
t-DGR: A Trajectory-Based
Deep Generative Replay Method for

Continual Learning in Decision Making

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep generative replay has emerged as a promising approach for continual learning1

in decision-making tasks. This approach addresses the problem of catastrophic2

forgetting by leveraging the generation of trajectories from previously encountered3

tasks to augment the current dataset. However, existing deep generative replay4

methods for continual learning rely on autoregressive models, which suffer from5

compounding errors in the generated trajectories. In this paper, we propose a6

simple, scalable, and non-autoregressive method for continual learning in decision-7

making tasks using a diffusion model that generates task samples conditioned on8

the trajectory timestep. We evaluate our method on Continual World benchmarks9

and find that our approach achieves state-of-the-art performance on the average10

success rate metric compared to other continual learning methods.11

1 Introduction12

Continual learning, also known as lifelong learning, is a critical challenge in the advancement13

of general artificial intelligence, as it enables models to learn from a continuous stream of data14

encompassing various tasks, rather than having access to all data at once [24]. However, a major15

challenge in continual learning is the phenomenon of catastrophic forgetting, where previously16

learned skills are lost when attempting to learn new tasks [18].17

To mitigate catastrophic forgetting, replay methods have been proposed, which involve saving18

data from previous tasks and replaying it to the learner during the learning of future tasks. This19

approach mimics how humans actively prevent forgetting by reviewing material for tests and replaying20

memories in dreams. However, storing data from previous tasks requires significant storage space21

and becomes computationally infeasible as the number of tasks increases.22

In the field of cognitive neuroscience, the Complementary Learning Systems theory offers insights23

into how the human brain manages memory. This theory suggests that the brain employs two24

complementary learning systems: a fast-learning episodic system and a slow-learning semantic25

system [17, 14, 16]. The hippocampus serves as the episodic system, responsible for storing specific26

memories of unique events, while the neocortex functions as the semantic system, extracting general27

knowledge from episodic memories and organizing it into abstract representations [23].28

Drawing inspiration from the human brain, deep generative replay (DGR) addresses the catastrophic29

forgetting issue in decision-making tasks by using a generative model as the hippocampus to generate30

trajectories from past tasks and replay them to the learner which acts as the neocortex (Figure 2) [26].31

The time-series nature of trajectories in decision-making tasks sets it apart from continual supervised32

learning, as each timestep of the trajectory requires sufficient replay. In supervised learning, the33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Figure 1: We compare three generative methods for imitating an agent’s movement in a continuous
2D plane with Gaussian noise. Our objective is to replicate the ground truth path, which transitions
from darker to lighter colors. The autoregressive method (CRIL) encounters a challenge at the
first sharp turn as nearby points move in opposing directions. Once the autoregressive method
deviates off course, it never recovers and compromises the remaining trajectory. In contrast, sampling
individual state observations i.i.d. without considering the temporal nature of trajectories (DGR)
leads to a fragmented path with numerous gaps. Our proposed method t-DGR samples individual
state observations conditioned on the trajectory timestep. By doing so, t-DGR successfully avoids the
pitfalls of CRIL and DGR, ensuring a more accurate replication of the desired trajectory.

learner’s performance is not significantly affected if it performs poorly on a small subset of the data.34

However, in decision-making tasks, poor performance on any part of the trajectory can severely35

impact the overall performance. Therefore, it is crucial to generate state-action pairs that accurately36

represent the distribution found in trajectories. Furthermore, the high-dimensional distribution space37

of trajectories makes it computationally infeasible to generate complete trajectories all at once.38

Existing DGR methods adopt either the generation of individual state observations i.i.d. without39

considering the temporal nature of trajectories or autoregressive trajectory generation. Autoregressive40

approaches generate the next state(s) in a trajectory by modeling the conditional probability of the41

next state(s) given the previously generated state(s). However, autoregressive methods suffer from42

compounding errors in the generated trajectories. On the other hand, generating individual state43

observations i.i.d. leads to a higher sample complexity compared to generating entire trajectories,44

which becomes significant when replay time is limited.45

To address the issues in current DGR methods, we propose a simple, scalable, and non-autoregressive46

trajectory-based DGR method. We define a generated trajectory as temporally coherent if the47

transitions from one state to the next appear realistic (refer to Section 3.3 for a formal definition).48

Given that current decision-making methods are trained on state-action pairs, we do not require49

trajectories to exhibit temporal coherence. Instead, our focus is on ensuring an equal number of50

samples generated at each timestep of the trajectory to accurately represent the distribution found in51

trajectories. To achieve equal sample coverage at each timestep, we train our generator to produce state52

observations conditioned on the trajectory timestep, and then sample from the generator conditioned53

on each timestep of the trajectory. The intuition behind our method is illustrated in Figure 1.54

To evaluate the effectiveness of our proposed method, t-DGR, we conducted experiments on the55

Continual World benchmarks CW10 and CW20 [29] using imitation learning. Our results indicate56

that t-DGR achieves state-of-the-art performance in terms of average success rate when compared to57

other top continual learning methods.58

2 Related Work59

This section provides an overview of existing continual learning methods within the context of60

“General Continual Learning", with a particular focus on pseudo-rehearsal methods.61

2.1 Continual Learning in the Real World62

As the field of continual learning continues to grow, there is an increasing emphasis on developing63

methods that can be effectively applied in real-world scenarios [28, 3, 4, 10, 27]. The concept of64

“General Continual Learning" was introduced by Buzzega et al. [5] to address certain properties of the65

2

real world that are often overlooked or ignored by existing continual learning methods. Specifically,66

two important properties, bounded memory and blurry task boundaries, are emphasized in this work.67

Bounded memory refers to the requirement that the memory footprint of a continual learning method68

should remain bounded throughout the entire lifespan of the learning agent. This property is crucial69

to ensure practicality and efficiency in real-world scenarios. Additionally, blurry task boundaries70

highlight the challenge of training on tasks that are intertwined, without clear delineation of when one71

task ends and another begins. Many existing methods fail to account for this characteristic, which is72

common in real-world learning scenarios. While there are other significant properties associated with73

continual learning in the real world, this study focuses on the often-neglected aspects of bounded74

memory and blurry task boundaries. By addressing these properties, we aim to develop methods that75

are more robust and applicable in practical settings.76

2.2 Continual Learning Methods77

Continual learning methods for decision-making tasks can be categorized into three main categories.78

Regularization Regularization methods in continual learning focus on incorporating constraints79

during model training to promote the retention of past knowledge. One simple approach is to include80

an L2 penalty in the loss function. Elastic Weight Consolidation (EWC) builds upon this idea81

by assigning weights to parameters based on their importance for previous tasks using the Fisher82

information matrix [13]. MAS measures the sensitivity of parameter changes on the model’s output,83

prioritizing the retention of parameters with a larger effect [2]. VCL leverages variational inference84

to minimize the Kullback-Leibler divergence between the current and prior parameter distributions85

[22]. Progress and Compress learns new tasks using a separate model and subsequently distills86

this knowledge into the main model while safeguarding the previously acquired knowledge [25].87

However, it is important to note that regularization methods may struggle with blurry task boundaries88

as they rely on knowledge of task endpoints to apply regularization techniques effectively. In our89

experiments, EWC was chosen as the representative regularization method based on its performance90

in the original Continual World experiments [29].91

Architecture-based Methods Architecture-based methods aim to maintain distinct sets of parame-92

ters for each task, ensuring that future learning does not interfere with the knowledge acquired from93

previous tasks. Packnet [15], UCL [1], and AGS-CL [11] all safeguard previous task information94

in a neural network by identifying important parameters and freeing up less important parameters95

for future learning. Identification of important parameters can be done through iterative pruning96

(Packnet), parameter uncertainty (UCL), and activation value (AGS-CL). However, a drawback of97

parameter isolation methods is that each task requires its own set of parameters, which may eventually98

exhaust the available parameters for new tasks and necessitate a dynamically expanding network99

without bounded memory [30]. Additionally, parameter isolation methods require training on a100

single task at a time to prune and isolate parameters, preventing concurrent learning from multiple101

interwoven tasks. In our experiments, PackNet was selected as the representative architecture-based102

method based on its performance in the original Continual World experiments [29].103

Pseudo-rehearsal Methods Pseudo-rehearsal methods mitigate the forgetting of previous tasks104

by generating synthetic samples from past tasks and replaying them to the learner. Deep generative105

replay (DGR) (Figure 2) utilizes a generative model, such as generative adversarial networks [7],106

variational autoencoders [12], or diffusion models [9], to generate the synthetic samples. Originally,107

deep generative replay was proposed to address continual supervised learning problems, where the108

generator only needed to generate single data point samples [26]. However, in decision-making tasks,109

expert demonstrations consist of trajectories (time-series) with a significantly higher-dimensional110

distribution space.111

One existing DGR method generates individual state observations i.i.d. instead of entire trajectories.112

However, this approach leads to a higher sample complexity compared to generating entire trajectories.113

The sample complexity of generating enough individual state observations i.i.d. to cover every portion114

of the trajectory m times can be described using the Double Dixie Cup problem [20]. For trajectories115

of length n, it takes an average of Θ(n log n + mn log log n) i.i.d. samples to ensure at least m116

samples for each timestep. In scenarios with limited replay time (small m) and long trajectories (large117

n) the sample complexity can be approximated as Θ(n log n) using the Coupon Collector’s problem118

3

Figure 2: The deep generative replay paradigm. The algorithm learns to generate trajectories from
past tasks to augment real trajectories from the current task in order to mitigate catastrophic forgetting.
Both the generator and policy model are updated with this augmented dataset.

[19]. The additional Θ(log n) factor reduces the likelihood of achieving complete sample coverage119

of the trajectory when the number of replays or replay time is limited, especially considering the120

computationally expensive nature of current generative methods. Furthermore, there is a risk that the121

generator assigns different probabilities to each timestep of the trajectory, leading to a selective focus122

on certain timesteps rather than equal representation across the trajectory.123

Another existing DGR method is autoregressive trajectory generation. In the existing autoregressive124

method, CRIL, a generator is used to generate samples of the initial state, and a dynamics model125

predicts the next state based on the current state and action [6]. However, even with a dynamics126

model accuracy of 99% and a 1% probability of deviating from the desired trajectory, the probability127

of an autoregressively generated trajectory going off course is 1 − 0.99n, where n denotes the128

trajectory length. With a trajectory length of n = 200 (as used in our experiments), the probability129

of an autoregressively generated trajectory going off course is 1 − 0.99200 = 0.87. This example130

demonstrates how the issue of compounding error leads to a high probability of failure, even with a131

highly accurate dynamics model.132

In our experiments, t-DGR is evaluated against all existing pseudo-rehearsal methods to assess how133

well t-DGR addresses the limitations of those methods.134

3 Background135

This section introduces notation and the formulation of the continual imitation learning problem that136

we use in this paper.137

3.1 Imitation Learning138

Imitation learning algorithms aim to learn a policy πθ parameterized by θ by imitating a set of expert139

demonstrations D = {τi}i=1...M . Each trajectory τi consists of a sequence of state-action pairs140

{(sj , aj)}j=1...|τi| where |τi| is the length of the trajectory. Each trajectory comes from a task T141

which is a Markov decision process that can be represented as a tuple ⟨S,A, T, ρ0⟩ with state space142

S, action space A, transition dynamics T : S × A × S → [0, 1], and initial state distribution ρ0.143

Various algorithms exist for imitation learning, including behavioral cloning, GAIL [8], and inverse144

reinforcement learning [21]. In this work, we use behavioral cloning where the objective can be145

formulated as minimizing the loss function:146

L(θ) = Es,a∼D

[∥∥πθ(s)− a
∥∥2
2

]
(1)

where the state and action spaces are continuous.147

3.2 Continual Imitation Learning148

In the basic formulation most common in the field today, continual imitation learning involves149

sequentially solving multiple tasks T1, T2, . . . , TN . When solving for task Ti, the learner only gets150

data from task Ti and can not access data for any other task. In a more general scenario, certain tasks151

may have overlapping boundaries, allowing the learner to encounter training data from multiple tasks152

during certain phases of training. The learner receives a continuous stream of training data in the153

form of trajectories τ1, τ2, τ3, . . . from the environment, where each trajectory τ corresponds to one154

of the N tasks. However, the learner can only access a limited contiguous portion of this stream at155

any given time.156

4

Let si be the success rate of task Ti after training on all N tasks. The continual imitation learning157

objective is defined as maximizing the average success rate over all tasks:158

S =
1

N

N∑
i=1

si (2)

The primary issue that arises from the continual learning problem formulation is the problem of159

catastrophic forgetting where previously learned skills are forgotten when training on a new task.160

3.3 Notation161

Deep generative replay involves training two models: a generator Gβ parameterized by β and a162

learner πθ parameterized by θ. We define G
(i)
β as the generator trained on tasks T1 . . . Ti and capable163

of generating data samples from tasks T1 . . . Ti. Similarly, π(i)
θ represents the learner trained on tasks164

T1 . . . Ti and able to solve tasks T1 . . . Ti.165

A sequence of state observations (s1, s2, . . . , sn−1, sn) is temporally coherent if ∀1 ≤ i < n,∃a ∈166

A : T (si, a, si+1) > ε, where 0 < ε < 1 is a small constant representing a threshold for negligible167

probabilities.168

4 Method169

Our proposed method, t-DGR, tackles the challenge of generating long trajectories by training a170

generator, denoted as Gβ(j), which is conditioned on the trajectory timestep j to generate state171

observations. The algorithm begins by initializing the task index, replay ratio, generator model,172

learner model, and learning rates (Line 1). The replay ratio, denoted as 0 ≤ r < 1, determines the173

percentage of training samples seen by the learner that are generated. Upon receiving training data174

from the environment, t-DGR calculates the number of trajectories to generate based on the replay175

ratio r (Lines 4-5). The variable L (Line 7) represents the maximum length of trajectories observed176

so far.177

To generate a trajectory τ of length L, t-DGR iterates over each timestep 1 ≤ j ≤ L (Line 9). At each178

timestep, t-DGR generates the j-th state observation of the trajectory using the previous generator179

G
(t−1)
β conditioned on timestep j (Line 10), and then labels it with an action using the previous180

policy π
(t−1)
θ (Line 11). After generating all timesteps in the trajectory τ , t-DGR adds it to the181

existing training dataset (Line 14). It’s important to note that the generated state observations within182

a trajectory do not have temporal coherence, as each state observation is generated independently of183

other timesteps. This approach is acceptable since our learner is trained on state-action pairs rather184

than full trajectories. However, unlike generating state observations i.i.d., our method ensures equal185

coverage of every timestep during the generative process, significantly reducing sample complexity.186

Once t-DGR has augmented the training samples from the environment with our generated train-187

ing samples, t-DGR employs backpropagation to update both the generator and learner using the188

augmented dataset (Lines 16-18). The t-DGR algorithm continues this process of generative replay189

throughout the agent’s lifetime, which can be infinite (Line 2). It is worth mentioning that although190

we perform the generative process of t-DGR at task boundaries for ease of understanding, no part of191

t-DGR is dependent on clear task boundaries.192

5 Experiments193

In this section, we outline the experimental setup and performance metrics employed to compare194

t-DGR with representative methods, followed by an analysis of experimental results across different195

benchmarks and performance metrics.196

5.1 Experimental Setup197

We evaluate our method on the Continual World benchmarks CW10 and CW20 [29], along with our198

own “General Continual Learning" variant of CW10 called GCL10. CW10 consists of a sequence of199

5

Algorithm 1 Trajectory-based Deep Generative Replay (t-DGR)

1: Initialize task index t = 0, replay ratio r, generator G(0)
β , learner π(0)

θ , and learning rates λβ , λθ.
2: while new task available do
3: t← t+ 1
4: Initialize dataset D with trajectories from task t.
5: n← r∗|D|

1−r ▷ number of trajectories to generate
6: for i = 1 to n do
7: L← maximum trajectory length
8: τ ← ∅ ▷ initialize trajectory of length L
9: for j = 1 to L do

10: S ← G
(t−1)
β (j) ▷ generate states

11: A← π
(t−1)
θ (S) ▷ label with actions

12: τj ← (S,A) ▷ add to trajectory
13: end for
14: D ← D ∪ τ ▷ add generated trajectory to D
15: end for
16: Update generator and learner using D
17: β(t) ← β(t−1) − λβ∇βLG(t−1)(β(t−1))

18: θ(t) ← θ(t−1) − λθ∇θLπ(t−1)(θ(t−1))
19: end while

10 Meta-World [31] tasks, where each task involves a Sawyer arm manipulating one or two objects in200

the Mujuco physics simulator. Notably, the observation and action spaces are continuous and remain201

consistent across all tasks. CW20 is an extension of CW10 with the tasks repeated twice. To our202

knowledge, Continual World is the only standard continual learning benchmark for decision-making203

tasks. GCL10 gives data to the learner in 10 sequential buckets B1, . . . , B10. Data from task Ti from204

CW10 is split evenly between buckets Bi−1, Bi, and Bi+1, except for the first and last task. Task T1205

is evenly split between buckets B0 and B1, and task T10 is evenly split between buckets B9 and B10.206

In order to ensure bounded memory usage, we adopt a one-hot vector approach to condition the model207

on the task, rather than maintaining a separate final neural network layer for each individual task.208

Additionally, we do not allow separate biases for each task, as originally done in EWC [13]. Expert209

demonstrations for training are acquired by gathering 100 trajectories per task using hand-designed210

policies from Meta-World, with each trajectory limited to a maximum of 200 steps. Importantly, the211

learner model remains consistent across different methods and benchmark evaluations. Moreover, we212

maintain a consistent replay ratio of r = 0.9 across all pseudo-rehearsal methods.213

We estimated the success rate S of a model by running each task 100 times. The metrics for each214

method were computed using 5 seeds to create a 90% confidence interval. Further experimental215

details, such as hyperparameters, model architecture, random seeds, and computational resources, are216

included in the appendix. This standardization enables a fair and comprehensive comparison of our217

proposed approach with other existing methods.218

5.2 Metrics219

We evaluate our models using three metrics proposed by the Continual World benchmark [29], with220

the average success rate being the primary metric. Although the forward transfer and forgetting221

metrics are not well-defined in a “General Continual Learning" setting, they are informative within222

the context of Continual World benchmarks. As a reminder from Section 3.2, let N denote the223

number of tasks, and si represent the success rate of the learner on task Ti. Additionally, let si(t)224

denote the success rate of the learner on task Ti after training on tasks T1 to Tt.225

Average Success Rate The average success rate, as given by Equation 2, serves as the primary226

evaluation metric for continual learning methods.227

Average Forward Transfer We introduce a slightly modified metric for forward transfer that228

applies to a broader range of continual learning problems beyond just continual reinforcement229

6

learning in the Continual World benchmark. Let srefi represent the reference performance of a230

single-task experiment on task Ti. The forward transfer metric FTi is computed as follows:231

FTi =
Di −Dref

i

1−Dref
i

Di =
si(i) + si(i− 1)

2
Dref

i =
srefi

2

The average forward transfer FT is then defined as the mean forward transfer over all tasks, calculated232

as FT = 1
N

∑N
i=1 FTi.233

Average Forgetting We measure forgetting using the metric Fi, which represents the amount of234

forgetting for task i after all training has concluded. Fi is defined as the difference between the235

success rate on task Ti immediately after training and the success rate on task Ti at the end of training.236

Fi = si(i)− si(N)

The average forgetting F is then computed as the mean forgetting over all tasks, given by F =237
1
N

∑N
i=1 Fi.238

5.3 Baselines239

We compare the following methods on the Continual World benchmark using average success rate as240

the primary evaluation metric. Representative methods were chosen based on their success in the241

original Continual World experiments, while DGR-based methods were selected to evaluate whether242

t-DGR addresses the limitations of existing pseudo-rehearsal methods.243

• Finetune: The policy is trained only on data from the current task.244

• Multitask: The policy is trained on data from all tasks simultaneously.245

• oEWC [25]: A variation of EWC known as online Elastic Weight Consolidation (oEWC)246

bounds the memory of EWC by employing a single penalty term for the previous model247

instead of individual penalty terms for each task. This baseline is the representative248

regularization-based method.249

• PackNet [15]: This baseline is the representative parameter isolation method. Packnet250

safeguards previous task information in a neural network by iteratively pruning, freezing,251

and retraining parts of the network.252

• DGR [26]: This baseline is a deep generative replay method that only generates individual253

state observations i.i.d. and not entire trajectories.254

• CRIL [6]: This baseline is a deep generative replay method that trains a policy along with255

a start state generator and a dynamics model that predicts the next state given the current256

state and action. Trajectories are generated by using the dynamics model and policy to257

autoregressively generate next states from a start state.258

• t-DGR: Our proposed method.259

Due to the inability of oEWC and PackNet to handle blurry task boundaries, we made several260

adjustments for CW20 and GCL10. Since PackNet cannot continue training parameters for a task261

once they have been fixed, we treated the second repetition of tasks in CW20 as distinct from the first262

iteration, resulting in PackNet being evaluated with N = 20, while the other methods were evaluated263

with N = 10. As for GCL10 and its blurry task boundaries, the best approach we could adopt with264

oEWC and PackNet was to apply their regularization techniques at regular training intervals rather265

than strictly at task boundaries. During evaluation, all tasks were assessed using the last fixed set of266

parameters in the case of PackNet.267

5.4 Discussion268

t-DGR emerges as the leading method, demonstrating the highest success rate on CW10 (Table 1a),269

CW20 (Table 1c), and GCL10 (Table 1b). Notably, PackNet’s performance on the second iteration270

of tasks in CW20 diminishes, highlighting its limited capacity for continually accommodating new271

tasks. This limitation underscores the fact that PackNet falls short of being a true lifelong learner, as272

it necessitates prior knowledge of the task count for appropriate parameter capacity allocation. On the273

7

(a) CW10

Method Success Rate ↑ FT↑ Forgetting↓
Finetune 16.4 ±6.4 -3.0 ±6.0 78.8 ±7.6
Multitask 97.0 ±1.0 N/A N/A

oEWC 18.6 ±5.3 -6.3 ±5.7 74.1 ±6.1
PackNet 81.4 ±3.7 -14.8 ±7.8 -0.1 ±1.2
DGR 75.0 ±5.8 -4.3 ±5.1 17.8 ±4.1
CRIL 28.4 ±10.6 -1.1 ±2.8 68.6 ±10.4
t-DGR 81.9 ±3.3 -0.3 ±4.9 14.4 ±2.5

(b) GCL10

Method Success Rate ↑
Finetune 21.7 ±2.6
Multitask 97.0 ±1.0

oEWC 21.8 ±1.7
PackNet 26.9 ±5.6
DGR 75.3 ±4.4
CRIL 53.5 ±5.5
t-DGR 81.7 ±4.0

(c) CW20

Method Success Rate ↑ FT↑ Forgetting↓
Finetune 14.2 ±4.0 -0.5 ±3.0 82.2 ±5.6
Multitask 97.0 ±1.0 N/A N/A

oEWC 19.4 ±5.3 -2.8 ±4.1 75.2 ±7.5
PackNet 74.1 ±4.1 -20.4 ±3.4 -0.2 ±0.9
DGR 74.1 ±4.1 18.9 ±2.9 23.3 ±3.3
CRIL 50.8 ±4.4 4.4 ±4.9 46.1 ±5.4
t-DGR 83.9 ±3.0 30.6 ±4.5 14.6 ±2.9

(d) Replay Ratio

Ratio t-DGR DGR

0.5 63.2 ±2.6 52.8 ±2.9
0.6 66.3 ±4.4 56.9 ±4.5
0.7 70.8 ±4.1 62.5 ±3.6
0.8 75.0 ±6.9 69.2 ±4.9
0.9 81.9 ±3.3 75.0 ±5.8

Table 1: Tables (a), (b), and (c) present the results for Continual World 10, General Continual
Learning 10, and Continual World 20, respectively. The tables display the average success rate,
forward transfer, and forgetting (if applicable) with 90% confidence intervals using 5 random seeds.
An up arrow indicates that higher values are better and a down arrow indicates that smaller values are
better. Table (d) compares the impact of replay amount on the average success rate of t-DGR and
DGR on CW10 with 90% confidence intervals obtained using 5 random seeds. The best results are
highlighted in bold.

contrary, pseudo-rehearsal methods, such as t-DGR, exhibit improved performance with the second274

iteration of tasks in CW20 due to an increased replay time. These findings emphasize the ability of275

DGR methods to effectively leverage past knowledge, as evidenced by their superior forward transfer276

in both CW10 and CW20.277

GCL10 (Table 1b) demonstrates that pseudo-rehearsal methods are mostly unaffected by blurry task278

boundaries, whereas PackNet’s success rate experiences a significant drop-off. This discrepancy279

arises from the fact that PackNet’s regularization technique does not work effectively with less clearly280

defined task boundaries.281

Additionally, it is worth noting the diminishing performance gap between DGR and t-DGR as the282

replay ratio increases in Table 1d, indicating that a higher replay ratio reduces the likelihood of any283

portion of the trajectory being insufficiently covered when sampling individual state observations284

i.i.d., thereby contributing to improved performance. This trend supports the theoretical sample285

complexity of DGR derived in Section 2.2, as Θ(n log n+mn log log n) closely approximates the286

sample complexity of t-DGR, Θ(mn), when the replay amount m→∞. However, it is important to287

emphasize that while DGR can achieve comparable performance to t-DGR with a high replay ratio,288

the availability of extensive replay time is often limited in many real-world applications.289

Overall, t-DGR exhibits promising results, outperforming other methods in terms of success rate in290

all evaluations. Notably, t-DGR achieves a significant improvement over existing pseudo-rehearsal291

8

methods on CW20 using a Welch t-test with a significance level of p-value = 0.005. Its ability to292

handle blurry task boundaries, leverage past knowledge, and make the most of replay opportunities293

position it as a state-of-the-art method for continual lifelong learning in decision-making.294

6 Conclusion295

In conclusion, we have introduced t-DGR, a novel method for continual learning in decision-making296

tasks, which has demonstrated state-of-the-art performance on the Continual World benchmarks. Our297

approach stands out due to its simplicity, scalability, and non-autoregressive nature, positioning it as298

a solid foundation for future research in this domain.299

Importantly, t-DGR aligns with the concept of “General Continual Learning" by taking into account300

essential properties of the real world, including bounded memory and blurry task boundaries. These301

considerations ensure that our method remains applicable and effective in real-world scenarios,302

enabling its potential integration into practical applications.303

Looking ahead, one potential avenue for future research is the refinement of the replay mechanism304

employed in t-DGR. Rather than assigning equal weight to all past trajectories, a more selective305

approach could be explored. By prioritizing certain memories over others and strategically determin-306

ing when to replay memories to the learner, akin to human learning processes, we could potentially307

enhance the performance and adaptability of our method.308

References309

[1] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual310

learning with adaptive regularization, 2019.311

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-312

laars. Memory aware synapses: Learning what (not) to forget, 2018.313

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection314

for online continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,315

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.316

Curran Associates, Inc., 2019.317

[4] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow318

memory: Continual learning with a memory of diverse samples, 2021.319

[5] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark320

experience for general continual learning: a strong, simple baseline, 2020.321

[6] Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. Cril: Continual322

robot imitation learning via generative and prediction model, 2021.323

[7] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil324

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.325

[8] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.326

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.327

[10] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual328

learning scenarios: A categorization and case for strong baselines, 2019.329

[11] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with330

node-importance based adaptive group sparse regularization, 2021.331

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.332

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,333

Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,334

Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catas-335

trophic forgetting in neural networks. Proceedings of the National Academy of Sciences,336

114(13):3521–3526, mar 2017.337

9

[14] Dharshan Kumaran, Demis Hassabis, and James L. McClelland. What learning systems do338

intelligent agents need? complementary learning systems theory updated. Trends in Cognitive339

Sciences, 20(7):512–534, 2016.340

[15] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by341

iterative pruning, 2018.342

[16] James Mcclelland, Bruce Mcnaughton, and Randall O’Reilly. Why there are complementary343

learning systems in the hippocampus and neocortex: Insights from the successes and failures of344

connectionist models of learning and memory. Psychological review, 102:419–57, 08 1995.345

[17] James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly. Complementary learning346

systems within the hippocampus: A neural network modeling approach to understanding347

episodic memory consolidation. Psychological Review, 102(3):419–457, 1995.348

[18] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:349

The sequential learning problem. volume 24 of Psychology of Learning and Motivation, pages350

109–165. Academic Press, 1989.351

[19] Amy N. Myers and Herbert S. Wilf. Some new aspects of the coupon-collector’s problem, 2003.352

[20] Donald J. Newman. The double dixie cup problem. The American Mathematical Monthly,353

67(1):58–61, 1960.354

[21] Andrew Y. Ng and Stuart J. Russell. Inverse reinforcement learning. In Proceedings of the 17th355

International Conference on Machine Learning (ICML-2000), pages 663–670, 2000.356

[22] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual357

learning, 2018.358

[23] Randall C. O’Reilly and Kenneth A. Norman. Hippocampal and neocortical contributions to359

memory: Advances in the complementary learning systems framework. Trends in Cognitive360

Sciences, 6(12):505–510, December 2002.361

[24] Mark Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of362

Texas at Austin, 1994.363

[25] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka Grabska-Barwinska,364

Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress compress: A scalable framework365

for continual learning, 2018.366

[26] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep367

generative replay, 2017.368

[27] Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning, 2019.369

[28] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual370

learning: Theory, method and application, 2023.371

[29] Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual372

world: A robotic benchmark for continual reinforcement learning, 2021.373

[30] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with374

dynamically expandable networks, 2018.375

[31] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively,376

Adithya Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark377

and evaluation for multi-task and meta reinforcement learning, 2021.378

10

	Introduction
	Related Work
	Continual Learning in the Real World
	Continual Learning Methods

	Background
	Imitation Learning
	Continual Imitation Learning
	Notation

	Method
	Experiments
	Experimental Setup
	Metrics
	Baselines
	Discussion

	Conclusion

