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Abstract

Encoding models using word embeddings or artificial neural network (ANN) fea-
tures reliably predict brain responses to naturalistic stimuli, yet interpreting these
models remains challenging. A central limitation is superposition: distinct seman-
tic features become entangled along correlated directions in dense embeddings
when latent features outnumber embedding dimensions. This entanglement renders
regression weights non-identifiable—different combinations of semantic directions
can produce identical predictions, precluding principled interpretation of voxel se-
lectivity. To address this, we introduce the Sparse Concept Encoding Model, which
transforms dense embeddings into a higher-dimensional, sparse, non-negative space
of learned concept atoms. This transformation yields an axis-aligned semantic basis
where each dimension corresponds to an interpretable concept, enabling direct
readout of conceptual selectivity from voxel weights. When applied to fMRI data
collected during story listening, our model matches the prediction performance of
conventional dense models while substantially enhancing interpretability. It enables
novel neuroscientific analyses such as disentangling overlapping cortical repre-
sentations of time, space, and number, and revealing structured similarity among
distributed conceptual maps. This framework offers a scalable and interpretable
bridge between ANN-derived features and human conceptual representations in
the brain.

1 Introduction

Artificial neural networks (ANNs) were originally inspired by the brain, yet progress in machine
learning has far outpaced advances in understanding brain function. A central bottleneck in neuro-
science is data: while many large-scale datasets are available for training machine learning models,
brain recordings remain scarce and costly. To overcome this limitation, neuroscientists increasingly
use machine learning models to study how the brain represents information. A common framework
for this approach is the encoding model, which predicts brain activity from quantitative stimulus
features using linear regression [22, 27, 15, 35, 56]. Early encoding models relied on manually-
defined features, such as labeled objects or actions in movies [23, 55, 34]. Recent encoding models
instead leverage features derived from machine learning, such as word embeddings or activations
from large language models (LLMs) [52, 30, 37, 57, 1, 24, 20, 28, 50, 26]. When used as regressors
to predict brain responses to naturalistic stimuli such as narrative stories, machine-learning-derived
features consistently outperform manually-defined features. In particular, features from deeper neural
networks achieve higher predictive accuracy [1, 7, 45].

Despite their success in applications like speech decoding [29, 51, 47], ANN-based encoding models
remain limited in their ability to advance fundamental neuroscience due to poor interpretability.
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Figure 1: The Sparse Concept Encoding Model resolves superposition in dense feature spaces.
Left: In dense embedding space, semantic concepts are represented by correlated linear combinations
of basis directions. This superposition introduces ambiguity: a voxel’s weight vector may project
positively onto multiple concept directions simply because those directions are themselves correlated.
Right: The Sparse Concept Encoding Model recovers the underlying semantic directions and
assigns each to an independent axis, transforming the dense space into an interpretable, axis-aligned
representation. This enables voxel tuning to be directly read out along concept dimensions.

Mapping ANN-derived representations onto brain activity often amounts to explaining one black
box with another, yielding little insight into the underlying neural mechanisms. However, many core
questions in neuroscience, such as where and how abstract concepts are represented in the brain,
demand models with interpretable internal structure.

In this work, we address the interpretability challenges inherent to dense feature representations in
encoding models. Previous studies using word embeddings or ANN-based features often assume that
regression weights in these high-dimensional spaces are directly interpretable [22, 50, 54, 13]. We
show that this assumption is fundamentally flawed. Specifically, we demonstrate that superposition,
the entanglement of multiple latent semantic features when their number exceeds the embedding
dimensionality, introduces intrinsic ambiguity in model interpretation [16, 8]. When semantic features
are superposed, regression weights become non-identifiable: distinct combinations of semantic
features can produce the same predicted brain responses. This makes it impossible to reliably identify
which specific concepts a voxel encodes, limiting the utility of dense models for neuroscientific
inquiries. To overcome this limitation, we propose a new framework that preserves the predictive
power of dense features while significantly enhancing model interpretability. Our method disentangles
superposed representations into sparse, semantically-aligned concept dimensions, allowing a clearer
link between model structure and brain activity. The framework generalizes naturally across a
wide range of representations, such as LLM embeddings, and across recording modalities, such as
electrocorticography (ECoG) and magnetoencephalography (MEG).

Main Contributions (1) We show that regression weights learned from dense features are inherently
non-identifiable. Using a Bayesian analysis, we trace this ambiguity to the implicit prior induced by
the geometry of dense embedding spaces. (2) We introduce the Sparse Concept Encoding Model,
which transforms dense features into a higher-dimensional, sparse space composed of learned concept
atoms. (3) We propose Vector Norm Reparameterization (VNR), a preprocessing method that
enhances interpretability of learned concept atoms by expanding the relative spread of low-norm
vectors while compressing the range of high-norm vectors. (4) We apply the Sparse Concept Encoding
Model to a naturalistic fMRI dataset and demonstrate two neuroscientific analyses that are infeasible
with dense models: (i) disentangling overlapping cortical representations of time, space, and number,
and (ii) comparing concept representations across the cortex to reveal structured relationships among
distributed conceptual maps.
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Figure 2: Sparse dictionary learning decomposes each word into a sparse, non-negative linear
combination of concept atoms. This example shows the sparse decomposition of the word “walking”
using the learned concept atom dictionary. Each contributing atom is shown with its index, a
descriptive label (chosen heuristically by the authors), and its top 5 activating stimulus words from
the story transcripts.

2 Theories

2.1 Sparse Coding

Sparse coding, also known as sparse dictionary learning, was originally proposed as a model for
how the visual cortex efficiently represents natural scenes [38, 39]. The central idea is that many
natural signals, such as images, sounds, or words, can be expressed as linear combinations of a small
number of latent components, often called basis factors or atoms. For example, the word "queen"
can be decomposed into two latent factors: "royalty" and "femaleness". These features tend
to occur independently: “royalty” appears in “king” and “castle”, while “femaleness” is present
in “daughter” and “mother”. Since most words activate only a small number of such factors, the
resulting representations are sparse.

Formally, each input xj ∈ Rp is approximated as a linear combination of atoms from an overcomplete
dictionary {ϕi}mi=1 ⊂ Rp, where m > p: xj =

∑m
i=1 aijϕi. The coefficient vector aj ∈ Rm is

constrained to be sparse, with most entries equal to zero. Overcompleteness (m > p) allows the
dictionary to capture fine-grained structure in the data but renders the linear system underdetermined.
Sparsity resolves this ambiguity by favoring solutions that use only a small subset of atoms. Specifi-
cally, the dictionary and coefficients are jointly learned by minimizing a regularized least-squares
objective:

min
{aj},{ϕi}

n∑
j=1

∥∥∥∥∥xj −
m∑
i=1

aijϕi

∥∥∥∥∥
2

2

+ λ

n∑
j=1

∥aj∥1,

2.2 Sparse Coding For Interpreting Word Embeddings and Deep Neural Networks

Word embeddings are known to encode semantic features as linear directions in activation spaces.
The canonical example by Mikolov et al. [32], "king" − "man" + "woman" ≈ "queen", showed
that vector arithmetic on word embeddings captures analogies. This suggests that certain linear
directions correspond to interpretable semantic concepts ("royalty" and "femaleness"). Arora
et al. (2016) [2] provided a theoretical explanation for the linear structure through a random-walk-
on-discourses model, where word vectors are generated from mixtures of latent discourse vectors.
Arora et al. (2018) [3] further argued that sparse coding provides a natural method to recover these
latent discourse directions from dense embeddings [17]. Subsequent studies applying sparse coding
to word embeddings have indeed revealed dictionary atoms that correspond to interpretable semantic
and syntactic features [3, 4, 59].

Recently, sparse coding has been adopted in mechanistic interpretability research on deep neural
networks (DNNs), which aims to decompose models into human-interpretable components [43, 46].
Early efforts focused on analyzing individual neurons, under the assumption that each neuron
corresponds to a single interpretable feature [25, 36, 5]. However, empirical studies revealed that many
neurons respond to multiple, often unrelated features, a phenomenon known as polysemanticity [36].
To explain this, researchers proposed the superposition hypothesis [16, 8]: when the number of latent
features exceeds the number of available neurons, the network encodes each feature as a distinct
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Figure 3: The Sparse Concept Encoding Model produces interpretable voxel weights by re-
placing dense features with learned concept atoms. Top: Dense Encoding Model: Stimuli are
represented using dense word embeddings, resulting in voxel weights that lie in an entangled feature
space where semantic directions overlap. Middle: Sparse Dictionary Learning: Dense embeddings
are transformed into a higher-dimensional space of sparse concept atoms, each defining a distinct,
interpretable semantic axis. Bottom: Sparse Concept Encoding Model: Stimuli are re-encoded
as sparse combinations of concept atoms. The resulting voxel weights are defined with respect to
disentangled concept-atom axes, enabling direct and interpretable readout of semantic selectivity.

linear combination of neurons. Superposition thus emerges naturally as an efficient representational
strategy under data sparsity and limited capacity. Inspired by earlier work on word embeddings,
recent studies have applied sparse coding to dense DNN activations to recover interpretable basis
factors [10, 58, 21]. In particular, sparse autoencoders trained on large language model (LLM)
activations have shown that a few hundred neurons can represent thousands of distinct, interpretable
features in superposition [8].

2.3 Limitations of Dense Encoding Models

The seminal work of Huth et al. [22] used word embeddings to represent narrative stimuli and revealed
widespread conceptual representations across the human cortex. This approach catalyzed a growing
body of research using machine-learning-derived features to predict brain activity. These studies
typically employ regularized linear regression to fit a separate model for each voxel (a volumetric
unit of brain tissue measuring approximately 3× 3× 4 millimeters), producing a weight vector that
characterizes the voxel’s feature selectivity [15, 35, 30].
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However, interpreting regression weights from dense encoding models presents a fundamental
ambiguity. In dense embeddings (Fig. 1, left), the coordinate axes are not inherently interpretable;
semantic concepts are represented by correlated linear combinations of basis directions. This
entangled structure complicates interpretation, as the relationship between voxel weights and semantic
concepts becomes opaque. Conventional analyses often rely on heuristic assumptions: for example,
inferring that a voxel is selective for a concept if its weight vector projects positively onto that
concept’s direction. But such inferences are unreliable when concept directions are correlated. A
voxel aligned with number, for instance, may appear to also respond to time simply because the
two concept directions are positively correlated. More problematically, many concept pairs, such as
femaleness and space in the diagram, may be strongly anti-correlated, making it unclear whether a
voxel is activated by one, suppressed by the other, or both. These ambiguities undermine principled
interpretation: a positive projection does not necessarily imply true selectivity to a concept; observed
overlaps in cortical maps may reflect either genuine multi-concept selectivity or spurious effects
induced by embedding geometry. The root of this ambiguity is formalized in the Theorem of
Non-Identifiability in Dense Embedding Spaces (Appendix B). In contrast, an ideal feature space
would have an interpretable basis in which each axis corresponds to a distinct semantic concept
(Fig. 1, right). In such a space, a voxel’s tuning could be directly read from its projections along
concept axes. This axis-aligned structure is the interpretability goal we aim to achieve with the Sparse
Concept Encoding Model.

2.4 The Sparse Concept Encoding Model

To circumvent the identifiability limitations of dense embeddings, we aim to recover the latent
semantic directions and assign each its own coordinate, effectively lifting the dense feature space into
an interpretable, axis-aligned representation (Fig. 1, right). We achieve this through non-negative
sparse dictionary learning applied to a large text corpus, producing an overcomplete set of semantic
axes that we term concept atoms. Specifically, we expand the original d-dimensional embedding
space into an m-dimensional space (m > d), where each axis corresponds to a distinct concept
atom (Fig. 3, middle). Each stimulus vector is then re-encoded as a sparse, non-negative linear
combination of these atoms (see Fig. 2 for an example). This transformed representation replaces the
original dense features in the encoding model. In the resulting sparse feature space, voxel weights
become directly interpretable: each dimension aligns with a distinct semantic concept, enabling
principled readout of conceptual selectivity from the corresponding weight values (Fig. 3, bottom).
This structure facilitates clean disentanglement of weights for voxels jointly selective for multiple
concepts. The non-negativity constraint further sharpens interpretability by ensuring that positive
weights indicate activation and negative weights indicate suppression. Together, these properties
enable clear interpretation of conceptual selectivity across the cortex.

Both the Sparse and Dense Encoding Models can be interpreted under a Bayesian regression frame-
work [35]. From this view, the Dense Model corresponds to the Sparse Model with a non-spherical
Gaussian prior whose covariance captures correlations among concept directions in the dense space.
A formal derivation is provided in the Appendix B.

3 Experiments

3.1 Voxelwise Modeling and Feature Construction

We evaluated the Sparse Concept Encoding Model on a publicly available fMRI dataset in which
participants listened to naturalistic autobiographical audio stories [22]. Our analysis follows the
voxelwise encoding model framework, emphasizing high-resolution, within-subject modeling in
which model training and evaluation are performed on separate data from the same individual [15].
We present cortical maps for two representative participants and report group-level statistics across
all seven participants.

To construct the dense feature space, we used pre-trained 300-dimensional GloVe word embed-
dings [41]. The corresponding sparse feature space was obtained using non-negative sparse dictionary
learning, following the procedure of Zhang et al. [59]. Using their public implementation, we learned
a 1,000-dimensional overcomplete dictionary of concept atoms from the GloVe vectors. For each
atom, we identified the top-activating words from the story transcripts to aid interpretability. Figure 2
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shows illustrative examples, and a broader list of 50 representative concept atoms is provided in
Appendix C.

A key question is whether the dense feature space already provides sufficient semantic separation for
voxel weights to be interpreted directly. If distinct concepts were represented along nearly orthogonal
directions, sparse transformation would be unnecessary. To evaluate this, we examined the pairwise
cosine similarities among the 1,000 learned concept atoms in the original 300-dimensional GloVe
space. For reference, 1,000 random unit vectors in a 300-dimensional space are expected to be nearly
orthogonal: their pairwise cosine similarities have mean µ = 0, standard deviation σ = 0.058, and
only 0.03% of pairs exceed 0.2 in magnitude. In contrast, the concept atoms exhibited substantial
overlap, with mean pairwise similarity µ = 0.01, standard deviation σ = 0.075, and 2.18% of
pairs exceeding 0.2 (Fig. 4a). This structured correlation pattern indicates that the dense feature
space represents concepts along moderately correlated directions, reaffirming the need for a sparse,
axis-aligned representation.

3.2 Improving Embedding Geometry with Vector Norm Reparameterization

A known property of dense word embeddings is that high-frequency words tend to lie closer to the
origin, likely because their vectors represent averages over more diverse contextual usages [44, 2].
We observe that sparse coding often captures many high-frequency words with different semantic
meanings within the same dictionary atoms. To improve separability among high-frequency words,
we developed a preprocessing technique called Vector Norm Reparameterization (VNR), which
differentially rescales each word vector according to its norm, expanding the relative spread of
vectors near the origin while compressing those among high-norm vectors. Quantitative comparisons
with standard preprocessing methods (Appendix G) show that VNR improves WordNet purity,
reconstruction error, and sparsity. Based on these results, we adopted VNR for all subsequent
analyses.

3.3 Comparing Predictive Performance of Dense and Sparse Models

To compare the predictive performance and interpretability of the Dense Encoding Model and the
Sparse Concept Encoding Model, we fit voxelwise encoding models using two types of semantic
features: 300-dimensional dense embeddings for the Dense Model and 1,000-dimensional sparse
embeddings for the Sparse Model. Both models were trained using regularized linear regression
with cross-validation and evaluated on a held-out test story using the coefficient of determination
(R2) as the performance metric. Statistical significance was assessed at the voxel level using 9,999
block permutations with false discovery rate (FDR) correction at p < 0.05 (Appendix F). To
visualize prediction performance, we plotted voxelwise

√
R2 values onto cortical flatmaps [18].

The Sparse Model achieved strong prediction accuracy across temporal, parietal, and prefrontal
cortices in both participants (Fig. 4b–c). To directly compare models, we plotted voxelwise

√
R2

scores across all significantly predicted voxels (Fig. 4d–e). Across subjects, the mean difference
in prediction performance between the transformed and original models was −0.00047± 0.00071,
with no statistically significant difference detected (paired t(6) = −1.77, p = 0.13). These results
indicate that the Sparse Concept Encoding Model achieves comparable prediction accuracy to that of
the Dense Encoding Model while substantially improving interpretability.

3.4 Concept-Level Cortical Maps from the Sparse Concept Encoding Model

Prior work has shown that abstract concepts are represented in the brain through widespread, spatially
overlapping cortical patterns rather than anatomically localized regions [23, 22]. However, dense
encoding models lack a principled way to disentangle the cortical representations of individual
concepts. The Sparse Concept Encoding Model addresses this by representing each concept as a
distinct axis in a sparse feature space. These axes, or concept atoms, correspond to interpretable
semantic dimensions, which can be identified by inspecting the top-activating stimulus words (see
Appendix C Table 1). In this and Section 3.6, we focus on the 20 atoms with the highest average
cortical activation, as they provide the most robust signal for analyzing concept-level representations.

To assess whether the Sparse Concept Encoding Model yields consistent and interpretable cortical
maps for individual semantic concepts, we examined two illustrative concept atoms, indices 456
and 115, drawn from the top 20 atoms (Fig. 5). These atoms are interpretable as representing the
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Figure 4: The Sparse Concept Encoding Model preserves prediction accuracy while improving
interpretability. (a) Pairwise cosine similarities between all 1,000 concept atoms in the dense
embedding space reveal structured correlations, with many atom pairs showing moderate cosine
similarity. (b-c) Cortical maps of prediction accuracy (

√
R2) for the Sparse Concept Encoding Model

in Subject 01 and Subject 02, showing strong performance across lateral temporal (LTC), medial
parietal (MPC), and prefrontal (PFC) regions. (d–e) Scatter plots comparing prediction accuracy
between the Sparse and Dense Encoding Models across all significantly predicted voxels.

concepts of “body position” and “family”, respectively. For each atom, we listed the most strongly
activating stimulus words and, for two participants, visualized voxelwise regression weights along
the corresponding concept-atom axis on cortical flatmaps. The resulting maps revealed bilateral,
distributed patterns of selectivity that are consistent across individuals.

As a baseline, we compared these maps to those derived from the Dense Encoding Model. Since the
dense model lacks a principled method for generating concept-level maps, prior work has relied on
heuristic strategies. Common approaches include: (1) assigning each voxel to the concept whose
embedding vector has the highest cosine similarity to its weight vector, which can underestimate
mixed selectivity; and (2) projecting voxel weights onto individual semantic directions, which can
overestimate selectivity due to correlations in dense space. In this work, we implemented a hybrid
heuristic: labeling a voxel as selective for a concept if that concept ranked among its top-10 cosine
similarity matches. Maps produced by the dense model were less spatially coherent, less bilaterally
symmetric, and more variable across individuals (Appendix E).

To quantify inter-subject consistency across models, we projected each participant’s cortical maps
onto the common fsaverage surface and computed pairwise cosine similarities across all seven
individuals. Averaged across the top 20 concept atoms, the Sparse Concept Encoding Model yielded
substantially higher inter-subject consistency (mean ± SD : 0.26 ± 0.04) compared to the Dense
Encoding Model (0.09± 0.04). These results indicate that the sparse model produces more consistent
semantic representations across subjects.

3.5 Case Study: Disentangling Time, Space, and Number Representations

A longstanding hypothesis in cognitive neuroscience posits that the brain encodes time, space, and
number using a shared magnitude system [11, 53, 12]. While this theory is supported by robust
behavioral and psychophysical evidence, neuroimaging results have been inconsistent [9, 48]. The
Sparse Concept Encoding Model enables a novel test of this hypothesis by assigning time, space,
and number independent axes in a shared semantic space, allowing direct comparison of their
cortical representations. To evaluate this, we identified the concept atoms most associated with
each domain based on their top-activating stimulus words (Fig. 6). To normalize for variation in
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Figure 5: The Sparse Concept Encoding Model yields consistent, interpretable cortical maps
for individual semantic concepts. (a, d) Two example concept atoms (indices 456 and 115) from the
top 20 most strongly activated atoms, interpreted as representing the concepts of “body position” and
“family,” respectively. Each word cloud shows the top-activating stimulus words for the corresponding
atom. (b–c, e–f) Voxelwise regression weights projected onto the selected concept-atom axis for
Subject 01 and Subject 02. Red indicates positive selectivity and blue negative. Opacity is scaled
by cross-validated prediction accuracy, and only voxels with significant prediction performance
(jackknife-estimated p < 0.05) are shown. Both atoms exhibit distributed, bilaterally symmetric
selectivity patterns that are consistent across individuals. These results show that the Sparse Concept
Encoding Model successfully disentangles individual concept representations and produces coherent
cortical maps.

activation magnitude across concept atoms, we selected the top 5,000 voxels with the highest positive
regression weights for each cortical map. The resulting composite maps revealed localized, bilateral
overlap among the three conceptual domains, indicated in white. These patterns were consistent
across individuals. Notably, regions of three-way overlap included the bilateral intraparietal sulcus
(IPS) and bilateral inferior frontal gyrus (IFG), areas previously implicated in shared magnitude
processing [9, 48]. To quantify the extent of overlap, we calculated intersection-over-union (IoU)
scores for each concept pair and their three-way intersection [49, 9, 48]. Averaged across seven
participants, IoU scores were 0.34± 0.05 for time–space, 0.32± 0.07 for time–number, 0.32± 0.07
for space–number, and 0.18± 0.05 for voxels jointly selective for all three. These findings support
the shared magnitude system hypothesis, offering fMRI evidence from naturalistic stimuli enabled by
a novel and interpretable modeling framework.

3.6 Case Study: Comparing Cortical Representations of Different Concepts

Understanding how the brain encodes relationships between abstract concepts is a central goal in
cognitive neuroscience. For example, are logical composition concepts such as "combine", "overlap",
and "exclude" represented similarly to body position concepts like “lie,” “sit,” and “slouch”? To
address this, we compared cortical tuning maps across the top 20 concept atoms. For each atom,
we generated cortical maps as described in Section 3.4 and computed pairwise cosine similarities
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Figure 6: Sparse Concept Encoding Model reveals overlapping cortical representations of time,
space, and number. (a–c) Word clouds showing the top 30 stimulus words that most strongly activate
three selected concept atoms, corresponding to the abstract domains of number (red), time (green),
and space (blue). (d–e) Composite cortical maps for Subject 01 and Subject 02 showing voxelwise
selectivity to each concept atom. Each map displays the top 5,000 voxels with significant prediction
performance and positive regression weights (jackknife-estimated p < 0.05) per atom. Red, green,
and blue denote selectivity to number, time, and space, respectively; overlapping responses are
shown in secondary colors, and white indicates joint selectivity to all three. Some inter-individual
variation is present, as expected in within-subject functional maps derived from voxelwise models
using naturalistic stimuli. These maps reveal localized, bilateral three-way overlap among time, space,
and number representations, most notably in the intraparietal sulcus (IPS) and inferior frontal gyrus
(IFG). This pattern is consistent with the hypothesis that these domains are represented by a shared
magnitude system in the human brain.

between all maps, yielding a 20 × 20 concept-level similarity matrix. We applied hierarchical
clustering to the similarity matrix from Subject 01 and visualized the reordered matrix alongside its
dendrogram. Using the same atom ordering, we then plotted the similarity matrix for Subject 02.
The clustering patterns were qualitatively consistent across subjects and quantitatively stable across
all seven subjects: the mean off-diagonal Pearson correlation between similarity matrices across
subjects was 0.70± 0.08. To ensure this structure was not inherited from the input embeddings, we
computed pairwise Pearson correlations between sparse feature vectors across the 190 concept atom
pairs. These correlations were uniformly low (|r| = 0.00 ± 0.10; 85% < 0.10), confirming that
the Sparse Concept Encoding Model effectively disentangles semantic directions. In contrast, the
same concept directions in the original dense GloVe space showed positive moderate correlations
(0.16± 0.14; 87% > 0), suggesting dense embeddings obscure fine-grained distinctions between
semantic directions. These findings suggest that the brain organizes abstract concepts according to
a structured similarity geometry, which becomes observable once the feature representations are
disentangled.

4 Discussion, Limitations, and Broader Impact

We introduced the Sparse Concept Encoding Model, a framework that addresses the interpretability
challenges arising from superposition in dense feature spaces. Our experiments focused on fMRI
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Figure 7: Sparse Concept Encoding Model reveals consistent structure in concept-level cortical
representations across subjects. (a) Dendrogram from hierarchical clustering of Subject 01 based on
pairwise cosine similarities between cortical tuning maps for the 20 most strongly represented concept
atoms. Concept labels were heuristically assigned by summarizing the top-activating stimulus words
for each atom. (b, c) Concept-level cortical representation similarity matrices for Subject 01 and
Subject 02. Each matrix shows pairwise cosine similarity between cortical maps for the 20 concept
atoms, reordered using the clustering from Subject 01. The structure is qualitatively consistent across
subjects, indicating shared cortical representational structure. (d) Cosine similarity matrix between
the same 20 atoms in the original dense GloVe embedding space, showing structured correlations that
would confound interpretation under the Dense Encoding Model. (e) Pearson correlation matrix of
the sparse feature vectors used to train the Sparse Concept Encoding Model. Off-diagonal values are
uniformly low, confirming that the sparse transformation yields disentangled semantic dimensions.

data and static word embeddings, but the framework is broadly applicable to domains requiring
interpretable mappings from entangled features. One current limitation is that the model does
not incorporate linguistic context, as it relies on non-contextual word embeddings. Extending it
to contextualized representations from large language models is a promising direction for future
work [24].

Although concept atoms improve interpretability, they may inherit structural biases from the original
embeddings, potentially amplifying harmful stereotypes. Moreover, while this method could enhance
brain–computer interface technologies by enabling more accurate semantic decoding, it raises ethical
concerns around mental privacy and the potential misuse of neural decoding tools [19].
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A Experimental Data and Encoding Model Pipeline

A.1 Data Availability

The raw fMRI dataset used in this study is publicly available via the Gallant Lab GIN repository.1
Preprocessed fMRI data and aligned stimulus features are also available on OSF.2

All data used in this study—excluding anatomical MRI scans—have been made publicly accessible.
Anatomical images were withheld to protect participant privacy. To ensure full reproducibility, we
provide transformation matrices that map volumetric data to individual cortical flatmaps, enabling
accurate surface-based visualization of the results.

A.2 Experimental Procedure

The dataset used in this study was originally collected for a previously published experiment [22].
All procedures related to participant recruitment, scanning parameters, and data acquisition were
described in that work. Briefly, each participant completed eleven fMRI scans while listening to
narrative audio stories from The Moth Radio Hour, in which individuals recount autobiographical
experiences before a live audience. Each scan featured a single story lasting 10–15 minutes, with 10
seconds of silence preceding and following the audio.

A.3 Dataset Structure and Test/Train Split

The full dataset comprised eleven stories per participant. Ten stories were used for training the
encoding models, yielding approximately 125 minutes of data per subject. One remaining story was
held out for testing and presented twice to each participant. To improve the signal-to-noise ratio in
the test data, BOLD responses across the two repetitions were averaged. Final model evaluations
were conducted on this averaged 10-minute test set.

A.4 fMRI Preprocessing

Functional MRI data were preprocessed using the same pipeline as described in a previously published
study [31]. The resulting fMRI response matrices consisted of approximately 60,000–80,000 voxels
per subject. All analyses were conducted in each subject’s native voxel space, with no spatial
smoothing applied.

A.5 Feature Construction

Low-Level Acoustic Features. To control for correlations between semantic content and acoustic
structure, we included 41 nuisance regressors following [13]:

• 39 phoneme-rate features reflecting the frequency of each English phoneme over time

• A single feature representing total phoneme rate

• A single feature representing word rate

Semantic Features. Each word in the stimulus transcript was transformed into two parallel semantic
representations:

• 300-dimensional dense GloVe embeddings [41]

• 1,000-dimensional sparse concept embeddings derived via dictionary learning from GloVe

All features were resampled to match the fMRI acquisition rate using a 3-lobe Lanczos low-pass filter
with a cutoff of 0.249 Hz (the Nyquist frequency). This resulted in training feature matrices of size
3,717 × 300 for the Dense Encoding Model and 3,717 × 1,000 for the Sparse Concept Encoding
Model.

1https://gin.g-node.org/gallantlab/story_listening
2https://osf.io/5dvpy/?view_only=e0801550057746b5a1713a96e05a11ff

15

https://gin.g-node.org/gallantlab/story_listening
https://osf.io/5dvpy/?view_only=e0801550057746b5a1713a96e05a11ff


To account for hemodynamic lag, a finite impulse response (FIR) model was applied to the design
matrix. Each feature time series was delayed by 1, 2, 3, and 4 TRs (corresponding to 2, 4, 6, and 8
seconds) and concatenated, allowing the model to estimate a linear temporal kernel per feature [15].

A.6 Feature Normalization

All stimulus features were demeaned over time within each scan run, except for the 300-dimensional
GloVe embeddings. These embeddings were left unchanged to maintain a consistent origin across
runs. Because cosine similarity depends on vector direction relative to a fixed origin, shifting the
origin across runs would undermine interpretability. In contrast, sparse concept features and low-level
acoustic features were demeaned. For these features, mean-centering does not affect the interpretation
of voxel weights.

A.7 Model Estimation

Voxelwise encoding models were estimated using banded ridge regression [14], which applies separate
regularization to the semantic and low-level feature subspaces. For each voxel, two regularization
hyperparameters (λsemantic and λlow-level) were optimized using leave-one-run-out cross-validation on
the training set.

The procedure was as follows:

• The 10 training runs were split into 9 training and 1 validation run, iterated over all folds.

• For each fold, 20 logarithmically spaced values (from 101 to 1020) were tested for each
hyperparameter.

• Prediction accuracy was computed on the held-out run.

• The hyperparameter pair yielding the highest average prediction accuracy across folds was
selected separately for each voxel.

Model fitting was implemented using the Himalaya Python library [14]3, which enables efficient
banded ridge regression on both CPUs and GPUs. Training required approximately 30–60 minutes
per subject on a single NVIDIA RTX A6000 GPU.

A.8 Model Evaluation

Final models were evaluated on the held-out test story using the average blood-oxygen-level-
dependent (BOLD) responses from two repeated presentations. Prediction accuracy was computed as
the coefficient of determination (R2) between predicted and observed fMRI responses, independently
for each voxel.

A.9 Postprocessing of Semantic Weights

Model weights were first averaged across the five FIR delays to yield a single value per feature
per voxel. To remove differences in overall scale introduced by voxel-specific ridge regularization,
each semantic weight vector was normalized to unit length. Vectors were then scaled by the voxel’s
cross-validated prediction accuracy, allowing downstream analyses to reflect both tuning direction
and model reliability. Negative accuracies were clipped to zero before scaling.

A.10 Software Implementation

All analyses were implemented in Python using a custom framework called sparseconcept, which
is openly available on GitHub.4. The analysis pipeline relies on standard scientific Python libraries
including numpy, scipy, matplotlib, scikit-learn, statsmodels and pycortex, and uses the
himalaya package with a PyTorch backend for efficient voxelwise model fitting.

3https://github.com/gallantlab/himalaya
4https://github.com/alicialitrtwe/sparseconcept
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B Non-identifiability of the Dense Encoding Model and Bayesian
Interpretation of Dense vs. Sparse Encoding Models

B.1 Theorem (Non-identifiability in Dense Embedding Spaces)

Let {fi}ki=1 ⊂ Rd be unit-norm concept atoms, and define the Gram matrix:

G = [Gij ]
k
i,j=1, Gij = ⟨fi, fj⟩.

Suppose a voxel’s weight vector is tuned to a linear combination of these atoms:

w =

k∑
i=1

αi fi, α = (α1, . . . , αk)
⊤.

Taking inner products with each fj yields the observed projections:
⟨w, f1⟩

...
⟨w, fk⟩

 = Gα.

If G is invertible, then α can be uniquely recovered. However, if G is singular, the system is non-
identifiable: multiple combinations of concept atoms can yield the same weight vector. In the ideal
case where all fj are orthogonal, G = I and α can be directly recovered.

B.2 Bayesian Interpretation of Sparse and Dense Encoding Models

Both the Sparse Concept Encoding Model and the Dense Encoding Model admit a Bayesian linear
regression interpretation [35]. This view makes explicit the prior assumptions each model imposes
on voxel tuning over semantic features.

Sparse Concept Encoding Model. Each stimulus is represented by a sparse, non-negative activation
over m learned concept atoms, yielding a design matrix Z ∈ RT×m. Voxel responses are fit with
ridge regression

β̂ = arg min
β∈Rm

∥y − Zβ∥22 + λ∥β∥22,

which corresponds to MAP inference under an isotropic Gaussian prior

β ∼ N (0, λ−1I).

This prior assumes independent contributions of each concept atom with equal variance.

Dense Encoding Model. Let the dense feature matrix be factorized as Xdense = ZΦ, where
Φ ∈ Rm×d contains the concept atoms as row vectors in the dense embedding space, and fit ridge
regression in dense space:

ŵ = arg min
w∈Rd

∥y − ZΦw∥22 + λ∥w∥22.

Define the implied sparse-space weights β := Φw ∈ Rm. As shown below, dense ridge is equivalent
to a sparse-space regression with a structured (generally degenerate) Gaussian prior

β ∼ N (0, λ−1ΦΦ⊤).

When ΦΦ⊤ is singular, this is a degenerate Gaussian supported on C(Φ); its MAP penalty is
β⊤(ΦΦ⊤)+β. Intuitively, atoms with similar directions (large dot product) will be biased to have
coupled weights under the prior. This coupling can improve prediction when related concepts truly
co-activate, but it complicates interpretation: voxel weights may reflect embedding correlations rather
than true semantic selectivity.
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B.2.1 Proof

Start from dense ridge:
ŵ = arg min

w∈Rd
∥y − ZΦw∥22 + λ∥w∥22.

Let β := Φw. Then ∥y − ZΦw∥22 = ∥y − Zβ∥22, and feasible β satisfy β ∈ C(Φ).
Case A: rank(Φ) = d (injective). For each β ∈ C(Φ) there is a unique w such that Φw = β, given
by

w = (Φ⊤Φ)−1Φ⊤β.

Substituting into the objective yields

β̂ = arg min
β∈C(Φ)

∥y − Zβ∥22 + λβ⊤(ΦΦ⊤)+β.

If m = d and Φ is invertible, then C(Φ) = Rm and (ΦΦ⊤)+ = (ΦΦ⊤)−1.

Case B: rank(Φ) < d (non-injective). For fixed β ∈ C(Φ), the constraint Φw = β admits infinitely
many solutions. Moreover, all w satisfying Φw = β yield the same prediction ZΦw = Zβ, so the
data-fit term is constant over this solution set. Dense ridge therefore selects the solution with minimal
norm,

wmin = arg min
w: Φw=β

∥w∥22,

which is given by the Moore–Penrose pseudoinverse,

wmin = Φ†β, Φ† = (Φ⊤Φ)+Φ⊤.

Substituting wmin into the regularizer gives

min
w: Φw=β

∥w∥22 = ∥Φ†β∥22 = β⊤(ΦΦ⊤)+β,

and thus recovers the same sparse-space objective as in Case A:

β̂ = arg min
β∈C(Φ)

∥y − Zβ∥22 + λβ⊤(ΦΦ⊤)+β.

C Top 50 Sparse Concept Atoms and Associated Words

We identified the 50 concept atoms most strongly expressed in the Sparse Concept Encoding Model,
based on their average activation across voxels. During analysis, we found that a small number of
atoms exhibited high activation correlations with many others in the sparse feature matrix. This redun-
dancy complicates interpretation by making it difficult to isolate distinct conceptual contributions to
neural responses. To address this, we excluded highly redundant atoms from all subsequent analyses.
Specifically, we computed the pairwise Pearson correlation matrix across all 1,000 sparse feature
dimensions and calculated the average absolute correlation of each atom with all others. Atoms whose
average correlation exceeded 70% of the maximum observed value were removed. This thresholding
procedure yielded a decorrelated subset of concept atoms better suited for interpreting voxelwise
model weights. From the remaining atoms, we computed the mean absolute activation across voxels
using the postprocessed model weights. The 50 atoms with the highest average activations were
selected, as they were most strongly engaged across the brain. To interpret the semantic content of
each atom, we identified the most strongly associated words from the training stories. Only words
with an activation value greater than 0.2 for a given atom were retained. For each selected atom, the
20 highest-ranked words (sorted by activation strength) are listed in Table 1, along with the atom’s
original index from the full 1,000-dimensional dictionary.
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Table 1: Fifty concept atoms with the highest average cortical activation, listed with their top
associated words.

Index Top Associated Words

505 eleven, sixteen, nineteen, fifteen, seventeen, twenty, ten, eighteen, thirty, sixty
562 usually, often, also, normally, may, actually, always, might, definitely, sometimes
254 jumped, ran, came, pulled, blew, proceeded, took, stood, fell, stopped
115 grandparents, sister, dad, cousins, brother, siblings, mom, grandfather, mother, stepmother
261 learn, want, able, take, join, to, need, begin, wish, go
585 call, telephone, appointment, phone, us, anytime, ask, queries, answering, number
670 business, personal, home, city, family, school, music, game, woman, life
369 although, though, however, despite, but, yet, anyway, surprisingly, somewhat, far
549 is, becomes, an, itself, a, exists, another, comes, represents, was
301 cars, dolls, sticks, boxes, pillows, shirts, cans, beds, are, cards
218 herself, queen, goddess, her, waitress, she, sister, mother, woman, whore
672 died, since, graduated, moved, dated, began, until, lived, existed, was
304 easy, easier, quick, simple, instantly, allows, handy, lets, solution, fast
456 standing, sitting, stood, sat, sit, crouch, aisle, stands, lying, behind
798 months, hours, days, weeks, ago, years, minutes, hour, month, year
719 cow, bird, hat, cat, tiny, bag, ball, pink, baby, tree
893 pulls, sees, leans, asks, grabs, takes, waits, thinks, goes, gets

81 morning, afternoon, evening, weekends, monday, tuesday, lunch, night, hour, day
626 guy, sailor, boy, woman, waitress, man, doctor, stranger, mister, kid
335 cry, heart, eyes, soul, breath, lover, alive, dream, cruel, smile
172 acknowledged, insisted, suggested, explained, said, admitted, saying, recounted, claimed, told
707 thanks, hello, sorry, hey, bye, hi, dear, thank, yeah, ya
530 am, wrote, by, at, on, subject, anonymous, views, writes, abuse
184 discuss, topic, explored, similarities, about, examining, issues, examine, subject, dealing
148 toward, towards, forward, fro, slowly, direction, moving, into, back, headed
486 steve, dave, andy, tim, rob, kevin, matt, bob, todd, nick
733 from, this, notes, ago
244 insanely, remarkably, incredibly, terribly, extremely, perennially, oddly, horribly, surprisingly, quite
494 gon, outta, ya, gotta, lotta, em, wanna, gonna, fo, shit

17 page, here, visit, details, check, listed, list, information, above, see
997 near, close, distance, airport, center, miles, opposite, minutes, village, mile
385 um, o, em, eh, e, legal, ate, nova, do
750 many, other, several, common, similar, different, such, particularly, most, certain
321 awesome, great, amazing, lovely, nice, beautiful, gorgeous, brilliant, definitely, neat
384 talking, doing, enjoying, pushing, jumping, stopping, taking, chasing, throwing, keeping
766 everywhere, anywhere, happening, in, within, exist, occurs, occurred, exists, somewhere
782 brother, himself, father, son, his, grandfather, marquis, him, minister, afterwards
640 families, residents, people, adults, students, women, children, relatives, men, fellow
890 director, vice, professor, consultant, assistant, manager, says, said, joined, counselor
730 teachers, school, teacher, kindergarten, classroom, grades, grade, education, students, gifted
610 drank, counseled, listened, cared, worshipped, hated, travelled, liked, ate, lived
867 hands, finger, arms, arm, cheek, shoulders, thumb, rubbing, squeezes, ears

8 caused, cause, due, occurs, result, serious, suffered, failure, loss, problems
119 shorts, shirts, jeans, shirt, pants, jacket, cropped, vest, lauren, casual
264 bedroom, upstairs, room, downstairs, bathroom, beds, lobby, floor, closet, living
886 stabbed, stabbing, victim, fled, suspicious, blaze, killed, raped, man, missing
970 our, proud, committed, recognize, mission, ourselves, deeply, understands, tradition, honor
853 thin, tricky, slightly, tight, somewhat, bit, awkward, too, notoriously, low
700 alabama, virginia, arizona, florida, california, georgia, texas, vermont, washington, wyoming
842 event, held, attended, events, conference, booth, invited, host, weekend, fair

D Cortical Representations of Time, Number, and Space

D.1 Semantic Category Selection

To identify concept atoms associated with the semantic domains of time, number, and space, we
began by defining representative seed word lists for each category. Time-related words included
second, hour, day, week, month, year, today, and ago; number-related terms included one, two, three,
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ten, fifteen, hundred, and thousand; and spatial expressions included near, far, distance, mile, outside,
map, and direction.

For each category, we ranked all 1,000 concept atoms by their average activation across the corre-
sponding seed words and manually examined the top five. We retained atoms whose top associated
words were semantically aligned with the target category, using inclusive criteria to ensure coverage
of relevant conceptual variations. Table 2 summarizes the selected concept atoms along with their
highest-activation words.

Table 2: Concept atoms with strongest activation for semantic categories of time, number, and space.

Factor Index Category Top Associated Words
81 Time morning, afternoon, evening, weekends, monday, tuesday, lunch,

night, hour, day, tonight, today, late, shifts, everyday, yesterday,
hours, appointment, am, closed

798 Time months, hours, days, weeks, ago, years, minutes, hour, month,
year, week, day, sec, seconds, spent, intervening, semester, times,
last, weekends

880 Time seventies, sixties, twenties, late, earliest, grunge, subsequent,
years, tenure, fame, nineteen, persisted, prior, later, existed, ac-
claim

394 Number double, single, two, pair, simultaneous, four, three
505 Number eleven, sixteen, nineteen, fifteen, seventeen, twenty, ten, eighteen,

thirty, sixty, seven, nine, eight, eighty, six, fifty, five, forty, hun-
dred, seventy

602 Number digs, career, nine, tied, seven, sixth, eight, points, fifth, record,
freshman, impressive, five, six, mark, finishes, shy, leads, four,
straight

353 Space threshold, average, calculated, absolute, scale, higher, slope, hu-
midity, altitude, amount, low, normal, mean, distance, lower,
level, speed, above, cumulative, readings

997 Space near, close, distance, airport, center, miles, opposite, minutes,
village, mile, town, park, map, away, within, walk, train, drive,
outside, halfway

These concept atoms capture distinct subtypes of meaning within each semantic domain. For example,
factor 81 emphasizes time points typically used in “at” contexts (e.g., at night, at 9 a.m.); factor 798
encodes temporal durations often found in “for” constructions (e.g., for days, for weeks); and
factor 880 reflects temporal eras or historical references (e.g., seventies, grunge, persisted).

For the main analysis in Section 3.5, we selected one representative concept atom from each semantic
category—factor 81 (time), factor 505 (number), and factor 997 (space). While our primary results
focus on these exemplars, preliminary inspection of other atoms within the same semantic domains
suggests they evoke qualitatively similar cortical activation patterns. To assess the similarity of these
representations more systematically, we computed cosine similarities between cortical weight maps
for all pairwise combinations within three semantic groups: Time (81, 798, 880), Number (394, 505),
and Space (353, 997). Number (394–505) and Space (353–997) pairs exhibited consistently high
similarity (0.502± 0.063 and 0.495± 0.088, respectively), whereas Time pairs showed moderate
consistency (e.g., 81–798: 0.431± 0.138; 798–880: 0.457± 0.098). These within-group similarities
were substantially higher than the background distribution of across-group factor pairs, which
averaged just 0.048± 0.013. These findings provide quantitative support for the functional clustering
of concept atoms within semantic domains and highlight the potential for future research to explore
the structure and organization of these representational spaces more deeply.

E Heuristic Concept-Level Cortical Maps from the Dense Encoding Model

This appendix presents heuristic concept-specific cortical maps generated from the Dense Encoding
Model, used for qualitative comparison against the Sparse Concept Encoding Model, as discussed
in Sections 3.5 and 3.6. Because the Dense Encoding Model produces voxel weight vectors in a
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Figure 8: Heuristic concept-level cortical maps from the Dense Encoding Model for concept atoms
456 (a–c) and 115 (d–f), shown for Subject 01 and Subject 02. Panels (a, d) display word clouds
for the top words associated with each atom. Panels (b–c, e–f) show voxelwise cortical maps,
thresholded using the heuristic method described in Appendix E. Compared to the corresponding
maps in Section 3.4 (Fig. 5), these maps are less spatially coherent and more variable across subjects,
highlighting the interpretability gains achieved by modeling directly in sparse concept space.

continuous, entangled semantic space, it does not assign explicit concept axes. To approximate the
cortical representation of a specific concept atom, we applied the following heuristic procedure:

Select target concept atom. We began with a target concept atom and retrieved its top 30 activating
words using the learned sparse factor embeddings.

Project dense embeddings onto voxel weights. We loaded voxel weights from the Dense Encoding
Model. The mean dense embedding of the selected concept atom’s top words was computed and
projected onto each voxel’s weight vector, yielding an estimate of that voxel’s tuning strength to the
concept.

Select significant voxels. We retained voxels that satisfied both of the following: (a) positive mean
cross-validated prediction scores, and (b) a positive projection for the selected concept. This step
produced a subset of candidate voxels potentially selective for the concept.

Label voxels by semantic similarity. For each candidate voxel, we computed cosine similarity
between its weight vector and all 1,000 sparse concept atoms. We then identified the top 10 most
similar atoms for each voxel.

Mask concept-relevant voxels. Voxels were marked as selective for the concept if the original
target atom appeared among their top-10 matches.

This procedure was applied independently for each concept examined in Sections 3.5 and 3.6. While
these heuristic maps provide a rough approximation of concept tuning in the dense model, they are
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Figure 9: Heuristic composite cortical maps from the Dense Encoding Model for three concept
atoms representing number (red), time (green), and space (blue). Word clouds (a–c) show the top
stimulus words most strongly associated with each concept. Panels (d–e) show voxelwise cortical
maps for Subject 01 and Subject 02. Colors indicate voxels selectively tuned to each concept (red,
green, blue) or their overlaps (white indicating joint selectivity). This figure parallels the analysis
in Figure 6 of the main paper (Section 3.5), but reveals substantially less spatial overlap between
concepts, highlighting the limitations of the heuristic method.

less spatially coherent, less symmetric across hemispheres, and more variable across individuals than
maps produced by the Sparse Concept Encoding Model. These differences, visualized in Figures 8
and 9, underscore the interpretability gains afforded by modeling directly in sparse concept space.

F Statistical Significance Maps from Permutation Testing

This appendix presents binary voxelwise significance maps obtained using non-parametric permuta-
tion testing to assess prediction accuracy on the test set. To construct a voxelwise null distribution, we
performed non-parametric permutation testing. Specifically, the joint predictions of the banded ridge
regression model, defined as the sum of predictions from the lexical-semantic and low-level acoustic
feature spaces, were randomly permuted over time within each voxel. To account for temporal
autocorrelation in the BOLD signal, we used a block permutation strategy following [13], permuting
non-overlapping blocks of 10 consecutive time points (equivalent to 20 seconds of data). For each
permutation, prediction accuracy was recomputed, and this process was repeated 9,999 times to
generate a null distribution of accuracy values for each voxel. An empirical p-value was then com-
puted per voxel by counting the number of permutations in which the permuted prediction accuracy
exceeded the observed accuracy from the original (unpermuted) test data. To avoid zero-valued
p-values, we added one to both the numerator and the denominator, following the method of [42].
To correct for multiple comparisons across voxels, the empirical p-values were adjusted using the
Benjamini–Hochberg false discovery rate (FDR) procedure [6]. FDR correction was applied using the
multipletests function from the statsmodels Python package with method=’fdr_bh’. Finally,
a binary mask of statistically significant voxels was generated by thresholding the FDR-corrected
p-value map at p < 0.05.
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Figure 10: Binary statistical significance maps of prediction accuracy for the Sparse Concept Encoding
Model in Subject 01 and Subject 02, highlighting significant prediction performance in temporal,
parietal, and prefrontal regions.

Figure 11: Effect of VNR on embedding norms. Each point represents a word vector before and
after applying VNR. The dashed line indicates the identity (no change). VNR is a preprocessing
method that enhances the interpretability of learned concept atoms by expanding the relative spread
of vectors near the origin while compressing those among high-norm vectors.

G Evaluation of Embedding Preprocessing Methods

While most learned concept atoms captured coherent semantic themes, we observed that a subset
activated broadly across many high-frequency words used in disparate contexts. We hypothesize that
this ambiguity stems from a known property of word embeddings: high-frequency words tend to have
smaller norms and cluster near the origin in Euclidean space, reducing their separability. To address
this, we developed a custom preprocessing method called Vector Norm Reparameterization (VNR).
VNR improves the geometric structure of the embedding space by nonlinearly rescaling each word
vector’s norm while preserving its direction (Fig. 11). For a word vector v, we define the scale factor
as s = 9 · tanh

(
2∥v∥
9 + 1

10

)
, and the reparameterized vector becomes ṽ = v

∥v∥ · s.

This transformation compresses large norms more than small ones, effectively expanding semantically
dense regions and reducing the influence of rare words.

To evaluate the effectiveness of VNR, we compared it against three alternative preprocessing strategies
applied prior to dictionary learning:
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1. Unmodified GloVe vectors
2. L2 normalization to the unit hypersphere
3. ZCA whitening

Each method was evaluated using the following metrics:

Reconstruction Error. We computed the relative Frobenius reconstruction error ∥Xdense −
ZΦ∥F /∥Xdense∥F where Xdense ∈ RT×d contains the original dense word-embedding features,
Z ∈ RT×m is the learned sparse, non-negative concept-atom activation matrix, and Φ ∈ Rm×d

contains the corresponding concept atoms (rows of Φ). This metric measures how well the sparse
concept representation reconstructs the dense embedding space.

Sparsity. For each word, we calculated the fraction of zero entries in its 1,000-dimensional sparse
code, then averaged this value across the stimuli vocabulary. Higher values indicate sparser represen-
tations.

WordNet Purity. To assess semantic coherence, we identified the top 50 highest-activation words
for each concept atom and computed the mean pairwise WordNet similarity among them, using both
path similarity and Wu–Palmer similarity [33, 40]. Semantically meaningful atoms are expected to
group together words from similar lexical fields, as defined in WordNet’s ontology.

Results. As shown in Table 3, VNR achieved the lowest reconstruction error while maintaining
high sparsity and the strongest semantic coherence across both WordNet-based metrics. Notably,
L2 normalization resulted in extremely poor reconstruction performance, likely due to its constraint
that all word vectors and dictionary atoms lie on the unit hypersphere, limiting the model’s ability to
encode useful norm variation. Based on these results, we adopted VNR as the default preprocessing
method in all subsequent experiments.

Table 3: Comparison of preprocessing strategies for word embeddings prior to sparse coding.

Embedding Version Reconstruction Error Sparsity WN Purity (Path) WN Purity (WuP)

Raw GloVe 0.4922 0.9723 0.1158 0.3571
VNR 0.4083 0.9677 0.1171 0.3579
L2-normalized 7.2403 0.9640 0.1166 0.3563
ZCA-whitened 0.6714 0.9610 0.1113 0.3412
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The description is accurate and does not overstate or misrepresent the scope or
contributions of the work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed at length in last section of the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Mathematical discussions on dense feature representations and the advantages
of sparse concept features aree provided in Appendix C.

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix A describes all experimental settings, including feature construction,
model training, hyperparameter tuning, and evaluation procedures. Model pipeline is clearly
explained in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The raw and preprocessed data are publicly available on GIN and OSF
Appendix A. An anonymized version of the full codebase is included in the supplement and
will be released publicly upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training, validation, and test splits are described in and Appendix A. The
cross-validation scheme, regularization grid, and hyperparameter optimization procedures
are all fully specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Statistical significance is assessed for prediction accuracy on test data using
non-parametric permutation testing with FDR correction Appendix F. Pairwise comparisons
are evaluated with t-tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A specifies computation resources used for model fitting. Code
dependencies and libraries are also described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of conduct and anonymized our paper, code and
data submission.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The last section in the main paper discusses implications for brain-machine-
interface applications, concerns about mental privacy, as well as dangers of inherent biases
in pretrained embeddings.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: As a safeguard, we chose not to release anatomical brain images due to privacy
concerns, but we provide transformation matrices that map volumetric data to cortical
flatmaps to support visualization and interpretation.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites [41] for word embeddings, [59] for sparse dictionary learning
on word embeddings, and [22] for the data set. Data and code are redistributed under the
CC-BY 4.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details about the dataset and model are thoroughly described in the main paper
and supplementary materials. The code is well-commented, and the repository includes a
README with detailed instructions for usage and data handling.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work used publicly available fMRI data from a previously published
study and did not conduct new human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This work used publicly available, anonymized data. No new human subject
experiments were conducted as part of this study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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