as
shown in Figure 2(a). The ELBO still suffers from overestimation, especially in the region near
(0, 0), as shown in Figure 2(b). For the image datasets, please note that, if qid(z) is closer to
p(z) = N (0, I), zid ∼ qid(z) should occupy the center of latent space N (0, I) and zood ∼ qood(z)
should be pushed far from the center, leading to p(zid) to be larger than p(zood). Surprisingly, we find
this expected phenomenon does not exist, as shown in Figure 2(c) and 2(d), where the experiments
are on two dataset pairs, Fashion-MNIST(ID)/MNIST(OOD) and CIFAR-10(ID)/SVHN(OOD). This
still suggests that the prior p(z) is improper, even qood(z) for OOD data may be closer to p(z) than
qid(z).
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Figure 2: (a) and (b): visualization of qid(z) and estimated pθ(x) by ELBO on the multi-modal
data distribution with a non-linear deep VAE; (c) and (d): the density plot of the log-probability of
posterior z sampled from qid/ood(z) in prior N (0, I) on two dataset pairs.

Brief summary. Through analyzing overestimation scenarios from simple to complex, the answer
to the beginning question of this part could be: the prior distribution p(z) = N (0, I) may be an
improper choice for VAE when modeling a complex data distribution p(x), leading to an overestimated
DKL(qid(z)||p(z)) and further raising the overestimation issue in unsupervised OOD detection.

4 ALLEVIATING VAE’S overestimation IN UNSUPERVISED OOD DETECTION

In this section, we develop a new score function for OOD detection, named “AVOID” and denoted as
SAVOID(x), to alleviate the influence of two aforementioned factors in Section 3, combined up with
two parts: i) post-hoc prior (PHP) and ii) dataset entropy-mutual calibration (DEC). Specifically, the
expression of SAVOID(x) is:

SAVOID(x) := Eqϕ(z|x) [log pθ(x|z)]−DKL[qϕ(z|x)||q̂id(z)] + C(x), (10)
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where the PHP method is replacing the Gaussian prior p(z) with the estimated aggregated posterior
distribution q̂id(z), which is the approximation of qid(z) = Ex∼pid(x)qϕ(z|x), in the original KL-
term DKL[qϕ(z|x)||p(z)], i.e.,

PHP(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||q̂id(z)); (11)

and the DEC method is defined by introducing the additional C(x) term:

DEC(x) := Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||p(z)) + C(x). (12)

Both aforementioned PHP and DEC could be independent OOD detection methods targeted on
different factors and combining them up could achieve the final OOD detection method “AVOID”. In
the following two parts, we will conduct a detailed analysis of the motivation of each part for why
they could help alleviate the overestimation and both of them are implemented in a simple way to
inspire related future work and can be further investigated for improvement.

4.1 POST-HOC PRIOR METHOD FOR FACTOR I

FashionMNIST test (ID)
MNIST test (OOD)
Prior z (0, I)

Figure 3: The t-SNE visualization of
latent representations on FashionM-
NIST(ID)/MNIST(OOD) dataset pair.

To provide a more insightful view to investigate the rela-
tionship between qid(z), qood(z), and p(z), we use t-SNE
(Van der Maaten & Hinton, 2008) to visualize them in Figure
3. As the dark-blue points (latent representations of Fashion-
MNIST) are much more distinguishable from the red points
(MNIST) than the light-blue points (latent z sampled from
N (0, I)) from the red points, this indicates that p(z) can-
not distinguish between the latent variables sampled from
qid(z) and qood(z), while qid(z) is clearly distinguishable
from qood(z). Therefore, to alleviate overestimation, we can
explicitly modify the prior distribution p(z) in Eq. 8 to force
it to be closer to qid(z) and far from qood(z), i.e., decreasing
DKL(qid(z)||p(z)) and increasing DKL(qood(z)||p(z)).
A straightforward modifying approach is to replace p(z) in the KL-term of ELBO with an additional
distribution q̂id(z) that can fit qid(z) well after training the VAE, where the target value of qid(z)
can be acquired by marginalizing qϕ(z|x) over the training set, i.e., qid(z) = Ex∼pid(x)[qϕ(z|x)].
Previous study on distribution matching (Rosca et al., 2018) has developed an LSTM-based method
to efficiently fit qid(z) in the latent space, i.e.,

q̂id(z) =

T∏
t=1

q(zt|z<t), where q(zt|z<t) = N (µi, σ
2
i ). (13)

Thus, we could propose the post-hoc prior (PHP) method defined in Eq. 11 for Factor I and its
expectation on a data distribution is

Ex∼p(x)[PHP(x)] = −DKL[q(z)||q̂id(z)]− Ent-Mut(θ, ϕ, p), (14)

which could lead to better OOD detection performance since it could enlarge the gap G, i.e.,

GPHP = [−DKL(qid(z)||q̂id(z) +DKL(qood(z)||q̂id(z))]− [Ent-Mut(θ, ϕ, pid)− Ent-Mut(θ, ϕ, pood)].

4.2 DATASET ENTROPY-MUTUAL CALIBRATION METHOD FOR FACTOR II
While the term of dataset entropy-mutual integration is a constant that remains unaffected when the
model parameters are fixed after training, it is still an essential factor that could lead to overestimation.
To address this, a straightforward approach is to design a calibration method that ensures the value
added to the ELBO of ID data will be larger than that of OOD data, expressed as

Property 1: Ex∼pid(x)[C(x)] > Ex∼pood(x)[C(x)]. (15)

Additionally, since this method needs to be incorporated with the PHP method to form the final
AVOID method in Eq. 10, there should be a “weight” balance between the DEC and PHP methods.
An ideal choice is to set a “weight” that could remove the influence of Ent-Mut(θ, ϕ, pid) on the
effectiveness of the PHP method, which could be achieved by regularizing the scale of the expectation
of the DEC method on the ID training set, denoted as Cscale

id , to have the following property:

Property 2: Cscale
id = Ex∼pid(x)[C(x)] = Ent-Mut(θ, ϕ, pid) > 0. (16)
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With the property 2, the expectation of DEC(x) on the ID data becomes
Ex∼pid(x)[DEC(x)] = Ex∼pid(x)[ELBO(x)] + Cscale = −DKL(qid(z)||p(z)). (17)

Thus, DEC is totally focused on factor 2 and would not affect the PHP method’s effectiveness, which
also guarantees the AVOID method could always be better than both the PHP and DEC methods.

With the properties 1 and 2 of the DEC method, we could find that the new gap GDEC becomes larger
than the original gap G based solely on ELBO, as

GDEC = G + Ex∼pid(x)[C(x)]− Ex∼pood(x)[C(x)] > G, (18)
which should alleviate the overestimation and lead to better unsupervised OOD detection performance.
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Figure 4: Visualization of the relation-
ship between the number of singular val-
ues and the reconstruction error.

How to design the calibration C(x)? Since the PHP
method is mainly focused on the semantic difference be-
tween ID and OOD data, we hope the DEC method could
be targeted at the statistical difference. Inspired by the
previous work (Serrà et al., 2020), we could use data com-
pression methods like SVD (Stewart, 1993) to roughly
measure the complexity of a data example, where the data
examples from the same dataset should have similar com-
plexity. An intuitive insight into this could be shown in
Figure 4, where the ID dataset’s statistical feature, i.e.,
the curve, is distinguishable to other datasets. Based on
this empirical study, we could first propose a non-scaled
calibration function, denoted as Cnon(x), to achieve the
Property 1. First, we could set the number of singular
values as nid, which can achieve the reconstruction error
|xrecon − x| = ϵ in the ID training set; then for a test input xi, we use SVD to calculate the smallest
ni that could also achieve a smaller reconstruction error ϵ, then Cnon(x) could be formulated as:

Cnon(x) =

{
(ni/nid), if ni < nid,

(nid − (ni − nid))/nid, if ni ≥ nid,
(19)

which can give the ID dataset a higher expectation Ex∼pid(x)[Cnon(x)] than that of other statistically
different OOD datasets. More details to obtain Cnon(x) can be found in Algorithm 1 of Appendix D.

Then, we need to get the scale Cscale
id for achieving the Property 2, which could be approximated by the

PHP method, i.e., Cscale
id = −Ex∼pid(x)[PHP(x)], as q̂id(x) approaches qid(z) after post-hoc fitting:

Cscale
id = Ent-Mut(θ, ϕ, pid) +DKL[qid(z)||q̂id(z)] ≈ Ent-Mut(θ, ϕ, pid). (20)

Thus, by introducing a constant c = Cscale
id /Ex∼pid

[Cnon(x)], we could implement the final scaled
calibration function, formulated as

C(x) = Cnon(x) · c =
{
(ni/nid) · c, if ni < nid,

[(nid − (ni − nid))/nid] · c, if ni ≥ nid.
(21)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. Our experiments primarily encompass two comparison aspects: i) evaluating our novel
score function “AVOID” against previous unsupervised OOD detection methods to determine whether
it can achieve competitive performance; and ii) comparing “AVOID” with VAE’s ELBO to assess
whether our method can mitigate overestimation and yield improved performance. For comparisons
in i, we can categorize the baselines into three groups, as outlined in (Li et al., 2022): “Supervised”
includes supervised OOD detection methods that utilize in-distribution data labels; “Auxiliary”
refers to methods that employ auxiliary knowledge gathered from OOD data; and “Unsupervised”
encompasses methods without reliance on labels or OOD-specific assumptions. For comparisons in
ii, we compare our method with a standard VAE (Kingma & Welling, 2014), denoted as “ELBO”,
which also serves as the foundation our methods. Further details regarding these baselines and their
respective categories can be found in Appendix E.3.

Due to the page limitation, we leave the detailed descriptions of the Datasets in Appendix E.1,
Evaluation Metrics in Appendix E.2, and Implementation details in Appendix E.4.
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Table 1: The comparisons of our method and other OOD detection methods. The best results achieved
by the methods of the category “Not ensembles” of “Unsupervised” have been bold. We leave the
citation and detailed description for each method’s abbreviation in Appendix E.3.

FashinMNIST(ID)/MNIST(OOD) CIFAR-10(ID)/SVHN(OOD)
Supervised Auxiliary Unsupervised Supervised Auxiliary Unsupervised

Method AUROC↑ Mehod AUROC↑ Method AUROC↑ Method AUROC↑ Mehod AUROC↑ Method AUROC↑
CP 73.4 LR(PC) 99.4 -Ensembles MD 99.7 LR(PC) 93.0 -Ensembles
CP(Ent) 74.6 LR(BC) 45.5 WAIC(5VAE) 76.6 LMD 27.9 LR(VAE) 26.5 WAIC(5Glow) 99.0
ODIN 75.2 CP(OOD) 87.7 WAIC(5PC) 22.1 EN 99.4 OE 98.4 WAIC(5PC) 62.8
VIB 94.1 CP(Cal) 90.4 -Not Ensembles iDE 95.7 IC(Glow) 95.0 -Not Ensembles
MD(CNN) 94.2 IC(Glow) 99.8 LRe 98.8 LN 98.4 IC(HVAE) 83.3 LRe 87.5
MD(DN) 98.6 IC(PC++) 96.7 HVK 98.4 ODIN 82.9 WOODS 99.9 HVK 89.1
DE 85.7 LLRada 98.0 GN 76.7 DCM 99.8 LLRada 94.2

AVOID(ours) 99.2 AVOID(ours) 94.5

Table 2: The comparisons of our method with post-hoc prior (denoted as “PHP”) or dataset entropy-
mutual calibration (denoted as “DEC”) individually and other unsupervised OOD detection methods.
“PHP+DEC" is equal to our method “AVOID". Bold numbers are superior results.

FashinMNIST(ID)/MNIST(OOD) CIFAR-10(ID)/SVHN(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
ELBO (Kingma & Welling, 2014) 23.5 ±0.82 35.6 ±0.85 98.5 ±0.38 ELBO (Kingma & Welling, 2014) 24.9 ±1.41 36.7 ±1.52 94.6 ±0.96
WAIC(5VAE) (Choi et al., 2018) 76.6 ±0.83 78.1 ±0.85 51.1 ±0.80 WAIC(5VAE) (Choi et al., 2018) 71.9 ±0.95 73.2 ±1.02 49.1 ±0.89
HVK (Havtorn et al., 2021) 98.4 ±0.79 98.4 ±0.73 1.3 ±0.04 HVK (Havtorn et al., 2021) 89.1 ±2.32 87.5 ±2.96 17.2 ±2.00
LLRada(Li et al., 2022) 97.0 ±0.58 97.6 ±0.72 0.9 ±0.03 LLRada(Li et al., 2022) 92.6 ±0.41 91.8 ±0.54 11.1 ±0.27
-Ours: -Ours:
PHP 89.7 ±0.54 90.3 ±0.50 13.3 ±0.24 PHP 39.6 ±1.37 42.6 ±1.53 85.7 ±0.69
DEC 34.1 ±0.00 40.7 ±0.00 92.5 ±0.00 DEC 87.8 ±0.00 89.9 ±0.00 17.8 ±0.00
PHP+DEC 99.2 ±0.51 99.4 ±0.60 0.00 ±0.00 PHP+DEC 94.5 ±1.44 95.3 ±1.48 4.24 ±0.36

5.2 COMPARISON WITH UNSUPERVISED OOD DETECTION BASELINES

First, we compare our method with other SOTA baselines in Table 1. The results demonstrate that our
method achieves competitive performance compared to “Supervised” and “Auxiliary” methods and
outperforms “Unsupervised” OOD detection methods. Next, we provide a more detailed comparison
with some unsupervised methods, particularly the ELBO of VAE, as shown in Table 2. More results
on VAEs trained on CelebA (ID) and vertical flip data detection experiments are shown in Table
5, 6, and 7 of Appendix F. Lastly, to assess our method’s generalization capabilities, we test it on
a broader range of datasets in Table 3. Experimental results, especially for “harder” dataset pairs
as introduced in Appendix E.1, strongly verify our analysis of the VAE’s overestimation issue and
demonstrate that our method consistently mitigates overestimation on a wide range of OOD datasets.

5.3 ABLATION STUDY ON VERIFYING THE POST-HOC PRIOR METHOD

To evaluate the effectiveness of the Post-hoc Prior (PHP), we compare it with other unsupervised
methods in Table 2. Moreover, we test the PHP method on additional datasets and present the results
in Table 8 of Appendix G. The experimental results demonstrate that the PHP method can alleviate
the overestimation. To provide a better understanding, we also visualize the density plot of ELBO and
PHP for the “FashionMNIST(ID)/MNIST(OOD)” dataset pair in Figures 5(a) and 5(b), respectively.

The Log-likelihood Ratio (LLR) methods (Havtorn et al., 2021; Li et al., 2022) are the current
SOTA unsupervised OOD detection methods that also focus on latent variables. These methods are
based on an empirical assumption that the bottom layer latent variables of a hierarchical VAE could
learn low-level features and top layers learn semantic features. However, we discovered that while
ELBO could already perform well in detecting some OOD data, the LLR method (Li et al., 2022)
could negatively impact OOD detection performance to some extent, as demonstrated in Figure 5(c),
where the model is trained on MNIST and detects FashionMNIST as OOD. On the other hand, our
method can still maintain comparable performance since the PHP method can explicitly alleviate
overestimation, which is one of the strengths of our method compared to the SOTA methods.

5.4 ABLATION STUDY ON VERIFYING DATASET ENTROPY-MUTUAL CALIBRATION METHOD

We evaluate the performance of dataset entropy-mutual calibration (DEC) method in Table 2 and
Table 9 of Appendix H. Although the DEC method is simple, our results show that it effectively
alleviates overestimation. To better understand DEC, we visualize the calculated C(x) of CIFAR-10
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Table 3: The comparisons of our method “AVOID” and baseline “ELBO” on more datasets. Bold
numbers are superior performance.

ID FashionMNIST ID CIFAR-10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / AVOID (ours) ELBO / AVOID (ours)
KMNIST 60.03 / 78.71 54.60 / 68.91 61.6 / 48.4 CelebA 57.27 / 71.23 54.51 / 72.13 69.03 / 54.45
Omniglot 99.86 / 100.0 99.89 / 100.0 0.00 / 0.00 SUN 53.14 / 63.09 54.48 / 63.32 79.52 / 68.63

notMNIST 94.12 / 97.72 94.09 / 97.70 8.29 / 2.20 Places365 57.24 / 68.37 56.96 / 69.05 73.13 / 62.64
CIFAR-10-G 98.01 / 99.01 98.24 / 99.04 1.20 / 0.40 LFWPeople 64.15 / 67.72 59.71 / 68.81 59.44 / 54.45
CIFAR-100-G 98.49 / 98.59 97.49 / 97.87 1.00 / 1.00 CIFAR-100 52.91 / 55.36 51.15 / 72.13 77.42 / 73.93

SVHN-G 95.61 / 96.20 96.20 / 97.41 3.00 / 0.40 Texture 37.86 / 81.82 40.93 / 62.42 82.22 / 64.34
CelebA-G 97.33 / 97.87 94.71 / 95.82 3.00 / 0.40 Flowers102 67.68 / 76.83 64.68 / 78.01 57.94 / 46.65

SUN-G 99.16 / 99.32 99.39 / 99.47 0.00 / 0.00 GTSRB 39.50 / 53.06 41.73 / 49.84 86.61 / 73.63
Const 94.94 / 95.20 97.27 / 97.32 1.80 / 1.70 Const 0.001 / 80.12 30.71 / 89.42 100.0 / 22.38

Random 99.80 / 100.0 99.90 / 100.0 0.00 / 0.00 Random 71.81 / 99.31 82.89 / 99.59 85.71 / 0.000
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Figure 5: Density plots and ROC curves. (a): directly using ELBO(x), an estimation of the p(x),
of a VAE trained on FashionMNIST leads to overestimation in detecting MNIST as OOD data; (b):
using PHP method could alleviate the overestimation; (c): SOTA method LLR hurts the performance
when ELBO could already work well; (d): PHP method would not hurt the performance.

(ID) in Figure 6(a) and other OOD datasets in Figure 6(b) when nid = 20. Our results show that the
C(x) of CIFAR-10 (ID) achieves generally higher values than that of other datasets, which is the
underlying reason for its effectiveness in alleviating overestimation. Additionally, we investigate the
impact of different nid on OOD detection performance in Figure 6(c), where our results show that the
performance of dataset entropy-mutual calibration is consistently better than ELBO.
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Figure 6: (a) and (b) are respectively the visualizations of the calculated entropy-mutual calibration
C(x) of CIFAR-10 (ID) and other OOD datasets, where the C(x) of CIFAR-10 (ID) could achieve
generally higher values. (c) is the OOD detection performance of dataset entropy-mutual calibration
with different nid settings, which consistently outperforms ELBO.

6 CONCLUSION

Limitations could be the the simplicity of the developed methods that may under-explore the full
capabilities of VAEs on unsupervised OOD detection and the introduced extra computation burden.

In conclusion, this work highlights the underlying factors that lead to VAE’s overestimation in
unsupervised OOD detection and develops a novel score function called “AVOID”, which is effective
in alleviating overestimation and improving unsupervised OOD detection. This work may lead
a research stream for improving unsupervised OOD detection by developing more efficient and
sophisticated methods aimed at optimizing these revealed factors.
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APPENDIX

A MORE BACKGROUND ON OOD DETECTION

To provide a clear distinction and avoid confusion between supervised and unsupervised OOD
detection, we delineate the key differences here, primarily focusing on their respective setups.

Setup of unsupervised OOD detection. Denoting the input space with X , an unlabeled training
dataset Dtrain = {xi}Ni=1 containing of N data points can be obtained by sampling i.i.d. from a data
distribution PX . Typically, we treat the PX as pid, which represents the in-distribution (ID) (Havtorn
et al., 2021; Nalisnick et al., 2019a). With this unlabeled training set, unsupervised OOD detection is
to design a score function S(x) that can determine whether an input is ID or OOD.

Setup of supervised OOD detection. Compared with the setup of unsupervised OOD detection,
supervised one needs to additionally introduce a label space Y = {1, ..., k} with k classes, and the
training set becomes Dtrain = {(xi,yi)}Ni=1. Then, it typically needs to train a classifier f : X → Rk,
and OOD detection can be achieved based on the property of the classifier (Wei et al., 2022b;a;c).

We illustrate the distinction between supervised and unsupervised OOD detection in Figure 7.
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Figure 7: An illustration showcasing the difference between supervised and unsupervised OOD
detection.

We also present a discussion here about the methods that people use for mitigating the overconfidence
issue in the supervised case (especially the classifier-based methods), which could be divided into
two categories, and draw parallels between the unsupervised and supervised cases:

1. Designing a score function based on the properties of a trained classifier, such as maximum
softmax probability (Hendrycks & Gimpel, 2017), Mahalanobis distance-based score (Lee
et al., 2018), energy-based score (Morteza & Li, 2022), and GradNorm score Huang et al.
(2021). These methods operate on the premise that the statistical characteristics exhibited
by the classifier when presented with an in-distribution (ID) data example are distinct from
those observed when handling an out-of-distribution (OOD) data example. For unsupervised
case, without the label to train a classifier, it is similar to designing a score function based
on a trained deep generative model (DGM), such as HVK (Havtorn et al., 2021) that exploit
the relationship between the posterior and prior latent distribution existed in a trained VAE
to do OOD detection. More methods can be seen in Appendix B.3. Our method also focuses
on a trained VAE, which has the advantage of "plug-and-play" and could be compatible with
the existing VAEs;
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2. Introducing regularization techniques during the classifier’s training phase, such as adding a
fix to the cross-entropy loss (Wei et al., 2022c), encouraging the classifier to give predictions
with uniform distribution for OOD data (Hendrycks et al., 2019), and shaping the log-
likelihood by energy-based regularizer (Katz-Samuels et al., 2022). After training with the
regularizer, the classifier exhibits differing statistics between ID and OOD data. There are
also some similar works that modify the training objective of the DGM in unsupervised
cases, e.g., the (Li et al., 2022) adds a partial generation term into the ELBO during training
a VAE that could explicitly enhance the semantic information’s quality in the latent variables
that could be helpful for OOD detection. More related works could be seen in Appendix B.3.
However, these methods avoid analyzing the root cause of the original DGMs’ overestimation
issue.

B RELATED WORK

B.1 DEEP GENERATIVE MODELS

Deep Generative Models (DGMs) have been developed with the aim of modeling the true data
distribution p(x), leveraging deep neural networks to learn a generative process (Goodfellow et al.,
2016). These models span several types, mainly including the autoregressive model (van den Oord
et al., 2016; Salimans et al., 2017), flow model (Dinh et al., 2017; Kingma & Dhariwal, 2018),
generative adversarial network (Goodfellow et al., 2020), diffusion model (Ho et al., 2020), and
variational autoencoder (VAE) (Kingma & Welling, 2014). Below, we briefly introduce each of these
models: The autoregressive model operates under the premise that a data sample x is a sequential
series, implying that the value of a pixel in an image is only dependent on the pixels preceding it.
The flow model comes with an inherent requirement for the invertibility of the projection between x
and z, which imposes constraints on the implementation of its backbone. The generative adversarial
network adopts an additional discriminator to implicitly learn the data distribution. Despite its power,
it faces challenges such as unstable training and mode collapse (Xiao et al., 2022). The diffusion
model, trained using a score-based method, has the drawback of being slow in sampling due to its
multiple stochastic layers. Among these models, VAE stands out for its flexibility in implementation,
comprehensive mode coverage, and fast sampling (Xiao et al., 2022). However, its training objective,
an evidence lower bound of the data distribution, presents difficulties for analysis.

B.2 ANALYSIS FOR DGMS’ FAILURE IN OOD DETECTION

Some works attribute the overestimation to the typical set hypothesis, where ID and OOD data have
overlapping supports (Nalisnick et al., 2019b; Choi et al., 2018; Wang et al., 2020; Morningstar et al.,
2021). However, Zhang et al. (2021) prove that this hypothesis is not correct and appeal for more
future works on analyzing the estimation error of the DGMs. Osada et al. (2023) also present the
failure case of the typicality-based approach and use typicality as penality instead for improving
the OOD detection performance of normalizing flow. Zhang et al. (2023) propose a perspective
from the Kullback-Leibler divergence and the representation in the flow model to improve the OOD
detection performance. Nalisnick et al. (2019a) find the overestimation issue could arise from the
intrinsic model curvature brought by the invertible architecture in flow models. Kirichenko et al.
(2020) claim that normalizing flows learns latent representations based on local pixel correlations
and not in-distribution data’s specific semantic content, which leads to overestimation. Serrà et al.
(2020) empirically find that the image complexity could be a reason for the overestimation of flow
and auto-regressive models, but this finding is not available in cases where the ID and OOD data
share similar image complexity. Ren et al. (2019a) find that the background pixels could dominate
the likelihood estimation of the flow and auto-regressive models, where the background is simulated
by adding random noise to the original paper. Following this work, Cai & Li (2023) focus on the
image data and find the high-frequency information in an image could cause the overestimation.
Similar to this, Chauhan et al. (2022) claim the image intensity or contrast can empirically bias
the VAE’s likelihood. Le Lan & Dinh (2021) mentioned that the failure is due to the curse of
dimensionality that makes the Gaussian Annulus theorem (Blum et al., 2020) fail. To cope with the
curse of dimensionality, Jiang et al. (2022) propose a random projection method for flow models
and Razavi et al. (2023) propose measuring the distance in a low-dimensional manifold to improve
OOD detection performance of flow models. Schirrmeister et al. (2020) provide analysis for the deep
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invertible networks through hierarchies of distributions and features. Caterini & Loaiza-Ganem break
down the expectation of the likelihood into two terms: a KL term indicating the distance between the
estimated data distribution and the true data distribution and an entropy term of the data distribution
for analyzing the failure of DGMs in OOD detection. However, our analysis provides further insight
into the expectation of the ELBO (a lower bound of the likelihood) directly instead of the likelihood.
Loaiza-Ganem et al. (2022) analyze the failure of DGMs as a manifold overfitting issue and appeals
for projecting the high-dimension input data to a lower-dimension representation first and then fitting
the lower-dimension representation, instead of fitting the likelihood in the high-dimension space
directly. It could be directly related to our PHP method but the DEC method is still needed to further
alleviate the overestimation issue.

However, most of these analyses are for exact likelihood models like flow and auto-regressive models,
whose training objective is the exact marginal likelihood estimation of the in-distribution data, and
none of them provide a theoretical and comprehensive analysis for the VAEs, where VAEs’ training
objective is a lower bound of the marginal likelihood bringing extra difficulties for analysis.

B.3 VAE-BASED UNSUPERVISED OOD DETECTION

Given the advantages of flexibility, comprehensive mode coverage, and fast sampling capabilities,
variational autoencoder (VAE)-based methods have emerged as a promising choice for unsupervised
out-of-distribution (OOD) detection. Based on the necessity to modify the training of VAE, these
methods can be categorized into two groups. i) The first group includes methods that modify
the training of VAE. Hierarchical VAE expands the VAE’s layers to augment its representational
capacity (Maaløe et al., 2019), yet the improvements in performance are marginal, and the issue of
overestimation persists. The adaptive log-likelihood ratio method, LLRada, is also grounded in the
hierarchical VAE and introduces a generative skip connection to propagate information to higher
layers of latent variables (Li et al., 2022). It utilizes the differences between each layer of latent
variables for OOD detection, achieving state-of-the-art performance despite certain shortcomings as
discussed in section 5.3. The tilted variational autoencoder enforces the latent variable to exist within
the sphere of a tilted Gaussian (Floto et al., 2023), thereby disrupting the efficient, widely adopted
reparameterization based on the Gaussian. It should be noted that modifying the training of VAE may
be less practical as the proposed method cannot be directly applied to other VAEs. This implies that
applying the OOD detection method to a new advanced VAE necessitates meticulous training using
the new modification method. ii) The second group of methods attempts to utilize the properties of
a trained VAE for OOD detection without modifying it. The likelihood-ratio method simulates the
background using noise and employs the difference between the original and simulated background
images for OOD detection (Ren et al., 2019a). The likelihood-regret method finetunes the trained
VAE with the test sample to observe changes in likelihood (Xiao et al., 2020). The log-likelihood
ratio method leverages the assumption that latent variables of lower layers capture low-level features
of inputs while those of higher layers grasp semantic features (Havtorn et al., 2021). The difference
between these latent variables can then be used for OOD detection. WAIC utilizes empirical ensemble
methods for OOD detection (Choi et al., 2018). However, it should be stressed that none of these
methods have strived to provide an exhaustive theoretical analysis of the VAE’s overestimation issue.

C DERIVATION OF THE ANALYSIS

C.1 DERIVATION FOR EQ. 7

We first give the definition of the mutual information Îq(x, z) and Îq,p(x, z) as follows:

Îq(x, z) =
∫
x

∫
z

q(x, z) log
q(x, z)

p(x)q(z)

=

∫
x

∫
z

qϕ(z|x)p(x) log
qϕ(z|x)
q(z)

= Ex∼p(x),z∼qϕ(z|x)[log
qϕ(z|x)
q(z)

]

= Ex∼p(x),z∼qϕ(z|x)[log qϕ(z|x)]− Ex∼p(x),z∼qϕ(z|x)[log q(z)]

= Ex∼p(x),z∼qϕ(z|x)[log qϕ(z|x)]− Eq(z)[log q(z)],

(22)
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Îq,p(x, z) =
∫
x

∫
z

q(x, z) log
p(x, z)

p(x)p(z)

=

∫
x

∫
z

qϕ(z|x)p(x) log
pθ(z|x)
p(z)

= Ex∼p(x),z∼qϕ(z|x)[log
pθ(z|x)
p(z)

]

= Ex∼p(x),z∼qϕ(z|x)[log pθ(z|x)]− Ex∼p(x),z∼qϕ(z|x)[log p(z)]

= Ex∼p(x),z∼qϕ(z|x)[log pθ(z|x)]− Eq(z)[log p(z)],

(23)

and the q(z) is called the aggregated posterior distribution (Dieng et al., 2019; Makhzani et al., 2015;
Mescheder et al., 2017), expressed as:

q(z) =

∫
x

qϕ(z|x)p(x). (24)

Recall that Eq. 7 comprises two components, denoted as:

Ex∼p(x)[ELBO(x)] =

L1︷ ︸︸ ︷
Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]−

L2︷ ︸︸ ︷
Ex∼p(x)[DKL(qϕ(z|x)||p(z))] .

(25)

Then, we have
L1 = Ex∼p(x)[Ez∼qϕ(z|x) log pθ(x|z)]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
pθ(z|x)
p(z)

p(x)]]

= Ex∼p(x)Ez∼qϕ(z|x) log
pθ(z|x)
p(z)

+ Ex∼p(x)Ez∼qϕ(z|x) log p(x)

= Ex∼p(x),z∼qϕ(z|x)[log
pθ(z|x)
p(z)

] + Ex∼p(x) log p(x)

= Îq,p(x, z)−Hp(x).

(26)

L2 = Ex∼p(x)[Ez∼qϕ(z|x) log
qϕ(z|x)
p(z)

]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
qϕ(z|x)
p(z)

· q(z)
q(z)

]]

= Ex∼p(x)[Ez∼qϕ(z|x) log[
qϕ(z|x)
q(z)

· q(z)
p(z)

]]

= Ex∼p(x)[Ez∼qϕ(z|x) log
qϕ(z|x)
q(z)

] + Ex∼p(x)[Ez∼qϕ(z|x) log[
q(z)

p(z)
]]

= Ex∼p(x),z∼qϕ(z|x)[log
qϕ(z|x)
q(z)

] + Ez∼q(z)[log
q(z)

p(z)
]

= Îq(x, z) +DKL(q(z)||p(z)).

(27)

Hence, we can achieve the following expression:

Ex∼p(x)[ELBO(x)] = −DKL(q(z)||p(z))− [Hp(x) + Îq(x, z)− Îq,p(x, z)]
= −DKL(q(z)||p(z))− Ent-Mut(θ, ϕ, p). (28)

C.2 TOY EXAMPLES’ DETAILS

Single-modal case setup. In this scenario, the data distribution is determined by a standard 2-
dimensional Gaussian distribution p(x) = N (x|0,Σx), where

Σx =

[
1 0
0 1

]
. (29)
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In order to simulate the dimension-reduction property of VAE, we designate the dimension of the
latent variable as 1-dimensional; that is, the variance I in p(z) reduces to 1. Under this configuration,
we i.i.d. sample N = 5000 data points from the data distribution p(x) to construct a training set.
Each parameter’s solutions are calculated analytically.

Multi-modal case setup. The data distribution is made by a mixture of two standard single-modal
Gaussian distributions, i.e., p(x) =

∑K
k=1 πkN (x|µk,Σk), where K = 2, πk = 1/2 and

µ1 =

[
3
3

]
,µ2 =

[
−3
−3

]
,Σ1 =

[
1 0
0 1

]
,Σ2 =

[
1 0
0 1

]
. (30)

The training set of this multi-modal case is built by i.i.d. sampling from 5000 data points from each
component Gaussian distribution N (x|µk,Σk), i.e., 10000 data points in total.

C.3 DERIVATION FOR SINGLE-MODAL CASE IN SECTION 3.2

Assume we have a dataset containing N data samples {x1,x2, ...,xN}, xi ∈ Rd, d = 2, and we
already know the groundtruth distribution of it, i.e.,

p(x) = N (x|0,Σx), (31)

where Σx = I. We have a linear VAE model parameterized as:

p(z) = N (z|0, I) (32)
qϕ(z|x) = N (z|Ax+B,C) (33)

pθ(x|z) = N (x|Ez + F, σ2I), (34)

where p(z) is the prior distribution, z ∈ Rq, q = 1, qϕ(z|x) is the approximated posterior distribution,
and pθ(x|z) is the approximated likelihood distribution. Directly employing the knowledge from
probabilistic Principal Component Analysis (pPCA) (Tipping & Bishop, 1999), we could get the
maximum likelihood estimation of pθ(x|z):

σ2
MLE =

1

d− q

d∑
j=q+1

λj (35)

EMLE = Uq

(
Λq − σ2

MLE

)1/2
R (36)

FMLE = 0 (37)

where λq+1, ..., λd are the smallest eigenvalues of the sample covariance matrix S = 1
N

∑N
n=1 xx

⊤,
the d× q orthogonal matrix Uq is made by the q dominant eigenvectors of S, the diagonal matrix Λq

contains the corresponding q largest eigenvalues, and R is an arbitary q × q orthogonal matrix. Note
that, when q = 1, we have R = I. After we get the parameters of pθ(x|z), we could get the p(z|x)
by Bayes rule:

p(z|x) = pθ(x|z)p(z)
p(x)

= N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x ),

(38)

where Σx = E⊤
MLEEMLE + σ2

MLEI. Thus, the maximum likelihood estimates of qϕ(z|x)’s parameters
are:

AMLE = Σ−1
x E⊤

MLE (39)
BMLE = 0 (40)

CMLE = σ2
MLEΣ

−1
x . (41)

Although the maximum likelihood estimations are ascertained, it remains necessary to verify whether
these estimations allow the ELBO to reach the global optimum. The derivation of ELBO is as follows:

log p(x) = Eqϕ(z|x)[log p(x|z)]−DKL(qϕ(z|x)||p(z)) +DKL(qϕ(z|x)||p(z|x))
= ELBO(x) +DKL(qϕ(z|x)||p(z|x)).

(42)
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Given that qϕ(z|x) = N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x ) = p(z|x), DKL(qϕ(z|x)||p(x|z)) becomes

zero. Furthermore, any modifications to the parameters of qϕ would result in an increase of
DKL(qϕ(z|x)||p(x|z)); in other words, it would result in a decrease of ELBO. Hence, the global
optimum of the ELBO is attained when AMLE ∼ EMLE, σMLE are implemented in the linear VAE.
Moreover, in this situation, log p(x) equates to ELBO.

Finally, we could get the expression of the aggregated posterior distribution q(z):

q(z) =

∫
x

qϕ(z|x)p(x)

=

∫
x

N (z|Σ−1
x E⊤

MLEx, σ
2
MLEΣ

−1
x )N (x|0,Σx)

=

∫
x

N (z|I−1E⊤
MLEx, σ

2
MLEI

−1)N (x|0, I)

=

∫
x

N (z|E⊤
MLEx, σ

2
MLEI)N (x|0, I)

= N (0,E⊤
MLEEMLE + σ2

MLEI)

= N (0,Σx)

= N (0, I)

= p(z).

(43)

In summing up the single-modal case, our assertion is that DKL[q(z)||p(z)] = 0, indicating that the
design of the prior distribution is appropriate and would not result in an overestimation of VAE.

C.4 DERIVATION FOR MULTI-MODAL CASE IN SECTION 3.2

Assume we have a distribution p(x) =
∑K

k=1 πkN (x|µk,Σk) and we build a dataset containing
K × N data samples, which is made by sampling N data samples from each N (x|µk,Σk). The
parameterization setting of the p(z), qϕ(z|x), and pθ(x|z) is the same as the single-modal case in
Section 3.2.

Deriving from the single-modal scenario, an analytical formulation of DKL(qϕ(z|x)||p(z|x)) is
unattainable in the multi-modal case. Thus, it necessitates a derivation directly from the ELBO. Due
to the fact that the global optimum of the decoder’s parameters in the ELBO coincides with the global
maximum of the marginal likelihood of the observed data (Lucas et al., 2019), we firstly commence
with the derivation of the maximum likelihood estimation of pθ(x|z). Despite the feasibility of
directly obtaining the maximum likelihood estimation of the parameters in pθ(x|z) by optimizing the
integration p̂θ(x) =

∫
z
pθ(x|z)p(z) using the observed data, we propose an additional clarification

connecting this integration and the ELBO. With reference to the strictly tighter importance sampling
on the ELBO (Burda et al., 2016), we can derive that

ELBOs(x) = Eqϕ(z|x)[log
1

S

S∑
s=1

pθ(x|z(s))p(z(s))

qϕ(z(s)|x)
]. (44)

Setting the number of instances S = 1, ELBOs(x) equates to the regular ELBO(x). As S approaches
+∞, it follows that

ELBOs(x) = Eqϕ(z|x)[logEqϕ(z|x)
pθ(x|z)p(z)
qϕ(z|x)

]

= Eqϕ(z|x)[log

∫
z

qϕ(z|x)
pθ(x|z)p(z)
qϕ(z|x)

dz]

= Eqϕ(z|x)[log

∫
z

pθ(x|z)p(z)dz]

= log

∫
z

pθ(x|z)p(z)dz

= log p̂θ(x).

(45)
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The expression of p̂θ(x) is shown as:

p̂θ(x) =

∫
z

pθ(x|z)p(z)

=

∫
z

N (x|Ez+ F, σ2I)N (z|0, I)

= N (x|F,EE⊤ + σ2I).

(46)

Then, the joint log-likelihood of the observed dataset {x(k)
i }

N,K
i=1,k=1 can be formulated as:

L =

K∑
k=1

N∑
i=1

log p̂θ(x
(k)
i ) = −KNd

2
log(2π)− KN

2
log det(M)− KN

2
tr[M−1S], (47)

where M = EE⊤ + σ2I and S = 1
KN

∑K
k=1

∑N
i=1(x

(k)
i − F)(x

(k)
i − F)⊤.

Repeatly using the knowledge in pPCA again, we could get the maximum likelihood estimation of
the parameters:

(σ∗)2 =
1

d− q

d∑
j=q+1

λj (48)

E∗ = Uq

(
Λq − (σ∗)2

)1/2
R (49)

F∗ = 0, (50)

where λq+1, ..., λd are the smallest eigenvalues of the sample covariance matrix S = 1
N

∑N
n=1 xx

⊤,
the d× q orthogonal matrix Uq is made by the q dominant eigenvectors of S, the diagonal matrix Λq

contains the corresponding q largest eigenvalues, and R is an arbitary q × q orthogonal matrix. Note
that, when q = 1, we have R = I. Actually, with the same p(z) and a decoder pθ(x|z) parameterized
by the same linear network, the expression of the maximum likelihood estimation of the pθ(x|z) in
the multi-modal case is the same as the single-modal case.

In order to determine qϕ(z|x)’s parameters, we can initiate the process by identifying the stationary
points of qϕ(z|x) with respect to the ELBO. The ELBO can be analytically expressed as follows:

ELBO(x) =

L1︷ ︸︸ ︷
Eqϕ(z|x)[log pθ(x|z)]−

L2︷ ︸︸ ︷
DKL[qϕ(z|x)||p(z)] (51)

L1 =Eqϕ(z|x)[−
(Ez − x)⊤(Ez − x)

2σ2
− d

2
log 2πσ2]

=Eqϕ(z|x)[
−(Ez)⊤(Ez) + 2x⊤Ez − x⊤x

2σ2
− d

2
log(2πσ2)]

=
1

2σ2
[−tr(ECE⊤)− (EAx+EB)⊤(EAx+EB) + 2x⊤(EAx+EB)− x⊤x]

− d

2
log(2πσ2) (52)

L2 =
1

2
[− log det(C) + (Ax+B)⊤(Ax+B) + tr(C)− q] (53)

For a dataset consisting of KN data samples, the stationary points with respect to the ELBO can be
obtained through the following expressions:

∂(
∑KN ELBO(x))

∂A
=KN [−AS−Bx̄⊤ − 1

σ2
(E⊤EAS)− 1

σ2
(E⊤EBx̄⊤ −E⊤S)] = 0

(54)

∂(
∑KN ELBO(x))

∂B
=KN [−Ax̄− 1

σ2
E⊤EAx̄+

1

σ2
E⊤x̄− (I+

E⊤E

σ2
)B] = 0 (55)

∂(
∑KN ELBO(x))

∂C
=
KN

2
((C−1)⊤ − I− 1

σ2
(E⊤E)) = 0, (56)
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where S = 1
KN

∑KN
xx⊤ and x̄ = 1

KN

∑KN
x. Upon further investigation, we have discovered

that the stationary points of A, B, and C solely depend on the parameters E and σ. In mathematical
terms, they can be expressed as:

A∗ =
(I+ 1

σ2E
⊤E)−1

σ2
E⊤ (57)

B∗ =0 (58)

C∗ =((I+
1

σ2
E⊤E)⊤)−1. (59)

Finally, we can derive the expression of q(z) in this multi-modal case as follows:

q(z) =

∫
x

qϕ(z|x)p(x)

=

∫
x

N (z|A∗x,C∗)

K∑
k=1

πkN (x|µk,Σk)

=

K∑
k=1

πk

∫
x

N (z|A∗x,C∗)N (x|µk,Σk)

=

K∑
k=1

πkN (z|A∗µk,A
∗Σk(A

∗)⊤ +C∗)

̸= p(z).

(60)

In conclusion, we observe that DKL[q(z)||p(z)] ̸= 0, indicating that the design of the prior distri-
bution p(z) is not appropriate in this multi-modal case and may result in overestimation issue of
VAE.

C.5 IMPLEMENTATION DETAILS OF DEEP VAE IN SECTION 3.2

The non-linear deep VAE’s encoder is implemented as a 3-layer MLP, which takes the 2D data points
as inputs. The encoder consists of two linear layers with a hidden dimension of 10 and LeakyReLU
activation function (Maas et al., 2013). The output layer, with a dimension of 2, does not have an
activation function and provides the values for µz and log σ2

z for each dimension of the latent variable.

For the decoder, it takes the sampled latent variable z through reparameterization and feeds it into
two linear layers with a hidden dimension of 10 and LeakyReLU activation function. The final output
is obtained by a linear layer without activation function, with a dimension of 4. The reconstruction
likelihood is modeled as a Gaussian distribution, where the first two dimensions represent µx (the
mean of the reconstruction likelihood) and the remaining dimension represents log σ2

x (the log
variance of the reconstruction likelihood).

The deep VAE is trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-5.
The training set consists of a total of 10,000 data points.

We also investigated the influence of dataset size (amount of training data) and model capacity (number
of neural network layers) on the OOD detection performance of ELBO, using both the synthesized
2D multi-modal dataset and realistic image datasets ("FashionMNIST(ID) / MNIST(OOD)" and
"CIFAR-10(ID) / SVHN(OOD)"). Our findings are illustrated in Figure 8 and Table 4. For the 2D
multi-modal dataset, we sampled a data volume 10 times greater than its inherent distribution p(x)
than the original configuration seen in Figure 2(a-b) of the main paper, increasing from 10,000 to
100,000 training samples. The VAE for this experiment utilized a 10-layer MLP as opposed to the
original 3-layer MLP. Notably, the results from Figure 8(a) highlight that the is still not equal to p(z)
= N (0, I) and Figure 8 (b) indicates the persistence of the overestimation problem in the non-linear
deep VAE. For the practical image datasets, we varied the dataset size and model capacity (number
of CNN layers) to investigate their effects on ELBO’s OOD detection performance. However, results
show that increasing the amount of data and the number of CNN layers does not yield significant
improvements.
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Figure 8: Visualization of qid(z) and estimated pθ(x) by ELBO on a synthesized 2D multi-modal
dataset. The data amount here is 10 times larger than in Figure 3 of the main paper, increasing from
10,000 to 100,000 samples. The VAE used is a non-linear deep one based on a 10-layer MLP, in
contrast to the 3-layer MLP used in Figure 3 of the main paper; Results indicate that the qid(z) is
still not equal to p(z) = N (0, I) and the overestimation issue still exists.

Table 4: Ablation study examining the effects of dataset size (data amount) and model capacity
(number of convolutional neural network (CNN) layers) on the OOD detection performance of ELBO.
Results indicate that increasing the amount of data and the number of CNN layers does not yield
significant improvements.

FashionMNIST(ID) / MNIST(OOD) CIFAR-10(ID) / SVHN(OOD)
Num. of Layers Num. of Layers

Data Amount 3 6 9 12 15 Data Amount 3 6 9 12 15
10000 9.45 14.0 13.2 14.2 14.6 10000 14.4 12.8 16.9 20.5 20.3
30000 16.3 14.5 15.3 14.5 15.8 30000 24.6 25.3 25.9 24.4 23.9
60000 23.5 25.1 23.0 20.3 19.8 50000 24.9 22.6 23.5 28.1 24.0

D DETAILS OF THE NON-SCALED ENTROPY-MUTUAL CALIBRATION METHOD

We provide a pseudo code here for calculating the Cnon(x) of a testing sample x in Algorithm 1.
Noted that, the maximum number of singular values N should be larger than nid.

Algorithm 1 Non-scaled dataset entropy-mutual calibration Cnon(x) algorithm
Input: Hyperparameter nid and its corresponding reconstruction error ϵ = Ex∼pid |xrecon − x|,
maximum number of singular values N , a testing sample x.
Ouput: Cnon(x).
Do SVD for the testing sample x;
for ni = 1 to N do

Calculate reconstruction error ϵi using ni singular values;
if ϵi ≤ ϵ then

break;
end if

end for
if ni < nid then

Calculate Cnon(x) = ni/nid;
else

Calculate Cnon(x) = (nid − (ni − nid))/nid;
end if
return Cnon(x)
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E DETAILS OF EXPERIMENTAL SETUP

E.1 DESCRIPTION OF ALL DATASETS

In accordance with the existing literature (Nalisnick et al., 2019a;b; Morningstar et al., 2021) we
evaluate our method against previous works using commonly acknowledged “harder” dataset pairs:
FashionMNIST (ID)→MNIST (OOD), CIFAR-10 (ID)→ SVHN (OOD), CelebA (ID)→ CIFAR-10
(OOD), CelebA (ID)→ CIFAR-100 (OOD), and CIFAR-10 (ID)→ CIFAR-100 (OOD). Please note
that, though CIFAR-10 and CIFAR-100 do have a few overlapping categories, the percentage of these
overlapping categories in CIFAR-100 is limited and it is still regarded as a hard task (Morningstar
et al., 2021; Nalisnick et al., 2019b). Additionally, (Choi et al., 2018; Morningstar et al., 2021) also
identify detecting vertically flipped ID data as the OOD data to be a hard task. The suffixes “ID” and
“OOD” represent in-distribution and out-of-distribution datasets, respectively.

To more comprehensively assess the generalization capabilities of these methods, we incorporate
additional OOD datasets as follows. Notably, datasets featuring the suffix “-G” (e.g., “CIFAR-10-G”)
have been converted to grayscale, resulting in a single-channel format.

For grayscale image datasets, we utilize the following datasets: FashionMNIST (Xiao et al., 2017),
MNIST (LeCun et al., 1998), KMNIST (Clanuwat et al., 2018), notMNIST (Bulatov), Omniglot
(Lake et al., 2015), and several grayscale datasets transformed from RGB datasets. FashionMNIST
is a dataset consisting of 60,000 grayscale images of Zalando’s article pictures for training, and
10,000 images for testing. Each image is 28x28 pixels and belongs to one of the 10 classes. MNIST
is a widely used dataset containing 70,000 grayscale images of handwritten digits. It consists of a
training set of 60,000 images and a test set of 10,000 images. Each image is 28x28 pixels. KMNIST
is derived from the Kuzushiji Dataset and serves as a drop-in replacement for the MNIST dataset. It
includes 70,000 grayscale images, each with a resolution of 28x28 pixels. notMNIST is a dataset
composed of 547,838 grayscale images of glyphs extracted from publicly available fonts. The images
are 28x28 pixels in size and cover letters A to J from various fonts. Omniglot contains 32,460
grayscale images of 1623 different handwritten characters from 50 distinct alphabets. Each image has
a resolution of 28x28 pixels. Additionally, we have transformed several RGB datasets into grayscale
versions, including CIFAR-10-G, CIFAR-100-G, SVHN-G, CelebA-G, and SUN-G.

For RGB datasets, we utilize the following datasets: CIFAR-10/CIFAR-100 (Krizhevsky & Hinton,
2009), SVHN (Netzer et al., 2011), CelebA (Liu et al.), Places365 (Zhou et al., 2017), Flower102
(Nilsback & Zisserman, 2008), LFWPeople (Huang et al., 2007), SUN (Xiao et al., 2010), GTSRB
(Houben et al., 2013), STL-10 (Coates et al., 2011), and Texture (Cimpoi et al., 2014) datasets.
CIFAR-10 and CIFAR-100 are datasets consisting of 32x32 color images. CIFAR-10 contains
50,000 training images and 10,000 testing images, with 10 different classes. CIFAR-100 has the
same number of images but includes 100 classes. SVHN is a dataset obtained from Google Street
View images, primarily used for recognizing digits and numbers in natural scene images. CelebA is
a large-scale face attributes dataset containing over 200,000 celebrity images, each annotated with
40 attribute labels. Places365 is a dataset that includes 1.8 million training images from 365 scene
categories. The validation set contains 50 images per category, and the testing set contains 900 images
per category. Flower102 is an image classification dataset consisting of 102 flower categories, with
each class containing between 40 and 258 images. The selected flowers are commonly found in the
United Kingdom. LFWPeople contains more than 13,000 images of faces collected from the web,
making it a popular dataset for face-related tasks. SUN is a large-scale scene recognition dataset,
covering a wide range of scenes from abbey to zoo. STL10 is an image recognition dataset designed
for unsupervised feature learning. It includes labeled data from 10 categories and unlabeled data
from additional classes. GTSRB is a dataset specifically developed for the task of German traffic
sign recognition. Texture is an evolving collection of textured images in various real-world settings.
All images from these datasets are resized to the dimensions of 32x32x3 before being used as input
for the models.

E.2 EVALUATION AND METRICS.

We adhere to the previous evaluation procedure (Havtorn et al., 2021; Li et al., 2022), where all
methods are trained using the training split of the ID dataset, and their OOD detection performance is
assessed on both the testing split of the ID dataset and the OOD dataset. In line with previous works
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(Hendrycks & Gimpel, 2017; Alemi et al., 2018; Hendrycks et al., 2019), we employ evaluation
metrics including the area under the receiver operating characteristic curve (AUROC ↑), the area
under the precision-recall curve (AUPRC ↑), and the false positive rate at 80% true positive rate
(FPR80 ↓). The arrows indicate the direction of improvement for each metric.

E.3 DESCRIPTION OF ALL BASELINES

Following the categorization in LLRada (Li et al., 2022), we provide a detailed description of each
baseline within the three categories:

“Supervised”: Methods using in-distribution data labels y, which is the same as the “Label” category
in LLRada (Li et al., 2022), including:

• Maximum softmax classification probability (CP) method (Hendrycks & Gimpel, 2017),
denoted as "CP", and its variants: "CP(OOD)" with OOD data as a noise class, "CP(Cal)"
with calibration on OOD data, and "CP(Ent)" with the entropy of softmax classification
probability p(y|x);

• Mahalanobis distance (MD) method (Lee et al., 2018);
• Latent Mahalanobis distance (LMD) method (Bulusu et al., 2020);
• Out-of-distribution image detection in neural networks (ODIN) method (Liang et al., 2018);
• Variational information bottleneck (VIB) method (Alemi et al., 2018);
• Deep ensembles (DE) method (Lakshminarayanan et al., 2017) with 20 classifiers;
• GradNorm (GN) method (Huang et al., 2021);
• LogitNorm (LN) method (Wei et al., 2022c);

“Auxiliary”: Methods using auxiliary knowledge assumptions about ID or OOD data type, which is
the same as the “Prior” category in LLRada (Li et al., 2022)), including:

• Likelihood Ratio (LR) method (Ren et al., 2019b) with different backbones, denoted as
"LR(PC)" with backbone PixcelCNN, "LR(VAE)" with VAE and "LR(BC)" with binary
classifier);

• Outlier exposure (OE) method (Hendrycks et al., 2019);
• Input complexity (IC) method (Serrà et al., 2020) with different backbones, denoted

as "IC(PC++)" with backbone PixcelCNN++, "IC(Glow)" with backbone Glow and
"IC(HVAE)" with backbone HVAE;

• Wild OOD detection sans-Supervision (WOODS) method (Katz-Samuels et al., 2022);
• Data-driven confidence minimization (DCM) methods (Choi et al., 2023).

“Unsupervised”: Methods with no OOD-specific assumptions) including:

• Ensemble methods: WAIC method (Choi et al., 2018) with different backbones, denoted as
"WAIC (5Glow)" with 5 Glow models, "WAIC (5VAE)" with 5 VAE models and "WAIC
(5PC)" with 5 PixcelCNN models;
Not ensembles methods:

• Likelihood regret (LRe) method (Xiao et al., 2020) that utilize the difference in finetuning
the VAE with ID and OOD data;

• Log-Likelihood Ratio (HVK) method (Havtorn et al., 2021) that employ the consistency
between the specific low-level and high-level information in a hierarchical VAE;

• Adaptive Log-Likelihood Ratio (LLRada) method (Li et al., 2022) that modify the training
process to propagate more information to the high-level latent variables and then collect the
consistency in all level of latent variables in a hierarchical VAE to do OOD detection.

The "ELBO" in all tables is the result of a standard VAE (Kingma & Welling, 2014) and our proposed
methods PHP, DEC, and AVOID are based on this standard VAE. Other methods’s performance are
based on their own best settings reported in their original paper.
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E.4 DETAILS OF THE IMPLEMENTATION

The VAE’s latent variable‘s dimension is set as 200 for all experiments with the encoder and decoder
parameterized by a 3-layer convolutional neural network, respectively. The reconstruction likelihood
distribution is modeled by a discretized mixture of logistics (Salimans et al., 2017). For optimization,
we adopt the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-3. We train all models
in comparison by setting the batch size as 128 and the max epoch as 1000 following (Havtorn et al.,
2021; Li et al., 2022). All experiments are performed on a PC with an NVIDIA A100 GPU and
implemented with PyTorch (Paszke et al., 2019).

The encoder of the VAE is implemented as a 3-layer convolutional network with kernel numbers of
32, 64, and 128, and strides of 1, 2, and 2, respectively. The ReLU (Krizhevsky et al., 2012) activation
function is applied. The output layer consists of a linear layer that outputs the mean and log-variance
of the latent variables, with a dimension of 200.

On the other hand, the decoder takes the reparameterized latent variables as input and utilizes a
3-layer transposed convolutional network. The network has kernel numbers of 128, 64, and 32, and
strides of 2, 2, and 1, respectively. The ReLU activation function is used. Finally, the output layer
is parameterized by a convolutional layer that models the distribution as a discretized mixture of
logistics.

In the PHP method, an LSTM is employed as the backbone (Shi et al., 2015). The hidden size of the
LSTM is set to 64, and the outputted hidden state is fed into a 3-layer linear network. The hidden
sizes of the linear layers are 64, 32, and 2, respectively. The ReLU activation function is applied to
the first two layers. The optimizer used for learning the q(z) distribution is Adam, and the learning
rate is set to 1e-4.

F MORE EXPERIMENTAL RESULTS OF AVOID

We add more experimental results with models trained on CelebA (ID) in Table 5 and 6. Additionally,
we add experiments on detecting vertically flipped data as OOD data in Table 7.

Table 5: Comparisons between our methods and other VAE-based OOD detection methods on the
“harder tasks” (CelebA(ID) / CIFARs(OOD)). Bold numbers are superior results.

CelebA(ID) / CIFAR-10(OOD) CelebA(ID) / CIFAR-100(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
ELBO (Kingma & Welling, 2014) 27.8 ±1.30 37.5 ±1.33 96.3 ±0.91 ELBO (Kingma & Welling, 2014) 33.1 ±1.38 41.9 ±1.32 96.7 ±0.87
HVK (Havtorn et al., 2021) 40.1 ±2.00 43.8 ±2.43 88.1 ±2.18 HVK (Havtorn et al., 2021) 45.2 ±2.05 49.0 ±1.98 91.2 ±2.23
LLRada (Li et al., 2022) 58.0 ±0.67 62.5 ±0.70 77.3 ±0.36 LLRada (Li et al., 2022) 52.5 ±0.59 58.8 ±0.56 85.6 ±0.35
-Ours -Ours
PHP 69.5 ±1.29 63.7 ±1.27 50.2 ±0.74 PHP 68.9 ±1.30 64.2 ±1.31 50.6 ±0.68
DEC 73.3 ±0.00 67.7 ±0.00 45.5 ±0.00 DEC 73.7 ±0.00 67.0 ±0.00 46.4 ±0.00
AVOID 75.6 ±1.35 70.3 ±1.38 43.4 ±0.43 AVOID 75.5 ±1.40 69.8 ±1.46 42.1 ±0.44

Table 6: Comparisons on more OOD datasets between our method and other VAE-based OOD
detection methods with VAEs trained on CelebA(ID). Bold numbers are superior results.

AUROC↑ with models trained on CelebA (ID)
OOD datasets SVHN STL10 Places365 LFWPeople SUN GTSRB Texture Const Random
ELBO (Kingma & Welling, 2014) 27.2 56.9 50.2 52.2 27.1 67.9 54.5 1.24 100
HVK (Havtorn et al., 2021) 36.8 59.7 59.1 59.9 54.3 49.8 61.5 92.9 74.4
LLRada (Li et al., 2022) 91.2 61.5 55.7 58.6 58.8 42.3 68.1 90.2 73.4
-Ours
PHP 56.9 59.9 63.5 52.5 67.2 72.0 63.2 53.4 100
DEC 99.7 60.1 60.9 55.7 66.1 67.8 68.5 97.0 100
AVOID 95.8 67.6 68.4 55.9 73.7 75.6 76.3 97.1 100

G MORE ABLATION STUDY RESULTS ON VERIFYING THE POST-HOC PRIOR

We evaluate the effectiveness of the PHP method on additional datasets as shown in Table 8.
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Table 7: Comparison with ELBO on detecting vertically flipped (“VFlip”) data as OOD.
AUROC ↑ in detecting VFlip data as OOD.

Method CelebA CIFAR-10 SVHN FashionMNIST MNIST
ELBO (Kingma & Welling, 2014) 74.2 49.5 50.4 69.5 82.7
AVOID(=PHP) 85.7 53.7 52.7 86.2 84.9

Table 8: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has post-hoc prior part.

ID FashionMNIST ID CIFAR-10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / PHP (ours) ELBO / PHP (ours)
KMNIST 60.03 / 72.98 54.60 / 69.34 61.6 / 48.1 CelebA 57.27 / 70.91 54.51 / 72.16 69.03 / 52.95
Omniglot 99.86 / 99.90 99.89 / 99.89 0.00 / 0.00 CIFAR-100 52.91 / 55.00 51.15 / 54.01 77.42 / 70.23

notMNIST 94.12 / 94.39 94.09 / 94.35 8.29 / 7.79 Places365 57.24 / 57.36 56.96 / 56.55 73.13 / 52.95
CIFAR-10-G 98.01 / 98.84 98.24 / 99.13 1.20 / 0.30 LFWPeople 64.15 / 64.57 59.71 / 65.20 59.44 / 64.74

CIFAR-100-G 98.49 / 98.50 97.49 / 97.50 1.00 / 0.90 SUN 53.14 / 53.27 54.48 / 54.67 79.52 / 78.12
SVHN-G 95.61 / 96.00 96.20 / 97.13 3.00 / 0.60 Texture 37.86 / 43.38 40.93 / 43.99 82.22 / 80.12
CelebA-G 97.33 / 97.71 94.71 / 95.62 3.00 / 2.20 Flowers102 67.68 / 67.76 64.68 / 64.75 57.94 / 57.63

SUN-G 99.16 / 99.26 99.39 / 99.40 0.00 / 0.00 GTSRB 39.50 / 52.62 41.73 / 50.81 86.61 / 75.12
Const 94.94 / 95.08 97.27 / 97.35 1.80 / 0.00 Const 0.001 / 15.70 30.71 / 30.78 100.0 / 86.62

Random 99.80 / 99.81 99.90 / 99.90 0.00 / 0.00 Random 71.81 / 72.52 82.89 /83.42 85.71 / 85.00

H MORE ABLATION STUDY RESULTS ON VERIFYING THE DATASET
ENTROPY-MUTUAL CALIBRATION

We evaluate the effectiveness of the DEC method on additional datasets as shown in Table 9.

Table 9: The comparisons of the OOD detection performance of our method on more datasets. The
new score function only has dataset entropy-mutual calibration part.

ID FashionMNIST ID CIFAR-10
OOD AUROC ↑ AUPRC ↑ FPR80 ↓ OOD AUROC ↑ AUPRC ↑ PFR80 ↓

ELBO / DEC (ours) ELBO / DEC (ours)
KMNIST 60.03 / 60.54 54.60 / 55.18 61.6 / 60.3 CelebA 57.27 / 69.00 54.51 / 61.83 69.03 / 50.93
Omniglot 99.86 / 99.91 99.89 / 99.94 0.00 / 0.00 CIFAR-100 52.91 / 54.69 51.15 / 52.98 77.42 / 73.23

notMNIST 94.12 / 94.50 94.09 / 93.61 8.29 / 6.89 Places365 57.24 / 68.14 56.96 / 65.16 73.13 / 64.26
CIFAR-10-G 98.01 / 99.31 98.24 / 99.25 1.20 / 0.40 LFWPeople 64.15 / 67.84 59.71 / 60.28 59.44 / 54.75

CIFAR-100-G 98.49 / 98.81 97.49 / 98.05 1.00 / 0.90 SUN 53.14 / 60.55 54.48 / 60.67 79.52 / 68.75
SVHN-G 95.61 / 97.06 96.20 / 97.92 3.00 / 0.00 Texture 37.86 / 70.36 40.93 / 60.02 82.22 / 64.16
CelebA-G 97.33 / 97.69 94.71 / 95.94 3.00 / 2.10 Flowers102 67.68 / 75.59 64.68 / 77.84 57.94 / 46.48

SUN-G 99.16 / 99.58 99.39 / 99.67 0.00 / 0.00 GTSRB 39.50 / 48.35 41.73 / 45.59 86.61 / 73.83
Const 94.94 / 99.31 97.27 / 99.25 1.80 / 0.40 Const 0.001 / 76.20 30.71 / 83.27 100.0 / 58.04

Random 99.80 / 100.0 99.90 / 100.0 0.00 / 0.00 Random 71.81 / 99.53 82.89 / 99.73 85.71 / 0.000

I ERROR BAR

We conduct random experiments on all grayscale and RGB datasets for 5 trials using the trainable
methods (ELBO, PHP, and AVOID methods). The average error rates are presented in Table 10 and
11, and it can be observed that the error rates are stable and small across these methods on gray image
data and nature RGB image data.

J BROADER IMPACT

The impact of our research can be outlined in two key aspects:
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Table 10: The error bar on the gray image dataset pair FashionMNIST (ID) / MNIST (OOD).
Error bar on FashionMNIST (ID) / MNIST (OOD)

Method AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO (Kingma & Welling, 2014) 23.5 ± 0.82 35.6 ± 0.85 98.5 ± 0.38

HVK (Havtorn et al., 2021) 98.4 ± 0.79 98.4 ± 0.73 1.3 ± 0.04

LLRada (Li et al., 2022) 97.0 ± 0.58 97.6 ± 0.72 0.9 ± 0.03

-ours

PHP 89.7 ± 0.54 90.3 ± 0.50 13.3 ± 0.24

DEC 34.1 ± 0.00 40.7 ± 0.00 92.5 ± 0.00

AVOID 99.2 ± 0.51 99.4 ± 0.60 0.0 ± 0.00

Table 11: The error bar on the gray image dataset pair CIFAR-10 (ID) / SVHN (OOD).
Error bar on CIFAR-10 (ID) / SVHN (OOD)

Method AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO (Kingma & Welling, 2014) 24.9 ± 1.41 36.7 ± 1.52 94.6 ± 0.96

HVK (Havtorn et al., 2021) 89.1 ± 2.32 87.5 ± 2.96 17.2 ± 2.00

LLRada (Li et al., 2022) 92.6 ± 0.41 91.8 ± 0.54 11.1 ± 0.27

-ours

PHP 39.6 ± 1.37 42.6 ± 1.53 85.7 ± 0.69

DEC 87.9 ± 0.00 89.9 ± 0.00 17.8 ± 0.00

AVOID 94.5 ± 1.44 95.3 ± 1.48 4.24 ± 0.36

• For Unsupervised OOD Detection: Our approach stands out due to its broad applicability and
versatility. Unlike many conventional methods, it does not require labeled data and it can be
applied to model the distribution of diverse data types using deep generative models. This is
particularly useful in applications where labeled data is scarce or unavailable. Additionally, our
method provides a universal solution to enhance OOD detection performance. This is achieved by
offering an innovative perspective on the overestimation issue in VAE, which is not predicated on
the data type.

• For the development of deep generative models: Our research offers valuable insights for the
progression of deep generative models. By employing the KL divergence, DKL(q(z)||p(z)),
our method can provide verification of whether a generative model has adequately learned to
model the data distribution. These insights could potentially spark new developments and inspire
more representative generative models, thereby furthering the field of deep learning research and
applications.

In conclusion, our research holds promising potential to provide substantial contributions to both the
realm of unsupervised OOD detection and the development of deep generative models.

K REBUTTAL

To ease the reading of reviewers, we have included all additional experiments for rebuttal in this
section, which could be summarized as follows:

• (For reviewer ms1o, G5ek, jWXz, F6GH) in Appendix K.1, we demonstrate the insight for
why the PHP method does not work that well in the CIFAR10(ID)/SVHN(OOD) case with
UMAP (Uniform Manifold Approximation and Projection) visualization;

• (For reviewer G5ek) in Appendix K.2, we testify our methods’ robustness in a reverse
direction, i.e., MNIST (ID) / FashionMNIST (OOD) and SVHN (ID) / CIFAR-10 (OOD);
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• (For reviewer F6GH) in Appendix K.3, we testify our methods’ OOD detection performance
with a model trained on the CIFAR-100 dataset;

• (For reviewer ms1o, G5ek, jWXz) in Appendix K.4, we testify our method’s OOD detection
performance with a more complex backbone, diffusion model;

• (For reviewer ms1o, G5ek) in Appendix K.5, we analyze the computation efficiency about
our methods and ensemble methods reagrding the training time and inference time;

• (For reviewer G5ek, jWXz) in Appendix K.6, we testify the implementation of DEC method
with other two image compressors, i.e., JPEG and PNG compressor;

• (For reviewer ms1o) in Appendix K.7, we testify the noisy setting, which demonstrates the
robustness of our method and could support our analysis about the Ent-Mut term.

K.1 WHY DOES PHP NOT WORK WELL IN SOME CASES?

We provide a further analysis for the PHP method of when it would not work well, specifically why it
works well in FashionMNIST (ID) / MNIST (0OD) dataset pair but not work well on CIFAR-10 (ID)
/ SVHN (OOD) dataset pair. Additionally, thanks for the reviewer’s recommendation, we replace
t-SNE with UMAP (Uniform Manifold Approximation and Projection) McInnes et al. (2018) for
visualizing the latent representations. As the results shown in Figure 9, the latent variable’s aggregated
posterior distribution of FashionMNIST qfashion(z) is pretty distinguishable from that of MNIST
qmnist(z) but the aggregated posterior distribution of CIFAR-10 qcifar(z) has some overlapping
with SVHN qsvhn(z), which may due to the shared low-level features across CIFAR-10 and SVHN
datasets. Thus, the DKL[qsvhn(z)||q̂cifar(z)] could be smaller than DKL[qmnist(z)||q̂fashion(z)],
which indicates the reason for why PHP works well in FashionMNIST (ID) / MNIST (OOD) but not
that well in CIFAR-10 (ID) / SVHN (OOD). This also inspires us that encoding more dataset-specific
semantic information into the latent variables could further improve the performance of the PHP
method.

FMNIST test (ID)
MNIST test (OOD)
Prior z (0, I)

(a) FashionMNIST(ID)/MNIST(OOD)

CIFAR-10 test (ID)
SVHN test (OOD)
Prior z (0, I)

(b) CIFAR-10(ID)/SVHN(OOD)

Figure 9: The UMAP visualization of latent representations on FashionMNIST(ID) / MNIST(OOD)
and CIFAR-10(ID) / SVHN(OOD) dataset pairs.

K.2 REVERSE TESTIFICATION

Since a good OOD detection method should improve or at least not hurt the performance when
exchanging the ID and OOD datasets, we add three “reverse” experiments in Table 12 as an addition to
Table 2, where models are trained on MNIST or SVHN and then testified on detecting FashionMNIST
or CIFAR-10 as OOD data. The results in Table 12 could support our methods’ robustness, because
the PHP and DEC are calibration on the ELBO directly, which could improve or at least not hurt
the performance of applying ELBO to do OOD detection. In contrast, the baselines HVK Havtorn
et al. (2021) and LLRada Li et al. (2022) are not based on calibration on the ELBO but rely on the
model’s ability to extract consistent low-level and high-level information in the hierarchical VAEs.
Though it could achieve competitive results once the hierarchical VAE is well-trained, it can hurt the
OOD detection performance when the ELBO could already be a perfect OOD detector in cases like
MNIST (ID) / FashionMNIST (OOD).
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Table 12: Reverse experiments. The comparisons of our method with post-hoc prior (denoted as
“PHP”) or dataset entropy-mutual calibration (denoted as “DEC”) individually and other unsupervised
OOD detection methods. “PHP+DEC" is equal to our method “AVOID". Bold numbers are superior
results.

MNIST(ID)/FashionMNIST(OOD) SVHN(ID)/CIFAR-10(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
ELBO (Kingma & Welling, 2014) 99.9±0.0 99.9±0.0 0.00±0.0 ELBO (Kingma & Welling, 2014) 99.9±0.0 99.9±0.0 0.00±0.0
HVK (Havtorn et al., 2021) 80.5±1.1 82.6±1.2 37.9±0.7 HVK (Havtorn et al., 2021) 64.2±1.0 58.0±1.2 56.8±0.8
LLRada(Li et al., 2022) 83.0±1.1 86.2±1.1 27.0±0.6 LLRada(Li et al., 2022) 34.7±1.4 39.7±1.3 90.6±0.8
-Ours: -Ours:
PHP 99.9±0.0 99.9±0.0 0.00±0.0 PHP 99.9±0.0 99.9±0.0 0.00±0.0
DEC 99.9±0.0 99.9±0.0 0.00±0.0 DEC 99.9±0.0 99.9±0.0 0.00±0.0
PHP+DEC 99.9±0.0 99.9±0.0 0.00±0.0 PHP+DEC 99.9±0.0 99.9±0.0 0.00±0.0

K.3 EXPERIMENT ON CIFAR-100

As CIFAR-100 is a more complex dataset compared to the CIFAR-10, testifying our methods’ OOD
detection performance with a model trained on CIFAR-100 could support our methods’ robustness.
The results in Table 13 demonstrate our methods’ superiority than other baselines in OOD detection.
Table 14, Table 15, and Table 16 evaluate the PHP, DEC, and their combination (AVOID)’s individual
OOD detection performance on more datasets.

Table 13: Comparison of our methods and baselines of OOD detection performance on CIFAR-100
(ID) / SVHN (OOD). Bold are the best results.

CIFAR-100 (ID) / SVHN (OOD)

Method AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO (Kingma & Welling, 2014) 7.68 ±1.12 33.3 ± 1.20 99.7 ± 0.88

HVK (Havtorn et al., 2021) 52.3 ±1.65 53.6 ±1.30 79.9 ±0.75

LLRada (Li et al., 2022) 86.7 ±0.54 86.0 ±0.51 22.0 ±0.30

-ours

PHP 24.4 ± 1.10 37.1 ±1.26 96.7 ± 0.56

DEC 81.8 ± 0.00 85.9 ± 0.00 31.3 ±0.00

AVOID 88.3 ± 1.21 88.7 ± 1.30 17.0 ± 0.53

Table 14: Comparison of OOD detection performance between our PHP method and ELBO with
models trained on CIFAR-100 (ID). Bold are the best results.

ID CIFAR-100

OOD AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO / PHP(ours)

CelebA 58.2 / 65.0 56.0 / 64.9 65.8 / 65.9

Places365 56.5 / 69.5 55.5 / 67.2 74.6 / 52.0

LFWPeople 63.9 / 74.3 58.4 / 72.4 61.3 / 46.6

SUN 58.3 / 60.0 55.6 / 57.9 61.0 / 60.6

Texture 52.7 / 55.4 48.4 / 51.5 66.1 / 64.4

Flowers102 80.5 / 84.3 80.1 / 80.8 23.9 / 23.8

GTSRB 58.7 / 67.5 51.8 / 59.6 49.4 / 49.1

Const 0.00 / 2.40 0.00 / 31.8 100. / 100.

Random 100. / 100. 100. / 100. 0.00 / 0.00
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Table 15: Comparison of OOD detection performance between our DEC method and ELBO with
models trained on CIFAR-100 (ID). Bold are the best results.

ID CIFAR-100

OOD AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO / DEC(ours)

CelebA 58.2 / 72.4 56.0 / 67.0 65.8 / 45.0

Places365 56.5 / 71.7 55.5 / 66.5 74.6 / 45.8

LFWPeople 63.9 / 69.3 58.4 / 64.1 61.3 / 50.7

SUN 58.3 / 69.3 55.6 / 64.1 61.0 / 50.7

Texture 52.7 / 69.3 48.4 / 66.0 66.1 / 47.4

Flowers102 80.5 / 87.3 80.1 / 81.0 23.9 / 19.1

GTSRB 58.7 / 73.9 51.8 / 68.1 49.4 / 41.0

Const 0.00 / 76.5 0.00 / 85.0 100. / 21.9

Random 100. / 100. 100. / 100. 0.00 / 0.00

Table 16: Comparison of OOD detection performance between our AVOID method and ELBO with
models trained on CIFAR-100 (ID). Bold are the best results.

ID CIFAR-100

OOD AUROC ↑ AUPRC ↑ FPR80 ↓
ELBO / AVOID(ours)

CelebA 58.2 / 74.8 56.0 / 68.6 65.8 / 35.7

Places365 56.5 / 80.0 55.5 / 74.0 74.6 / 27.7

LFWPeople 63.9 / 81.5 58.4 / 75.4 61.3 / 26.3

SUN 58.3 / 70.6 55.6 / 62.6 61.0 / 39.1

Texture 52.7 / 75.0 48.4 / 65.8 66.1 / 31.5

Flowers102 80.5 / 92.3 80.1 / 87.4 23.9 / 9.20

GTSRB 58.7 / 75.3 51.8 / 68.8 49.4 / 35.3

Const 0.00 / 79.8 0.00 / 80.8 100. / 22.1

Random 100. / 100. 100. / 100. 0.00. / 0.00

K.4 EXPERIMENTS ON DIFFUSION MODELS

As the diffusion model is a more powerful and complex deep generative model, which also provides
a variational evidence lower bound (ELBO) as an estimation of the data marginal log-likelihood Ho
et al. (2020), we testify our method with replace the original backbone (VAE) to a diffusion model.
We first directly testify the OOD detection performance of the ELBO of a trained diffusion model
with 1000 time steps Ho et al. (2020), i.e., {xt}T=1000

t=0 where x0 is the input data x and x1, ...,xT

could be seen as the latent variables. As Table 17 shows, directly applying ELBO of a diffusion model
could still suffer from the overestimation issue. Therefore, it would be interesting to see whether our
method could also alleviate the overestimation issue in a diffusion model.

To apply our AVOID method to diffusion models, we need to fit its aggregated posterior distribution
qid(z) at first. Let us recall the ELBO of a T time step diffusion model, expressed as

ELBO(x) = Eq(x1|x0) log pθ(x0|x1)−
T∑

t=2

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]−DKL[q(xT |x0)||p(xT )],

(61)
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where q(x1,x2, ...,xT ) is decomposed to a product of T terms q(xt−1|xt) for every time step, i.e.,

q(x1,x2, ...,xT ) = q(xT )

T∏
t=2

q(xt−1|xt). (62)

To fit the q(x1,x2, ...,xT ) for applying PHP method, we need T individual LSTMs to fit every step’s
q(xt−1|xt). However, as the dimension of xt is the same as the input data, it could be difficult or
even impossible to fit the q(xt−1|xt) well.

Thanks for the reviewers’ deep recognition of this difficulty and recommending the variants of the
diffusion model, i.e., latent diffusion model. For latent diffusion models Rombach et al. (2022), to
improve the computation efficiency, the x1 is replaced by a low-dimension latent variable z1 encoded
by a auto-encoder, then the following x2, ...,xT is replaced by z2, ...,zT . Therefore, the ELBO of
the latent diffusion model is expressed by

ELBO(x) = Eqϕ(z1|x0) log pθ(x0|z1)−
T∑

t=2

DKL[q(zt−1|zt,x0)||pθ(zt−1|zt)]−DKL[q(zT |x0)||p(zT )],

(63)

and the latent q(z1, z2, ...,zT ) is decomposed to a product of T terms q(zt−1|zt) for every time step,
i.e.,

q(z1, z2, ...,zT ) = q(zT )

T∏
t=2

q(zt−1|zt). (64)

To fit the q(z1, z2, ...,zT ) for applying PHP method, we need T individual LSTMs q̂id(zt−1|zt) to
fit every step’s q(zt−1|zt) on the training set and then change the ELBO to

PHP(x) = log pθ(x0|z1)−
T∑

t=2

DKL[q(zt−1|zt,x0)||q̂id(zt−1|zt)]−DKL[q(zT |x0)||q̂id(zT )].

(65)

However, the T could still be too large, e.g., when T = 1000, we still need to train 1000 individual
models to fit q(zt−1|zt), which we think is very awkward and low-efficiency in computation. Thus,
we consider a shallow latent diffusion model, termed “Shallow-Diffusion”, where the T is set as
10. Besides, we let it directly maximize the ELBO as its training objective with a trainable encoder,
which could be also interpreted as a hierarchical VAE Luo (2022). With a much more complex
backbone than VAE, we report the OOD detection results in Table 17. As results show, our method
could still largely alleviate the overestimation issue.

Table 17: The comparisons of our method with a 10-layer latent diffusion model, termed "Shallow-
Diffuion", with post-hoc prior (denoted as “PHP”) or dataset entropy-mutual calibration (denoted as
“DEC”) individually and other unsupervised OOD detection methods. “PHP+DEC" is equal to our
method “AVOID". Bold numbers are superior results.

FashionMNIST(ID)/MNIST(OOD) CIFAR-10(ID)/SVHN(OOD)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
Diffusion 18.0 34.1 97.4 Diffusion 19.3 35.0 97.2
Shallow-Diffusion 11.5 34.6 98.6 Shallow-Diffusion 4.11 31.14 99.80
PHP 80.9 83.5 29.5 PHP 43.0 46.0 86.2
DEC 34.7 39.7 90.6 DEC 88.9 90.1 12.8
PHP+DEC 85.9 87.5 19.5 PHP+DEC 95.0 95.1 4.11

K.5 COMPUTATION EFFICIENCY

We conduct comparisons for the computation efficiency from two perspectives: inference time and
training time, where results are shown in Table 18 and Table 19, respectively.

First, we testify to the computation efficiency regarding the inference by recording the average infer-
ence time in scoring a data point on an A100 GPU. The time is averaged by sampling 100 data points
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from each of all the used gray-scale datasets or RGB nature datasets. Thanks to the reviewer’s sugges-
tion, in addition to the originally implemented DEC method based on SVD, termed "DEC(SVD)", we
implement three different variants of the DEC method for comparison: DEC(SVD-bs), DEC(JPEG),
and DEC(PNG). “DEC(SVD-bs)” means a binary search version of the “DEC(SVD)”, where the ni is
determined by binary searching from 1 to 2∗nid. “DEC(JPEG)” and “DEC(PNG)” are implementing
DEC with different compressors, JPEG compressor and PNG compressor. They could provide a
value bit(x) indicating the complexity of an image x, then we could get the average bit(x) of the
training set, termed “bitid”. Thus, we could replace the ni with bit(x) to implement the Cnon(x) DEC
method as follows:

Cnon(x) =

{
(bit(x)/bitid), if bit(x) < bitid,

(bitid − (bit(x)− bitid))/bitid, if bit(x) ≥ bitid,
(66)

which could avoid the low-efficiency searching of ni in the DEC(SVD) method.

For the ensemble method WAIC Choi et al. (2018), it relies on an ensemble of N generative models
{log pθi(x)}Ni=1 to detect the OOD data with a score function:

Swaic(x) = Ei(log pθi(x))− Vari(log pθi(x)). (67)

Though the time cost in scoring with Eq. 67 could be ignored, its computation efficiency is much
lower than our methods since it needs to train N independent models and run inference for all
the models to get the score. To achieve better performance, the ensemble number N should be
large enough that leads to worse computation efficiency, e.g., when N = 5, we need 5 times the
computation resource of the ELBO method to get such 5 models and run the inference.

As the results shown in Table 18, our method AVOID with SVD implementing the DEC method is
only approximately 1.5x computation time than the vanilla ELBO, which is still fast. For the training
efficiency shown in Table 19, the PHP method still does not need much computation resources. For
the computation efficiency of the ensemble method WAIC, it largely depends on the computation
resource.

Table 18: Computation efficiency under the metric of average inference time for a data example on
an NVIDIA A100 GPU. The inference time for ensemble methods means it could cost the least time
if all the models are doing inference at the same time with sufficient computation resources like many
GPUs but will cost N times longer than it if only one model of the ensemble could be inferred at one
time due to limited computation resources.

Avg. inference time (ms) for a data example
Method Gray-scale data RGB nature data
ELBO 9.33 9.58
Ensemble of N VAEs (9.33, N × 9.33] (9.58, N × 9.58]
PHP 10.6 11.0
DEC(SVD) 13.3 14.4
DEC(SVD-bs) 11.0 11.6
DEC(JPEG) 10.0 11.4
DEC(PNG) 10.1 10.7
AVOID(SVD) 14.3 14.6

Table 19: Computation efficiency under the metric of average training time for different methods on
an NVIDIA A100 GPU. The training time for ensemble methods means it could cost the least time if
all the models are trained at the same time with sufficient computation resources like many GPUs but
will cost N times longer than it if only one model of the ensemble could be trained at one time due to
limited computation resources.

Avg. training time of a model
Gray-scale data RGB nature data

ELBO ≈ 5h ≈ 7h
PHP ≈ 0.5h ≈ 0.5h

Ensemble of N VAEs ≈ 5h ∼ N × 5h ≈ 7h ∼ N × 7h
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K.6 DIFFERENT COMPRESSOR

We kindly emphasize that the SVD is only one of the choices for implementing the DEC method,
which is simply implemented to support our analysis of the overestimation issue. Other compressors
like JPEG and PNG compressors could also be directly applied to implement the DEC method.
We compare their performance in Table 20. Actually, we find that the relationship between the
data type and compressor plays an important role in its performance, e.g, the ratio of the average
bit, bits(FashionMNIST)/bits(MNIST), compressed by JEPG is only 1.12, which leads to its poor
performance; in contrast, the ratio of the average bit, bits(FashionMNIST)/bits(MNIST), compressed
by PNG is 1.92, which is much larger and leads to its best performance on this dataset pair.

Table 20: OOD detection performance of DEC method with different compressors.
FashionMNIST(ID)/MNIST(OOD) CIFAR-10(ID)/SVHN(OOD)

Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
SVD 34.1 40.7 92.5 SVD 87.8 89,9 17.8
JPEG 31.1 36.6 93.0 JPEG 90.4 88.6 12.5
PNG 67.2 68.6 45.8 PNG 80.5 75.4 26.4

K.7 EVALUATION ON NOISY DATA

It would be interesting to add different scales of random noise to the original in-distribution data and
see what would happen in detecting the noisy data as OOD data. Intuitively, adding random noise to
the data could largely increase the entropy of the distribution of in-distribution data, which could lead
to better OOD detection performance.

We demonstrate the changing process when we gradually add noise to the data with scale α from 0 to
1, expressed as

xnoisy ← x+ α× ϵ, ϵ ∼ N (0, I). (68)

As Table 21 and Table 22 show, along with the scale of noise increases, the OOD detection perfor-
mance of all methods becomes better, supporting our analysis of the factor 2 for the overestimation
issue. To be more specific, Hpnoisy

(xnoisy) > HpID
(xID) contributes to Ent-Mut(θ, ϕ, pnoisy) >

Ent-Mut(θ, ϕ, pID), and further leads to the gap G > 0 in Eq. 8, i.e., the overestimation issue does
not occur in these cases.

Table 21: OOD detection performance under the metric AUROC ↑ on the FashionMNIST(ID)/Noisy-
FashionMNIST(OOD) dataset pair in different noisy scales. “Comp.” denotes the ratio of average bits
between ID and OOD datasets, i.e., bits(Fashion)/bits(Noisy-Fashion), where the bits are measured
by JPEG compressor.

FashionMNIST(ID) / Noisy-FashionMNIST(OOD)
noise scale ELBO PHP DEC AVOID Comp.

0.0 50.0 50.0 50.0 50.0 1.0
0.1 92.0 93.8 99.4 99.7 1.26
0.2 97.7 98.2 99.5 100. 1.38
0.3 99.4 99.5 99.5 100. 1.46
0.4 99.9 99.9 99.9 100. 1.53
0.5 99.9 99.9 99.9 100. 1.58
0.6 100. 100. 100. 100. 1.63
0.7 100. 100. 100. 100. 1.65
0.8 100. 100. 100. 100. 1.67
0.9 100. 100. 100. 100. 1.68
1.0 100. 100. 100. 100. 1.69
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Table 22: OOD detection performance under the metric AUROC ↑ on the CIFAR(ID)/Noisy-CIFAR-
10(OOD) dataset pair in different noisy scales. “Comp.” denotes the ratio of average bits between
ID and OOD datasets, i.e., bits(CIFAR10)/bits(Noisy-CIFAR10), where the bits are measured by
JPEG compressor.

CIFAR10(ID) / Noisy-CIFAR10(OOD)
noise scale ELBO PHP DEC AVOID Comp.

0.0 50.0 50.0 50.0 50.0 1.0
0.1 94.3 94.7 98.1 98.5 1.26
0.2 99.2 99.4 99.9 99.9 1.39
0.3 99.9 99.9 99.9 99.9 1.48
0.4 100. 100. 100. 100. 1.53
0.5 100. 100. 100. 100. 1.57
0.6 100. 100. 100. 100. 1.59
0.7 100. 100. 100. 100. 1.61
0.8 100. 100. 100. 100. 1.63
0.9 100. 100. 100. 100. 1.64
1.0 100. 100. 100. 100. 1.65

K.8 DISCUSSION OF SET-LEVEL AND INSTANCE-LEVEL DEFINITION OF overestimation

We provide a discussion of a more strict instance-level definition of overestimation here. Let’s still
start from a toy example, assuming there is an ID distribution x ∼ pid(x), e.g., N (10, 5), and also
an OOD distribution x ∼ pood(x), e.g., N (9, 5), we need to develop an ID-OOD classifier D(x) to
determine a data sample is OOD or not, specifically D(x) = ID if S(x) > T or D(x) = OOD if
S(x) ≤ T , where T could be a threshold such that 95% of ID samples are classified as ID.

The core of designing an ideal ID-OOD classifier for unsupervised OOD detection is the choice of
score function S(x). Under the context of generative models, we expect S(x) to own the property
G = Ex∼pid(x)[S(x)] − Ex∼pood(x)[S(x)] > 0, so that most of ID samples can be classified
accurately after setting a threshold T . We admit there will still be some ID/OOD samples to be
misclassified even if G > 0 and the selection of T can lead to varying degrees of misclassification,
but from the perspective of the mean value of the data distribution, a larger G > 0 indicates that S(x)
tends to assign higher scores to most of ID samples than that of OOD samples.

The aforementioned content is the original statement in our first version of the manuscript. Then, as for
the stricter case you mentioned, we have p(S(x) > T |x ∼ pid(x)) and p(S(x) > T |x ∼ pood(x)),
and target of designing S(x) is to make p(S(x) > T |x ∼ pid(x)) large but p(S(x) > T |x ∼
pood(x)) small. In other words, we need to make the confidence of classifying ID samples with ID
labels larger than that of OOD samples, specifically p(S(x) > T |x ∼ pid(x)) > p(S(x) > T |x ∼
pood(x)), also equals to p(S(x) > T |x ∼ pid(x))− p(S(x) > T |x ∼ pood(x)) > 0.

At the instance level, an ideal S(x) is to make the lowest value of ID samples larger than the
highest value of OOD samples. At the set level (or distribution level), an ideal S(x) is to enlarge the
distance between the distributions of ID and OOD samples, under the condition that the ID samples
tend to own higher S(x) scores. In our work, we tend to focus on the second scenario to enlarge the
distribution distance, which can be instantiated as the distance between mean values of distributions.
Thus, in our case, the stricter defination p(S(x) > T |x ∼ pid(x))− p(S(x) > T |x ∼ pood(x)) > 0
can be also transfered into G = Ex∼pid(x)[S(x)]−Ex∼pood(x)[S(x)] > 0 during the implementation.

Thus, we assume that the following theoretical analysis, which is focused on the set-level definition
in the manuscript, can still hold even with the stricter definition. To be more specific, the two factors,
1) the mismatch between q(z) and p(z) and 2) the gap in dataset entropy-mutual integration, could
still cause some out-of-distribution (OOD) data samples to be scored higher than some in-distribution
(ID) data with the score function as the ELBO.

As for the instance-level theoretical analysis, we admit it remains a great challenge in the field of
OOD detection, especially for unsupervised OOD detection with generative models. We are very
willing to challenge this problem in the future.
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