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Abstract

Ensuring safety is a critical challenge in apply-
ing Reinforcement Learning (RL) to real-world
scenarios. Constrained Reinforcement Learning
(CRL) addresses this by maximizing returns under
predefined constraints, typically formulated as the
expected cumulative cost. However, expectation-
based constraints overlook rare but high-impact
extreme value events in the tail distribution, such
as black swan incidents, which can lead to severe
constraint violations. To address this issue, we
propose the Extreme Value policy Optimization
(EVO) algorithm, leveraging Extreme Value The-
ory (EVT) to model and exploit extreme reward
and cost samples, reducing constraint violations.
EVO introduces an extreme quantile optimization
objective to explicitly capture extreme samples
in the cost tail distribution. Additionally, we pro-
pose an extreme prioritization mechanism dur-
ing replay, amplifying the learning signal from
rare but high-impact extreme samples. Theoret-
ically, we establish upper bounds on expected
constraint violations during policy updates, guar-
anteeing strict constraint satisfaction at a zero-
violation quantile level. Further, we demonstrate
that EVO achieves a lower probability of con-
straint violations than expectation-based methods
and exhibits lower variance than quantile regres-
sion methods. Extensive experiments show that
EVO significantly reduces constraint violations
during training while maintaining competitive pol-
icy performance compared to baselines.

1. Introduction
Reinforcement Learning (RL) has achieved remarkable suc-
cess across various fields such as robot control (Haarnoja
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et al., 2018; Xu et al., 2020) and games (Vinyals et al., 2019;
Yu et al., 2022a). However, the absence of safety guaran-
tees poses a significant barrier to the deployment of RL
in real-world scenarios. To overcome this limitation, Con-
strained Reinforcement Learning (CRL) (Ding et al., 2020;
Stooke et al., 2020; Xu et al., 2021; Yang et al., 2022) aims
to optimize policies by maximizing cumulative rewards
while satisfying predefined constraints. In safety-critical
domains such as autonomous driving and financial trading,
safety guarantees are highly susceptible to extreme events,
which occur with low probability but can lead to significant
consequences (NS et al., 2023). For instance, black swan
incidents are especially concerning due to their impact to
cause catastrophic outcomes (Masys, 2012).

Most CRL methods evaluate constraints based on the ex-
pected sum of costs (Achiam et al., 2017; Stooke et al., 2020;
Ding et al., 2021), optimizing policies to ensure the expected
cost remains below a predefined threshold. However, this
expectation-based evaluation only guarantees compliance
on average, neglecting the inherent variability of the cost
distribution, particularly in extreme samples arising in the
tail. Consequently, even when the expected cost satisfies the
constraint, frequent constraint violations can occur due to
the presence of these extreme events, as shown in Figure 1a.

To minimize the probability of constraint violations, prob-
abilistic constraint methods (Chow et al., 2018; Hiraoka
et al., 2019) optimize policies based on constraint distribu-
tions. WCSAC (Yang et al., 2021) employs Distributional
RL (Bellemare et al., 2017) with a Gaussian approximation
of the cost distribution, computing Conditional Value-at-
Risk (CVaR) (Rockafellar & Uryasev, 2002) to guide policy
optimization. However, the Gaussian distribution fails to
accurately capture the tail behavior, as shown in Figure 1b.
QCPO (Jung et al., 2022) introduces quantile-based con-
straint objective with Value-at-Risk (VaR), deriving approx-
imated policy gradient. However, these methods overlook
the critical impact of extreme samples during training.

Extreme samples, characterized by their low probability
but high impact (NS et al., 2023), play a crucial role in
CRL. Specifically, extreme reward samples provide insights
into achieving task objectives, while extreme cost samples
highlight critical constraints. Unfortunately, these samples
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are naturally scarce, arising infrequently and often requiring
risky or expensive exploration to obtain. This scarcity poses
challenges in modeling tail distribution, leading to high
variance (Urpı́ et al., 2021). Therefore, accurately modeling
tail behavior and effectively exploiting these rare but crucial
samples is essential for reducing constraint violations and
improving policy performance in CRL.

(a) (b)
Figure 1: (a) Probability density function of cumulative cost.
Even when the expected constraint satisfies the threshold,
there remains a high probability of constraint violations. (b)
Fitting cumulative cost distribution with GPD and Gaussian,
GPD captures tails more accurately.

In this paper, we propose the Extreme Value policy Opti-
mization (EVO) algorithm, which leverages Extreme Value
Theory (EVT) (Pickands III, 1975) to model and exploit
these samples to enhance policy optimization. To miti-
gate violations caused by extreme cost samples, we intro-
duce an extreme quantile constraint, explicitly incorporating
tail extremes modeled using a Generalized Pareto Distri-
bution (GPD) based on EVT. Additionally, we propose an
extreme prioritization mechanism based on quantile levels
derived from the GPDs of reward and cost, prioritizing low-
probability but high-information samples during experience
replay to exploit the learning signals in extreme samples.
To address the high variance of extreme samples, we apply
an off-policy importance resampling approach, augmenting
extreme samples and enhancing tail distribution modeling.
Theoretically, we establish an upper bound on expected
constraint violations during policy updates in EVO, ensur-
ing strict constraint satisfaction at a zero-violation quantile
level. We further prove that EVO achieves lower constraint
violation probability compared to expectation-based CRL
methods and exhibits lower variance compared to quantile
regression methods. Experimental results across multiple
environments validate that EVO significantly reduces con-
straint violations while maintaining strong policy perfor-
mance. The main contributions of this work are as follows:

1. We propose the EVO algorithm, integrating Extreme
Value Theory (EVT) into CRL to model and exploit
extreme samples, addressing the limitation in handling
rare but high-impact events.

2. We propose an extreme quantile constraint based on
Generalized Pareto Distributions (GPDs) and an ex-

treme prioritization mechanism, enhancing learning
from extreme samples.

3. We theoretically and empirically demonstrate that EVO
achieves lower expected constraint violations, lower
violation probability, and reduced variance compared
to baselines. We provide the code for EVO in https:
//github.com/ShiqingGao/EVO.

2. Related Work
Expectation Constraint. The optimization methods in
CRL with expectation-based constraints can be categorized
into primal-dual and primal approaches. Primal-dual meth-
ods (Ding et al., 2021; Ying et al., 2024) convert con-
strained problems into unconstrained ones using dual vari-
ables. NPG-PD (Ding et al., 2020) establishes global conver-
gence with sublinear rates. PID Lagrangian (Stooke et al.,
2020) introduces proportional and differential control to
mitigate cost overshoot and oscillations. In contrast, primal
methods directly optimize constrained problems in the pri-
mal space (Yang et al., 2020; Yu et al., 2022b; Gao et al.,
2024). CPO (Achiam et al., 2017) enforces performance and
constraint violation bounds within a trust region. FOCOPS
(Zhang et al., 2020) solves the constraint problem in the
nonparametric policy space and projects the policy back to
the parametric space. CUP (Yang et al., 2022) provides gen-
eralized theoretical guarantees for surrogate functions with
generalized advantage estimator (Schulman et al., 2015b).
However, these expectation-based methods fail to capture
variability in the constraint distribution, resulting in fre-
quent constraint violations. In this paper, we model the
tail extremes of constraints using GPD and propose an op-
timization objective based on extreme quantile to reduce
constraint violation probability.

Probability Constraint. Probability-based methods
(Chow et al., 2018; Hiraoka et al., 2019; Urpı́ et al.,
2021) optimize the probability distribution of constraints
to reduce violations. WCSAC (Yang et al., 2021) uses
CVaR (Rockafellar & Uryasev, 2002) as a safety measure,
approximating the constraint distribution with a Gaussian
model. However, the Gaussian approximation fails to
capture the tail decay rate, introducing significant bias for
small tail probabilities. QCPO (Jung et al., 2022) transforms
outage probability constraints into quantile-based ones and
proposes an approximate policy gradient. However, these
methods neglect the high variance of extreme samples and
fail to fully exploit them. EVAC (NS et al., 2023) employs
EVT to reduce variance in extreme returns, improving risk
aversion in RL, but does not address constraint satisfaction
in CRL. In this paper, we propose an extreme quantile
constraint optimization objective, leveraging EVT to model
extreme samples and reduce variance. Additionally, we
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introduce an extreme prioritization mechanism to fully
exploit these extreme samples.

3. Preliminaries
3.1. Constrained Reinforcement Learning

CRL can be modeled as a Constrained Markov Decision
Process (CMDP), denoted by a tuple (S,A,Rf , Cf , P, ρ, γ),
where S is the state space, A is the action space, Rf :
S × A → R is the reward function, P : S × A → [0, 1]
is the transition probability function, ρ is the initial state
distribution, and γ ∈ (0, 1) is the discount factor. The cost
function Cf : S ×A→ R maps state-action pairs to costs
c. d denotes the constraint threshold.

Starting from an initial state s0 sampled from the initial
state distribution ρ, the agent perceives the state st from
the environment at each time step t, selects an action at
according to the policy π : S → A, receives the reward
rt and cost ct, and transfers to the next state st+1 based
on P (st+1|st, at). The set of all stationary policies is de-
noted as Π. The discounted future state visitation distri-
bution is defined as dπ(s) := (1 − γ)

∑∞
t=0 γ

tP (st =
s|π). The value function for a policy π is V π

R (s) :=
Eτ∼π[

∑∞
t=0 γ

tR(st, at)|s0 = s], and action-value function
is Qπ

R(s, a) := Eτ∼π[
∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a].
The advantage function measures the advantage of action
a over the mean value: AπR(s, a) := Qπ

R(s, a) − V π
R (s).

The cost value function V π
C (s), cost action value function

Qπ
C(s, a) and cost advantage function AπC(s, a) in CMDP

can be obtained as in MDP by replacing the reward r with
the cost c. The expected discounted return JR(π) :=
Eτ∼π[

∑∞
t=0 γ

tRf (st, at)], and the expected cumulative
discount cost JC(π) := Eτ∼π[

∑∞
t=0 γ

tCf (st, at)], where
τ = (s0, a0, s1, a1, · · · ) is the trajectory under π.

The CRL aims to find an optimal policy by maximizing the
expected discount return over the set of feasible policies
ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(1)

3.2. Extreme Value Theory

Extreme Value Theory (EVT) is a statistical method for
analyzing the distributional properties of extreme events.

Theorem 3.1. X1, · · · , Xn denote a sequence of IID
random variables with cumulative distribution function
F , which approaches the Generalized Pareto distribution
(GPD) asymptotically. Denote the conditional excess distri-
bution as Ft(x) = P (X − t ≤ x|X > t), then:

lim
t→∞

Ft(x)→ H(x) (2)

where t is a threshold and H(x) denotes the GPD, follow-
ing:

1−
(
1 +

ξx

σ

)− 1
ξ

, ξ ̸= 0 (3)

Theorem 3.1 describes that the conditional distribution
above a threshold t approaches the GPD.

We introduce the necessary notation in this paper. Let X
be a random variable with cumulative distribution function
F (x) = P (X ≤ x). The tail distribution, representing the
probability of X exceeding a threshold x: F̄ (x) = P (X >
x) = 1− F (x). Given a quantile level µ, the quantile qµ is
defined as the smallest value such that P (X ≤ qµ) ≥ µ i.e.
P (X > qµ) < 1− µ.

4. Methodology

Figure 2: Extreme quantile constraint qµ+ν and EVT-based
constraint qµ + qHν

1−µ
. The peak set Yµ, containing sam-

ples exceeding the safety boundary qµ, is used to fit GPDs.
The extreme set ZC , containing samples exceeding the risk
boundary qµ + qHν

1−µ
, is used to compute EVT-based con-

straints for reducing violations and to calculate extreme
priorities for exploiting extreme samples.

In this section, we present the modeling of extreme samples
using EVT and derive the constrained optimization objective
based on extreme quantile. We then introduce an extreme
prioritization mechanism to effectively capture information
from extreme samples and enhance extreme value model-
ing using off-policy samples to mitigate the high variance.
Finally, we provide theoretical guarantees for EVO.

4.1. Extreme Quantile Constraint

To quantify the probability of constraint violations, we em-
ploy a constrained quantile function that ensures the con-
straint is satisfied at a specified quantile level:

argmax
π∈Π

JR(π)

s.t. qµ ≤ d
(4)

where the quantile for the distribution of the cumulative cost
C =

∑∞
t=0 γ

tc under policy π is defined as:

qµ = inf{x|Pr[

∞∑
t=0

γtc ≤ x] ≥ µ} ≤ d (5)
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and µ is the quantile level. When the quantile satisfies the
constraint threshold qµ ≤ d, the probability P (C ≤ d) ≥ µ
according to the definition of the quantile.

Extreme samples in the cost distribution tails are crucial
for reducing the probability of constraint violations, as
they carry critical signals strongly correlated with task con-
straints. To capture extreme samples, we propose an extreme
quantile constraint that explicitly incorporates tail behavior:

qµ+ν ≤ d (6)

We denote qµ in qµ+ν as the safety boundary, dividing the
distribution into the body and the tail to capture extreme
samples. qµ+ν denotes the risk boundary, integrating ex-
treme values into the overall distribution. ν denotes the ex-
ploitation range in the tail, shown in Figure 2. The proposed
quantile-based optimization objective minimizes constraint
violations by optimizing the risk boundary, effectively ac-
counting for extreme values in the distribution.

Extreme samples in the tail distribution are characterized
by low probabilities and limited sample scale, posing chal-
lenges for accurate modeling. To address this, we leverage
Extreme Value Theory to effectively capture extreme sam-
ples and reduce variance.

As stated in Theorem 3.1, samples exceeding a threshold
follow a Generalized Pareto Distribution (GPD). To validate
this, we empirically analyze cost samples from the envi-
ronment, fitting the cumulative cost distribution to both a
GPD and a Gaussian distribution. The results in Figure 1b
demonstrate that the tail distribution better aligns with the
GPD. By accurately capturing the tail behavior, the GPD
enables more effective modeling of extreme samples, which
are crucial for reducing constraint violations. Building on
this insight, we propose an EVT-based approach for tail
distribution modeling.

We first establish the relationship between EVT-based tail
distribution modeling and the proposed quantile objective
6. Let z = qµ+ν − qµ > 0 denote the excess value beyond
the safety boundary qµ, used to explicitly model the tail.
The cumulative distribution function (CDF) of C is given
by FC(qµ+ν) = P (C ≤ qµ+ν) = P (C ≤ qµ + z). We
decompose the distribution of C into two parts: the body
distribution below qµ and the tail distribution beyond qµ:

FC(qµ+ν) = P (C ≤ qµ + z)

=P (C ≤ qµ) + P (C > qµ)P (C − qµ ≤ z|C > qµ)
(7)

Let Z = C − qµ represent the excess random variable over
qµ. We use the GPD to model the tail distribution Z, where
FH(z) denotes the CDF of the GPD. According to Theorem
3.1, the conditional probability P (C − qµ ≤ z|C > qµ) in
Equation 7 asymptotically follows the GPD FH(z). Thus
P (C ≤ qµ + z) can be expressed as:

P (C ≤ qµ + z) = µ+ ν ⋍ µ+ (1− µ)P (Z ≤ z) (8)

Then we derive the quantile level in the GPD from Equation
8: P (Z ≤ z) ⋍ ν

1−µ . Denote the corresponding quantile
in the GPD as qH , then the risk boundary quantile qµ+ν is
expressed using the quantile of GPD:

qµ+ν = qµ + z ⋍ qµ + qHν
1−µ

(9)

where the excess value z is asymptotically equal to qHν
1−µ

under the GPD. Furthermore, the relationship between the
probability density function fC of C and fH of GPD is:

fC(qµ + z) = (1− µ)fH(z) (10)

Then we propose a EVT-based optimization objective:

argmax
π∈Π

JR(π)

s.t. qµ + qHν
1−µ
≤ d

(11)

where the constraint term denotes:

inf{x|Pr[C ≤ x] ≥ µ}+

inf{z|Pr[Z ≤ z|z > 0] ≥ ν

1− µ
} ≤ d

(12)

In our work, the safety boundary qµ is determined by the
expectation of the cumulative cost, reflecting the average
behavior of the cost distribution. In the trust region, we give
the surrogate optimization objective:

πk+1 = arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)] + qHν
1−µ
≤ d

D(π∥πk) ≤ δ
(13)

where Πθ is the policy set parameterized by θ, D(π∥πk) =
Es∼dπk [DKL(π∥πk)[s]], DKL is the KL divergence and
δ > 0 is the trust region size. {π ∈ Πθ : D(π∥πk) ≤ δ} de-
fines the trust region. We provide the detailed optimization
methods to solve the objective 13 in Appendix A.

As shown in Figure 2, during training, samples generated by
the current policy π are used to compute the safety boundary
qµ. Samples where C > qµ, called peaks, are collected to
form the peak set Yµ. The peaks are then used to fit the
GPD, enabling the update of the risk boundary as qµ+ν =
qµ + qHν

1−µ
. Samples exceeding the updated risk boundary

qµ+ qHν
1−µ

are identified as extreme samples and utilized for
further analysis and policy optimization.

The parameters of the GPD, ξ (shape) and σ (scale), are
estimated using maximum likelihood estimation:

logL(ξ, σ) = −Nµ log σ −
(
1 +

1

ξ

) Nµ∑
i=1

log(1 +
ξ

σ
Yi)

(14)
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where Yi denotes the sample in the peak set, Nµ is the
number of peaks. The risk boundary can be obtained by:

qµ + qHν
1−µ

= qµ +
σ

ξ

(
(1− νn

Nµ
)−ξ − 1

)
(15)

where n is the total number of samples.

4.2. Extreme Prioritization Resampling

Extreme samples in CRL are essential for guiding policy
optimization. Extreme reward samples provide valuable
insights for achieving task goals, while extreme cost sam-
ples offer critical information for satisfying task constraints.
However, their low occurrence probability results in a rarity
of these information-rich samples. To learn an optimal safe
policy, it is essential to effectively exploit the scarce extreme
samples. We model extreme reward and cost samples based
on EVT and propose an extreme prioritization mechanism
to enhance exploitation of learning signals within extreme
samples during experience replay.

As discussed in Section 4.1, extreme cost samples are de-
tected using EVT when their cost value exceeds the risk
boundary. These samples form the extreme cost set, denoted
as ZC : {C > qµ + qHν

1−µ
}.

Similarly, EVT is applied to detect extreme reward samples
in the replay buffer. The quantile qrµ is computed based
on the expectation reward value AR. Samples exceeding
qrµ, termed reward peaks, are collected into the reward peak
set: Y r

µ = {AR(s, a) > qrµ}. The reward peak set is then
used to fit by GPD, which determines the reward boundary
qrµ + qH,rν

1−µ
, following the process outlined in Equation 14

and 15. Samples with reward values exceeding the reward
boundary have a high return to achieve the task goal, termed
extreme reward samples. Denote the extreme reward set as
ZR : {AR > qrµ + qH,rν

1−µ
}.

To effectively exploit the learning signals in extreme sam-
ples, we assign higher priorities to these samples based on
their quantile levels under the GPD. Samples with larger
quantile levels typically indicate lower probabilities and
higher value, and thus are given higher prioritization. The
prioritization score p is composed of two components: re-
ward prioritization and cost prioritization. Reward priori-
tization is determined by the quantile level ωr of a sample
under the reward GPD, while cost prioritization is based on
the quantile level ωc under the cost GPD:

p = ωr + ωc (16)

The probability of a sample si being replayed with extreme
prioritization is:

P (si) =
p(si)∑N
k=1 p(sk)

(17)

where N is the total number of samples in the buffer. The
extreme prioritization mechanism directly correlates a sam-
ple’s replay frequency with its quantile levels in the reward
and cost GPDs, emphasizing high-information extreme sam-
ples during experience replay.

4.3. Importance Resample for Extreme Samples

The GPD is fitted using a sparse extreme set in EVT. How-
ever, limited samples can lead to high variance, as individual
extreme values exert a significant influence.

To address this issue, we introduce an off-policy importance
resampling approach to augment extreme samples and re-
duce the variance of the GPD. By leveraging stored samples
generated under previous policies π0, we apply importance
sampling to correct for the distributional shifts between sam-
ples generated by earlier policies and current policy π. Then
the resampled values of previous samples AR and C can be
denoted as:

A′
R =

π(a|s)
π0(a|s)

AR, C ′ =
π(a|s)
π0(a|s)

C (18)

By augmenting the scale of extreme samples through off-
policy importance resampling, the variance of the GPD is
effectively reduced, enhancing its stability, as supported by
Theorem 4.3.

The algorithm process is presented in Algorithm 1.

4.4. Theoretical Analysis

We provide an upper bound on the expected constraint vio-
lation during policy updates in EVO.

Theorem 4.1 (Constraint violation upper bound). Suppose
πk+1, πk are related by quantile-based constraint objective
11, the upper bound on constraint of πk+1 is:

JC(πk+1) ≤ d− qHν
1−µ

(πk+1)

+
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(19)
where ϵ

πk+1

C := maxs |Ea∼πk+1
[AπC(s, a)]|, TV-divergence

DTV (πk+1||πk)[s] = (1/2)
∑
a |πk+1(a|s) − πk(a|s)|.

The zero-violation exploitation range ν0 in GPD satisfies:

ν0 =
Nµ

n

(
1−

(
ξ

σ(1− γ)

Es∼dπk ,a∼πk+1
[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

)
(20)

which guarantees the expectation of updated policy πk+1

strictly satisfies the constraints, where Nµ is the number of
peaks and n is the total number of samples.
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Algorithm 1 EVO: Extreme Value policy Optimization

Input: Initialize policy network πθ, value networks V ψ
R ,

V υ
C .
Output: The optimal policy parameter θ.
1: for epoch k = 0, 1, 2, ... do
2: Sample trajectories under the current policy πθk .
3: Process the trajectories to C-returns, and calculate

advantage functions with V ψ
R and V υ

C .
4: for K iterations do
5: Update value networks V ψ

R and V υ
C .

6: end for
7: Perform importance resampling to adjust off-policy

samples using Eq. 18.
8: Fit the cost GPD with off-policy samples according

to Eq. 14.
9: Compute the risk boundary qµ+qHν

1−µ
using the fitted

cost GPD (Eq. 11).
10: Fit the reward GPD with off-policy samples accord-

ing to Eq. 14.
11: Compute the extreme prioritization (Eq. 17) from the

reward and cost GPDs.
12: Update policy by optimizing the new objective (Eq.

11) using on-policy samples.
13: end for
14: Return: Policy parameters θ = θk+1.

A proof is provided in Appendix B.1.

Theorem 4.1 demonstrates that EVO has a tighter constraint
violation upper bound compared to the expectation optimiza-
tion objective in CPO (Achiam et al., 2017). Theoretically,
with the zero-violation exploitation range ν0, EVO guaran-
tees that the expectation of the updated policy πk+1 strictly
satisfies the constraints.

Additionally, we analyze the probability of constraint viola-
tions under the quantile-based objective in EVO.
Theorem 4.2 (Constraint violation probability). When the
safety boundary qµ is determined by the expectation of cu-
mulative cost C, the constraint violation probability of EVO
with the zero-violation exploitation range ν0 satisfies:

P (C > d) < (J (E + 1))−
1
ξ (21)

where:

J =
ξ

σ

(
JC(πk) +

1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)]

)
+ 1

E =
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(22)
EVO has a lower constraint violation probability than the
expectation-based CRL by a margin of ν0.

A proof is provided in Appendix B.2.

Theorem 4.2 indicates that EVO has a smaller constraint
violation probability than the expectation-based objective
when µ corresponds to the quantile level of the constraint
expectation.

Theorem 4.3 (Variance of EVO). Let qHν
1−µ

denote the quan-
tile in GPD for random samples of size N from a population
with inverse distribution function qHν

1−µ
= F−1

H ( ν
1−µ ). If

the cumulative distribution function FH is continuous and
has continuous and positive density fH at qHν

1−µ
, then the

quantile estimator qHν
1−µ

to the true quantile value q∗ ν
1−µ

con-
verges in distribution to an Gaussian random vector with
mean 0 and variance Ω:

√
N(qHν

1−µ
− q∗ ν

1−µ
)→ N (0,Ω) (23)

The variance of EVO to estimate the quantile ν
1−µ is:

Ω =
ν(1− µ− ν)

N(1− µ)2f2
H(qHν

1−µ
)

(24)

where µ denotes the safety boundary quantile, ν denotes the
exploitation range, and N denotes the number of samples
from the distribution that are used to estimate the quantile
values. EVO has a lower variance than that in quantile
regression methods:

Ω2 =
(µ+ ν)(1− µ− ν)

Nf2
C(qµ+ν)

(25)

where fC denotes the probability density function.

A proof is provided in Appendix B.3.

Note that Theorem 4.3 indicates the variance of EVO is
negatively correlated with the number of samples used to
estimate the quantile, which demonstrates that extending
the extreme sample scale through off-policy importance
resampling effectively reduces the variance of EVO.

5. Experiment
We evaluate the performance of EVO through compar-
ison with multiple baselines, including the expectation-
based constraint method CPO (Achiam et al., 2017), the
probability-based constraint method WCSAC (Yang et al.,
2021), and state augmentation approaches Saute (Sootla
et al., 2022a) and Simmer (Sootla et al., 2022b), which em-
phasize zero-constraint violation. Results for additional
baselines are provided in Appendix C.1.1. The experi-
ments address the following questions: 1) Does EVO reduce
constraint violations while maintaining policy performance
compared to baselines? 2) Can the modeling and exploita-
tion of extreme samples within EVO help mitigate variance
and enhance policy learning?
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Figure 3: Comparison of EVO to baselines on Safety Gym. The x-axis is the total number of training steps, the y-axis is the
average return or constraint. The solid line is the mean and the shaded area is the standard deviation. The dashed line is the
constraint threshold which is 25.

Environment. The environments in our experiments con-
sist of Safety Gymnasium and MuJoCo (Ji et al., 2024). The
Safety Gymnasium tasks simulate a simplified version of
autonomous driving, where the robot is required to reach a
goal while avoiding obstacles. The Safety MuJoCo tasks
focus on robot motion control, with agents being rewarded
for maintaining a straight path while adhering to a speed
limit to ensure safety and stability. Details are provided in
Appendix C.3.

Experiment Setting. All experiments followed uniform
conditions to ensure fairness and reproducibility, with a total
of 107 training time steps and a maximum trajectory length
of 1000 steps. To reduce randomness, 6 random seeds were
used for each method, and the results are presented as mean
and variance. The parameter settings are in Appendix C.4.

Performance and Constraint. In the navigation tasks
of Safety Gymnasium, the initial policy is infeasible, pre-
senting significant challenges due to multiple obstacles and
complex decision boundaries. Figure 3 shows the learning
curves of EVO and baselines. The results indicate that EVO
rapidly converges to the feasible domain and subsequently
maintains zero constraint violations throughout training.
This is attributed to its optimization objective, which lever-
ages extreme constraints to effectively capture violation
signals from extreme cost values, thereby significantly re-
ducing the probability of constraint violations, as supported
by Theorems 4.1 and 4.2. Furthermore, EVO achieves pol-
icy performance comparable to CPO while outperforming
other methods such as Saute and WCSAC that emphasize
zero constraint violations. It is important to note that CPO
violates the constraint threshold in SafetyPointGoal1-v0, so
a higher return than EVO does not indicate a better policy. In

contrast, EVO achieves the best overall performance while
strictly adhering to the constraint threshold. In the Safety
MuJoCo tasks, as illustrated in Figure 4, when the initial pol-
icy lies within the feasible domain, EVO maintains zero con-
straint violations throughout training, providing strong em-
pirical validation of the zero-violation guarantee in Theorem
4.1. Despite using a probabilistic constraint optimization
objective, WCSAC presents significant constraint violations
in SafetyCarCircle1-v0 and SafetyHalfCheetahVelocity-v1,
because it fails to account for the substantial impact of
extreme samples. We design an evaluation metric to com-
prehensively measure policy performance and constraint
satisfaction during training, results in Appendix C.2 show
that EVO outperforms across multiple environments.

Ablation Study. Ablation experiments are designed to
validate the effectiveness of each component in EVO. (1)
Ablating EVT-based Constraint Objective: We replace the
EVT-based constraint objective with a constant quantile con-
straint objective. The results in Figure 5a and 5b show that
the constant quantile objective achieves constraint satisfac-
tion by diminishing policy performance. Conversely, the
EVT-based constraint objective in EVO, derived from the ex-
treme samples in the tail, captures critical information about
the task goal. This enables EVO to achieve a more favorable
trade-off between policy performance and constraint satis-
faction. (2) Ablating Extreme Prioritization: The results in
Figure 5a and 5b show a degradation in performance when
extreme prioritization during experience replay is removed.
This indicates that prioritizing extreme samples enhances
the optimization process by fully exploiting the task-related
learning signals embedded in these low-probability, high-
impact samples. (3) Ablating Off-policy Importance Resam-
pling for GPD Fitting: As shown in Figure 6, eliminating
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Figure 4: Comparison of EVO to baselines on Safety MuJoCo. The x-axis is the total number of training steps, the y-axis is
the average return or constraint. The solid line is the mean and the shaded area is the standard deviation. The dashed line is
the constraint threshold which is 25.

(a) Return of Ablation (b) Constraint of Ablation (c) Return of Sensitivity (d) Constraint of Sensitivity
Figure 5: (a)(b) Ablation Study, including ablating EVT-based Constraint Objectives and ablating extreme prioritization.
(c)(d) Cost Limit Sensitivity.

Figure 6: Ablating off-policy samples for GPD fitting.

off-policy samples leads to an increase in the variance of the
GPD, providing empirical validation of Theorem 4.3. This
effect is due to the sparsity of extreme samples, particularly
cost extremes, which become increasingly rare as training
progresses. Without sample augmentation, GPD fitting be-
comes overly sensitive to individual extreme values, leading

to inaccurate tail modeling.

Cost Limit Sensitivity. We further evaluate the robustness
of EVO across various threshold levels. Figure 5c and 5d
indicate that EVO effectively satisfies different cost limits
while maintaining policy performance. The ability to learn
from extreme values enables EVO to adapt to diverse policy
preferences. In security-oriented settings with limit 0, cost
extremes in EVO provide learning signals related to task
constraints, and in performance-oriented settings with limit
35, reward extremes in EVO offer significant reward signals
about the task goals.

The Fitting Accuracy of GPD. To evaluate the fitting
accuracy of GPD in our experiments, we collected train-
ing data across multiple environments and fitted both GPD
and Gaussian distributions. Furthermore, we employed the
Kolmogorov-Smirnov (KS) test to quantify the fit accuracy,
where lower values indicate more accurate fits. As shown in
Figure 7, the GPD presents robust fitting performance across
various data distributions. It provides a more accurate fit
for extreme samples than the Gaussian and more effectively
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(a) SafetyCarCircle1-v0 (b) SafetyCarGoal1-v0 (c) SafetyPointCircle1-v0 (d) SafetyPointGoal1-v0

(e) SafetyAntVelocity-v1 (f) SafetyHalfCheetahVelocity-v1 (g) SafetyHumanoidVelocity-v1 (h) SafetySwimmerVelocity-v1
Figure 7: Distribution curves fitted by GPD and Gaussian on the training data in EVO. The fitting accuracy is quantified
using the Kolmogorov-Smirnov test, as shown in the titles, where lower values indicate higher fitting accuracy. GPD presents
accurate fitting performance across various data distributions.

Figure 8: The training curves of EVO with different sample sizes across multiple environments, indicating that EVO remains
effective even with small sample sets.

capturing the tail behavior of the distribution. However, in
special cases where the gap between extreme and normal
values is subtle, the GPD may not provide a satisfactory
fit due to the requirement in EVT that the threshold t be
sufficiently large. To address this issue, one can employ non-
linear transformations to amplify the differences between
extreme and normal values prior to GPD fitting, thereby
enhancing the accuracy of tail modeling.

Sample Size of GPD Fitting. We conducted experi-
ments by varying the sample size used for GPD fitting
and evaluated the corresponding policy performance. As
shown in Figure 8, increasing the sample size gener-
ally lead to improved constraint satisfaction. Notably, in
SafetyPointCircle1-v0, EVO maintains strong constraint sat-
isfaction and performance even with as few as 10 samples.
In SafetyPointGoal1-v0, constraint satisfaction is consis-
tently achieved once the sample size exceeds 20. In our
experiments, with the same sample size of 20, EVO demon-
strates superior constraint satisfaction and policy perfor-

mance compared to baselines, indicating that it remains
effective even with small sample sets.

6. Conclusion
In this paper, we propose a zero-constraint violation method,
Extreme Value policy Optimization (EVO) algorithm. EVO
leverages Extreme Value Theory (EVT) to model extreme
samples and exploits them to enhance safety policy opti-
mization. To address the challenge of high variance in
extreme samples, we employ the GPD to explicitly model
the tail extremes and augment the extreme samples with
off-policy samples. Recognizing the high information of
extreme samples, we introduce an extreme prioritization
mechanism to exploit them. We provide both theoretical
and experimental evidence that EVO achieves zero con-
straint violations during training, while maintaining high
returns and low variance.
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Notations

c cost

C cumulative cost

d constraint threshold

AR reward advantage function

AC cost advantage function

q quantile

µ quantile level

qµ safety boundary

ν exploitation range in extrem samples

qµ+ν risk boundary

z excess value beyond the safety boundary

Z excess random variable

F cumulative distribution function

f probability density function

qH quantile in GPD

ξ shape parameter of GPD

σ scale parameter of GPD

Yµ peaks set

ZC extreme cost set

δ trust region size

A. Policy Optimization in EVO
The CRL aims to find an optimal policy by maximizing the expected discount return over the set of feasible policies
ΠC := {π ∈ Π : JC(π) ≤ d}:

argmax
π∈Π

JR(π)

s.t. JC(π) ≤ d
(26)

The following equation briefly gives the performance difference of arbitrary two policies (Schulman et al., 2015a), which
represents the expected return of another policy π′ in terms of the advantage function over π:

JR(π
′)− JR(π) =

1

1− γ
Es∼dπ′ ,a∼π′ [AπR(s, a)] (27)

This implies that iterative updates to the policy, π′(s) = argmaxaA
π
R(s, a), lead to performance improvement until

convergence to the optimal solution.

According to the performance difference equation (27), CRL is defined as a constrained optimization problem:
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πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[Aπk

C (s, a)] ≤ d
(28)

where policy π ∈ Πθ is parameterized with parameters θ, and πk represents the current policy.

In this paper, we propose the quantile-based objective,

argmax
π∈Π

JR(π)

s.t. qµ + qHν
1−µ
≤ d

(29)

where the safety boundary quantile qµ is determined by the expectation JC(π
′). Then the objective can be denoted as:

πk+1 =arg max
π∈Πθ

Es∼dπ,a∼π[Aπk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπ,a∼π[Aπk

C (s, a)] + qHν
1−µ
≤ d

(30)

We propose the optimization method based on CPO, EVO-CPO, to solve the optimization 29.

A.1. CPO-based EVO

The complex dependency of state visitation distribution dπ(s) on unknown policy π makes Equation 29 difficult to optimize
directly. To address this, this paper uses samples generated by the current policy πk to approximate the original problem
locally. We seek to solve the following optimization problem in the trust region:

πk+1 =arg max
π∈Πθ

Es∼dπk ,a∼π[A
πk

R (s, a)]

s.t. JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

EI
C (s, a|πk)] + qHν

1−µ
≤ d

D(π∥πk) ≤ δ

(31)

where Πθ is the policy set parameterized by parameter θ, D(π∥πk) = Es∼dπk [DKL(π∥πk)[s]], DKL is the KL divergence
and δ > 0 is the step size. The set {π ∈ Πθ : D(π∥πk) ≤ δ} is the trust region.

In the EVO-CPO method, we approximate the reward objective and cost constraints with first-order expansion and
approximate the KL-divergence constraint with second-order expansion. The local approximation to Equation 31 is:

θk+1 =argmax
θ

gT (θ − θk)

s.t. c+ (gC)
T (θ − θk) ≤ 0

1

2
(θ − θk)

TH(θ − θk) ≤ δ

(32)

where g denotes the gradient of the reward objective in equation 31, gC denotes the gradient of quantile-based constraint
in Equation 31, c = JC(πk)− d, H is the Hessian of the KL-divergence. When the constraint is satisfied, the analytical
solution can be obtained using the primal-dual method. The solution to the primal problem is:

θ∗ =θk +
1

λ∗H
−1(g − gCν

∗) (33)

where λ and ν are the Lagrangian multipliers of the KL-divergence term and the constraint term in the Lagrangian function,
respectively. λ∗, ν∗ are the solutions to the dual problem:

ν∗ = max{0, λ
∗c− u

v
} (34)
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λ∗ = argmax
λ≥0

{
1
2λ

(
u2

v − q
)
+ λ

2

(
c2

v − δ
)
− uc

v , ifλc > u

− 1
2

(
q
λ + λδ

)
, otherwise,

(35)

where q = gTH−1g, u = gTH−1gC , v = (gC)
TH−1gC .

When the constraint is violated, we use the conjugate gradient method to decrease the constraint value:

θ∗ =θk −
(

2δ

(gC)TH−1gC

) 1
2

H−1gC (36)

B. Theoretical Proof
B.1. Constraint Violation Upper Bound

Lemma B.1. (Achiam et al., 2017) For any policies π′, π, and any cost function C : S → R, with ϵπ
′

C =
maxs |Ea∼π′ [AπC(s, a)]|. The following bound holds:

JC(π
′)− JC(π) ≤

1

1− γ
Es∼dπ,a∼π′ [AπC(s, a) +

2γϵπ
′

C

1− γ
DTV (π

′∥π)[s]] (37)

where DTV (π
′||π)[s] = (1/2)

∑
a |π′(a|s)− π(a|s)| is the total variational divergence between action distribution at s.

Theorem B.2 (Constraint violation upper bound). Suppose πk+1, πk are related by quantile-based constraint objective 11,
the upper bound on constraint of πk+1 is:

JC(πk+1) ≤ d− qHν
1−µ

(πk+1) +
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] (38)

where ϵ
πk+1

C := maxs |Ea∼πk+1
[AπC(s, a)]|, DTV (πk+1||πk)[s] = (1/2)

∑
a |πk+1(a|s) − πk(a|s)|. The zero-violation

exploitation range ν0 in GPD satisfies:

ν0 =
Nµ

n

(
1−

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

)
(39)

which guarantees the expectation of updated policy πk+1 strictly satisfies the constraints, where Nµ is the number of peaks
and n is the total number of samples.

Proof. According to the Lemma B.1 in CPO (Achiam et al., 2017), for any policies π′ and π, and any cost function, the
following bound holds:

JC(π
′)− JC(π) ≤

1

1− γ
Es∼dπ,a∼π′ [AπC(s, a) +

2γϵπ
′

C

1− γ
DTV (π

′∥π)[s]] (40)

Then the bounds of two neighboring policies πk and πk+1 in the policy update follows:

JC(πk+1)− JC(πk) ≤
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a) +
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] (41)

JC(πk+1) ≤ JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a) +
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] (42)

Suppose πk and πk+1 are related by the optimization objective in EVO, which is:

qµ + qHν
1−µ
≤ d (43)
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where we use the expectation JC(π) to denote the quantile value qµ, which is approximated in the trust region as:

JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)] + qHν
1−µ
≤ d (44)

According to Equation 42 and Equation 44, then the upper bound on the constraint expectation of πk+1 is:

JC(πk+1) ≤JC(πk) +
1

1− γ
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] +
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

≤d− qHν
1−µ

+
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(45)

The risk boundary in GPD qHν
1−µ
≥ 0, which indicates that EVO has a tighter constraint violation upper bound compared to

the expectation optimization objective in CPO, which is:

JC(πk+1) ≤d+
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] (46)

Theoretically, if the value of qHν
1−µ

is greater than 1
1−γEs∼dπk ,a∼πk+1

[
2γϵ

πk+1
C

1−γ DTV (πk+1∥πk)[s]], our method ensures that
the expectation of updated policy πk+1 strictly satisfies the constraints.

The risk boundary in EVO is obtained by:

qHν
1−µ

=
σ

ξ

(
(1− νn

Nµ
)−ξ − 1

)
(47)

We derive the zero-violation exploitation range ν0 by making:

qHν
1−µ

=
1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

σ

ξ

(
(1− νn

Nµ
)−ξ − 1

)
=

1

1− γ
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(48)

Then we get the zero-violation exploitation range ν0:

ν0 =
Nµ

n

(
1−

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

)
(49)

B.2. Constraint Violation Probability

Theorem B.3 (Constraint violation probability). When the safety boundary qµ is determined by the expectation of cumulative
cost, the constraint violation probability of EVO with the zero-violation exploitation range ν0 satisfies:

P (C > d) < (J (E + 1))−
1
ξ (50)

where:

J =
ξ

σ

(
JC(πk) +

1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)]

)
+ 1

E =
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(51)
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EVO has a lower constraint violation probability than the expectation-based CRL by a margin of ν0.

Proof. In this paper, we use the expectation JC(π) of cumulative cost C to determine the safety boundary qµ:

qµ = JC(π) (52)

which is used to fit the GPD with:

1−
(
1 +

ξx

σ

)− 1
ξ

, ξ ̸= 0 (53)

Then we get the safety boundary quantile level µ:

µ = 1−
(
1 +

ξJC(π)

σ

)− 1
ξ

(54)

where JC(π) is approximated in the local region as:

JC(π) = JC(πk) +
1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)] (55)

Then we get the zero-violation exploration range ν0 according to Theorem B.2:

ν0 = (1− µ)

(
1−

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

)

=

(
1 +

ξJC(π)

σ

)− 1
ξ

(
1−

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

) (56)

According to the definition fo the quantile in EVO, the constraint violation probability of EVO satisfies:

P (C > d)

<1− µ− ν0

=1− µ− (1− µ)

(
1−

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

)

=(1− µ)

(
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

=

(
1 +

ξJC(π)

σ

)− 1
ξ
(

ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

=

(
ξ

σ
JC(πk) +

ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[Aπk

C (s, a)] + 1

)− 1
ξ
(

ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]] + 1

)− 1
ξ

(57)

To simplify the representation, we denote:

J =
ξ

σ

(
JC(πk) +

1

1− γ
Es∼dπk ,a∼π[A

πk

C (s, a)]

)
+ 1

E =
ξ

σ(1− γ)
Es∼dπk ,a∼πk+1

[
2γϵ

πk+1

C

1− γ
DTV (πk+1∥πk)[s]]

(58)
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Then the constraint violation probability under EVO is less:

P (C > d) < (J (E + 1))−
1
ξ (59)

The constraint optimization objective in expectation-based CRL is:

qµ = JC < d (60)

Then the constraint violation probability under expectation-based CRL is:

P (C > d) <1− µ (61)

EVO has a lower constraint violation probability than the expectation-based CRL by a margin of ν0:

1− µ− (1− µ− ν0) = ν0 (62)

B.3. Comparison of Variance with Quantile Regression

Lemma B.4. The asymptotic distribution theory (Koenker & Bassett Jr, 1978). Let {qµ1
, · · · , qµM

} with 0 < µ1 < · · · <
µM < 1, denote a sequence of unique sample quantiles from random samples of size N from a population with inverse
distribution function qµ = F−1

H (µ). If FH is continuous and has continuous and positive density fH at qµi
, i = 1, · · · ,M ,

then the quantile regression estimator qµ to the true quantile value q∗µ converges in distribution to an Gaussian random
vector with mean 0 and variance Ω: √

N(qµ − q∗µ)→ N (0,Ω) (63)

The variance Ω(µ1, · · · , µM ) with typical element:

ωij =
µi(1− µj)

f(qµi
)f(qµj

)
(64)

Theorem B.5 (Variance of EVO). Let qHν
1−µ

denote the quantile in GPD for random samples of size N from a population

with inverse distribution function qHν
1−µ

= F−1
H ( ν

1−µ ). If the cumulative distribution function FH is continuous and has

continuous and positive density fH at qHν
1−µ

, then the quantile estimator qHν
1−µ

to the true quantile value q∗ ν
1−µ

converges in
distribution to an Gaussian random vector with mean 0 and variance Ω

√
N(qHν

1−µ
− q∗ ν

1−µ
)→ N (0,Ω) (65)

The variance of EVO to estimate the quantile ν
1−µ is:

Ω =
ν(1− µ− ν)

N(1− µ)2f2
H(qHν

1−µ
)

(66)

where µ denotes the safety boundary quantile, ν denotes the exploitation range, and N denotes the number of samples from
the distribution that are used to estimate the quantile values. EVO has a lower variance than that in quantile regression
methods:

Ω2 =
(µ+ ν)(1− µ− ν)

Nf2
C(qµ+ν)

(67)

where fC denotes the probability density function.
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Proof. According to Lemma B.4, the variance of the estimator under the quantile level τ is:

Ω =
τ(1− τ)

Nf2(θτ )
(68)

where N denotes the number of samples from the distribution that are used to estimate the quantile values.

The variance Ω1 of EVT to estimate the quantile ν
1−µ is:

Ω1 =
( ν
1−µ )(1−

ν
1−µ )

Nf2
H(qHν

1−µ
)

=
ν(1− µ− ν)

N(1− µ)2f2
H(qHν

1−µ
)

(69)

The variance Ω2 of quantile regression to estimate the quantile µ+ ν is:

Ω2 =
(µ+ ν)(1− µ− ν)

Nf2
C(qµ+ν)

(70)

where fC denotes the density of the overall cost distribution. According to Equation 10, fC is related to fH :

fC(qµ + z) = (1− µ)fH(z) (71)

fC(qµ+ν) = (1− µ)fH(
ν

1− µ
) (72)

Then we get the variance Ω2 of quantile regression is:

Ω2 =
(µ+ ν)(1− µ− ν)

Nf2
C(qµ+ν)

=
(µ+ ν)(1− µ− ν)

N(1− µ)2f2
H(qHν

1−µ
)

(73)

Thus the variance of EVO is lower than that of quantile regression: Ω1 < Ω2.

C. Experiment
C.1. Additional Experiments

C.1.1. ADDITIONAL BASELINES

We conducted additional experiments across multiple tasks, comparing EVO with PPO-Lagrangian and RCPO (Tessler
et al., 2018). PPO-Lagrangian is a primal-dual method that transforms constrained problems into unconstrained ones by
introducing dual variables, and then optimizes the objective based on the PPO algorithm. RCPO proposes a multi-timescale
Lagrangian method, which utilizes penalty signals to guide policy updates toward constraint satisfaction.

As shown in Figures 9 and 10, PPO-Lagrangian exhibits significant oscillations during training, and both PPO-Lagrangian
and RCPO frequently violate constraints. In contrast, EVO consistently maintains constraint satisfaction across all tasks
while achieving superior policy performance. In SafetyCarCircle1-v0, although RCPO achieves slightly higher returns, it
exhibits substantial constraint violations, indicating that its policy is unsafe.
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Figure 9: Comparison of EVO to PPO-Lagrangian and RCPO on Safety Gym. The x-axis is the total number of training
steps, the y-axis is the average return or constraint. The solid line is the mean and the shaded area is the standard deviation.
The dashed line is the constraint threshold which is 25.

Figure 10: Comparison of EVO to PPO-Lagrangian and RCPO on Safety MuJoCo. The x-axis is the total number of training
steps, the y-axis is the average return or constraint.

C.1.2. TRAINING TIME

To evaluate the computational overhead of EVO, we conducted experiments across different environments, measuring both
total training time and the time spent on GPD fitting. As shown in Table 1, EVO introduces only a limited increase in
training time compared to CPO, and GPD fitting process is highly efficient, taking only a few seconds in total. This indicates
that EVO introduces minimal computational overhead.

C.2. Additional Results

In CRL algorithms, it is not sufficient to compare rewards or constraint violation rates in isolation. To quantitatively compare
the overall performance of different algorithms in terms of both policy performance and constraint satisfaction during
training, we design the following evaluation metric:

ratio =
AverageReturn

ConstraintV iolationRate+ ξ
(74)

where AverageReturn denotes the average return across all episodes during training, and ConstraintV iolationRate
represents the proportion of episodes in which constraint violations occur. The constant ξ is introduced to ensure numerical

19



Extreme Value Policy Optimization for Safe Reinforcement Learning

Environment CPO EVO(10 samples) EVO(20 samples) EVO(50 samples) EVO(100 samples)

SafetyPointCircle1 11h 23m 28s 11h 53m 19s (8s) 11h 52m 28s (8s) 11h 53m 31s (8s) 11h 55m 22s (9s)

SafetyPointGoal1 11h 29m 42s 11h 58m 51s (8s) 11h 59m 47s (7s) 11h 58m 33s (8s) 11h 59 m 8s (9s)

Table 1: EVO training time with different sample sizes compared to CPO. The time data includes the total training time for
EVO, with the GPD fitting time shown in parentheses ”()”. EVO increases limited training time compared to CPO. GPD
fitting takes only a few seconds in total.

stability. The final ratio is then normalized. The corresponding results of ratio are shown in Table 2. The results show
that EVO achieves the best performance across multiple tasks, effectively balancing policy performance and constraint
satisfaction.

Environment EVO (ours) CPO Saute Simmer WCSAC

SafetyCarGoal1 0.267 0.169 0.190 0.212 0.163

SafetyCarCircle1 0.237 0.147 0.229 0.228 0.156

SafetyPointGoal1 0.275 0.175 0.192 0.186 0.172

SafetyPointCircle1 0.236 0.186 0.177 0.191 0.211

SafetyAntVelocity 0.250 0.132 0.245 0.244 0.129

SafetyHalfCheetahVelocity 0.233 0.166 0.231 0.224 0.146

SafetyHumanoidVelocity 0.219 0.168 0.213 0.214 0.186

SafetySwimmerVelocity 0.213 0.159 0.214 0.212 0.180

Table 2: The mean performance of ratio across mutiple environments, with the bolded data indicating the maximum ratio.

C.3. Environments

Our experimental environments consist of two types of tasks, navigation in Safety Gymnasium and velocity in Safety
MuJoCo.

(a) PointGoal1 (b) CarGoal1 (c) PointCircle1 (d) CarCircle1

Figure 11: Environments in Safety Gym.

C.3.1. SAFETY GYM

Figure 11 shows the environments in the Safety Gym. Safety Gym is the standard API for safe reinforcement learning
developed by Open AI. The agent perceives the world through the sensors of the robots and interacts with the environment
via its actuators in Safety Gym. In this work, we consider two agents, Point and Car, and two tasks, Goal and Circle.
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(a) Ant (b) HalfCheetah (c) Swimmer (d) Humanoid

Figure 12: Environments in Safety MuJoCo.

The Point is a simple robot constrained to a two-dimensional plane. It is equipped with two actuators, one for rotation and
another for forward/backward movement. It has a small square in front of it, making it easier to visually determine the
orientation of the robot. The action space in Point consists of two dimensions ranging from -1 to 1, and the observation
space consists of twelve dimensions ranging from negative infinity to positive infinity.

The Car is a more complex robot that moves in three-dimensional space and has two independently driven parallel wheels
and a freely rotating rear wheel. For this robot, both steering and forward/backward movement require coordination between
the two drive wheels. The action space of Car includes two dimensions with a range from -1 to 1, while the observation
space consists of 24 dimensions with a range from negative infinity to positive infinity.

Goal: The agent is required to navigate towards the location of the goal. Upon successfully reaching the goal, the goal
location is randomly reset to a new position while maintaining the remaining layout unchanged. The rewards in the task of
Goal are composed of two components: reward distance and reward goal. In terms of reward distance, when the agent is
closer to the Goal it gets a positive value of reward, and getting farther will cause a negative reward. Regarding the reward
goal, each time the agent successfully reaches the Goal, it receives a positive reward value denoting the completion of the
goal. In SafetyGoal1, the Agent needs to navigate to the Goal’s location while circumventing Hazards. The environment
consists of 8 Hazards positioned throughout the scene randomly.

Circle: Agent is required to navigate around the center of the circle area while avoiding going outside the boundaries. The
optimal path is along the outermost circumference of the circle, where the agent can maximize its speed. The faster the
agent travels, the higher the reward it accumulates. The episode automatically ends if the duration exceeds 500 time steps.
When out of the boundary, the agent gets an activated cost.

C.3.2. SAFETY MUJOCO

The agent in Safety MuJoCo is provided by OpenAI Gym, and it is trained to move along a straight line while constrained
with a velocity limit. Figure 12 illustrates the different environments.

Velocity tasks are also an important class of tasks that apply RL to reality, requiring an agent to move as quickly as possible
while adhering to velocity constraint. These tasks have significant implications in various domains, including robotics,
autonomous vehicles, and industrial automation.

If velocity of current step exceeds the threshold of velocity, then receive an scalar signal 1, otherwise 0.

C.4. Hyperparameters

The exploitation range ν is adaptively adjusted based on the safety and performance of the current policy π. The objective
for the adaptive ν is:

L(ν) = −ν (JC(π)− d) (75)

The gradient with respect to ν is:
∇νL(ν) = − (JC(π)− d) (76)
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Thus ν is updated as follows:
ν ← clip(ν − α∇νL(ν), 0) (77)

where α denotes the learning rate, and the clip operation ensures that ν ≥ 0. If JC(π) > d, ν increases, raising the quantile
in GPD, which in turn reduces JC and promotes a safer policy. Conversely, if JC(π) < d, ν decreases, lowering the quantile
in GPD and encouraging exploration.

All experiments are implemented in Pytorch 2.0.0 and CUDA 11.3 and performed on Ubuntu 20.04.2 LTS with a single
GPU (GeForce RTX 3090). The hyperparameters are summarized in Table 3.

Parameter EVO Saute Simmer CPO WCSAC

hidden layers 2 2 2 2 2
hidden sizes 64 64 64 64 64
activation tanh tanh tanh tanh tanh
actor learning rate 1e−3 1e−3 1e−3 1e−3 1e−3

critic learning rate 1e−3 1e−3 1e−3 1e−3 1e−3

batch size 128 128 128 128 128
trust region bound 0.01 N/A N/A 0.01 N/A
discount factor gamma 0.99 0.99 0.99 0.99 0.99
GAE gamma 0.95 0.95 0.95 0.95 0.95
normalization coefficient 1e−3 1e−3 1e−3 1e−3 1e−3

clip ratio N/A 0.2 0.2 N/A 0.2
conjugate gradient damping 0.1 N/A N/A 0.1 N/A
initial lagrangian multiplier N/A 1e−3 1e−3 N/A 1e−3

lambda learning rate N/A 0.035 0.035 N/A 0.035

Table 3: Hyperparameters
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