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Abstract

In decision-making processes, an intelligent agent with causal knowledge can
optimize action spaces to avoid unnecessary exploration. A structural causal
bandit framework provides guidance on how to prune actions that are unable to
maximize reward by leveraging prior knowledge of the underlying causal structure
among actions. A key assumption of this framework is that the agent has access
to a fully-specified causal diagram representing the target system. In this paper,
we extend the structural causal bandits to scenarios where the agent leverages a
Markov equivalence class. In such cases, the causal structure is provided to the
agent in the form of a partial ancestral graph (PAG). We propose a generalized
framework for identifying potentially optimal actions within this graph structure,
thereby broadening the applicability of structural causal bandits.

1 Introduction

The multi-armed bandit (MAB) [Robbins, 1952, Lai and Robbins, 1985, Lattimore and Szepesvári,
2020] problem is a central topic in decision-making studies, where an agent aims to maximize cumu-
lative rewards by repeatedly choosing actions based on observed reward, balancing the exploration-
exploitation trade-off. Traditionally, MAB problems assume independence among the rewards of
different arms, meaning that the reward obtained from one arm provides no information about the
others, e.g., KL-UCB [Cappé et al., 2013] and Thompson sampling [Thompson, 1933]. Although this
independence assumption simplifies the problem, it limits its applicability to real-world scenarios
where dependencies among actions are common, e.g., in a movie recommendation system, a user’s
positive reaction to one genre may indicate a higher likelihood of a positive reaction to similar genres.

Recent research has increasingly recognized the importance of structured dependencies among arms
and reward [Li et al., 2010, Abbasi-Yadkori et al., 2011, Cesa-Bianchi and Lugosi, 2012], leading
to the development of structured bandits. Concurrently, the integration of causal inference into the
MAB framework has opened new avenues for modeling and solving decision problems with richer
dependency structures [Bareinboim et al., 2024]. Causal diagrams [Pearl, 1995] have been employed
to represent causal relationships among actions, rewards, and other relevant factors. This approach
enables agents to make informed decisions by considering how each action causally influences
the reward through causal pathways. Existing studies [Bareinboim et al., 2015, Lattimore et al.,
2016, Forney et al., 2017] have shown that causality-aware strategies can significantly outperform
MAB algorithms that do not account for such underlying causal relationships. Subsequent work has
explored various specialized settings by introducing additional structural assumptions, such as the
availability of both observational and experimental distributions, or linear mechanisms [Zhang and
Bareinboim, 2017, Lu et al., 2020, Bilodeau et al., 2022, Feng and Chen, 2023, Varici et al., 2023].
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Specifically, Lee and Bareinboim [2018] formalized the structural causal bandit (SCM-MAB) without
any parametric assumptions, where causal dependencies between arms are modeled using a structural
causal model (SCM) [Pearl, 2000]. They proposed a sound and complete graphical characterization to
identify minimal intervention sets (MISs) and possibly-optimal minimal intervention sets (POMISs),
where the former includes only the variables that affect the reward, and the latter refers to actions that
could be part of an optimal strategy among MISs, thereby guiding the agent to avoid unnecessary
exploration without any actual interaction. Lee and Bareinboim [2019] extended this approach to
accommodate scenarios involving non-manipulable variables among all the variables in the graph.
Lee and Bareinboim [2020] and Everitt et al. [2021] established SCM-MAB with stochastic policies
and Carey et al. [2024] studied the completeness of its graphical characterization.

While SCM-MAB has been established as a general framework, these studies assume that the decision-
making agent has perfect access to the entire causal structure. From observational data, only a Markov
equivalence class of the true causal diagram over observed variables can be inferred without making
a substantial assumption about causal mechanisms such as causal sufficiency [Verma and Pearl, 1990,
Spirtes et al., 2001b, Chickering, 2002, Tsamardinos et al., 2006] or a functional assumption [Perry
et al., 2022, Peters et al., 2016, Ghassami et al., 2017, Heinze-Deml et al., 2018, Huang et al., 2020,
Ghassami et al., 2018, Zeng et al., 2021]. A prominent representation of the equivalence class is
known as partial ancestral graphs (PAGs), and any causal diagrams can be uniquely represented by a
PAG [Richardson and Spirtes, 2002, Zhang, 2006, 2008a,b, Ali, 2005].

Motivation and Contributions. With observational data, we can only learn a PAG, which encodes
a super-exponential number of maximal ancestral graphs (MAGs), each of which, in turn, represents
an infinite number of causal diagrams over supersets of the observed variables. Therefore, considering
all causal diagrams consistent with the PAG is computationally prohibitive. Identifying conditions
for MIS and POMIS at the level of ancestral graphs directly would allow one to circumvent the issue.
Our key contributions are as follows:

• We generalize MIS and develop its graphical criteria in ancestral graphs, enabling an agent to
identify and exclude variables that have no effect on the reward (Sec. 3).

• We devise POMIS for ancestral graphs along with its graphical characterization, leading to an
action space worth exploring (Secs. 4.1 and 4.2).

• We present an efficient algorithm to determine whether a given intervention set can be a POMIS
in the Markov equivalence class represented by a PAG (Sec. 4.3).

Experiments in Sec. 5 and additional ones in Appendix D corroborate our findings. All omitted
proofs are provided in Appendix H along with auxiliary results in Appendix G.

2 Preliminaries

We introduce notation and review relevant prior work. Following conventions, we use a capital letter,
such as X , to represent a variable, with its corresponding lowercase letter, x, denoting a realization of
the variable. Boldface is employed to represent a set of variables or values, denoted by X or x. The
domain of X is indicated by XX . We use calligraphic letters for graphs and models such as G and S .

Graphical notations. We consider a graph G having vertices V and edges E composed of directed
(→) and bidirected edges (↔). If there is an edge between two vertices X and Y in G, we say that the
two vertices are adjacent in G, denoted by Y ∈ Adj(X)G or X ∈ Adj(Y )G . An ordered sequence
of distinct nodes in G is called a path between X and Y in G if (1) the start node is X and the end
node is Y , and (2) there is an edge between any two subsequent variables in the sequence. If a path
consists of directed edges with the same orientation, we say the path is directed. A variable Z is
called a collider on the path if the path contains two edges having arrowheads toward Z. We define a
path as a collider path if all non-endpoint vertices along the path are colliders. A path is uncovered
(unshielded) if, for every consecutive triple on the path, its endpoints are not adjacent.

A path is possibly directed from X to Y if there is no arrowhead on the path pointing towards X .
If there is a (possibly) directed path from X to Y , then Y is called a (possible) descendant of X ,
and X is a (possible) ancestor of Y . A variable Y is referred to as a possible child of X , and X
is a possible parent of Y if they are adjacent and the edge is not directed into X . We denote the
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ancestors, descendants, parents, and children of a given variable as An, De, Pa, and Ch, respectively.
Ancestors and descendants include the variable itself. For a set of variables, we define the ancestral
set as An(X)G =

⋃
X∈X An(X)G , and similarly for other relationships. We add the prefix Poss when

referring to possible relationships, such as PossAn.

An inducing path relative to L is defined as a path where every vertex not in L is a collider on
the path, and every collider is an ancestor of an endpoint of the path. A directed edge X → Y is
visible if there exists no causal diagram in the corresponding equivalence class where there is an
inducing path between X and Y that is into X . We refer to any edge that is not visible as invisible.
The X-lower-manipulation of G deletes all edges that are visible and are out of variables in X, and
replaces all those edges that are out of variables in X but are invisible in G with bidirected edges
denoted as GX. The X-upper-manipulation of G deletes all those edges in G that are into variables
in X denoted as GX. We denote the set of variables in G by V(G). A subgraph G[V′], where
V′ ⊆ V(G) is defined as a vertex-induced subgraph in which all edges among the vertices in V′ are
preserved. We define G\X as G[V(G) \X] for X ⊆ V(G).

Structural Causal Model. We use structural causal model (SCM) [Pearl, 2000] as the semantical
framework to represent the underlying environment a decision-maker is deployed. An SCM S is a
quadruple ⟨U,V,F,P (U)⟩, where U is a set of exogenous variables determined by factors outside
the model following a joint distribution P (U), and V is a set of endogenous variables whose values
are determined following a collection of functions F = {fi}Vi∈V such that Vi ← fi(pai,ui) where
PAi ⊆ V \ {Vi} and Ui ⊆ U. The observational probability P (v) is defined as

∑
u

∏
Vi∈V P (vi |

pai,ui)P (u). Every SCM S is associated with a causal diagram G = ⟨V,E⟩ where a directed edge
Vi → Vj ∈ E if Vi ∈ PAj , and a bidirected edge between Vi and Vj if Ui and Uj are correlated. The
probability of V = v when X is intervened upon to take the value x is denoted by P (v \ x | do(x)).

Ancestral graphical structures. Ancestral graphs are designed to capture graph structures without
explicitly modeling latent variables. While directed edges between vertices in a causal diagram imply
a direct causal effect between them, in ancestral graphs, directed edges instead represent ancestral
relationships. Similar to the absence of directed cycles in causal diagrams, ancestral graphs do not
permit almost directed cycle, which occurs when X ↔ Y is present while X is an ancestor of Y .
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Figure 1: Causal diagrams (a, b) with corresponding (c, d)
MAGs and (e) PAG. A visible edge is marked with v.

A mixed graph is called a maximal
ancestral graph (MAG) if (i) it does
not contain any directed or almost
directed cycles (i.e., ancestral); and
(ii) there is no inducing path between
any two non-adjacent vertices (i.e.,
maximal). In general, a MAG repre-
sents a set of causal diagrams with
the same set of observed variables
that entail the same conditional independence and ancestral relations among the observed variables.
For each causal diagram, there exists a unique MAG over observed variables which represents its
marginal independence relations, as well as its ancestral relations. However, a MAG is not fully
testable with observational data since distinct MAGs can encode the same marginal independence
relations. To illustrate, consider the causal diagrams G1 and G2 in Fig. 1. While they yield the same
conditional independence relations, they correspond to distinct MAGs,M1 andM2, respectively.

A graph is a partial mixed graph (PMG) if it contains three types of marks: tails (−), arrowheads
(>), and circles (◦). A circle mark implies an uncertain mark that can be either an arrowhead or a
tail. In addition, we use an asterisk (∗) as a wildcard to denote any possible mark. In a PMG, if every
edge mark on a path consists of circles, the path is called a circle path, and each edge is called a
circle edge (◦−◦). An edge is a partially directed edge (◦→ ) if it has both circle and arrowhead. A
circle component is a subgraph of a PMG in which every edge is a circle edge. We use the ? mark
to emphasize a wildcard that represents either a tail (−) or a circle (◦), but not an arrowhead (>).
Furthermore, [Q] denotes the set of MAGs represented by the PMG Q, and similarly [M] denotes
the set of causal diagrams conforming to the MAGM.

A partial ancestral graph (PAG) denoted by P , is a PMG such that it represents a Markov equivalence
class of MAGs. Every MAGM represented by a PAG has the same skeleton as P , and the non-circle
marks in P are identical to those inM. Every circle in P corresponds to a variant mark among the
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represented MAGs. The PAG P in Fig. 1e, for instance, encodes every MAG obtained by orienting
circle marks incident to A and B as either > or −, including bothM1 andM2. In our work, we
assume the absence of selection bias; therefore, there is no undirected edge in PAGs and MAGs.
Moreover, we assume access to the true PAG that represents the target underlying system. We refer
readers unfamiliar with ancestral graphs to Zhang [2006] and Jaber [2022].

Structural causal bandits. We follow the structural causal bandit (SCM-MAB) problem [Lee and
Bareinboim, 2018], where an SCM models the target system with which an agent interacts, including
a reward variable Y ∈ V where XY ⊆ R. In the SCM-MAB setting, pulling each arm corresponds to
intervening on a set of variables {x ∈ XX | X ⊆ V \ {Y }}. The mean reward of an arm is denoted
by µx = E[Y | do(x)] and the best expected reward by intervening on X is µx∗ = maxx∈XX

µx. We
denote µ∗ as the optimal expected reward. The goal of the agent is to minimize the cumulative regret
after N rounds, which is given by RegN =

∑
x∈XX,X⊆V\{Y } ∆xE[Tx(N)] where Tx(N) denotes

the number of times the arm x was played after N rounds, ∆x = µ∗ − µx and XX =×X∈X
XX .
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Figure 2: MUCT (red) and IB (blue).

MIS and POMIS. A minimal intervention set (MIS)
ensures that there is no proper subset that is equivalent to
the set with respect to the reward. Lee and Bareinboim
[2018] demonstrated that X is an MIS if and only if
X ⊆ An(Y )GX

. For instance, consider G in Fig. 2 where
{A,B} is an MIS since {A,B} ⊆ An(Y )G{A,B}

holds.
In contrast, {A,B,C} is not an MIS since A is not an
ancestor of Y in G{A,B,C}, as depicted in Fig. 2c.

A possibly-optimal minimal intervention set (POMIS) is an MIS such that intervening on any non-
POMISs cannot yield a better outcome than the optimal one associated with the POMIS. Therefore,
an agent who is aware of POMISs should only explore and exploit actions consistent with those
sets. When given a causal diagram G, minimal unobserved confounders’ territory (MUCT) and
interventional border (IB) [Lee and Bareinboim, 2018] provide a graphical characterization of POMIS.
MUCT is the minimal set of variables that (i) contains the reward variable Y ; and (ii) is closed under
descendants and bidirected edge connections; and IB consists of the parents of MUCT, excluding
MUCT itself. We defer the formal definitions to Appendix B. Intuitively, MUCT is the minimal closed
mechanism that conveys all hidden information from unobserved confounders to the downstream
reward, while IB consists of the nodes that directly affect this closed mechanism. Let us denote MUCT
and IB with respect to [[G,Y ]] as MUCT(G,Y ) and IB(G,Y ), respectively. Leveraging these, the
authors showed that IB(GX,Y ) = X provides a complete characterization of POMISs. For example,
Figs. 2a and 2b show MUCT and IB for the subgraphs G∅ and G{A,B}. The do-nothing action (do(∅))
is not a POMIS since MUCT(G∅,Y ) = {C,D,Y } implies IB(G∅,Y ) = {A,B}, not ∅, while the set
{A,B} is a POMIS since MUCT(G{A,B},Y ) = {C,D,Y }, implying IB(G{A,B},Y ) = {A,B}.

3 Generalizing Minimal Intervention Sets

We first generalize minimal intervention set (MIS) to cover not only causal diagrams but also ancestral
graphs, aiming to identify all sets that do not include variables irrelevant to the reward by ruling
them out, referring to MAGs or PAGs. In the following parts, we first provide complete graphical
conditions for MIS in terms of MAGs and PAGs. Surprisingly, we then show in Sec. 3.1 that an MIS
may include variables irrelevant to reward when dealing with PAGs. To address this issue, in Sec. 3.2,
we propose the concept of definitely minimal intervention set (DMIS), which ensures that no further
variables can be pruned, thereby aligning with the intuitive notion of minimality.

We use D to refer to either a causal diagram or an ancestral graph (MAG or PAG) over V. We denote
by x[W] the values of x restricted to the subset of variables in W ∩X.
Definition 1 (Minimal intervention set (MIS)). Given information [[D,Y ]], a set of variables X ⊆
V \ {Y } is called a minimal intervention set (MIS) relative to [[D,Y ]] if there is no X′ ⊊ X such
that µx[X′] = µx for every SCM conforming to D.

Proposition 1. LetM be a MAG over V. A set X ⊆ V \ {Y } is an MIS relative to [[M,Y ]] if and
only if there exists a causal diagram G conforming toM such that X is an MIS relative to [[G,Y ]].
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The proposition guarantees the existence of a causal diagram G where X is an MIS relative to [[G,Y ]],
provided that X is an MIS relative to [[M,Y ]] for the given MAG M. We now proceed to the
graphical characterization of MIS for MAGs, in a manner similar to causal diagrams, utilizing the
explicit ancestral relations among variables in MAGs and Rule 3 of do-calculus for MAGs, i.e.,
µxz = µx if Z and Y are m-separated inMX [Zhang, 2008b].

Theorem 1 (Characterization of MIS for MAGs). LetM be a MAG over V. Given information
[[M,Y ]], a set X ⊆ V \ {Y } is an MIS relative to [[M,Y ]] if and only if X ⊆ An(Y )MX

holds.

For example, consider G′ andM in Figs. 3a and 3b where G′ ∈ [M]. A set {A,B,C} is an MIS
relative to [[M,Y ]] since {A,B,C} ⊆ An(Y )M{A,B,C}

holds.

Remark 1. Even though a set X is an MIS with respect to [[M,Y ]], there is no guarantee that X is
an MIS with respect to [[G,Y ]] for every causal diagram G conforming toM.

The set {A,B,C} is also an MIS relative to [[G′,Y ]] in Fig. 3a since {A,B,C} ⊆ An(Y )G′
{A,B,C}

holds. However, while G in Fig. 2a is also represented byM, it is not an MIS with respect to [[G,Y ]].2

3.1 MIS for PAGs and Its Possible Vacuousness
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(c) M\ {A,B}

Figure 3: (a) Causal diagram; and (b) MAG repre-
senting both causal diagrams G′ and G in Fig. 2a.
(c) Induced graph ofM over V \ {A,B}.

We proceed to the characterization of MIS for
PAGs. Unfortunately, we cannot similarly rely on
Rule 3 for PAGs (Jaber et al. [2022]; see Thm. 6
in Appendix B) because the rule is applied when
ancestral relations are apparent for all represented
models, whereas a PAG might involve uncertainty
reflected by circle marks—one may easily surmise
that {X,Z} is not an MIS in a PAG X ◦−◦Z ◦−◦
Y , but Rule 3 remains silent on this case.

Hence, we utilize a specific type of path: A proper
possibly-directed path from X ∈ X to Y with
respect to X, where only the first node X is in X. This path is not disturbed by other intervening
variables, thus aligning with the characterizations of MISs for causal diagrams and MAGs.

Proposition 2 (Graphical characterization of MIS for PAGs). Let P be a PAG over the set of variables
V. A set X ⊆ V \ {Y } is an MIS relative to [[P,Y ]] if and only if, for every variable X ∈ X, there
exists a proper possibly-directed path from X to Y with respect to X in P .

Possible vacuousness. One might expect that if X is an MIS relative to [[P,Y ]], then it would also
be an MIS relative to [[M,Y ]] for some MAGM conforming to the PAG P . However, this is not
always the case and no SCM may regard X as an MIS with respect to [[M,Y ]].
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Figure 4:M1 andM2 are represented by P .
In contrast,M3 is not represented by P .

For concreteness, consider the PAG P in Fig. 4 where
{A,B} is an MIS with respect to [[P,Y ]] since each
A and B has proper possibly-directed paths to Y (i.e.,
A ◦−◦ Y and B ◦−◦ Y , respectively). However, we
will demonstrate that at least one of A or B is irrele-
vant to reward Y in every conforming MAG. To see
this, we construct SCMs where the domains of vari-
ables are binary and ∀UV ∈{UA,UY ,UB}P (UV = 1) =
ϵ ≈ 0. For a proper subset X′ = {A}, we can construct an SCM S1 following that the mechanism
for Y in S1 is defined as fY = b⊕ uY , and the mechanism for B is fB = uB where ⊕ denotes the
exclusive-or operator. Then, µa = µ∅ = 2ϵ(1 − ϵ) while µa,b∗ = µb∗ = 1 − ϵ with b∗ = 1. Thus,
we find that µa,b∗ > µa holds in S1. This construction can be done for each proper subset of {A,B},
validating {A,B} is an MIS relative to [[P,Y ]]. However, the remarkable point here is that there is
no representative SCM S∗ that satisfies µx[X′] ̸= µx for arbitrary proper subset X′ ⊊ X, as doing
so would require the mechanism fy to depend on the values of both A and B. This setup would
introduce an uncovered collider at Y (i.e., A→ Y ← B and A /∈ Adj(B)) in the underlying graph

2The inducing path A → C ↔ Y in G appears as A → Y in M since C is an ancestor of Y in G.
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of P , leading to inconsistency with the structure of P . Therefore, we observe that {A,B} is an MIS
with respect to [[P,Y ]], but at least one of A or B is irrelevant to reward Y in all conforming MAGs.

3.2 Definitely MIS and Its Characterization

To address this vacuousness, we propose the concept of definitely MIS, which ensures that an MIS in
a PAG remains an MIS in some consistent MAG. With the definition of MIS, we first choose X′ ⊊ X,
and then check whether µx[X′] ̸= µx holds across all SCMs conforming to D; here, we first choose
an SCM S∗ conforming to D, then examine whether the inequality holds across all subsets X′.
Definition 2 (Definitely minimal intervention set). Given information [[D,Y ]], a set X ⊆ V \ {Y }
is called a definitely minimal intervention set (DMIS) relative to [[D,Y ]], denoted by DD,Y if there
exists an SCM compatible with D such that, for every proper subset X′ ⊊ X, µx[X′] ̸= µx holds.

Proposition 3. If X is a DMIS with respect to [[D,Y ]], then X is an MIS with respect to [[D,Y ]].

Proof. Let S∗ be an SCM associated with D such that µx[X′] ̸= µx holds for every X′ ⊊ X. For all
proper subsets, such an S∗ certifies that X satisfies the definition of MIS.

Proposition 4. Let D be either a causal diagram or a MAG (i.e., not a PAG). If X is an MIS with
respect to [[D,Y ]], then X is a DMIS with respect to [[D,Y ]].

Proof sketch. We can construct an SCM S∗ where all mechanisms consist of the sum of the values
of their parents, which ensures that X is a DMIS.

This equivalence between MIS and DMIS for a causal diagram or a MAG (Props. 3 and 4) is derived
from determined ancestral relations, X ⊆ An(Y )DX

. We now move on to discuss DMIS for PAGs,
where ancestral relations are undetermined, suggesting a notable gap between MIS and DMIS. Recall
the PAG P in Fig. 4a, where {A,B} is an MIS but not a DMIS with respect to [[P,Y ]].
Proposition 5. Let P be a PAG over V. A set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and
only if there exists a MAGM conforming to P such that X is an MIS relative to [[M,Y ]].

Hence, DMIS provides a truly feasible space for actions associated with intervention sets that no
longer contain variables to rule out. According to Props. 3 and 4, we focus on establishing the
graphical criterion for DMIS only for PAGs. In Fig. 4a, we have observed that A◦−◦Y and B ◦−◦Y
cannot both be an ancestor of Y at the same time due to the uncovered path A◦−◦Y ◦−◦B. To this
end, we devise the notion of relevance among edges in a PAG.
Definition 3 (Relevant edges). Let P be a PAG. For any edges e1(V1 ∗−∗V2) and e2(Vn−1 ∗−∗Vn),
we say that e1 is relevant to e2 in P if there exists an uncovered path V1 ∗−◦V2 ◦−◦· · ·◦−◦Vn−1 ◦−∗
Vn with n ≥ 3 in P .

Theorem 2 (Graphical characterization of DMIS for PAGs). Let P be a PAG over the set of variables
V. A set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and only if, for any pair of vertices X,Z ∈ X,
there exist uncovered proper possibly-directed paths from X and Z to Y with respect to X such that
their starting edges are not relevant.
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Figure 5: The nodes in the light blue region are the
ancestors of Y . The three MAGs are represented
by the PAG P .

Consider the PAG P shown in Fig. 5, where
A◦−◦C and D◦−◦Y are relevant in P because
of the path A◦−◦C ◦−◦Y ◦−◦D. The key point
here is that all triplets along the path are definite
non-colliders so that the end nodes cannot be
simultaneously ancestors of non-end nodes. Fur-
thermore, consider any MAGs represented by P
where A ◦−◦C appears as a directed edge out
of A (e.g.,M1 andM2). Clearly, this results in
C → Y → D, as the path is of definite status.
In contrast, if any MAG contains D → Y , this
leads to Y → C → A, as inM3. The important observation is that A→ C ensures D /∈ An(Y )M1 ,
and D → Y ensures A /∈ An(Y )M for all MAGsM represented by P . This indicates that A and D
cannot simultaneously be ancestors of Y inM, thus {A,D} is not a DMIS relative to [[P,Y ]].
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4 Possibly Optimal Minimal Intervention Sets

We now refine the possibly-optimal minimal intervention set over DMISs rather than MISs. This
refinement guarantees the existence of an underlying SCM compatible with a PAG and implies the
following proposition. Note that the refined POMIS exactly matches established studies and serves
as a natural extension, as supported by Props. 3 and 4, which state that MIS and DMIS coincide in
causal diagrams and MAGs.
Definition 4 (Possibly-optimal minimal intervention set (POMIS)). Let X ⊆ V \ {Y } be a DMIS
relative to [[D,Y ]]. If there exists an SCM conforming to D such that µx∗ > ∀W∈DD,Y \{X}µw∗ , then
X is a possibly-optimal minimal intervention set (POMIS) relative to [[D,Y ]].

Proposition 6. Let P be a PAG over V. A set X ⊆ V \ {Y } is a POMIS relative to [[P,Y ]] if and
only if there exists a MAGM conforming to P such that X is a POMIS relative to [[M,Y ]].

We investigate into the graphical characterization of POMISs for MAGs and PAGs. The main
challenge in characterizing POMIS for ancestral graphs lies in the fact that induced paths by latent
variables (or UCs) do not explicitly appear, which makes it impossible to directly identify the
unobserved confounders’ territory as for causal diagrams. Instead, we leverage edge’s visibility which
indicates that the edge is not confounded in any underlying causal diagram (Lem. 2 in Appendix B
for details). To generalize the UC-territory, we introduce a possible c-component, which provides a
necessary condition for nodes to belong to the same c-component in an underlying causal diagram.
Definition 5 (pc-component [Jaber et al., 2018]). Two nodes are in the same possible c-component
(pc-component) if there is a path between them such that (i) all non-endpoint nodes along the path
are colliders, and (ii) none of the edges are visible.

We denote the pc-component of a partial mixed graph (PMG) Q containing X as PC(X)Q and
PC(X)Q ≜

⋃
X∈X PC(X)Q. For example, A and B are in the same pc-component in P of Fig. 1e

because they are connected through an invisible colliding path A ◦→ C ←◦ B, i.e., PC(A)P =
{A,B,C}. Furthermore, due to A /∈ PC(Y )P = {B,Y }, A and Y cannot belong to the same
c-component in any causal diagrams conforming to P . We now generalize MUCT and IB for PMGs.
Definition 6 (Unobserved-confounders’ territory for PMGs). Given information [[Q,Y ]] and inter-
vention set X ⊆ V \ {Y }, letH = Q[PossAn(Y )Q \X]. A set of variables T ⊆ PossAn(Y )Q \X
containing Y is called a UC-territory onQwith respect to Y if PossDe(T)H = T and PC(T)H = T.
A UC-territory T is called a minimal UC-territory (MUCT) if no T′ ⊊ T is a UC-territory.
Definition 7 (Interventional border for PMGs). Let T be a minimal UC-territory with respect to
[[Q,Y ,X]]. Then Pa(T)Q \T is called an interventional border (IB) with respect to [[Q,Y ,X]].

For concreteness, considerM and X = {A,B} in Fig. 3. Here, we omit Poss, as we discuss in the
context of a MAG. LetH be the induced graphM[An(Y )M \X]. InH, the nodes C and Y are in the
same pc-component, and D is a descendant of C. This implies that T = {C,D,Y } is the minimal
closed set for DeH and PCH, leading to IB(M,Y ,X) = {A,B}3, derived from Pa(T)M \T.

4.1 Characterization of POMIS for MAGs

With the MUCT and IB for PMGs established, we are now ready to characterize POMISs for MAGs.
Theorem 3 (Graphical characterization of POMIS for MAGs). LetM be a MAG over the set of
variable V. A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if and only if X = IB(M,Y ,X).

For example, consider the MAGM in Fig. 3c where IB(M,Y , {A,B}) = {A,B} holds. Therefore,
we get that {A,B} is a POMIS with respect to [[M,Y ]]. Indeed, as previously shown, G in Fig. 2
represented byM and {A,B} is a POMIS with respect to [[G,Y ]].

4.2 Characterization of POMIS for PAGs.

The remainder of the main body focuses on characterizing POMIS for PAGs. We first present
necessary conditions for a PMG to represent MAGsM in which X is a POMIS relative to [[M,Y ]].

3We denote MUCT and IB with respect to [[Q,Y ,X]] as MUCT(Q,Y ,X) and IB(Q,Y ,X), respectively.
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Algorithm 1: Identify whether a given set is a POMIS for PAG.
1 function IsPOMIS(P , Y , X)

Input: P: PAG, Y : reward, X: Intervention set
2 if given X does not satisfy Thm. 2 then return False
3 Let QX be a PMG oriented from P with X according to Prop. 7.
4 return subIsPOMIS(QX,X ∪ {Y },Y ,X)

5 function subIsPOMIS(Q,A,Y ,X)
6 if A is empty then return IB(Q,Y ,X) = X
7 A← Pick a node from A.
8 for each set CQ

A ⊆ {V ∈ Adj(A)Q | A◦−∗V } do
9 if CQ

A satisfies Thm. 7 (i.e., check validity of local transformation) and
Y ∈ PossDe(A)Q\CQ

A
then

10 Let Q′ be the PMG obtained by orienting the circle marks around A following CQ
A

and completing the orientation rules from Q.
11 if subIsPOMIS(Q′,A \ {A},Y ,X) then return True
12 return False

Proposition 7. Let QX be a PMG representing MAGs where X is a POMIS with respect to Y . Then,
the following properties hold in QX, for every X ∈ X:

1. Every uncovered proper possibly-directed path from X to Y relative to X ends with an
arrowhead (>).

2. If X is adjacent to Y , then the edge between X and Y is a directed edge (X → Y ).

Put simply, violating these conditions introduces an almost directed cycle or directed cycle. To
characterize POMIS for PAGs, we partition [QX] based on the orientation of circle marks incident on
X∪{Y }. We refer to a local transformation [Wang et al., 2023b] CQ

A ⊆ {V ∈ Adj(A)Q | A◦−∗V }
as the vertices whose edges with a circle at A (i.e., A◦−∗V in Q) will be oriented with arrowheads
at A (i.e., A←∗V ); all remaining edges A◦−∗V ′ will be oriented as A −∗V ′.
Proposition 8. For every MAGM∈ [QX], if X is a POMIS relative to [[M,Y ]], then there exists a
PMG Qi

X representingM such that the following conditions are satisfied:

1. Every circle mark around X ∪ {Y } in QX is oriented as either a tail (−) or an arrowhead
(>) in Qi

X according to valid local transformations4.

2. Every X ∈ X is an ancestor of Y in Qi
X.

3. Qi
X is closed under orientation rules.5

A
B

C

Y

D

(a) Q{C}

A
B

C

Y

D

v

v

v

(b) Q1
{C}

A
B

C

Y

D

v

v

v

(c) Q2
{C}

Figure 6: The light blue region indicates
possible ancestors of Y .

In words, Qi
X is a more oriented PMG instance derived

from QX by applying the valid local transformations for
circle marks around X ∪ {Y }, along with the orientation
rules, while confirming that X is an ancestor of Y in
all MAGs M ∈ [Qi

X]. For clarity, recall the PAG P
in Fig. 5a with a DMIS X = {C}. Here, every MAG
M ∈ [P] satisfying that {C} is a POMIS conforms to
Q{C} in Fig. 6a. Each Q1

{C} (Fig. 6b; corresponding

to C
Q{C}
Y ={B} and C

Q{C}
C ={B}) and Q2

{C} (Fig. 6c;

corresponding to C
Q{C}
Y =∅ and C

Q{C}
C ={A}) illustrates a PMG where local transformations for C

and Y are oriented, and both graphs are closed under the orientation rules.

4For example, C
Q{C}
Y = ∅ with C

Q{C}
C = {B} is invalid local transformation, as it implies Y → B ◦→

C → Y which introduces either an directed or almost directed cycle. The complete graphical criterion of the
validity of proposed by Wang et al. [2023b] is presented in Thm. 7 of Appendix B.

5The orientation rules refer to R1−R3,R′
4,R8−R10 and RSB. R5−R7 are not considered since we assume

no selection bias. Further details regarding the orientation rules are provided in Appendix B.
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Theorem 4 (Characterization of POMIS for PAGs). A set X ⊆ V \ {Y } is a POMIS relative to
[[P,Y ]] if and only if there exists Qi

X satisfying Props. 7 and 8 such that IB(Qi
X,Y ,X) = X.

The key observation is that local transformations restricted to X∪{Y } are sufficient for this determi-
nation, thereby circumventing the need to enumerate all MAGs represented by the given PAG. To
witness, consider Q1

{C} with X = {C} in Fig. 6b where IB(Q1
{C},Y ,X) = X holds, and it follows

that {C} is a POMIS with respect to [[P,Y ]]. Indeed, we can find a MAG instanceM by orienting
the circle marks around B in Q1

{C} as tails, in which IB(M,Y ,X) = X (Thm. 3) also holds.

4.3 Algorithmic Approach: Enumerating POMISs

We now present an algorithm IsPOMIS (Alg. 1), through which we can determine whether a given
set X is a POMIS relative to [[P,Y ]] based on our theoretical results (Thms. 2 and 4).

Theorem 5 (Soundness and completeness). The algorithm IsPOMIS (Alg. 1) returns True if and
only if there exists a MAGM conforming to P such that X is a POMIS relative to [[M,Y ]].

The algorithm begins by checking whether the given set X is a DMIS (Line 2). If X is identified
as a DMIS, it then infuses the necessary condition in Prop. 7 (Line 3). Subsequently, the local
transformations for X ∪ {Y } are oriented recursively within subIsPOMIS. During each recursion, it
evaluates the validity of a local transformation around a vertex and the ancestral relations between
the vertex and the reward Y (Line 9). The PMG is updated based on local transformations and
orientation rules (Lines 10–11). Finally, in the base case (Line 6), the algorithm checks whether the
fully-oriented PMG Qi

X satisfies IB(Qi
X,Y ,X) = X based on Thm. 4.

Runtime analysis. In the algorithm, Line 2 runs in O(|V|5) time, using standard reachability
algorithm. Each local transformation (Line 8) requires O(2p) space, where p < |V| denotes the
number of circle marks around the current vertex. Both the validation of local transformations and
the check for ancestral relations (Line 9) take O(|V|3) [Wang et al., 2023b].

Identifying all POMIS sets requires checking all subsets of V \ {Y } using IsPOMIS (Alg. 1), and
thus the size of the search space grows exponentially. However, since all non-DMIS sets are filtered
out in Line 2, the enumeration process effectively depends only on the number of DMISs6.

A naive approach is to enumerate all possible MAGsM that conform to a given PAG, and verify
whether IB(M,Y ,X) = X holds for eachM. However, this method presents analytical challenges
in terms of complexity—the enumeration process may generate many duplicate MAGs, and it is
difficult to determine when the transformation should terminate. Even under optimistic assumptions—
namely, that no duplicate MAGs are produced and that an oracle informs us when all MAGs consistent
with the PAG have been generated—the number of such MAGs remains super-exponentially large
[Zhang, 2012, Wang et al., 2023a]. Even when adopting MAGLIST [Wang et al., 2024a], which
systematically enumerates MAGs via local transformations, its worst-case complexity remains higher
than ours, as it performs transformations over the entire set V, whereas IsPOMIS constructs only
distinct PMGs Qi

X oriented through local transformations around X ∪ {Y } ⊆ V for a DMIS X.

5 Experiments

We evaluate the cumulative regrets (CR) of SCM-MAB under different strategies to assess the effect
of employing POMIS for PAGs (Fig. 7). The number of trials is set to 10,000 for Tasks 1 and 2,
and 5,000 for Task 3, which is sufficient to observe performance differences. Each simulation is
repeated 1,000 times to obtain consistent results. We compare three arm-selection strategies: POMISs
(pink), DMISs (purple), and Brute-force (BF; green), each combined with two prominent solvers:
Thompson Sampling (TS) and KL-UCB. In the Brute-force strategy (i.e., without causal knowledge),
all possible combinations of arms are evaluated; that is, the number of possible intervention sets of
BF is 2|V|−1 and the total number of corresponding arms is

∑|V|−1
i=0

(|V|−1
i

)
Ki = (K + 1)|V|−1

where K denotes the cardinality. We assume that all variables are binary for simplicity (K = 2).

6Although Lee and Bareinboim [2018] provided an efficient algorithm for enumerating all POMISs in
a causal diagram by leveraging a topological order, such an approach is not applicable to PAGs, where the
topological order is not determined.
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Figure 7: Cumulative regrets for the corresponding KL-UCB (solid) and TS (dashed) under distinct
strategies. We plot the average cumulative regrets along with their standard deviations.

The underlying model mechanisms are randomly generated by combining binary logical operations,
and the exogenous variables are set to follow Bernoulli distributions whose parameters are randomly
selected over (0, 1). Additional details and experiments are provided in Appendix D.

B C D

Y

A

E➞: visible edge

Figure 8: Six variables.

Task 1. The deployed agent can only access the PAG P in Fig. 5a to
obtain DMISs and POMISs. The environment in which an agent interacts
is consistent with P . Using three strategies (BF: 81 arms, DMIS: 25 arms,
POMIS: 19 arms), the POMIS-based TS and KL-UCB achieve CRs of
123.4 and 243.4, which correspond to 39.3% and 48.9%, respectively,
of CR for BF.

Task 2. We consider the PAG in Fig. 8 to validate our result. Using three strategies (BF: 243 arms,
DMIS: 195 arms, POMIS: 85 arms), the POMIS-based TS and KL-UCB achieve CRs of 320.9 and
629.9, which correspond to 44.3% and 50.4%, respectively, of CR for BF.

A
B

C

D

E

F

G H

I

Y

Figure 9: Ten variables.

Task 3. We consider a more involved scenario (Fig. 9) to validate our
result. Using three strategies (BF: 19683 arms, DMIS: 2025 arms, POMIS:
54 arms), the POMIS-based TS and KL-UCB achieve CRs of 60.3 and
52.0, which correspond to only 2.5% and 2.1%, respectively, of CR for
BF. Notably, the size of the POMIS arms accounts for only 54

19683=0.27%
of that of the BF. We observe that the superiority of POMIS remains
consistent regardless of the solvers used. All CRs and the numbers of
sets and arms are provided in Tables 1 and 2 in Appendix D. These
results demonstrate that refining arms by taking into account the Markov
equivalence class represented by a PAG enhances the efficiency of agents.

6 Conclusion

We proposed a novel structured causal bandit strategy (SCM-MAB) in the context of ancestral graphs.
We first provided a graphical characterization of MIS for MAGs and PAGs. We then demonstrated the
vacuousness of MIS, i.e., that some MISs for a PAG are not MISs of any MAG consistent with that
PAG. To address this, we introduced the notion of a definitely minimal intervention set (DMIS), which
guarantees the existence of an underlying SCM, thereby aligning with the general intuition behind
the concept of MIS. Finally, we refined the concept of POMIS over DMIS from MIS and provided a
complete characterization of POMIS for MAGs and PAGs, along with an algorithm for enumerating
all POMISs given a PAG. We believe these results have practical implications for the design of
intelligent agents, providing a foundation for optimizing the action space when the environment is
not fully accessible but is abstracted as a Markov equivalence class.
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Appendix for “Structural Causal Bandits under Markov Equivalence”

A Related Works

The integration of causal inference into the MAB framework has opened new avenues for modeling
and solving decision problems with richer dependency structures [Bareinboim et al., 2024]. Causal
diagrams [Pearl, 1995] have been employed to represent causal relationships among actions, rewards,
and other relevant factors. This approach enables agents to make informed decisions by considering
how each action causally influences the reward through causal pathways. Existing studies [Bareinboim
et al., 2015, Lattimore et al., 2016, Forney et al., 2017] have shown that causality-aware strategies can
significantly outperform MAB algorithms that do not account for such underlying causal relationships.
Subsequent work has explored various specialized settings by introducing additional structural
assumptions, such as the availability of both observational and experimental distributions, or linear
mechanisms [Zhang and Bareinboim, 2017, Lu et al., 2020, Bilodeau et al., 2022, De Kroon et al.,
2022, Feng and Chen, 2023, Varici et al., 2023].

Lu et al. [2021] were the first to study causal bandits without assuming access to the full causal
diagram. Their approach targets the atomic setting in which the reward variable has only a single
parent, reducing the problem to identifying that parent for optimal intervention. They further assume
that the agent instead observes the skeleton of the true causal diagram. Extending this line of work,
Konobeev et al. [2023] eliminated the need for prior knowledge of the graph skeleton. However,
their setting remains restricted to the same atomic case. More recently, Feng et al. [2023] considered
causal bandits in which each action corresponds to an intervention on a set of variables. Yan and
Tajer [2024] considered actions as soft interventions on variables, i.e., changing the conditional
distribution P (vi | pai) to Q(vi | pai). Despite this generalization, all these approaches assumed
causal sufficiency and thus do not account for the presence of latent variables. Malek et al. [2023]
provided some results for settings with unknown graph structures, the authors initially highlight the
challenge posed by the exponentially large number of arms in causal bandit problems under unknown
graphs, and assumed that no confounding exists between the reward variable and its ancestors.

Lee and Bareinboim [2018] formalized the structural causal bandit (SCM-MAB) framework, in
which a bandit instance is structured by an SCM, and each action corresponds to an intervention on
a subset of variables. They proposed a sound and complete graphical characterization to identify
minimal intervention sets (MISs) and possibly-optimal minimal intervention sets (POMISs), where
the former includes only the variables that affect the reward, and the latter refers to actions that
could be part of an optimal strategy among MISs, thereby guiding the agent to avoid unnecessary
exploration, without any actual interaction. Lee and Bareinboim [2019] extended this approach to
accommodate scenarios involving non-manipulable variables among all the variables in the graph.
Lee and Bareinboim [2020] established the framework under stochastic policies and demonstrated
the informativeness of such policies. Everitt et al. [2021] and Carey et al. [2024] further investigated
the completeness of the graphical characterization of optimal policy spaces, although the general
completeness remains an open problem. Wei et al. [2023] proposed a parameterization-based approach
to incorporate shared information among possibly-optimal actions. Elahi et al. [2024a] extended
the SCM-MAB framework to settings where no causal graph is assumed to be accessible, requiring
their algorithm to perform causal discovery—i.e., constructing the causal structure—during online
interaction. In contrast, our work investigates a graphical approach that eliminates unnecessary
actions a priori, given a partial ancestral graph, before the interaction begins. A detailed comparison
between our work and Elahi et al. [2024a] is presented in Appendix E.3.

Building on this line of work, causal Bayesian optimization (CBO; Aglietti et al. [2020]) leverages
the systematic characterization of MIS and POMIS for structural pruning in continuous action spaces,
and Bhatija et al. [2025] extend it to a multi-outcome variant incorporating Pareto optimality.
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B Additional Preliminaries and Background Results

In this section, we provide additional preliminaries from previous works (B.1) and background results
relevant to our study (B.2).

B.1 Additional Preliminaries

Definite status. Let p be any path in a PMG, and ⟨X,Z,Y ⟩ be any consecutive triple along p. We
say that Z is a definite collider on p if both edges are directed into Z. If one of the edges is out of
Z, or both edges have a circle mark at Z (i.e., X ∗−◦Z ◦−∗Y ) and there is no edge between X and
Z, then we say that Z is a definite non-collider on p. A path is said to have a definite status if every
non-endpoint node along it is either a definite collider or a definite non-collider.

Markov equivalence class. Multiple MAGs can entail the same m-separation7 relationships. Such
MAGs constitute a Markov equivalence class (MEC). The Markov equivalence class of MAGs can be
uniquely represented by a PMG which we refer to as a PAG.

Definition 8 (Markov equivalence [Zhang, 2012]). Two MAGsM1,M2 with V(M1) = V(M2)
are Markov equivalent if for any three disjoint sets of vertices X,Y,Z, X and Y are m-separated by
Z inM1 if and only if X and Y are m-separated by Z inM2.

A path between X and Y , p = ⟨X, · · · ,W ,Z,Y ⟩, is a discriminating path for Z if (i) p includes at
least three edges; (ii) Z is a non-endpoint vertex on p, and is adjacent to Y on p; and (iii) X is not
adjacent to Y , and every vertex between X and Z is a collider on p and is a parent of Y .

For two MAGs to be in the same Markov equivalence class, discriminating paths must either be
present in both graphs or none of the graphs, as well as the same skeleton and unobserved colliders.

Lemma 1 (Graphical characterization of MEC [Spirtes and Richardson, 1997, Zhang, 2012]). Two
MAGsM1 andM2 with V(M1) = V(M2) are Markov equivalent if and only if

(i) they have the same adjacencies;

(ii) they have the same uncovered colliders; and

(iii) if some path is a discriminating path for a vertex V in both graphsM1 andM2, then V is a
collider on the path inM1 if and only if it is a collider on the path inM2.

A collider path ⟨V1, · · · ,Vk⟩ is called a minimal collider path if V1 is not adjacent to Vk, and no
subsequence of the path is also a collider path.

The two conditions (ii) and (iii) can be expressed as a condition for two MAGs to share the same
minimal colliding paths [Zhao et al., 2005]. Identifying Markov equivalence of a pair of MAGs is
tractable with worst-case runtime O(|V|3) [Wienöbst et al., 2022].

Visible edges. A directed edge X → Y is visible if there exists no causal diagram in the corre-
sponding equivalence class where there is an inducing path between X and Y that is into X . We
refer to any edge that is not visible as invisible.

Lemma 2 (Graphical characterization of visibility [Zhang, 2006, Maathuis and Colombo, 2015]). A
directed edge X → Y is visible if

(i) there is a vertex Z not adjacent to Y , such that there is an edge between Z and X that is into
X (Z ∗→ X); or

(ii) there is a collider path between Z and X that is into X (Z ∗→ · ↔ · · · ↔ X) and every
vertex on the path except Z is a parent of Y .

7M-separation [Richardson and Spirtes, 2002] refers to an extension of d-separation [Pearl and Robins,
1995b] for ancestral graphs.
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Figure 10: (a) PAG P , (b) {C}-upper-manipulated graph, and (c) induced graph over V(P) \ {C}.
In MAGs and PAGs, the visibility is preserved from P (see Lem. 15). For example, although there is
no edge oriented into D in P \ {C}, the directed edge D → Y remains visible.

It is important to note that (i) an invisible edge X → Y does not necessarily imply that X and Y
are confounded in every underlying causal graph; and (ii) invisible edges should not be considered
independently. To witness, consider a scenario where we have X ← Y → Z in a MAGM, and
X and Z are not adjacent. Since both edges, X ← Y and Y → Z, are invisible, causal diagrams
can include at most one of the following structures added toM: X ← L1 ← · · · → Ln → Y or
Y ← L1 ← · · · → Ln → Z (X ↔ Y , or Y ↔ Z). Adding any one of these does not introduce a
new collider between X and Z, thereby maintaining conformity withM. However, if both are added
simultaneously, a new collider is introduced at Y , resulting in a causal diagram that is not represented
byM.

Manipulations. Given a causal diagram G and a set of variables X therein, the X-lower-
manipulation of G deletes all edges in G that are out of the variables in X. The resulting graph is
denoted by GX. The X-upper-manipulation of G deletes all edges in G that are into variables in X.
The resulting graph is denoted by GX.

Given a PMG Q and a set of variables X therein, the X-lower-manipulation of Q deletes all those
edges that are visible in Q and are out of variables in X and replaces all those edges that are out of
variables in X but are invisible in Q with bidirected edges. The resulting graph is denoted as QX.
The X-upper-manipulation of Q deletes all edges in Q that are into variables in X, and otherwise
keeps Q as it is.

The manipulated graphs play a crucial role in the derivation of do-calculus.

Do-calculus. Pearl [1995] devised do-calculus which acts as a bridge between observational and
interventional distributions from a causal diagram without relying on any parametric assumptions.
Zhang [2008b] proposed the do-calculus for MAGs and PAGs (also known as Zhang’s calculus).
Jaber et al. [2022] noted that there are cases where Pearl’s do-calculus rules are applicable to every
causal diagram within a given PAG, but Zhang’s calculus cannot be applied to the same PAG. To
address this, Jaber et al. [2022] proposed a refined version of do-calculus for PAGs and demonstrated
that whenever the proposed rule is not applicable given a PAG, then the corresponding rule in Pearl’s
calculus is not applicable for some causal diagram in the Markov equivalence class represented by
the PAG.

Here, we present do-calculus for PAGs, which encompasses that for MAGs.

Definition 9 (Definite m-connecting path [Jaber et al., 2022]). In a PAG, a path p between X and
Y is a definite m-connecting path relative to a set of nodes Z if p is definite status, every definite
non-collider on p is not a member of Z, and every collider on p is a ancestor of some member of Z.
X and Y are m-separated by Z if there is no definite m-connecting path between them relative to Z.

Theorem 6 (Do-calculus for PAGs [Jaber et al., 2022]). Let P be the PAG over V, and X, Y, W, Z
be disjoint subsets of V. The following rules are valid, in the sense that if the antecedent of the rule
holds, then the consequent holds in every MAG and consequently every causal diagrams represented
by P .

Rule 1. P (y | do(w),x, z) = P (y | do(w), z) if X and Y are m-separated by W ∪ Z in PW
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Rule 2. P (y | do(w), do(x), z) = P (y | do(w),x, z) if X and Y are m-separated by W ∪ Z in PW,X

Rule 3. P (y | do(w), do(x), z) = P (y | do(w), z) if X and Y are m-separated by W ∪ Z in PW,X(Z)

where X(Z) ≜ X \ PossAn(Z)P[V\W].

Induced graph. A subgraph Q[A] is defined as a vertex-induced subgraph in which all the edges
among the vertices in A ⊆ V(Q) are preserved while maintaining the visibility fromQ (see Fig. 10).

Chordal graph. We also introduce some useful graph theory and terminology, excerpted from
Maathuis et al. [2009] and Wang et al. [2023a]. A graph is chordal if any cycle of length four or more
has a chord, which refers to an edge joining two vertices that are not adjacent in the cycle. If a graph
G = ⟨V,E⟩ is chordal, then its subgraphs are also chordal. A vertex Z in V is called simplicial if
G[Adj(Z)G ] induces a complete graph. As shown by Dirac [1961] and Golumbic [2004], there are at
least two non-adjacent simplicial vertices in any non-complete chordal graph with more than one
vertex. A perfect elimination order of a graph G is an ordering σ = (V1, · · · ,V|V|) of its vertices, so
that each vertex Vi is a simplicial vertex in the subgraph G \ {V1, · · · ,Vi−1}. It is always possible to
transform any circle component in a PAG into a directed acyclic graph (DAG) without introducing
new unshielded colliders, as the circle component is chordal and every chordal graph has a perfect
elimination order [Rose et al., 1976, Habib et al., 2000].

Orientation rules. Fast Causal Inference (FCI) [Spirtes et al., 2001a] is a causal discovery algo-
rithm for identifying PAGs from conditional independence relationships derived from an observable
distribution that follows underlying model. We present the complete orientation rules proposed by
Zhang [2008a], omitting rulesR5–R7 due to the absence of selection bias.

R0 For each uncovered triple ⟨X,Z,Y ⟩ in P , orient it as a collider X ∗→ Z ←∗Y if and only
if Z is not in Sepset(X,Y )8.

R1 If X ∗→ Z ◦−∗Y , and X and Y are not adjacent, then orient Z ◦−∗Y as Z → Y .

R2 If X → Z ∗→ Y or X ∗→ Z → Y , and X ∗−◦Y , then orient X ∗−◦Y as X ∗→ Y .

R3 If X ∗→ Z ←∗Y , X ∗−◦W ◦−∗Y , X and Y are not adjacent, and W ∗−◦Z, then orient
W ∗−◦Z as W ∗→ Z.

R4 If ⟨X, · · · ,W ,Z,Y ⟩ is a discriminating path between X and Y for Z, and Z ◦−∗Y ; then if
Z ∈ Sepset(X,Y ), orient Z ◦−∗Y as Z → Y ; Otherwise orient the triple ⟨W ,Z,Y ⟩ as
W ↔ Z ↔ Y .

R8 If X → Z → Y , and X ◦→ Y , orient X ◦→ Y as X → Y .

R9 If X ◦→ Y , and p = ⟨X,Z,W , · · · ,Y ⟩ is an uncovered possibly directed path from X to
Y such that Z and Y are not adjacent, then orient X ◦→ Y as X → Y .

R10 Suppose X ◦→ Y , Z → Y ← W , p1 is an uncovered possibly directed path from X to Z,
and p2 is an uncovered possibly directed path from X to W . Let U be the vertex adjacent to
X on p1 (U could be Z), and V be the vertex adjacent to X on p2 (V could be W ). If U
and V are distinct, and not adjacent, then orient X ◦→ Y as X → Y .

Incorporating background knowledge. Andrews et al. [2020] demonstrated that the ten rules
R1−R10 are complete for incorporating tiered background knowledge, which refers to background
knowledge where the variables in a PAG can be partitioned into distinct groups with an explicit causal
order defined among them.

Wang et al. [2022, 2023b] proposed that the rulesR1−R3,R′
4,R8−R10 andRSB are complete for

orienting a PAG when local background knowledge (i.e., all marks around a vertex) is available. The
second additional ruleRSB naturally follows from the absence of selection bias.9

8A set Z ∈ Sepset(X,Y ) if X and Y are independent given Z.
9Wang et al. [2024a] proved that rules R1−R10 with one additional rule are sound and complete to

incorporate local background knowledge to scenarios where selection bias is present.
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R′
4 If ⟨X, · · · ,W ,Z,Y ⟩ is a discriminating path between X and Y for Z, and Z ◦−∗Y ; then

orient Z ◦−∗Y as Z → Y .

RSB If X −◦Y , then orient X −◦Y as X → Y .

Furthermore, they built the necessary and sufficient conditions for validating local background
knowledge (referred to here as local transformation in the context of our paper), which can be
determined in O(|V|3).
Theorem 7 (Theorem 3 in Wang et al. [2023b]). Denote Q the obtained PMG after some valid local
transformations from a PAG P with orientation rulesR1−R3,R′

4,R8−R10 andRSB. Given a set
CQ

X ⊆ {V ∈ Adj(X)Q | X ◦−∗V }, there exists a MAGM consistent to Q with X ←∗V for all
V ∈ CQ

X , and X → V for all V ∈ {V ∈ Adj(X)Q | X ◦−∗V } \CQ
X if and only if CQ

X satisfies the
following conditions:

1. PossDe(X)Q\CQ
X
∩ Pa(CQ

X)Q = ∅;

2. Q[CQ
X ] is a complete graph;

3. Orient the subgraph Q[PossDe(X)Q\CQ
X
] as follows until no feasible updates:

For any vertices Vl and Vj such that Vl ◦−◦Vj , orient it as Vl ◦→ Vj if

(i) FVl
\ FVj

̸= ∅, or;
(ii) FVl

= FVj
as well as there is a vertex Vm ∈ PossDe(X)Q\CQ

X
not adjacent to Vj such

that Vm → Vl ◦−◦Vj

where FVl
= {V ∈ CQ

X ∪ {X} | V ∗−◦ Vl ∈ Q}. Then, no new uncovered colliders are
introduced.

The PMG incorporating local transformations satisfies desirable properties as follows.

Theorem 8 (Theorem 1 in Wang et al. [2023b]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and orientation rules R1−R3,R′

4,R8−R10 and RSB. Then Q
satisfies the following properties.

(Closed). Q is closed under the orientation rules.

(Invariant). The arrowheads (>) and tails (−) in Q are invariant in all the MAGs consistent
with Q.

(Chordal). The circle component in Q is chordal.

(Balanced). For any three nodes A,B,C in Q, if A ∗→ B ◦−∗ C, then there is an edge
between A and C with an arrowhead at C, namely, A ∗→ C. Furthermore, if the edge
between A and B is A → B, then the edge between A and C is either A → C or A◦→ C
(i.e., it is not A↔ C).

(Complete). For each circle at vertex A on any edge A◦−∗B in Q, there exist MAGsM1 and
M2 consistent with Q such that A←∗B inM1 and A→ B inM2.

Recently, Venkateswaran and Perković [2024], Wang et al. [2024b, 2025a] devised additional rules
for more general type of background knowledge. However, the completeness of the orientations in
the resulting PMG after applying these rules remains an open problem.

Wang et al. [2023a] leveraged the PMG incorporating local background knowledge to determine
whether a given set of variables can be an adjustment set in some MAG consistent with the PMG,
and Wang et al. [2024b, 2025b] demonstrated that the additional rules can improve this process.

Soundness and completeness of orientations. To eliminate ambiguity, we provide a formal
description of soundness and completeness in the context of orientation within a PMG. Let Q be a
PMG. We say that orientations in Q are sound if there is at least one MAGM conforming to Q such
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that invariant edge marks in Q are a subset of edge marks inM. We say that the orientations in Q
are complete if for every A◦−∗B edge in H, there are two MAGsM1 andM2 represented by Q
containing the edges A→ B and A←∗B, respectively, such thatM1 andM2 conforming to Q.

Structural causal bandit. We review the notion of minimal intervention set (MIS) and possibly
optimal minimal intervention set (POMIS) as well as their graphical characterizations for causal
diagram by Lee and Bareinboim [2018]. Let G be a causal diagram and CC(X)G be the c-component
[Tian and Pearl, 2002] of G that contains X where a c-component is a maximal set of vertices
connected with bidirected edges. We denote CC(X)G =

⋃
X∈X CC(X)G . Let MUCT(G,Y ) and

IB(G,Y ) be the MUCT and IB given [[G,Y ]], respectively.

Definition 10 (MIS [Lee and Bareinboim, 2018]). Given information [[G,Y ]], a set of variables
X ⊆ V \{Y } is said to be a minimal intervention set (MIS) with respect to [[G,Y ]], denoted by MG,Y
if there is no X′ ⊊ X such that µx[X′] = µx for every SCM conforming to the causal diagram G.

Proposition 9 (Proposition 1 in Lee and Bareinboim [2018]). Let G be a causal diagram over the set
of variables V. A set X ⊆ V \ {Y } is an MIS relative to [[G,Y ]] if and only if X ⊆ An(Y )GX

.

MIS leverages Rule 3 of do-calculus [Pearl, 1995] to eliminate variables that are irrelevant to the
reward. Intuitively, an MIS can be understood as a set X in which there exists a directed path from
any variable X ∈ X to Y , ensuring that each X can influence Y .

Definition 11 (POMIS [Lee and Bareinboim, 2018]). Let X ⊆ V \ {Y } be an MIS with respect
to [[G,Y ]]. If there exists an SCM conforming to G such that µx∗ > ∀W∈MG,Y \{X}µw∗ , then X is a
possibly-optimal minimal intervention set (POMIS) with respect to [[G,Y ]].

Definition 12 (Unobserved-confounders’ territory). Given information [[G,Y ]], letH = G[An(Y )G ].
A set of variables T ⊆ V(H) containing Y is called a UC-territory on G with respect to Y if
De(T)H = T and CC(T)H = T. A UC-territory T is said to be minimal if no T′ ⊊ T is a
UC-territory (MUCT).

Definition 13 (Interventional border). Let T be a minimal UC-territory on causal diagram G with
respect to Y . Then W = Pa(T)G \T is called an interventional border (IB) for G with respect to Y .

When given a causal diagram G, MUCT and IB provide a graphical characterization of POMIS. In
words, MUCT is the minimal set of variables that is closed under descendants and connected by a
bidirected edge; and IB consists of the parents of MUCT, excluding MUCT itself. Intuitively, MUCT
is the minimal closed mechanism that conveys all hidden information from unobserved confounders
to the downstream reward, while IB consists of the nodes that directly affect this closed mechanism.

Theorem 9 (Theorem 6 in Lee and Bareinboim [2018]). Let G be a causal diagram over the set of
variables V. A set X ⊆ V \ {Y } is a POMIS if and only if it holds IB(GX,Y ) = X.

B.2 Background Results

We present useful results established in existing works.

B.2.1 Background Results in Zhang [2006, 2008a]

Lemma 3 (Lemma 0, as used in the proof of Lemma 5.1.7 in Zhang [2006]). Let X and Y be distinct
nodes in a MAGM. If p = ⟨X, · · · ,Z,V ,Y ⟩ is a discriminating path from X to Y for V in a MAG
M, and the corresponding subpath between X and V in P is (also) a collider path, then the path
corresponding to p in Q is also a discriminating path for V .

Lemma 4 (Lemma A.1 in Zhang [2008a] & Lemma 5 in Jaber et al. [2018]). Let P be a PAG
over V, and let P[A] be the subgraph of P induced by A ⊆ V. For any three nodes A,B,C, if
A∗→ B ◦−∗C, then there is an edge between A and C with an arrowhead at C, namely, A∗→ C.
Furthermore, if the edge between A and B is A → B, then the edge between A and C is either
A→ C or A◦→ C (i.e., it is not A↔ C).

Lemma 5 (Lemma 3.3.2 in Zhang [2006]). In a PAG P , for any two nodes A and B, if there is a
circle path, then following holds:
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1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if
C ↔ B.

Lemma 6 (Theorem 2 in Zhang [2008a]). Let P be a PAG. LetM be the graph resulting from the
following procedure applied to a P .

Step 1. Replace all partially directed edges (◦→) in P with directed edges (→).

Step 2. Orient the circle component of P into a DAG with no unshielded colliders.

Then, the result graphM conforms to P .

Lemma 7 (Lemma B.1 in Zhang [2008a]). Let A and B be two distinct nodes in a PAG P . If p is
a possibly directed path from A to B in a PAG P , then some subsequence of p forms an uncovered
possibly directed path from A to B in P .

Lemma 8 (Lemma B.2 in Zhang [2008a]). Let A and B be two distinct nodes in a PAG P . If
p = ⟨V0(= A), · · ·Vn(= B)⟩,n ≥ 2, is an uncovered possibly directed path from A to B in P , and
Vi−1 ∗→ Vi for some i ∈ {1, · · · ,n}, then Vj−1 → Vj for all j ∈ {i+ 1, · · · ,n}.

Lemma 9 (Lemma B.4 in Zhang [2008a]). In a PAG P , if there is a possibly directed path from A to
B, then the edge between A and B, if any, is not into A.

Lemma 10 (Lemma B.5 in Zhang [2008a]). In a PAG P , let A and B be two distinct nodes in a
PAG P . If there is a possibly directed path from A to B that is into B, then every uncovered possibly
directed path from A to B is into B.

Lemma 11 (Lemma B.7 in Zhang [2008a]). In a PAG P , if there is a circle path between two
adjacent vertices in P , then the edge between the two vertices is a circle edge (◦−◦).

B.2.2 Background Results in Maathuis and Colombo [2015]

Lemma 12 (Lemma 7.6 in Maathuis and Colombo [2015]). Let P be a PAG with k edges into X ,
k ≥ 0. Then there exists at least one MAGM in the Markov equivalence class represented by P that
has k edges into X .

B.2.3 Background Results in Perkovic et al. [2018]

Lemma 13 (Lemma 48 in Perkovic et al. [2018]). Let X be a node in a PAG P . LetM be a MAG
conforming P that satisfies Lem. 6. Then any edge that is either X ◦−◦ Y , X ◦→ Y , or invisible
X → Y in P is invisible X → Y inM.

B.2.4 Background Results in Jaber et al. [2018, 2022]

Lemma 14 (Proposition 1 in Jaber et al. [2018]). Let P be a PAG over V, and G be any causal
diagram in the equivalence class represented by P . Let X ̸= Y be two nodes in A ⊆ V. If X is an
ancestor of Y in G[A], then X is a possible ancestor of Y in P[A].

Lemma 15 (Lemma 4 in Jaber et al. [2018]). Let P be a PAG over V. For every directed edge
X → Y in induced subgraph P[A] with A ⊆ V, if it is visible in P , then it is also visible in P[A].

Lemma 16 (Proposition 2 in Jaber et al. [2018]). Let P be a PAG over V, and G be any causal
diagram in the equivalence class represented by P . Let X ̸= Y be two nodes in A ⊆ V. If X and Y
are in the same c-component in G[A], then X and Y are in the same pc-component in P[A].
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Algorithm 2: Partial Topological Order PTO [Jaber et al., 2018]
Input: P , A ⊆ V(P)
Output: Partial Topological Order over P[A]

1 while there exists a bucket B in P[A] with only arrowheads incident on it do
2 Extract B from P[A]
3 A← A \B
4 end
5 The partial order is B1 ≺ · · · ≺ Bm in reverse order of the bucket extraction, i.e., B1 is the last

bucket extracted and Bm is the first.

Lemma 17 (Proposition 4 in Jaber et al. [2018]). Let P be a PAG over V, and let P[A] be the
subgraph of P induced by A ⊆ V. Then, Alg. 2 is sound over P[A], in the sense that the partial
order is valid with respect to G[A], for every causal diagram G in the equivalence class represented
by P .10

Lemma 18 (Lemma 6 in Jaber et al. [2018]). InM[A], whereM is a MAG over V and A ⊆ V,
the following property holds:

For any three vertices A,B,C, if A∗→ B → C and both edges are invisible, then we have
A∗→ C and the edge is invisible.

Lemma 19 (Lemma 18 in Jaber et al. [2022]). Let P be a PAG over V, and let P[A] be the subgraph
of P induced by A ⊆ V. In P[A], the following property holds:

For any three vertices A,B,C, if A∗→ B ?→ C and both edges are invisible, then we have
A∗→ C and the edge is invisible.

B.2.5 Background Results in Wang et al. [2023b, 2024a]

Lemma 20 (Lemma 2 in Wang et al. [2023b]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and the orientation rules. If p is a possibly directed path from A to B
in Q, then some subsequence of p is an uncovered possibly directed path from A to B in Q.

Lemma 21 (Lemma 3 in Wang et al. [2023b]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and the orientation rules. In a PMG Q, for any two nodes A and B,
if there is a circle path, then following holds:

1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if
C ↔ B.

Lemma 22 (Lemma 4 in Wang et al. [2023b]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and the orientation rules. Suppose a MAGM consistent toQ and the
local transformation CQ

X . Then Y ∈ PossDe(X)Q\CQ
X

if and only if Y ∈ De(X)M.

Lemma 23 (Lemma 16.1 in Wang et al. [2023b]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and the orientation rules. The MAG oriented according to Lem. 6
conforms to Q.

Lemma 24 (Lemma 2 in Wang et al. [2024a]). Let Q be a PMG obtained from some valid local
transformations from a PAG P and the orientation rules. If there is an uncovered circle path
p = ⟨V1,V2, · · · ,Vn⟩,n ≥ 3 in Q, then any two non-consecutive vertices are not adjacent (minimal
circle path).

10A bucket refers to the closure of nodes connected with circle paths.
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Task 1 Task 2 Task 3 Task 4∗ Task 5∗ Task 6 ∗

Total trials 10k 10k 5k 10k 2k 2k

TS
POMIS 123.4 ± 52.2(39.3%) 320.9 ± 43.7(44.3%) 60.3± 3.9(2.5%) 85.9± 43.1(9.7%) 51.9± 2.3(14.5%) 203.3 ± 3.9(23.8%)
DMIS 144.9 ± 51.9 661.1 ± 50.6 1719.6± 23.1 335.9± 48.3 108.2 ± 4.7 805.6± 20.2
BF 314.0 ± 54.1 724.8 ± 50.3 2421.3± 35.5 889.1± 59.5 357.9± 16.2 854.5 ± 20.3

KL-UCB
POMIS 243.4 ± 55.5(48.9%) 629.9 ± 45.1(50.4%) 52.0± 0.1(2.1%) 195.1± 45.7(12.9%) 54.0± 0.2(12.7%) 202.9 ± 0.3(17.9%)
DMIS 275.9 ± 54.9 1175.3± 52.3 1905.6± 9.9 705.5 ± 55.6 123.4 ± 1.7 1043.3 ± 13.7
BF 497.9 ± 55.7 1250.9± 60.5 2463.6 ± 33.7 1518.4 ± 71.0 431.1 ± 16.0 1130.7± 13.9

Table 1: Mean and standard deviation of cumulative regret (CR). The asterisk (∗) indicates additional
experiments. The percentages (red) represent the ratio CR for POMIS

CR for BF × 100(%).

C Assumptions

In this paper, we assume that there is no selection bias in the SCM-MAB system; that is, the PAG
representing our causal diagrams of interest contains no undirected edges. Since our work focuses on
a graphical perspective of the structured bandit system in terms of PAGs, we assume access to the
true PAG representing the causal diagram corresponding to the target bandit instance.

D Experimental Details and Additional Results

This section provides details on the specific SCMs used in all bandit instances presented in the
experiments (Sec. 5) and additional experiments. Simulations are repeated 1,000 times to obtain
consistent results. The simulations were conducted on a Linux server equipped with an Intel Xeon
Gold 5317 processor running at 3.0 GHz and 64 GB of RAM. No GPUs were used during the
simulations.

We consider three strategies for selecting arms: POMISs, DMISs, and Brute-force (BF), combined
with two prominent MAB solvers: Thompson Sampling (TS) [Thompson, 1933, Chapelle and Li,
2011, Agrawal and Goyal, 2012, Kaufmann et al., 2012] and KL-UCB [Garivier and Cappé, 2011,
Cappé et al., 2013]. In the Brute-force strategy, all possible combinations of arms

⋃
X⊆V\{Y } XX

are evaluated. The number of trials is set to 10,000 for Tasks 1, 2, and 4; 5,000 for Task 3; and 2,000
for Tasks 5 and 6, which is sufficient to observe performance differences among action spaces. The
number of trials is selected such that the cumulative regret with respect to POMIS stabilizes across
1000 repeated runs. Our experimental setup closely follows those of Lee and Bareinboim [2018] and
Wei et al. [2023]. Tables 1 and 2 summarize our simulation results.

These results demonstrate that refining arms by considering the Markov equivalence class into account
enhances the efficiency of agents when interacting with the underlying environment.

Details of the Causal Models for Bandit Instances

We denote the exclusive-or operation by ⊕, and use Bern to represent a Bernoulli distribution.
We randomly generate structural functions F using binary logical operations (∧,∨,⊕,¬), and the
parameters of the exogenous variable distributions are also randomly selected.

Task 1. The bandit instance is associated with an SCM S1 where

S1 =



U = {UA,UB ,UC ,UD,UY ,UBY ,UAC}
V = {A,B,C,D,Y }

F =


fA = uA ∧ uAC , fB = c ∨ ((1− uB) ∧ uBY ),

fC = a ∨ ((1− uC) ∧ uAC), fD = y ∧ uD,

fY = {(1− b) ∨ {(1− c) ∧ (1− uBY )}} ∧ uY

P (U) =


UA ∼ Bern(0.44),UB ∼ Bern(0.7),UC ∼ Bern(0.4),

UD ∼ Bern(0.59),UY ∼ Bern(0.66),UBY ∼ Bern(0.28),

UAC ∼ Bern(0.77).

(1)
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Figure 11: Cumulative regrets for the corresponding KL-UCB (solid) and TS (dashed) for additional
experiments (Task 4–6) under distinct strategies. We plot the average cumulative regrets along with
their standard deviations.

Task 2. The bandit instance is associated with an SCM S2 where

S2 =



U = {UA,UB ,UC ,UD,UE ,UY ,UAY ,UBY }
V = {A,B,C,D,E,Y }

F =


fA = uA ⊕ uAY , fB = ub ⊕ uBY , fC = uC ⊕ b,

fD = uD ⊕ c, fE = {(1− uE)⊕ (1− a)} ∧ c,

fY = uY ∨ {{(1− e)⊕ (uAY ∧ uBY )} ∧ d}

P (U) =


UA ∼ Bern(0.47),UB ∼ Bern(0.59),UC ∼ Bern(0.37),

UD ∼ Bern(0.61),UE ∼ Bern(0.55),UY ∼ Bern(0.21),

UAY ∼ Bern(0.54),UBY ∼ Bern(0.36).

(2)

Task 3. The bandit instance is associated with an SCM S3 where

S3 =



U = {UA,UB ,UC ,UD,UE ,UF ,UG,UH ,UI ,UY ,UAB ,UBE ,UFG,UHI ,UIY }
V = {A,B,C,D,E,F ,G,H, I,Y }

F =



fA = uA ⊕ UAB , fB = (uBE ⊕ uAB) ∧ (a ∨ ub),

fC = uC ⊕ b, fD = uD ⊕ c,

fE = ((1− uE)⊕ (1− d)) ∧ uBE ,

fF = ((1− uF )⊕ (1− e)) ∧ uFG,

fG = (uFG ⊕ h) ∧ (e ∨ uG),

fH = ((1− uH)⊕ (1− e)) ∧ uHI ,

fI = (uIY ⊕ uHI) ∧ (f ∨ uI),

fY = uY ∨ (((1− h)⊕ (i ∧ uIY )) ∧ f)

P (U) =



UA ∼ Bern(0.47),UB ∼ Bern(0.59),UC ∼ Bern(0.37),

UD ∼ Bern(0.61),UE ∼ Bern(0.55),UF ∼ Bern(0.21),

UG ∼ Bern(0.54),UH ∼ Bern(0.36),UI ∼ Bern(0.45),

UY ∼ Bern(0.37),UAB ∼ Bern(0.29),UBE ∼ Bern(0.53),

UFG ∼ Bern(0.62),UHI ∼ Bern(0.46),UIY ∼ Bern(0.67).

(3)

As an additional experiment, we evaluate the cumulative regrets (CR) of SCM-MAB using the PAGs
illustrated in Fig. 12. The corresponding plots are shown in Fig. 11.

Task 4. We consider the PAG in Fig. 12a to validate our result. Using three strategies, the POMIS-
based TS and KL-UCB achieve CRs of 85.9 and 195.1, which correspond to 9.7% and 12.9%,
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Task 1 Task 2 Task 3 Task 4∗ Task 5∗ Task 6∗

IS
POMIS 7 (43.75%) 18 (56.3%) 8 (1.56%) 6 (37.5%) 16 (12.5%) 40 (31.3%)
DMIS 9 30 152 14 32 120
BF 16 32 512 16 128 128

Arms
POMIS 19 (23.5%) 89 (36.6%) 54 (0.27%) 15 (6.17%) 81 (3.70%) 231 (10.7%)
DMIS 25 195 2025 57 189 1755
BF 81 243 19683 243 2187 2187

Table 2: For each task, the number of intervention sets (IS; shown above) and the corresponding
number of arms (shown below) are reported. The percentages (red) indicate the ratio # POMIS

# BF ×100(%),
and the corresponding ratio for the number of arms.
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Figure 12: Each PAG represents a target bandit mechanism that the deployment agent interacts with.

respectively, of CR for BF. The bandit instance is associated with an SCM S4 where

S4 =



U = {UA,UB ,UC ,UD,UE ,UY ,UAC ,UAY ,UBY }
V = {A,B,C,D,E,Y }

F =



fA = uA ∨ {{(1− d)⊕ (uAY ∧ uAC)} ∧ b},
fB = uB ⊕ uBY ,

fC = (uAC ⊕ E) ∧ (B ∨ uC), fD = uD ⊕ b,

fE = {(1− uE)⊕ (1− b)} ∧ d,

fY = uY ∨ {{(1− c)⊕ (uAY ∧ uBY )} ∧ b

P (U) =


UA ∼ Bern(0.47), {UB ∼ Bern(0.59),UC ∼ Bern(0.37),

UD ∼ Bern(0.61),UE ∼ Bern(0.55),UY ∼ Bern(0.21),

UAC ∼ Bern(0.36),UAY ∼ Bern(0.54),UBY ∼ Bern(0.45).

(4)

Task 5. We consider the PAG in Fig. 12b to validate our result. Using three strategies, the POMIS-
based TS and KL-UCB achieve CRs of 51.9 and 54.1, which correspond to 14.5% and 12.7%,
respectively, of CR for BF. The bandit instance is associated with an SCM S5 where

S5 =



U = {UA,UB ,UC ,UD,UE ,UF ,UG,UY ,UAB ,UBY ,UCD,UFG}
V = {A,B,C,D,E,F ,G,Y }

F =



fA = (1− uA) ∨ {(1− uAB)⊕ e},
fB = {1− {uBY ∨ (1− uB)}} ⊕ (uAB ⊕ f),

fC = uCD ⊕ uC , fD = (1− uD) ∨ {(1− uCD)⊕ c},
fE = d⊕ uE , fF = (1− uF ) ∨ {(1− uFG)⊕ e},
fG = {1− {uFG ∨ (1− uG)}} ⊕ (e⊕ a),

fY = f ⊕ {{(1− uBY )⊕ uY }} ⊕ (b⊕ a)

P (U) =


UA ∼ Bern(0.29),UB ∼ Bern(0.73),UC ∼ Bern(0.36),

UD ∼ Bern(0.45),UE ∼ Bern(0.38),UF ∼ Bern(0.58),

UG ∼ Bern(0.55),UY ∼ Bern(0.57),UFG ∼ Bern(0.36),

UAB ∼ Bern(0.37),UBY ∼ Bern(0.35),UCD ∼ Bern(0.4).

(5)
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Task 6. We consider the PAG in Fig. 12c to validate our result. Using three strategies, the POMIS-
based TS and KL-UCB achieve CRs of 203.3 and 202.9, which correspond to 23.8% and 17.9%,
respectively, of CR for BF. The bandit instance is associated with an SCM S6 where

S6 =



U = {UA,UB ,UC ,UD,UE ,UF ,UG,UY ,UAY ,UEF ,UFG}
V = {A,B,C,D,E,F ,G,Y }

F =



fA = uA ⊕ uAY , fB = uB ,

fC = ((1− uC) ∧ f) ∨ a, fD = f ∧ uD,

fE = ((1− b) ∨ ((1− uEF ) ∧ (1− d))) ∧ uE ,

fF = ((1− uF ) ∧ uFG) ∨ uEF ,

fG = ((1− uG) ∧ uFG) ∨ g,

fY = e ∧ ((1− d) ∨ (((1− uY ) ∧ g) ∨ uAY ))

P (U) =


UA ∼ Bern(0.59),UB ∼ Bern(0.42),UC ∼ Bern(0.77),

UD ∼ Bern(0.28),UE ∼ Bern(0.72),UF ∼ Bern(0.48),

UG ∼ Bern(0.68),UY ∼ Bern(0.51),UAY ∼ Bern(0.61),

UEF ∼ Bern(0.63),UFG ∼ Bern(0.55).

(6)

E Discussions

In this section, we discuss circle mark transformations from the perspective of orientation complete-
ness and complexity of enumerating all POMISs for PAGs.

E.1 Partial Mixed Graphs Obtained from Local Transformation

Let Q̃X be a PMG that satisfies (1) the two conditions in Prop. 7 and (2) is closed under orientation
rules R1−R3, R̃4,R8−R10, and RSB with additional Rules provided by Wang et al. [2024b],
Venkateswaran and Perković [2024], Wang et al. [2025a]. It is important to note that the completeness
of Q̃X remains an open problem. Therefore, Q̃X is inadequate to completely characterize POMIS
for PAGs.
Remark 2. Every Qi

X is complete for orientations; for any A◦−∗B in Qi
X, there are two MAGs

M1 andM2 represented by Qi
X containing A→ B and A←∗B respectively.

Moreover, even though we have access toQ∗
X—a PMG that satisfies (1) the two conditions in Prop. 7

and (2) the orientation completeness—Q∗
X is still insufficient to ensure X ⊆ An(Y )Q∗

X
. To witness,

consider a PAG P in Fig. 5 with X = {A}.
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Figure 13: The light blue region indicates possible ancestors of Y . (a) PMG incorporating necessary
conditions (Prop. 7) and (b) the PMG with orientation completeness. (c) MAG represented by Q{A}
while A /∈ An(Y )M. (d) PMG representing sound and complete orientations over MAGs satisfying
that {A} is an MIS. (e) PMG with C

Q{A}
{A} = ∅ and C

Q{A}
{Y } = {B}.

Then C ◦−◦ Y in P corresponds to C ◦→ Y in Q∗
X, according to the first condition in Prop. 7

supported by the uncovered proper possibly directed path A ◦−◦C ◦−◦ Y . Moreover, Y → D is
oriented byR1, and all remaining circle marks can vary across the underlying MAGs represented by
Q∗

X. Here, we can find a MAGM where X /∈ An(Y )M by orienting C ◦→ Y as C ↔ Y , suggesting
that additional information (orientation) is necessary.
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Furthermore, neither Q∗
X nor Q̃X guarantees the balanced property (Lems 4 and 31). To witness,

refer to Q∗
{C} (identical to Q̃{C}). We can observe that there is C → Y ◦−◦B while C ◦−◦B, which

violates the balanced property.

One might surmise that X = IB(P,Y ,X) is an appropriate characterization of POMIS for PAGs.
However, this approach does not hold. For illustration, consider the PAG P in Fig. 5a and a set X =
{A}, which is a DMIS with respect to [[P,Y ]]. Moreover, we can simply derive IB(P,Y ,X) = {A},
and thus X = IB(P,Y ,X) holds. For X to be an MIS for a MAGM represented by P , the edge
A ◦−◦C should correspond to A → C inM, implying the visible edges C → B and C → Y , as
these are non-definite colliders (seeM1 andM2 in Figs. 5b and 5c with Fig. 13d). Regardless of
the edge orientation of B ◦−◦Y , we find IB(M,Y ,X) = {C}, as in Fig. 13e. Thus, X = {A} is
not a POMIS with respect to [[M,Y ]] for allM∈ [P]. Therefore, IB(P,Y ,X) fails to characterize
POMIS.

E.2 Adaptive Learning: Simultaneous Discovery and Regret Minimization

A natural question is why we do not pursue adaptive discovery from online information. We address
this point, beginning with relevant literature on causal discovery with interventions.

Offline discovery from interventions. In offline or non-adaptive setting, interventions are prede-
termined before algorithm execution. Hauser and Bühlmann [2012] studied the problem of learning
graph structures from interventions under the assumption of no unobserved confounders, while
Kocaoglu et al. [2017] explored experimental design for learning causal diagrams from interventions.
Recently, Zhou et al. [2025] investigated learning PAGs from interventions.

Online discovery from interventions. While those offline causal discovery researches require
access to infinite interventions, there has been intensive works that adaptively selects interventions
from an online learning. Squires et al. [2020] and Choo and Shiragur [2023] applied interventions
sequentially, with adaptively chosen targets at each step, still necessitating access to interventional
distributions. Although Greenewald et al. [2019] and Elahi et al. [2024b] worked with finite inter-
ventions, it is applicable only when the underlying causal structure has no unobserved confounders.
Notably, designing adaptive discovery algorithms that work with finite interventions and allow for
unobserved confounders remains an open problem.

It may possible to incorporate online causal discovery into the decision-making process. For example,
at each step, an agent can choose interventions aimed at improving structural knowledge, while also
expecting that those arms could be valuable for minimizing regret. However, designing algorithms
that effectively balance exploration for structure learning and for regret minimization poses substantial
additional challenges, as these two objectives—structure discovery and regret minimization—are not
naturally aligned.

Furthermore, Wang et al. [2022, 2023b] adaptively refine a PAG by resolving circle marks through
targeted interventions. In this sense, interventions on nodes involved in circle marks can be useful
for structural refinement. However, as noted in Wang et al. [2024a], obtaining a closed-form
characterization of the number of MAGs compatible with a PAG—given a particular orientation of a
circle mark—remains an open problem, implying that determining which circle marks to prioritize for
learning is itself a challenging problem. As such, designing reliable algorithms that exploit structural
uncertainty during learning involves solving nontrivial structure learning problems and remains an
active area of research.

E.3 Comparison with Elahi et al. [2024a]

Elahi et al. [2024a] demonstrated that it is not necessary to learn the full causal diagram to identify
all POMISs, and specified the extent of graphical structure that must be discovered to do so. Building
on this insight, their work flow proceeds as follows: In the first phase, the method learns the induced
subgraph of the ancestors of the reward node in an online manner, through interventions; Using the
learned graph, they identify POMISs following the method of Lee and Bareinboim [2018]; Finally,
they run standard independent MAB solvers with the identified POMISs.
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In contrast, our work does not focus on causal discovery, but instead assumes access to a PAG (e.g.,
obtained via FCI [Spirtes et al., 2001b, Zhang, 2008a]) and aims to identify POMISs directly from
this PAG. That is, given a PAG derived from purely observations, our algorithm prunes suboptimal
arms a priori, without requiring any interventions for causal discovery. From a practical perspective,
interventional data is often more costly and risk-prone than observational data. This suggests that our
approach first discovering a PAG from observational data and then identifying POMISs may offer
substantial advantages in resource-constrained or high-risk domains, compared to methods that rely
on extensive intervention for graph discovery.

Since both our method and Elahi et al. [2024a] ultimately reduce the problem to standard bandits over
a set of POMISs, their regret bounds in both approaches depend critically on the size of the resulting
POMIS set (each denoted by IP and IG). In Elahi et al. [2024a], the regret bound consists of a
discovery term and a minimization: O(f(dmax, δ, ε)) +O(

∑
x∈IG

∆x(1 +
log T
∆2

x
))11, whereas our

regret bound contains only the minimization term: O(
∑

x∈IP
∆x(1 +

log T
∆2

x
)). Since our approach

avoids online causal discovery, our regret does not include the additional discovery term. However,
because PAGs contain structural uncertainty (e.g., circle marks), the number of POMISs derived
from a PAG is typically larger than that from a fully specified causal diagram. As a result, the bandit
term of Elahi et al. [2024a] is usually smaller than ours. Therefore, although a direct comparison
is difficult due to the different settings, the trade-off can be summarized as eliminating the online
discovery cost at the expense of starting with a larger initial action space.

F Limitations and Future Works

In this section, we present limitations of our work and outline promising directions.

Modeling bandit instances in the form of SCMs. Structural Causal Models (SCMs) are a versatile
and expressive framework that provides a principled way to represent and reason about causal
relationships. Their generality makes them applicable across a wide range of domains. However,
SCMs come with certain limitations, such as the assumption of a well-defined set of variables
and a fixed causal structure, which may not adequately capture the complexity of dynamic, high-
dimensional, or partially observed systems. Nonetheless, our work addresses a fundamental problem
within the SCM framework. We believe it provides a solid foundation for future research, such as
extending causal bandits to more complex or less structured environments.

Known partial ancestral graphs. We make the standard assumption that the deployment-phase
learner has access to the true PAG representing the underlying causal diagram. In practice, while
several causal discovery methods in the presence of latent confounders have been proposed [Spirtes
et al., 2001a, Zhang, 2008a, Colombo et al., 2012, Rohekar et al., 2021, 2023], these techniques
typically rely on accurate estimation of conditional independence (CI) relations. This would be
especially true for constrained-based algorithms like FCI, where the exact PAG recovery would
require many empirical conditional-independence tests to work perfectly. Therefore, our work
implicitly assumes that the decision-maker possesses sufficient domain knowledge and statistical
capability for reliable CI testing.

PAG misspecification. It is of great practical interest to study how MIS, DMIS and POMIS
are affected given PAG misspecification. Notably, the edges in a PAG are governed by structural
constraints and logical dependencies such as the balanced property and chordality. Due to the
structured entanglements, it is indeed difficult to expect that computing POMISs on an incorrect PAG
would yield robust results. Although our work is primarily theoretical and assumes access to the
true PAG, we acknowledge that developing robust methodologies that account for such issues is a
promising direction for future research.

11where dmax denotes a constant greater than the maximal in-degree in the true causal diagram, and δ, ε
represent some parameters. See Appendix A.13 of Elahi et al. [2024a] for further details.
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Future work. In future research, given the availability of an observational distribution, it becomes
possible to identify specific causal effects and eliminate suboptimal arms [Jaber et al., 2022]. More-
over, integrating this approach with partial identification [Balke and Pearl, 1995, Richardson et al.,
2014, Zhang and Bareinboim, 2020, 2021, Zhang et al., 2022, Bellot, 2024], enables the exclusion
of arms where the upper bound is less than the lower bound of another arm, as proposed by Zhang
and Bareinboim [2017]. One can account for uncertainty in identification or bounds caused by a
finite sample, which will lead to more robust analyzes [Bellot and Chiappa, 2024, Jung and Bellot,
2024]. Beyond causal bandits, we believe that ancestral graphical modeling offers practical value by
integrating with causal reinforcement learning [Zhang and Bareinboim, 2022, Hwang et al., 2024,
Bareinboim et al., 2024], rehearsal learning [Qin et al., 2023, 2025, Du et al., 2024, 2025, Tao et al.,
2025] and sequential planning [Pearl and Robins, 1995a, Jung et al., 2024].

G Auxiliary Results

In this section, we provide auxiliary results utilized throughout the paper.

Lemma 25. Let P be a PAG over V, and let P[A] be the subgraph of P induced by A ⊆
PossAn(Y )P ⊆ V. If X and Z belong to different buckets over P[A], then the starting edges
of any uncovered proper possibly directed paths from X and Z to Y with respect to X are not
relevant.

Proof. Since X and Z are not in the same bucket, there is no circle path connecting the two nodes.
Consequently, X and Z are not relevant.

Lemma 26. Let P be a PAG over the set of variables V. If a set X ⊆ V \ {Y } is a DMIS relative to
[[P,Y ]], then there exists a MAGM such that every X ∈ X has a proper directed path to Y with
respect to X inM.

Proof. According to Prop. 5 and thm. 1, there exists a MAGM such that X ⊆ An(Y )MX
. For the

sake of contradiction, suppose that X ⊆ An(Y )MX
holds while there is no proper directed path from

X ∈ X to Y with respect to X inM. This implies that every directed path from X to Y must contain
some node Z ∈ X \ {X}. Consequently, such paths would be cut by the X-lower manipulation,
resulting in X /∈ An(Y )MX

. This contradicts the assumption that X ⊆ An(Y )MX
.

Lemma 27. Let Q be a PMG obtained from some valid local transformations from a PAG P and the
orientation rules. In Q, the following property holds:

If A→ B is visible, then every A→ C is also visible for every C connected as circle path
with B.

Proof. For the sake of contradiction, assume that there exists a node C such that A→ C is invisible
while connected as circle path with B.

First, let D∗→ A be an arbitrary edge that makes A→ B visible. Since A→ C is invisible, D and
C must be adjacent and the edge is into C by the orientation ruleR2 (i.e., D∗→ C). According to
Lem. 31, this implies the existence of D ∗→ B, which contradicts the assumption that A → B is
visible.

Next, consider the path D ∗→ V1 ↔ · · · ↔ Vn ↔ A with n ≥ 1 where Vi is a parent of B. By
Lem. 31, we get that there exist edges Vi

?→ C for all Vi. Furthermore, these edges must take the
form Vi → C, because if any edges Vi ◦→ C existed,R′

4 would be triggered, resulting in Vi → C.
Therefore, A → C is also visible, leading to a contradiction for the assumption that A → C is
invisible. This concludes the proof.
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Lemma 28. Let Q be a PMG obtained from some valid local transformations from a PAG P and
the orientation rules, and G be any causal diagram in the equivalence class represented by Q. Let
X ̸= Y be two nodes in A ⊆ V(Q). If X is an ancestor of Y in G[A], then X is a possible ancestor
of Y in Q[A].

Proof. The lemma follows the proof of Lem. 14 (Prop. 1 in Jaber et al. [2018]). If X is an ancestor
of Y in G[A], then there exists a directed path X → · · · → Y in G[A]. This path is also present in G,
and consequently in the corresponding MAGM. Hence, the path corresponds to a possibly directed
path in Q. Since all nodes along the path are in A, they are also present in Q[A], implying X is a
possible ancestor of Y in Q[A].

Lemma 29. Let Q be a PMG obtained from some valid local transformations from a PAG P and
the orientation rules, and G be any causal diagram in the equivalence class represented by Q. Let
X ̸= Y be two nodes in A ⊆ V(Q). For every X → Y in Q[A], if it is visible in Q, then it remains
visible in Q[A].

Proof. The proof follows the argument of Lem. 15 (Lem 4. in Jaber et al. [2018]). Let G defined
over V(Q) ∪ L. Let X → Y be a visible edge in Q where X and Y are in A. Then, there is no
inducing path between X and Y relative to L that is into X in G. It follows that no such inducing
path (relative to the latent nodes in G[A]) exists in the subgraph G[A].

Lemma 30. Let Q be a PMG obtained from some valid local transformations from a PAG P and
the orientation rules, and G be any causal diagram in the equivalence class represented by Q. Let
X ̸= Y be two nodes in A ⊆ V(Q). If X and Y are in the same c-component in G[A], then X and
Y are in the same pc-component in Q[A].

Proof. The proof follows the argument of Lem. 16 (Prop. 2 in Jaber et al. [2018]). If X and Y are in
the same c-component in G[A], then there is a bidirected path p in G[A].

Lemma I (Lemma 6 in Jaber et al. [2018]). LetM be a MAG over V and G be a causal diagram
represented byM. For any X and Y in V, if there is a bidirected path p between X and Y in
G, then there is a path p′ between X and Y inM over a subsequence of p such that (1) all the
non-endpoint nodes are colliders, and (2) all directed edges on p′ are invisible.

Lemma II (Lemma 7 in Jaber et al. [2018]). Let M be a MAG over V and P be a PAG
representingM. For any X and Y in V, if there is a path p between X and Y inM such that
(1) all non-endpoint nodes are colliders and (2) all directed edges, if any, are not visible, then
there is a path p∗ between X and Y in P over a subsequence of p such that (1) all non-endpoint
nodes along the path are definite colliders, and (2) none of the edges are visible.

According to Lemma I, we choose a path p′, which is the shortest subsequence of p between X and
Y inM, corresponding to p∗ in P , such that (1) all non-endpoint nodes along the path are colliders,
and (2) none of the directed edges are visible. By Lemma II, the path p∗ is a definite colliding path
between X and Y , and none of the directed edges along the path are visible in P . For contradiction,
assume that p† in Q, which is corresponding to p∗ in P , includes a visible edge out of X . Then,
the visible edge would have to appear in all MAGs represented by Q. However, the edge along p′

is invisible inM, leading to a contradiction. Therefore, p† is also of definite status, containing no
visible edges, which implies that X and Y are in the same pc-component in Q. Since all nodes along
p† are in A, p† is also present in Q[A], ensuring that X and Y are in the same pc-component in
Q[A].
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Lemma 31. Let Q be a PMG obtained from some valid local transformations from a PAG P and the
orientation rules, and Q[A] be the induced graph over A ⊆ V(Q). For any three nodes A,B,C
in Q, if A ∗→ B ◦−∗C, then there is an edge between A and C with an arrowhead at C, namely,
A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge between A and C is
either A→ C or A◦→ C (i.e., it is not A↔ C).

Proof. The balanced property holds in the PMG with local transformations as shown in Thm. 8
(Theorem 1 in Wang et al. [2023b]). By the definition of an induced graph, this property is preserved
in Q[A].

Lemma 32. Let Q be a PMG obtained from some valid local transformations from a PAG P and the
orientation rules. In a PMG Q, for any two nodes A and B, if there is a circle path, then following
holds:

1. If there is an edge between A and B, the edge is not into A or B;

2. For any other node C, C ∗→ A if and only if C ∗→ B. Furthermore, C ↔ A if and only if
C ↔ B.

Proof. The proof follows the argument of Lem. 5 (Lem 3.3.2 in Zhang [2006]). The properties depend
on the balanced property in Lem. 4, which holds in Q as demonstrated in Thm. 8 and lem. 31.

Lemma 33. Let Q be a PMG obtained from some valid local transformations from a PAG P and the
orientation rules. PTO (Alg. 2) is also sound over Q[A], in the sense that the partial order is valid
with respect to G[A], for every causal diagram G in the equivalence class represented by Q.

Proof. The proof follows the argument of Lem. 17 (Prop. 4 in Jaber et al. [2018]). By Lem. 28, the
possible-ancestral relations inQ[A] subsume those in G[A]. Hence, a partial topological order that is
valid with respect to Q[A] is also valid with respect to G[A]. The correctness of Alg. 2 relies solely
on the balanced property, which is satisfied in the PMG with local transformations as per Thm. 8
and lem. 31. Thus, the algorithm is also sound with respect to Q[A].

H Proofs

In this section, we provide detailed proofs of the propositions and theorems presented in the main
body of the paper. For readability, we restate all of them.

Theorem 1 (Characterization of MIS for MAGs). LetM be a MAG over V. Given information
[[M,Y ]], a set X ⊆ V \ {Y } is an MIS relative to [[M,Y ]] if and only if X ⊆ An(Y )MX

holds.

Proof. (If) Suppose that X is not an MIS relative to [[M,Y ]]. This implies that there exists some
X′ ⊊ X such that µx[X′] = µx for every SCM conforming to the MAG M. For the sake of
contradiction, assume that X ⊆ An(Y )MX

. To derive a contradiction, it suffices to construct a SCM
such that µx[X′] ̸= µx. Consider the causal diagram G generated by the following procedure:

Step 1. If A→ B inM, then add a directed edge A→ B to G.

Step 2. If A↔ B inM, then add a bidirected edge A↔ B to G.

From this construction, it is clear that the causal diagram G corresponds toM. Furthermore, we have
X ⊆ An(Y )GX

since G andM have the exact same edges.

Now consider the following SCM associated with G: Each variable in Vi ∈ V(G) is associated with
a unique latent variable Ui and the function of each endogenous variable in V(G) is the sum of the
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value of its parents. Since X ⊆ An(Y )GX
holds, there exist directed paths from X \X′ to Y without

passing through X′. Let W = X \X′. Then, setting W to E[W | do(x′)] + 1 results in a larger
outcome value for Y , i.e., µx = µw,x′ > µx[X′], which leads to a contradiction.

(Only if) Suppose that X ̸⊆ An(Y )MX
holds. This indicates that there exists a nonempty subset

Z ≜ X \ An(Y )MX
. Let X′ = X \ Z. Our goal is to show that Y and Z are m-separated by X′ in

MX. Once established, we can apply Rule 3 of do-calculus for MAGs [Zhang, 2008b] to derive
µx′ = µx′,z.

For contradiction, assume that there exists some variable Z ∈ Z such that Z and Y are m-connected
conditioning on X′ in MX. This means the existence of a m-connected path p between Z and
Y . Since Z has its incoming edges removed, p must start with an edge outgoing from Z. If there
were any collider along the path, it would be m-separated, as the collider cannot be an ancestor of
a conditioned node X′. However, if the path p begins with an outgoing edge from Z and has no
colliders, then it must be a directed path from Z to Y . This implies that Z ∈ An(Y )MX

holds, thus
Z and Y are not m-separated by X′ inMX, leading to a contradiction. Consequently, we have that
X is not an MIS relative to [[M,Y ]].

Proposition 1. LetM be a MAG over V. A set X ⊆ V \ {Y } is an MIS relative to [[M,Y ]] if and
only if there exists a causal diagram G conforming toM such that X is an MIS relative to [[G,Y ]].

Proof. (If) Let X be an MIS relative to [[G,Y ]] for some causal diagram G conforming toM. By
the definition of MIS for causal diagrams in Def. 10, there is no X′ ⊊ X such that for all SCM
conforming to G, µx[X′] = µx. In other words, for every X′ ⊊ X, there exists an SCM S conforming
to G such that µx[X′] ̸= µx. Since any SCM conforming to G also conforms toM, we know that S
also conforms toM. Thus, for any proper subset X′ ⊊ X, there exists an SCM associated withM
in which µx[X′] = µx holds.

(Only if) Let X be an MIS relative to [[M,Y ]]. The causal diagram G constructed in the same manner
as in the proof of thm. 1 conforms toM and satisfies X ⊆ An(Y )GX

. Therefore, we can conclude
that X is an MIS relative to [[G,Y ]] supported by Prop. 9.

Proposition 2 (Graphical characterization of MIS for PAGs). Let P be a PAG over the set of variables
V. A set X ⊆ V \ {Y } is an MIS relative to [[P,Y ]] if and only if, for every variable X ∈ X, there
exists a proper possibly-directed path from X to Y with respect to X in P .

Proof. (If) Suppose that X is not an MIS relative to [[P,Y ]], which implies that there exists some
proper subset X′ ⊊ X such that µx[X′] = µx for every SCM conforming to P . For contradiction,
suppose that for all X ∈ X, there exist proper possibly-directed paths from X to Y with respect
to X in P . Let W = X \ X′ and W be a vertex in W. Suppose that p is an uncovered proper
possibly-directed path from W to Y with respect to X in P . LetM∈ [P] be a MAG constructed by
the following procedure:

Step 1. Orient all edges along p as directed edges.

Step 2. Orient the remaining edges according to Lem. 6.

Then, p corresponds to a proper directed path from W to Y with respect to X in M. Thus,
W ∈ An(Y )MX

holds. We can then use the same construction in the proof of Thm. 1. In the
constructed causal diagram G, W ∈ An(Y )GX

holds. Furthermore, we know there exists an SCM
S in which W has a positive causal effect on Y which is not mediated by any variable in X. Thus,
setting W to E[W | do(x′)] + 1 will result in a larger outcome for Y , i.e., µx = µw,x′ > µx[X′],
meaning µx ̸= µx[X′], which contradicts the statement: µx[X′] = µx for every SCM conforming to
P .

(Only if) Suppose that for some Z ∈ X, there is no proper possibly directed path from Z to Y with
respect to X in P . Let X′ = X \ {Z}. We aim to show that P (y | do(x′)) = P (y | do(x′, z)),
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which would imply µx′ = µx′,z . Unfortunately, we cannot apply Rule 3 of do-calculus for PAGs,
since it is not guaranteed that X and Y are definitely m-separated by X′ in PX. However, we can
reason over the MAGs in the Markov equivalence class represented by P .

All paths from Z to Y in P which do not pass through X must not be a directed path due to our
assumption, i.e., they all contain an arrowhead pointing towards Z. LetM be a MAG conforming to
P . Then, all paths from Z to Y inM which do not pass through X must also be non-directed. Thus,
using similar reasoning as in the proof of Thm. 1, Z and Y are m-separated by X′ inMX. This is
because any path out of Z to Y must contain a collider node, which must be blocked, since it cannot be
an ancestor of any conditioned node. Therefore, we conclude that P (y | do(x′)) = P (y | do(x′, z)).
Since this argument holds for every MAG conforming to P , it holds for all SCMs conforming to
P .

Proposition 4. Let D be either a causal diagram or a MAG (i.e., not a PAG). If X is an MIS with
respect to [[D,Y ]], then X is a DMIS with respect to [[D,Y ]].

Proof. Without loss of generality, assume that all nodes in D are ancestors of Y . For contradiction,
assume that X is an MIS but not a DMIS relative to [[D,Y ]]. By Thm. 1 and prop. 9, we have
X ⊆ An(Y )DX

. Then, we can consider an SCM S∗ compatible with D, where all mechanisms
consist of the sum of the values of their parents, i.e., fV =

∑
|paV | paV +uV . Let X′ be an arbitrary

proper subset of X, and W denote X \ X′. Such a model S∗ always ensures that setting W as
E[W | do(x′)] + 1 results in µx = µw,x′ > µx[X′] for any proper subset X′ since there exist
directed paths from each W ∈W to Y without passing through X′. The existence of S∗ leads to a
contradiction.

Proposition 5. Let P be a PAG over V. A set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and
only if there exists a MAGM conforming to P such that X is an MIS relative to [[M,Y ]].

Proof. (If) Suppose X ⊆ V \ {Y } be an MIS relative to [[P,Y ]], and there exists a MAG M
conforming to P where X is an MIS relative to [[M,Y ]]. By Prop. 4, X is a DMIS relative to [[M,Y ]].
Hence, there exists an SCM S such that for any proper subset X′, µx[X′] ̸= µx holds. Since S
conforms toM, it also conforms to P , thus concluding proof for this direction.

(Only if) Suppose X ⊆ V \ {Y } be a DMIS relative to [[P,Y ]]. By the definition of DMIS (2), there
exists an SCM S associated with P such that, for every X′ ⊊ X, µx[X′] ̸= µx holds. Therefore, X is
an MIS, since for any proper subset X′, µx[X′] ̸= µx holds under the SCM S.

Theorem 2 (Graphical characterization of DMIS for PAGs). Let P be a PAG over the set of variables
V. A set X ⊆ V \ {Y } is a DMIS relative to [[P,Y ]] if and only if, for any pair of vertices X,Z ∈ X,
there exist uncovered proper possibly-directed paths from X and Z to Y with respect to X such that
their starting edges are not relevant.

Proof. (If) Let pX denote an uncovered proper possibly-directed path from X to Y with respect
to X in P . Suppose that X is not a DMIS, implying that, for all MAGsM ∈ [P], it holds that
Z /∈ An(Y )MX

and X ∈ An(Y )MX
without loss of generality. In other words, if orienting pX

as X → · · · → Y is valid, it follows that orienting any possibly directed path from Z to Y as
Z → · · · → Y is invalid in all MAGs conforming to P . We will show that the starting edge of pX is
relevant to the starting edge of any uncovered possibly-directed path from Z to Y in P .

Let pZ be an arbitrary uncovered proper possibly-directed path from Z to Y with respect to X in P .
Note that such a path always exists, as established by Lem. 7. We know that the path pZ must begin
with one of the following edges: ◦−◦ , ◦→ , or→. We will show that pZ can only start with a circle
edge (◦−◦).

(pZ only starts with a circle edge (◦−◦)). Suppose pZ starts with ?→. Then, the path must take the
form Z ?→ · → · · · → Y in P by Lem. 8. In this case, we can construct a validM by orienting any
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circle marks (◦) along the path as tails (−) following Lem. 6. This contradicts the assumption that
there is no MAG conforming P in which pZ is a directed path from Z to Y . Therefore, we conclude
that pZ only can be Z ◦−◦· · ·∗−∗Y .

For the sake of contradiction, assume eX(X ∗−∗X ′) is not relevant to eZ(Z
′ ◦−◦Z) where each

denotes the starting edges of pX and pZ respectively; Then, we consider the following two cases
separately: ① X and Z are not in the same bucket, or ② they are in the same bucket, and every circle
path including eX and eZ is not uncovered, i.e., they are not relevant.

(① X and Z do not belong to the same bucket). Consider the orientation according to Lem. 6. In the
second step of the construction, we always have a MAGM containing Z → Z ′ by the completeness
of orientation in PAGs, which indicates pZ corresponds to a directed path from Z to Y inM, as it is
uncovered. Therefore, we can construct a validM according to Lem. 6, contradicting the assumption
that Z /∈ An(Y )MX

for all MAGsM∈ [P].
(② X and Z are in the same bucket). Suppose that X and Z are in the same bucket. Let
V1(= X)◦−◦V2(= X ′)◦−◦· · ·◦−◦Vn−1(= Z ′)◦−◦Vn(= Z) be an arbitrary non-uncovered circle
path between X and Z in P . By the definition of an uncovered circle path, such a path must include at
least one non-uncovered triple ⟨Vi,Vi+1,Vi+2⟩ on the circle path. The existence of an edge between
Vi ◦−◦Vi+2 would induce an uncovered circle path V1 ◦−◦ · · · ◦−◦Vi ◦−◦Vi+2 ◦−◦ · · · ◦−◦Vn. To
avoid this, X and Z must be adjacent, and furthermore, the edge connecting X and Z must appear as
a circle edge X ◦−◦Z by Lem. 11.

The existence of the edge X ◦−◦Z implies that there must be edges X ◦−◦Vi for all 3 ≤ i ≤ n− 1,
or Z ◦−◦Vi for all 2 ≤ i ≤ n− 2 by chordality. In the former case, we orient the subgraph of P over
{V1, · · · ,Vn} following a similar approach to the proof of Lemma 7.6 in Maathuis and Colombo
[2015]. We begin by selecting a vertex V2 and orient all edges incident to V2 as directed into V2.
Since the subgraph is chordal and V2 is simplicial, this orientation does not create any uncovered
colliders in the subgraph. We then remove V2 and the oriented edges from the subgraph. The resulting
graph remains chordal and therefore again choose a vertex V3, and orient any edges incident to V3

into V3. We continue this procedure until all edges are oriented. The constructed subgraph does not
create any directed cycle, almost directed cycle, or uncovered collider, thus it is valid orientations.
Since X → X ′ → · · · → Y is valid, we have a directed path Z → Z ′ → · · · → X ′ → · · · → Y
which leads to a contradiction.

In the latter case, we can similarly orient the edges, starting from Vn−1 and proceeding to V2.
Furthermore, this procedure can also be extended to cases where the graph takes on a superimposed
form.

(Only if) Suppose that eX is relevant to eZ in P . It follows that V1(= X)◦−◦V2(= X ′)◦−◦· · ·◦−◦
Vn−1(= Z ′)◦−◦Vn(= Z) is an uncovered circle path. For the sake of contradiction, assume that X
is a DMIS relative to [[P,Y , ]]. Then, there exists a MAGM conforming to P such that both pX and
pZ are proper directed paths with respect to X inM. Therefore, we can orient V1 ◦−◦V2 as V1 → V2,
and Vn ◦−◦ Vn−1 as Vn → Vn−1 to construct M from P . Furthermore, since the circle path is
uncovered, Vi ◦−◦Vi+1 must be oriented Vi → Vi+1 for i = 2, · · · ,n− 2. However, this orientation
introduces a new uncovered collider Vn−2 → Vn−1 ← Vn, which leads to a contradiction.

Theorem 3 (Graphical characterization of POMIS for MAGs). LetM be a MAG over the set of
variable V. A set X ⊆ V \ {Y } is a POMIS relative to [[M,Y ]] if and only if X = IB(M,Y ,X).

Proof. (Only if) We will show contrapositive, i.e., if X = IB(M,Y ,X) does not hold, then X is not
a POMIS relative to [[M,Y ]]. We denote W = IB(M,Y ,X) and T = MUCT(M,Y ,X), assuming
X ̸= W. Let W′ ≜ W \X. Before proceeding with the main proof, we first establish that the
following conditional independence statement holds:

Claim 1. (Y ⊥⊥W′ | X) holds inMXW′
12.

12Note that lower-manipulation has a higher priority than upper-manipulation so that QXY or QYX denotes
the graph resulting from applying the X-upper-manipulation to the Y-lower- manipulated graph of Q.
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Proof. Suppose that the negation of this statement holds: (Y ̸⊥⊥W′ | X) inMXW′ . This would
imply that there exists an m-connected path from some W ∈W′ to Y given X inMXW′ . For
the m-connected path to exist, there must be no colliders, as no node along the path can be an
ancestor of X due to all incoming edges to X being cut inMX. Moreover, as all outgoing edges
from W′ are cut inMW′ , the path cannot begin with an edge going out of W . Therefore, we
get that the m-connected path must be of the following form: W ←W1 ← · · · ←Wn ↔ R1 →
· · · → Rm → Y with n,m ≥ 0 where no node along the path can be in W; otherwise, it would
either be part of X, since we are conditioning on X, or in W′, in which case all of its outgoing
arrows would have been removed. Since Y is contained in T, the parent of Y , Rm, along the
path must be either in T or W. However, as previously argued, no node along the path can be in
W; therefore, it must be in T. This reasoning can be applied iteratively up to R1, implying that
R1 is also in T. Since T is closed under PC, the inclusion of R1 in T implies that Wn must also
be in T. Additionally, because T is closed under descendants, Wn−1, · · · ,W1 must also be in
T. Consequently, W must be in T as well. However, this leads to a contradiction, since W is in
W, and W and T are disjoint by definition. Therefore, the conditional independence statement
(Y ⊥⊥W′ | X) must hold inMXW′ .

Claim 2. (Y ⊥⊥ X′ |W) holds inMW,X′ where X′ ≜ X \W.

Proof. Suppose this statement is false, i.e., (Y ̸⊥⊥ X′ | W) holds in MW,X′ . Then, there
exists an m-connected path from some X ∈ X′ to Y given W inMW,X′ . Since all edges into
X′ are removed, the path must begin with an edge going out of X . The path cannot contain
any colliders, as no node can be an ancestor of a node in the conditioned set W, given that all
incoming edges to W are cut. Thus, all edges along the path must be directed, pointing to Y :
X →W1 → · · · →Wn → Y (n ≥ 0) where no node along the path can be in W, since we are
conditioning on W. The parent of Y , Wn, along the path must be either in T or W, as Y in
T . However, as previously argued, no node along the path can be included in W, which means
it must be in T. This reasoning can be applied iteratively up to W1, implying that W1 is also
in T. Therefore, X must be a parent of a node in T, implying that X is in W. This leads to a
contradiction for X ∈ X \W.

We are now ready to proceed to the main proof. We will show that X is not a POMIS by proving that
µx∗ ≤ µw∗ in every SCM conforming toM. We derive that the following holds:

µx∗ = E[Y | do(x∗)]

=
∑
w′

E[Y | do(x∗),w′]P (w′ | do(x∗))

=
∑
w′

E[Y | do(x∗), do(w′)]P (w′ | do(x∗)) ∵ Claim 1

=
∑
w′

E[Y | do(x∗[W]), do(w′)]P (w′ | do(x∗)) ∵ Claim 2

≤
∑
w′

E[Y | do(w′)]P (w′ | do(x∗))

= E[Y | do(w∗)]

= µw∗ .

Therefore, X is not a POMIS with respect to [[M,Y ]], which completes the proof.

(If) To prove this direction, we will show that if X = IB(M,Y ,X), then X is a POMIS relative
to [[M,Y ]]. Suppose that X = IB(M,Y ,X) holds. It suffices to show that there exists a causal
diagram G such that X is a POMIS relative to [[G,Y ]]. Consider the causal diagram G constructed by
the following lemma:

Lemma 34. LetM be a MAG. Let G be the graph resulting from the following procedure applied to
M.

Step 1. For each visible edge A→ B inM, add A→ B in G.
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Step 2. For each bidirected edge A↔ B inM, add A↔ B in G.

Step 3. For each invisible directed edge A→ B inM, if it is the unique invisible edge among
directed edges outgoing from A inM, then add both a directed edge A → B and
bidirected edge A↔ B to G .

Step 4. Let TG ≜ MUCT(G,Y ). Consider all nodes A for which there are invisible edges
outgoing from A inM.

1. If there exists B ∈ Ch(A)M that is contained in TG , add both a directed edge
A → B and bidirected edge A ↔ B, and add directed edges A → C for all
C ∈ Ch(A)M \ {B}.

2. Otherwise, if there is no intersection with TG , add directed edges A→ C for all
C ∈ Ch(A)M.

This step is repeated with the updated TG ← MUCT(G,Y ) as long as G remains
unchanged.

Then, the result graph G is a causal diagram conforming toM.

Proof. We need to show that G andM have the same ancestral relations, and the same conditional
independence relations.

(① G andM have the same ancestral relations). This is evident, as each directed edge is added to
G if and only if it also exists inM.

(② G andM encode the same independence relations). The graphs G andM differ only in the
bidirected edges added to G corresponding to invisible edges inM. Thus, it suffices to show that
these additional bidirected edges added to G do not encode any additional independence between
variables. Therefore, we need to show that these edges do not create any new uncovered colliders.

Consider a bidirected edge A ↔ B added to G in Step 3. For this added edge to create a collider,
there must be either a directed edge incoming to A (i.e., C → A↔ B), or bidirected edge incoming
to A (i.e., C ↔ A↔ B) in G. In both cases, B and C are adjacent inM, since A→ B is invisible
inM by Lem. 19. Therefore, this collider at A does not introduce any new independence.

Now consider a bidirected edge A ↔ B added to G in Step 4. The previous argument can be
reused here to argue that this edge does not encode any new independence, since we add only
one bidirected among outgoing directed edges from A. For clarity, suppose that we have a MAG
M = ⟨A → B,A → B,A → D⟩ where B,C, and D are mutually not adjacent inM. Adding at
most one of A↔ C, A↔ B, or A↔ D does not introduce a new collider at A, thereby preserving
conditional independence.

Let G be the causal diagram constructed following Lem. 34. We will prove that X is a POMIS with
respect to [[G,Y ]]. Let X be any variable in X. Then X is a parent of some T ∈ MUCT(M,Y ,X)
inM. It suffices to show that T ∈ MUCT(GX,Y ) since this means that X is a parent of a member
of MUCT(GX,Y ), and is therefore in IB(GX,Y ).

Let TG ≜ MUCT(G,Y ) and TM ≜ MUCT(M,Y , ∅). We will show that TM ⊆ TG . Let T
be a node in TM. We know such a node always exists because Y is in both TG and TM. Let
H ≜ G[An(Y )G ] and N ≜ M[An(Y )M]. SinceM and G share the same skeleton and the same
ancestral relations among vertices, it follows that An(Y )M = An(Y )G , implying V(H) = V(N ).

(① If W ∈ PC(T )N , then W ∈ TG). Suppose that another node W is in the same pc-component of
T in N , i.e., W ∈ PC(T )N . This implies that there exists a path between T and W in N such that
(i) all non-endpoint nodes along the path are colliders, and (ii) none of the edges are visible.

For all directed edges U → V along this path, if there does not exist an edge U → Z (̸= V ) in
N , a bidirected edge U ↔ V is added to G in Step 3. Consequently, T and W are in the same
c-component inH.
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Otherwise, if there is some directed edge U → V along the path for which there exists U → Z (̸=
V ), then from Step 4, we know that one of these outgoing edges from U will have a corresponding
bidirected edge in H which adds U to TG . Since MUCT is closed under descendants, all
descendants of U are also included in MUCT as well.

This logic applies along the entire path, ensuring that T ∈ TG ⇒W ∈ TG .

(② If W ∈ De(T )N , then W ∈ TG). Now, suppose that W is a descendant of T in N , i.e.,
W ∈ De(T )N . Then W is a descendant of T inH as well, and so we have T ∈ TG ⇒W ∈ TG .

(① + ② implies TM ⊆ TG). Thus, we have shown that any node which can be shown to be in TM
can also be shown to be in TG , and therefore TM ⊆ TG .

It can be applied to show that MUCT(M,Y ,X) ⊆ MUCT(GX,Y ), as we can operate overM\X
and G \X instead ofM and G, respectively. Thus, we have that T ∈ MUCT(M,Y ,X) implies
T ∈ MUCT(GX,Y ). Therefore, we can conclude that IB(GX,Y ) = X holds.

Proposition 6. Let P be a PAG over V. A set X ⊆ V \ {Y } is a POMIS relative to [[P,Y ]] if and
only if there exists a MAGM conforming to P such that X is a POMIS relative to [[M,Y ]].

Proof. (If) Suppose X is a POMIS relative to [[M,Y ]] for someM conforming to P . Then there
exists an SCM S conforming toM such that µx∗ > ∀W∈DM,Y \{X}µw∗ . Since any SCM conforming
toM also conforms to P , the SCM also conforms to P , the SCM S also conforms to P , and thus X
is a POMIS relative to [[P,Y ]].

(Only if) Let X be a POMIS relative to [[P,Y ]]. Then there exists an SCM S conforming to P such
that µx∗ > ∀W∈DP,Y \{X}µw∗ . Let G be the causal diagram associated with the SCM S . Then, there
exists a MAGM representing G that corresponds to P with X as a POMIS relative to [[M,Y ]], since
PP,Y ⊆ DP,Y . This concludes the proof for this direction.

Proposition 7. Let QX be a PMG representing MAGs where X is a POMIS with respect to Y . Then,
the following properties hold in QX, for every X ∈ X:

1. Every uncovered proper possibly-directed path from X to Y relative to X ends with an
arrowhead (>).

2. If X is adjacent to Y , then the edge between X and Y is a directed edge (X → Y ).

Proof. We will show that the conditions are necessary for X to be an MIS in the MAGs, which
implies that they are also necessary for X to be a POMIS.

(First condition). For the sake of contradiction, suppose that there exists an uncovered path ending
with a tail mark at Y in a MAGM∈ [QX]. This implies the path must take the form X ← · · · ← Y
inM. Since X is an MIS relative to [[M,Y ]], there exists a directed path from X to Y inM, which
would introduce a directed cycle, leading to a contradiction.

(Second condition). We will first show X ∗−∗Y forms X ∗→ Y in QX, and then demonstrate that
it must be X → Y by proving that X ↔ Y leads to a contradiction. For the sake of contradiction,
assume that there exists X ← Y in a MAGM∈ [QX]. InM, any directed path from X to Y would
violate the ancestral property, resulting in a contradiction. Similarly, assume that there exists X ↔ Y
in a MAGM∈ [QX]. This configuration would also violate the ancestral property by introducing an
almost directed cycle, which leads to a contradiction.

Proposition 8. For every MAGM∈ [QX], if X is a POMIS relative to [[M,Y ]], then there exists a
PMG Qi

X representingM such that the following conditions are satisfied:

1. Every circle mark around X ∪ {Y } in QX is oriented as either a tail (−) or an arrowhead
(>) in Qi

X according to valid local transformations.
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2. Every X ∈ X is an ancestor of Y in Qi
X.

3. Qi
X is closed under orientation rules.

Proof. The first and third conditions are satisfied by the soundness and completeness of valid local
transformations (Thm. 8). Furthermore, since X is a POMIS with respect to [[P,Y ]] (thus, X is a
DMIS), the second condition is also satisfied (see Lem. 22), which completes the proof.

Theorem 4 (Characterization of POMIS for PAGs). A set X ⊆ V \ {Y } is a POMIS relative to
[[P,Y ]] if and only if there exists Qi

X satisfying Props. 7 and 8 such that IB(Qi
X,Y ,X) = X.

Proof. This follows from the result of Thm. 5.

Theorem 5 (Soundness and completeness). The algorithm IsPOMIS (Alg. 1) returns True if and
only if there exists a MAGM conforming to P such that X is a POMIS relative to [[M,Y ]].

Proof. (IsPOMIS returns True ⇒ ∃G such that IB(M,Y ,X) = X). Suppose that IsPOMIS
returns True. Then, there is a PMG Qi

X satisfying IB(Qi
X,Y ,X) = X. We will demonstrate that

there exists a MAGM∈ [Qi
X] such that IB(M,Y ,X) = X by constructing such a MAG. To do so,

consider the following lemma:

Lemma 35. LetQi
X be a PMG in Alg. 1. LetM be the graph resulting from the following procedure

applied to Qi
X.

Step 1. Orient partial directed edges (◦→ ) as directed edges (→).

Step 2. Consider A ∗→ B in Qi
X. Let TX

M ≜ MUCT(M,Y ,X). If B is contained in TX
M,

orient the circle component including A as a DAG where each circle edge involving A
inQi

X corresponds to a directed edge outgoing from A inM (i.e., A◦−◦V corresponds
to A→ V ).

This step is repeated with the updated TX
M ← MUCT(M,Y ,X) as long as M

remains unchanged.

Step 3. Orient remaining circle component into a DAG with no unshielded colliders.

Then, the resulting graphM is a MAG conforming to Qi
X.

Proof. The construction follows Lems 6 and 12, and the fact that every circle component can be
oriented independently by Lem. 31.

Now, we will show that the MAGM constructed according to Lem. 35 satisfies IB(M,Y ,X) = X.
Let X be any node in IB(Qi

X,Y ,X). Then, X is a parent of some TX ∈ MUCT(Qi
X,Y ,X) in Qi

X.
By Lem. 24, there exists an uncovered possibly-directed path TX ◦−◦· · ·◦−◦T ∗

X
?→ · → · · · → Y .

Due to the balanced property in Lem. 31 a path X → T ∗
X

?→ · → · · · → Y exists in Qi
X,

which corresponds to X → T ∗
X → · · · → Y inM by construction (see Step 1). Therefore, we

have that for any nodes X ∈ X, X and T ∗
X are included in An(Y )M. Our goal is to show that

T ∗
X ∈ MUCT(M,Y ,X) since this means X ∈ IB(M,Y ,X).

For convenience, we denote TM = MUCT(M,Y ,X) and TQi
X
= MUCT(Qi

X,Y ,X). Let N ≜

M[An(Y )M] andH ≜ Qi
X[PossAn(Y )Qi

X
]. Suppose that T is a node such that T ∈ TQi

X
∩An(Y )M

and T ∈ TM. We know such a node exists, as Y is in both TM and TQi
X
∩ An(Y )M.

(① If W ∈ PC(T )H[An(Y )M], then W ∈ TM). Suppose that another node W is in the same pc-
component of T in H[An(Y )M]. This implies that there exists a path between T and W such that
(i) all non-endpoint nodes along the path are colliders, and (ii) none of the edges are visible, i.e.,
T ∗→ · ↔ · · · ↔ · ←∗W inH[An(Y )M].
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For all edges U ?→ V along this path, the edges correspond to directed edges U → V in N . If
there are no circle edges with U inH, the edges remain invisible in N since orienting a tail mark
alone does not introduce any visible edges.

Otherwise, if there are any circle edges U ◦−◦ Z in H that correspond to U → Z in N , no
additional visible edges are introduced. When the edges correspond to U ← Z in N , U would
already have been included in TM, which in turn ensures that V be included in TM.

(② If W ∈ PossDe(T )H[An(Y )M], then W ∈ TM). This means that there exists an uncovered
possibly-directed path from T to W inH[An(Y )M] by Lem. 28. According to our construction, there
is a node S ∈ TM (it could be T ) in the same bucket as T and W such that all nodes in the bucket
are descendants of S inM. Since W ∈ De(S)M and S ∈ TM, we have W ∈ TM.

(① + ②). Thus, we have shown that any node in TQi
X
∩ An(Y )M can also be shown to be in TM,

and therefore we can get T ∗
X ∈ TM.

The remaining task is to prove that W ≜ IB(M,Y ,X) \ IB(Qi
X,Y ,X) is empty. For the sake

of contradiction, consider any vertex W ∈ W. Then, there exists a node TW ∈ TM where
W ∈ Pa(TW )M. Note that TW ∈ TQi

X
∩ An(Y )M holds (see the proof of the reverse direction). If

W → TW is invisible, then W is included in TM, leading to a contradiction for W ∈ IB(M,Y ,X).
If W → TW is visible in bothM and Qi

X, then we can find a visible edge W → T ∗
W satisfying

W → T ∗
W

?→ · · · · → Y in Qi
X corresponding to W → T ∗

W → · · · → Y inM by Lems 24 and 27.
This implies W ∈ IB(Qi

X,Y ,X), resulting in a contradiction. If W → TW appeared as an invisible
edge, either ◦−◦ or ◦→ , W → T ∗

W should also appear as an invisible edge by our construction (see
Step 2). Therefore, we conclude the proof of the soundness of IsPOMIS.

(IsPOMIS returns False ⇒ ∄M such that IB(M,Y ,X) = X). Suppose that X is a POMIS relative
to [[M,Y ]]. Then, we have X = IB(M,Y ,X). Let Qi

X be a PMG representingM. Moreover, we
have that An(Y )M ⊆ PossAn(Y )Qi

X
holds by Lem. 28.

Let X be any variable in IB(M,Y ,X). Then, X is a parent of some TX ∈ MUCT(M,Y ,X) inM.
Furthermore, this appears in Qi

X by the construction of IsPOMIS in Alg. 1 (outgoing edges from
X are determined in Qi

X). By Lem. 24, there exists an uncovered possibly-directed path TX ◦−◦
· · ·T ′

X
?→ · → · · · → Y in Qi

X. Due to Lems 20 and 31, the path X → T ∗
X → · → · · · → Y exists

in Qi
X. Now we will show that T ∗

X ∈ MUCT(Qi
X,Y ,X) since this implies X ∈ IB(Qi

X,Y ,X).

Let TM ≜ MUCT(M,Y ,X) and TQi
X

≜ MUCT(Qi
X,Y ,X). Let N ≜ M[An(Y )M] and

H ≜ Qi
X[PossAn(Y )Qi

X
]. Suppose that T is a node satisfying T ∈ TQi

X
∩ An(Y )M and T ∈ TM.

We know such a node exists since Y is in both TM and TQi
X
∩ An(Y )M.

(If W ∈ TM, then W ∈ TQi
X
∩ An(Y )M). Since any invisible edges in M correspond to

invisible ones in Qi
X, we have W ∈ PCN (T ) implies W ∈ TQi

X
∩ An(Y )M according to Lem. 30.

Furthermore, we know that W ∈ De(T )N implies W ∈ PossDe(T )H[An(Y )M] by Lem. 28. Therefore,
we get that W ∈ TQi

X
∩ An(Y )M. Thus, we have shown that any node in TM can also be shown to

be in TQi
X
∩ An(Y )M, and therefore T ∗

X ∈ TQi
X

.

The remaining task is to prove that W ≜ IB(Qi
X,Y ,X) \ IB(M,Y ,X) is empty. For the sake

of contradiction, consider any vertex W ∈ W. Then, there exists a node TW ∈ TQi
X

where
W ∈ Pa(TW )Qi

X
. If W → TW is invisible in Qi

X, then W is included in TQi
X

, leading to a
contradiction for W ∈ IB(Qi

X,Y ,X). If W → TW is visible in Qi
X, it is also visible inM, and

we can find a visible edge W → T ∗
W satisfying W → T ∗

W → · · · · → Y by Lems 24 and 27. This
implies W ∈ IB(M,Y ,X), resulting in a contradiction. Therefore, we conclude the proof of the
completeness of IsPOMIS.
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Broader Impact Statement

This work addresses a structured causal bandit framework that leverages causal knowledge from
a Markov equivalence class represented by a PAG. This approach has potential applications in
practical settings such as personalized healthcare, adaptive education, and resource-constrained
recommendation systems, where a decision-maker aims to make optimal decisions without assuming
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improper specification of causal structures may lead to misleading conclusions and biased decisions;
thus, careful validation and domain-specific causal modeling are essential prior to deployment in
high-stakes environments.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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