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ABSTRACT

Continual learning (CL), which involves learning from sequential tasks without
forgetting, is mainly explored in supervised learning settings where all data are la-
beled. However, high-quality labeled data may not be readily available at a large
scale due to high labeling costs, making the application of existing CL methods
in real-world scenarios challenging. In this paper, we delve into a more prac-
tical facet of CL: open-world continual learning, where the training data comes
from the open-world dataset and is partially labeled and non-i.i.d. Building on the
insight that task shifts in continual learning can be viewed as transitions from in-
distribution (ID) data to out-of-distribution (OOD) data, we propose OpenACL, a
method that explicitly leverages unlabeled OOD data to enhance continual learn-
ing. Specifically, OpenACL considers novel classes within OOD data as potential
classes for upcoming tasks and mines the underlying pattern in unlabeled open-
world data to empower the model’s adaptability to upcoming tasks. Furthermore,
learning from extensive unlabeled data also helps to tackle the issue of catas-
trophic forgetting. Extensive experiments validate the effectiveness of OpenACL
and show the benefit of learning from open-world data.

1 INTRODUCTION

Continual learning, unlike conventional supervised learning which learns from independent and
identically distributed (i.i.d.) data, allows machines to continuously learn a model from a stream
of data with incremental class labels. One of the main challenges in CL is to tackle the issue of
the catastrophic forgetting, i.e., prevent forgetting the old knowledge as the model is learned on
new tasks (De Lange et al., 2021). Although many approaches (e.g., methods based on data replay
(Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017), weight regularization (Kirkpatrick et al., 2017;
Li & Hoiem, 2017)) have been proposed to tackle catastrophic forgetting in CL, they rely on an
assumption that a complete set of labeled data is available for training and focus on a supervised
learning setting. Unfortunately, this assumption may not hold easily in real applications when ob-
taining high-quality sample-label pairs is difficult, possibly due to high time/labor costs, data privacy
concerns, lack of data sources, etc. This is particularly the case for CL where the number of classes
increases during the learning process.

To effectively learn CL models from limited labeled data, recent studies (Smith et al., 2021; Wang
et al., 2021; Lee et al., 2019) suggest leveraging the semi-supervised learning (SSL) technique for
CL to learn from both labeled and unlabeled data. The idea of SSL is to improve model performance
by using limited labeled data and a larger amount of unlabeled data. In real applications, obtaining
a steady stream of labeled data can be very expensive and time-consuming for CL, especially in
new or rapidly evolving domains. However, obtaining large amounts of unlabeled data is relatively
easier. SSL has proven effective and is applied to many tasks including CL. Specifically, Wang et al.
(2021) considers a typical SSL setting where labeled and unlabeled data are assumed to be i.i.d. so
that the unlabeled data can be leveraged to help improve the model performance. However, the i.i.d.
assumption is commonly violated as the unlabeled data is usually acquired from different sources
and there exist distributional shifts between unlabeled and labeled data. In a worse case, the unla-
beled data may be of low quality and contain large proportions of out-of-distribution (OOD) data.
To address this, Lee et al. (2019); Smith et al. (2021) extend Wang et al. (2021) to non-i.i.d. set-
tings by considering the existence of OOD data in the dataset. As an example, Smith et al. (2021)
proposes a method that learns two models, with one for distinguishing and eliminating OOD data
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and the other for predictions. Notably, it treats all seen classes up to the current task as ID data and
uses a manually set threshold to reject OOD samples. To maintain high prediction accuracy while
preventing forgetting, it then actively identifies unlabeled data that is relevant to the incremental task
and repeatedly trains the model using both labeled and identified unlabeled data.

Unlike the existing methods that only leverage ID unlabeled samples to enhance model performance,
we argue that unlabeled OOD data can also be useful in CL when there are distribution shifts between
tasks. It is based on the observation that the novel classes in OOD data for previous/current tasks may
become training classes in future tasks, e.g., an unseen class “car” for the current task could belong
to the task classes for upcoming tasks. Instead of identifying and eliminating OOD samples during
training, we may leverage them to adapt a model to a new task and improve the model performance
in CL. Our paper is based on this idea, where we aim to exploit the patterns of unlabeled data,
especially novel classes in OOD data, and use them to adapt the model to future tasks in CL; as
opposed to the previous works that simply reject those OOD samples with low confidence.

Specifically, this paper considers open semi-supervised continual learning (Open SSCL). The goal
is to learn a model continuously from both labeled and unlabeled data in an open world without
forgetting, and meanwhile effectively utilizing unlabeled data to adapt to novel classes. Unlike
previous SSCL problems that only use unlabeled data to prevent catastrophic forgetting, unlabeled
data in Open SSCL should also be used to adapt the model to novel classes (new tasks) under
distribution shifts. In other words, Open SSCL aims to use easy-to-obtain unlabeled open-world
data to improve CL model performance on past, current, and future tasks.

Toward this end, we propose an Open semi-supervised learning framework Adapting the model
to new tasks in Continual Learning (OpenACL). We introduce a prototype-based learning method
to learn a generalized representation of unlabeled data and adapt the model to a new task while
shifting the tasks. Besides, the ID samples in extensive unlabeled data can also be leveraged by the
prototypes to mitigate catastrophic forgetting. Our contributions can be summarized as follows:

• We formulate a problem of open semi-supervised continual learning (Open SSCL). It is motivated
by the fact that real data in practice mostly contains limited labeled data and large-scale unlabeled
data, with the existence of OOD data in unlabeled data. Notably, instead of eliminating OOD data,
Open SSCL can utilize OOD samples to enhance model performance on new tasks.

• We propose a method called OpenACL to solve the Open SSCL problem. It maintains multi-
ple prototypes for seen tasks and reserves extra prototypes for unseen tasks. Both labeled and
unlabeled data are learned to improve the adaptation ability and tackle forgetting for prototypes.

• We conduct extensive experiments to evaluate OpenACL. We also extend the existing CL methods
to the Open SSCL setting and compare them with ours under a fair environment. The online
continual learning results show that OpenACL consistently outperforms others in adapting to new
tasks and addressing catastrophic forgetting.

2 RELATED WORK

This paper is closely related to the literature on continual learning, semi-supervised learning, and
open set/world problems. We introduce each topic and discuss the differences with our work below.

Continual Learning (CL). The goal is to learn a model continuously from a sequence of tasks (non-
stationary data). One of the challenges in CL is to overcome the issue of catastrophic forgetting, i.e.,
prevent forgetting the old knowledge as the model is learned on new tasks. Various approaches have
been proposed to prevent catastrophic forgetting, including regularization-based methods, rehearsal-
based methods, parameter isolation-based methods, etc. Specifically, regularization-based methods
prevent forgetting the old knowledge by regularizing model parameters; examples include Elastic
Weight Consolidation (Kirkpatrick et al., 2017), Synaptic Intelligence (Zenke et al., 2017), Incre-
mental Moment Matching (Lee et al., 2017), etc. In contrast, rehearsal-based methods (Rebuffi
et al., 2017; Lopez-Paz & Ranzato, 2017; Saha et al., 2021) tackle the problem by reusing the old
data (stored in a memory-efficient replay buffer) in previous tasks during the training process. Un-
like these approaches where a single model is used for all tasks, parameter isolation-based methods
(Mallya & Lazebnik, 2018) aims to improve the model performance on all tasks by isolating param-
eters for specific tasks.
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Note that all the above methods were studied in the classic supervised learning setting. In con-
trast, our paper considers an open semi-supervised environment with not only labeled data but also
unlabeled data that is possibly OOD.

Semi-Supervised Learning (SSL). It aims to learn a model from both labeled and unlabeled data,
and the labeled data is usually limited while the unlabeled ones are sufficient. Pseudo-labeling-
based methods, as discussed by Xie et al. (2020); Xu et al. (2021); Sohn et al. (2020), initially train
models using labeled data and subsequently assign virtual labels to the unlabeled data. Then the
model with improved performance is learned from those sample-pseudo-label pairs. On the other
hand, consistency regularization-based methods (Sajjadi et al., 2016; Meel & Vishwakarma, 2021)
learn to ensure consistency across different data. They augment the unlabeled data by generating
different views of data (e.g., by rotation, scaling, etc.), and a model is then trained on the augmented
data via regularized optimization such that the predictions for different views are consistent.

While SSL has shown success in many tasks, its application to CL is less studied. Because unlabeled
data in practice may not follow the identical distribution as the labeled data and they may come from
different classes, SSL methods introduced above may not perform well in real applications. This
paper closes the gap where we focus on CL and extend SSL to the open setting.

Open-Set & Open-World Recognition. It considers scenarios where the data observed during
model deployment may come from unknown classes that do not exist during training. The goal is to
not only accurately classify the seen classes, but also effectively deal with unseen ones, e.g., either
distinguish them from the seen classes (open-set problem) or label them into new classes (open-
world problem). The existing methods for open-set recognition include traditional machine learning-
based methods (Bendale & Boult, 2015; Mendes Júnior et al., 2017; Rudd et al., 2017) and deep
learning-based methods (Dhamija et al., 2018; Shih et al., 2019; Yu et al., 2017; Yang et al., 2019).
Each can further be classified into discriminative model-based and generative model-based methods,
depending on whether the unknown classes are detected by calibrating the classification logistics
(Yoshihashi et al., 2019; Rozsa et al., 2017; Hassen & Chan, 2020) or by learning distributions of
known classes (Ge et al., 2017; Yu et al., 2017; Neal et al., 2018; Jo et al., 2018; Yang et al., 2019).

In this paper, we consider open-world settings but primarily focus on semi-supervised continual
learning, where the model is trained from a sequence of tasks and the training dataset includes both
labeled and unlabeled data.

Open-Set/World Semi-Supervised Learning. It combines both open-set/world recognition and
SSL. The goal is to train a model from both labeled and unlabeled data, where the unlabeled data may
contain OOD samples. One of the challenges is to make SSL less vulnerable to OOD samples. To
this end, most existing methods (Guo et al., 2020; Saito et al., 2021; Lu et al., 2022) first detect OOD
samples, which are then rejected or re-weighted to ensure performance. For example, Guo et al.
(2020) proposes a method that selectively uses unlabeled data by assigning weights to unlabeled
samples. OpenMatch (Saito et al., 2021) integrates a One-Vs-All detection scheme to filter out
OOD samples in SSL training loops. Cao et al. (2022) extends the open-set SSL and proposes open-
world SSL, which requires actively discovering novel classes. This work is generalized in (Rizve
et al., 2022; Tan et al., 2023) where novel classes are discovered using a pairwise similarity loss.

Our paper extends Open SSL to CL. In particular, we note that the data from untrained tasks in CL
can indeed be viewed as OOD samples. Based on this, we study the open semi-supervised continual
learning (Open SSCL) problem. We will illustrate how the unlabeled data can be leveraged in Open
SSCL to mitigate catastrophic forgetting and adapt a model to new tasks.

3 PROBLEM FORMULATION

In this section, we formulate the problem of open semi-supervised continual learning (Open SSCL).

Consider a continual learning problem that aims to learn a model from a sequence of k tasks T =
{T1, ...Tk}. Let D = {Dl,Du} be a dataset associated with these tasks; it consists of n labeled
data samples Dl = {(xi, yi)}ni=1 and m unlabeled samples Du = {xi}mi=1, where m ≫ n, feature
xi ∈ X , and label yi ∈ Y = {1, ..., N}. Under this semi-supervised continual learning, Dl is
divided into multiple task sets Dl = ∪i∈{1...k}Di

l based on labels (e.g., dividing CIFAR-10 dataset
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into 5 tasks with two labels associated with each task). For each task Ti, we can only access labeled
samples from a subset Di

l ⊂ Dl and unlabeled samples from Du.

We shall consider semi-supervised continual learning in an open environment, where unlabeled data
x ∈ Du may come from the known (seen) classes Cl in labeled dataset Dl or novel, never-before-
seen classes (OOD data) Cn, i.e., unlabeled data Du is from classes Cu = Cl ∪ Cn. In the context
of continual learning, known classes Cl in Dl are divided into {C1

l , ..., C
k
l }, with Ci

l ∩ Ci+1
l = ∅.

Because the number of known classes is increasing along with task change in continual learning.
We further denote known classes Ci

s = ∪i
j=1C

j
l up to task Ti as the task seen classes, and the

Ci
n = Cu\Ci

s as task unseen classes.

The goal is to continuously learn a model f from a sequence of tasks T that (i) can learn from novel
classes and identify them, and (ii) correctly classify known classes while avoiding forgetting the
previously learned tasks as the model gets updated. To achieve this, we seek to minimize the open
risk (Scheirer et al., 2014) under continual learning constraints (Lopez-Paz & Ranzato, 2017):

ft = argmin
f∈H

R
(
f(Dt

l )
)
+ λ̄ROt (f) (1)

s.t. R
(
ft(Di

l)
)
≤ R

(
ft−1(Di

l)
)
;∀i ∈ [0...t− 1]

where R (f(Dt
l )) denotes the empirical risk of f on known training data at task t. ft is the model

learned at the end of task t; ROt(f) is the open space risk (Scheirer et al., 2012) and is defined as

ROt
(f) =

∫
Ot

f(x)dx∫
S f(x)dx

.

where S is a space containing all ID samples and OOD samples that are mislabeled as ID. These
OOD samples formulate an open space O in the S. ROt

(f) measures the potential risk of a function
f misclassifying samples that are in open space Ot. Hyper-parameter λ̄ ≥ 0 is a regularization
constant. Under the constraint in equation 1, the model performance on known classes does not
decrease as the model gets updated.

4 PROPOSED METHOD

In this section, we introduce OpenACL which includes three main components: (i) prototype dis-
tance learning; (ii) semi-supervised prototype representation learning; and (iii) prototype adaptation.
Specifically, prototype distance learning ensures that labeled data are associated with corresponding
prototypes while maximizing their similarity. Semi-supervised prototype representation learning
enhances model robustness against distribution shifts across tasks over time; it encourages samples
with intrinsic similarities to converge to shared prototypes. Prototype adaptation identifies and al-
locates the most suitable prototypes from the prototype pool for an incoming task to facilitate the
model’s adaptation to the new task.

4.1 CONTINUAL PROTOTYPE LEARNING OVERALL

The key insight in Open SSCL is exploiting data from open-world datasets to improve the adapta-
tion ability on new tasks of continual models. Instead of discarding OOD samples, we treat them
as potential future ID data in upcoming tasks. In particular, we propose a novel continual prototype
learning mechanism that mines the intra-class patterns in both labeled and unlabeled data. Conse-
quently, data samples with similar representations are under a shared prototype. We shall maintain
”seen prototypes” for known classes and ”novel prototypes” for potential future classes. These novel
prototypes can capture the patterns of classes in future tasks even before they are officially labeled.
This proactive approach gives OpenACL an advantage, readying it to quickly adapt to new tasks.

4.2 PROTOTYPE DISTANCE LEARNING

Let G = {g1 . . . gm} be denoted as m prototypes for seen and novel classes, and let h be the
function that maps data to the representation. Unlike most existing Prototype Learning (PL) methods
that compute the prototypes as the geometric centers of representations, our method models these
prototypes as trainable parameters. This is because geometric centers are typically computed by
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Labeled DataLabeled Data
Task t Task t+1

Unlabeled DataUnlabeled Data

…

OOD SampleOOD Sample

PrototypePrototype

…

Figure 1: In OpenACL, we minimize the distance between data representations of seen classes and
their labeled prototypes. Concurrently, semi-supervised prototype contrastive learning encourages
similar representations to share the same prototype distribution and enhances representations for
both known and novel classes. We assume data from the same class have similar representations in
the latent space, so the novel prototypes are used to cluster representations from novel classes. Upon
entering the adaptation phase for a new task t + 1, we receive labeled data in task t + 1. For each
class within the task, we identify the prototype from the prototypes pool that is the most analogous
and allocate the class label to it. By assigning novel prototypes to incoming task classes, we could
have some well-trained prototypes and speeding up the learning process for new task prototypes.

averaging the data points from the same class; for unknown classes, the absence of labels makes it
unclear which data points should be grouped together to average. In contrast, a trainable prototype
can be learned to capture the pattern for a novel class. In our approach, the cosine distance is used
to measure the distance between prototypes g and representation h(x) and we want to minimize the
distance between the data representation and its corresponding class prototype.

Formally, for the labeled dataset Dl = {(xi, yi)}ni=1 when the ground truth of data xi is known, our

objective is to maximize the cosine similarity sim(gyi , h(xi)) =
gT
yi

h(xi)

||gyi ||·||h(xi)|| . We thus define the
loss function Lp that encourages the data to be closer to its class prototype at task t as:

Lp = − 1

|Bl|

|Bl|∑
i=1

log
exp (sim (gyi , h(xi))× s)∑|G|
j=1 exp (sim (gj , h(xi))× s))

(2)

In equation 2, |Bl| is the number of labeled samples in a batch Bl. The hyper-parameter s con-
trols the softmax temperature when transforming similarity into probability, ensuring stable training
(Wang et al., 2018). By minimizing Lp, we align a representation with its class prototype while
distancing it from other prototypes.

4.3 SEMI-SUPERVISED PROTOTYPE REPRESENTATION LEARNING

To equip the prototypes with the ability to exploit the open-world data and represent novel classes,
we introduce semi-supervised prototype contrastive learning to learn powerful representations for
both unlabeled and labeled data and assign data with similar representations to a common proto-
type. Contrastive learning is designed to extract meaningful representations by exploiting both the
similarities and dissimilarities between data instances. This is typically achieved by comparing two
augmented views (e.g., rotation, flipping, resizing) of the same instance or different instances. How-
ever, rather than solely maximizing the alignment between different views of an instance in latent
space, our objective is to maintain consistency in the distribution of these representations over the
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prototypes. Put differently, our aim shifts to amplifying the consistency of prototype distributions
rather than focusing exclusively on representation.

Given an instance x, we first generate two augmented views x̃ and x̃′ and obtain their representations
h(x̃) and h(x̃)′ as suggested in (Chen et al., 2020). The probability of a view x̃ being assigned to a
prototype gi can be computed as:

pi(x̃) =
exp (sim (gi, h(x̃))× s)∑|G|

j=1 exp (sim (gj , h(x̃))× s))
(3)

Then we can align the distribution to prototypes between two views via a contrastive loss:

Lu
c = − 1

|Bu|

|Bu|∑
i=1

log
exp(sim(p(x̃i), p(x̃

′
i))/κ)∑|Bu|

j=1 1[xj ̸=xi] exp(sim(p(x̃i), p(x̃j))/κ)
(4)

where Bu is an unlabeled minibatch including pairs of two augmented views x̃ and x̃′ from x. κ is
a temperature parameter. 1[·] ∈ {0, 1} is the condition function. To further enhance the power and
robustness of our representations, we also leverage labeled data to extend the unsupervised proto-
type contrastive learning to semi-supervised prototype contrastive learning. This is advantageous as
the labeled data can provide direct information about the relationship between instances and their
corresponding prototypes. Following Khosla et al. (2020), we incorporate supervised contrastive
learning in our prototype representation learning. For labeled minibatch Bl and unlabeled minibatch
Bu with two augmented views, we have a conjunct contrastive loss on prototype distribution:

Lc = Lu
c −

|Bl|∑
i=1

log
1

|Pi|
∑

x̃j∈Pi

exp(sim(p(x̃i), p(x̃j))/κ)∑
x̃k∈A(i) exp (sim(p(x̃i), p(x̃k))/κ)

(5)

Here, A(i) is a set Bl \ {x̃i}. Pi is the set of all positive samples {x̃j ∈ A(i) : yj = yi}.

The final objective function combines both the contrastive loss and the supervised loss, weighted by
a hyper-parameter λ, i.e., the loss at task t is L = Lp + λLc. We set λ as 1 in our method.

The rationale of the prototype-level contrastive learning mechanism is straightforward: if two repre-
sentations are close in the latent space, they will also have similar distributions over the prototypes.
Based on the assumption that data from the same class should have similar representation in la-
tent space, instances being pushed closer to the same prototype can be classified in a class. By
specifying the prototypes for novel classes, we reduce the intra-class variance (pushing similar in-
stances towards these prototypes) to decrease the model’s tendency to misclassify OOD samples in
the seen classes, thereby decreasing the open space risk ROt

. In equation 5, unlabeled data also
includes data in previous trained tasks. Thus, our model could leverage a comprehensive prototype
representation that spans previous tasks, the current task, and future tasks to ensures a consistent
representation space for continual learning. This inherently provides a regularizing effect to make
up for catastrophic forgetting, minimizing the risk of overwriting previous information.

4.4 PROTOTYPE ADAPTATION

The aforementioned prototype learning establishes a set of novel prototypes learned from the intra-
class similarities within the unlabeled data. These novel prototypes can be further used in CL to
adapt to the new task. Intuitively, upon transitioning from task t to the subsequent task t + 1,
the classes in the forthcoming task should already possess associated prototypes, courtesy of their
presence in the unlabeled data. Thus, we could associate these potential prototypes with new classes
and adapt the model to the task t+ 1 quickly.

Specifically, consider labeled data {(x, y) ∈ Dt+1
l } at new task t+1. For each class label ȳ ∈ Ct+1

l ,
we want to find the most potential prototype for class ȳ. Define a count function I(x, gj) that returns
1 if gj is the most similar prototype for x and 0 otherwise:

I(x, gj) =

{
1 if gj = argmaxgk∈G sim(x, gk)

0 otherwise
(6)

We then determine the prototype g∗ȳ ∈ G by the number of its closet samples in {(x, y) ∈ Dt+1
l :

y = ȳ}. The one with the most grouped samples will be selected as g∗ȳ and be assigned with label ȳ.

g∗ȳ = argmax
gj∈G

∑
(xi,yi)∈Dt+1

l
:yi=ȳ

I(xi, gj) (7)
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In implementation, if multiple classes are associated with the same prototype, we randomly assign
a class label y from these classes to the prototype. In addition, to avoid the trivial solution that all
instances are assigned to a single prototype in the early stage of the training (Caron et al., 2018; Cao
et al., 2022), we adopt a reinitialization strategy. After assigning labels for task t + 1 but before
entering its training, the unassigned novel prototypes are reinitialized. To establish these initial
novel prototypes as a new task begins, we deploy the K-means algorithm, using cosine distance
as a metric to cluster centroids as initial novel prototypes. The known prototypes are used as prior
knowledge for the K-means algorithm, but remain static and are not subjected to updates post-
clustering. Specifically, given the prototype pool G and the set of seen class prototypes for Ct+1

s , the
initialized centroids in K-means algorithm are selected as |Ct+1

s | known prototypes and |G|−|Ct+1
s |

randomly selected data points from the unlabeled dataset Du. To reduce computation cost, K-means
is running on a subset of Du to obtain |G| centroids. we identify |Ct+1

s | centroids that are most
similar to the known prototypes and exclude them using cosine similarity. The remaining centroids
are used to initialize the novel prototypes in the prototype pool. This ensures a more representative
set of prototypes for subsequent tasks and solves the trivial solution problem.

5 EXPERIMENTS

In this section, we introduce the datasets and the baselines. Then, we present results from various
benchmarks in comparison to baselines. Implementation details are available in Appendix A.1.1.

5.1 EXPERIMENT SETTING

Datasets. We adopt the following datasets in experiments. The data from known classes is parti-
tioned into labeled and unlabeled segments with ratios of 20% labeled data and 50% labeled data.

1. CIFAR-10 (Krizhevsky et al., 2009): The first 6 classes are organized into 3 tasks (k = 3), each containing
two classes. The remaining 4 classes are treated as unknown. For each task, we have 2,000 labeled instances
under the 20% split and 5,000 labeled instances under the 50% split.

2. CIFAR-100 (Krizhevsky et al., 2009): The initial 80 classes from CIFAR-100 are segmented into 16
tasks (k = 16). The subsequent 20 classes are treated as unknown. For every task, 500 instances are labeled
under the 20% split, and 1,250 instances are labeled under the 50% split.

3. Tiny-ImageNet (Deng et al., 2009): The initial 120 classes of Tiny-ImageNet are categorized into 20
tasks (k = 20), leaving 80 classes as unknown. For each task, there are 600 labeled instances in the 20%
split and 1,500 labeled instances in the 50% split.

Using the above split, we take two datasets as input: labeled Dl = {D1
l , ...,Dk

l } and unlabeled
Du consisting of unlabeled data from known classes Cl and all data from unknown classes Cn.
For each task i, we simultaneously sample data from the Di

l for the current task and the Du. The
proportion of labeled to unlabeled data in the sample matches the respective proportions in the
datasets. Note that, as Du is randomly shuffled, we can access all classes in Du in each task. We
sequentially sampled the data from the Du without knowing the source, i.e., the data comes from
previous task classes, current task classes, future task classes, and OOD classes (unknown classes).

Baselines. We compare our algorithm (OpenACL) with existing methods in CL in both task in-
cremental learning (Task-IL) and class incremental learning (Class-IL) settings. The distinction
between these settings is elaborated upon in Appendix A.1.1. Additionally, our focus is on on-
line continual learning, where models are only allowed to be trained for 1 epoch. To ensure a fair
comparison, we first equip supervised learning-based methods with a well-known semi-supervised
learning method: FixMatch (Sohn et al., 2020). Then, as our prototypes use the contrastive learning
idea to align the distribution, we also add contrastive learning loss (Chen et al., 2020) to baselines
to learn representation from unlabeled data. These baselines include:

1. Single (Lopez-Paz & Ranzato, 2017): It sequentially trains a single network across all tasks.
2. Independent (Lopez-Paz & Ranzato, 2017): It trains multiple networks; each is trained independently on

data from one task.
3. EWC (Kirkpatrick et al., 2017): Elastic Weight Consolidation (EWC) is a regularization technique that adds

a penalty loss function to minimize the changes in the weights that are important for previous tasks while
still allowing the weights to be updated for new tasks.
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4. GEM (Lopez-Paz & Ranzato, 2017): Gradient Episodic Memory (GEM) maintains an episodic memory to
store samples from previous tasks and ensure the gradients for new tasks do not interfere with learned tasks.

5. iCaRL (Rebuffi et al., 2017): iCaRL uses a nearest-exemplar method and distillation to maintain a set of
exemplars for each class.

6. GSS (Aljundi et al., 2019): Gradient-based sample selection(GSS) selects and replays a subset of diverse
data based on the gradient to solve online continual learning.

7. ER (Chaudhry et al., 2019): Experience Replay (ER) trains both incoming data and data from the replay
memory. Despite its simplicity, ER surpasses many advanced continual learning methods.

8. DER (Buzzega et al., 2020): Dark Experience Replay(DER) stores examples with their outputs, and mini-
mizes the difference between outputs from the current model and memory.

9. DistillMatch (Smith et al., 2021): DistillMatch is distillation-based that considers SSCL by rejecting OOD
samples. It uses each data more than once to train the model and OOD detector. To adapt DistillMatch to
online continual learning, we provide the ground truth for OOD samples, assisting in their exclusion.

Table 1: Average accuracy over three runs of experiments on Task-IL benchmarks. Some baselines
are adapted to SSL by incorporating them with FixMatch (Sohn et al., 2020) or SimCLR (Chen
et al., 2020) to learn from unlabeled data. Results are organized as SimCLR usage / FixMatch usage
/ No unlabeled data usage. The standard deviation results are reported in the Appendix A.3.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50 20 50
Single 57.5 / 57.6 / 54.7 59.3 / 57.0 / 57.6 33.5 / 34.1 / 32.3 37.9 / 36.3 / 37.2 20.9 / 20.5 / 19.6 25.9 / 23.3 / 23.1
Independent 62.5 / 64.2 / 61.3 63.9 / 62.3 / 62.5 26.7 / 30.3 / 31.8 36.2 / 36.2 / 33.4 21.6 / 21.5 / 23.2 26.5 / 28.0 / 27.0
EWC 57.1 / 56.1 / 58.9 57.8 / 56.3 / 59.2 33.4 / 34.9 / 33.8 35.8 / 35.6 / 36.3 20.0 / 20.2 / 19.8 25.0 / 22.4 / 24.1
iCaRL 56.0 / 57.4 / 56.7 57.2 / 58.7 / 58.3 45.8 / 45.9 / 46.4 44.1 / 42.3 / 41.8 25.2 / 25.3 / 23.5 31.3 / 29.0 / 26.5
DER 62.2 / 63.9 / 63.3 63.2 / 63.9 / 63.6 38.6 / 38.7 / 39.6 46.8 / 44.7 / 44.0 24.2 / 22.4 / 25.8 28.4 / 29.6 / 28.0
GEM 61.3 / 64.0 / 62.6 63.2 / 63.6 / 64.2 53.5 / 52.6 / 51.8 58.6 / 57.5 / 54.4 33.0 / 35.4 / 32.1 40.1 / 37.3 / 38.0
ER 62.9 / 62.3 / 61.3 64.9 / 63.8 / 62.6 54.8 / 55.3 / 53.7 59.9 / 58.5 / 57.8 35.2 / 36.3 / 35.7 41.7 / 41.4 / 40.2
DistillMatch 57.8 59.4 35.7 41.3 21.8 26.2
OpenACL 64.3 66.3 60.4 66.6 40.2 47.0

Table 2: Average accuracy over three runs of experiments on Class-IL benchmarks.

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
Single 3.1 / 2.8 / 2.5 3.0 / 2.5 / 3.0 1.9 / 2.0 / 1.7 2.4 / 2.8 / 2.7
iCaRL 6.8 / 7.0 / 6.3 7.3 / 8.3 / 7.0 4.5 / 3.3 / 3.4 4.1 / 4.8 / 4.2
DER 3.7 / 3.7 / 3.5 3.6 / 3.9 / 3.9 2.4 / 2.5 / 2.1 2.4 / 2.6 / 2.3
GEM 7.0 / 8.0 / 6.9 9.7 / 7.7 / 6.7 2.4 / 3.4 / 2.7 2.3 / 2.6 / 1.8
GSS 12.8 / 11.2 / 10.3 16.8 / 15.3 / 15.2 3.3 / 5.4 / 3.8 5.3 / 5.6 / 5.0
ER 10.9 / 12.0 / 11.5 15.6 / 15.8 / 16.9 3.3 / 4.2 / 3.9 4.8 / 6.7 / 5.7
DistillMatch 2.8 3.2 2.0 2.7
OpenACL 15.7 20.0 7.9 11.9
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Figure 2: Average accuracy of the first three tasks on 50% labeled CIFAR-100 and Tiny-ImageNet
during Task-IL training. We test the models on the first three tasks after finishing subsequent tasks
to examine their ability to preserve prior knowledge.

5.2 RESULTS

Evaluation on split datasets. We contrasted our algorithm against established baselines in the on-
line Task-IL setting and online Class-IL setting with varying label ratios across seen classes. To
make a fair comparison, supervised continual learning methods are integrated with FixMatch or
SimCLR. Table 1 and 2 present the mean accuracy across all tasks for each method, both with and
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Figure 3: Average accuracy on a novel task after training with a single batch in Task-IL.

Table 3: BWT and FWT results on 50% labeled dataset. We report the best results among three
implementations(SimCLR, FixMatch, and Normal). The results show as BWT / FWT.

Single Independent EWC iCaRL DER GEM ER DistillMatch OpenACL
CIFAR-100 -5.3 / 0.9 0 / 0 -5.7 / 0.4 -5.3 / 0 0.3 / -0.3 11.6 / -0.3 11.5 / -5.1 -6.5 / -1.8 9.2 / 13.0
Tiny-ImageNet -6.3 / 0.4 0 / 0 -8.6 / 0.6 -1.1/ 0 -0.5 / 0.8 4.8 / 0.1 4.3 / 0.6 -11.8 / -0.1 2.7 / 10.9

without the inclusion of unlabeled data. The results in the Task-IL setting and Class-IL setting
demonstrate that OpenACL outperforms all baselines on all datasets, with significant margins in
most cases. Notably, we observe that some baselines also benefit from unlabeled data enhanced by
FixMatch or SimCLR. This emphasizes the potential benefits of unlabeled data in the context of
CL. However, directly integrating CL with unlabeled data usage yields only modest improvements,
highlighting the need for more specialized methods for Open SSCL, like OpenACL. OpenACL’s
superior performance suggests that specialized algorithms tailored for Open SSCL can provide sig-
nificant benefits over traditional methods or straightforward combinations of the existing methods.

Mitigate catastrophic forgetting. We follow Lopez-Paz & Ranzato (2017) to compare backward
transfer (BWT) and forward transfer (FWT) in Table 3. Positive BTW suggests that performance
on old tasks improved after learning new tasks, while a negative BWT implies that the model forgot
some of the previous tasks. GEM, which requires gradient constraint achieves the best BWT among
these baselines, while OpenACL achieves comparable performance as GEM and ER on solving
catastrophic forgetting. We also track the average test accuracy on the first three tasks over time to
examine catastrophic forgetting. The results are presented in Figure 2. It shows that our method
performs the best on the first three tasks during training and is also more stable than baselines.
Besides, along with training, OpenACL even achieves better performance on the first few tasks,
while some baselines almost forget the first three tasks completely, especially in challenging datasets
like Tiny-ImageNet. These results validate that OpenACL can help to tackle catastrophic forgetting.

Adaptability to new tasks. FWT in Table 3 indicates the effect on the performance of learning
new tasks from prior learning. A positive FWT suggests the model’s “zero-shot” learning ability for
unseen tasks. The results show that OpenACL exhibits superior performance in FWT, highlighting
its exceptional zero-shot learning capability, confirming that it can swiftly adapt to new tasks lever-
aging unlabeled data knowledge. Further underlining its adaptability, we investigate the adaptability
by comparing accuracy after training a single batch of data in a new task. Figure 3 shows OpenACL
attains high accuracy across all tasks and maintains a stable performance throughout the process,
suggesting that our algorithm can efficiently learn and adapt to new tasks.

6 CONCLUSION

In this paper, we study continual learning in an open scenario and formulate open semi-supervised
continual learning (Open SSCL). Distinct from traditional, Open SSCL learns from both labeled
and unlabeled data and allows novel classes to appear in the unlabeled dataset. Recognizing the
relationship between transitions from known tasks to upcoming tasks in CL and shifts from ID
classes to OOD classes, we propose a prototype-based approach: OpenACL. OpenACL exploits
the open-world data to enhance the adaptability of continual learning models, while simultaneously
mitigating catastrophic forgetting. Our study highlights the importance of using unlabeled data and
novel classes in CL and the potential of Open SSCL as a promising direction for future research.
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A APPENDIX

A.1 ADDITION EXPERIMENT SETTING

A.1.1 IMPLEMENTATION DETAILS

All experiments are conducted on a server equipped with multiple NVIDIA V100 GPUs, Intel
Xeon(R) Platinum 8260 CPU, and 256GB memory. The code is implemented with Python 3.9
and PyTorch 1.10.0.

We used the same network architecture as (Lopez-Paz & Ranzato, 2017), a reduced ResNet18 for
CIFAR and Tiny-ImageNet images. We consider two settings: task incremental learning (Task-IL)
and class incremental learning (Class-IL ). Task-IL assumes task id is known and used to select a
classifier (separate logits) for a specific task, while it is not allowed to use task id in Class-IL. There-
fore the Class-IL setting is much more challenging than the Task-IL setting. Note that, OpenACL
only uses the task id to separate logits for Lp in the Task-IL setting. In addition, the online training
setting is used in our experiments where the model is only allowed to train 1 epoch on task data,
every labeled and unlabeled sample is only seen once. However, we also perform 3 iterations over
a batch in Class-IL following Aljundi et al. (2019). Note that, it is different from training multiple
epochs on a task.

We train models using a stochastic gradient descent (SGD) optimizer. For replay-based methods,
the size of the replay memory is set to 250 per task under 50% labeled dataset and 125 per task
under 20% labeled dataset. In the Task-IL setting, we allow the use of task id to separate the replay
memory. Therefore, we maintain task-specific replay memories for baselines like DER and ER.
OpenACL is also equipped with a simple replay memory using Reservoir Sampling (Vitter, 1985)
to store labeled data. At every iteration, we retrieve samples from the replay memory to update the
model using equation 2. The number of drawn samples from replay memory is fixed to 10 in Task-IL
and 30 in Class-IL. However, GEM still uses the full memory. The hyperparameters for baselines
are set to the suggested value in their original implementation after grid search. In all experiments,
we set the batch size for labeled data to 10, and the batch size of unlabeled data to 10 · Du

Dl
. It ensures

that the ratio of unlabeled to labeled data in each batch is proportionate to their overall distribution
in the datasets.. The temperature s in equation 2 and equation 3 is set to 10, as suggested in previous
methods (Cao et al., 2022), and κ is set to 0.07 as the original setting in (Chen et al., 2020). We
use 50% of the unlabeled dataset to run the K-mean during the prototype adaptation. Grid search
is used to find the best learning rate for baselines, searching from [0.001, 0.01, 0.05, 0.1, 0.5, 1.0].
The threshold in FixMatch of baselines is set to 0.8.

A.1.2 METRIC

Three metrics are used in our experiments, including Accuracy (ACC), Backward Transfer (BWT),
and Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017; Yan et al., 2021).

ACC: We report the average accuracy on all trained tasks to evaluate the fundamental classification
performance of all methods.

BWT: BWT measures the influence of learning a new task t on previous tasks {1, ..., t− 1}. To
calculate the BWT, we define accuracy on test classes Ct

l at task t as the At
Ct

l
. BWT is computed as

follows:

BWT =
1

|T − 1|

|T |∑
i=2

1

i

i∑
j=1

Ai
Ci

l
−Aj

Cj
l

(8)

FWT: FWT gauges how the model performs on upcoming task t + 1 at task t. Let ā be a vector
storing accuracy for all tasks at random initialization status. After finishing all the tasks, we have
FWT:

FWT =
1

|T − 1|

|T |∑
i=2

Ai−1
Ci

l

− āi (9)
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A.1.3 DATASET ILLUSTRATION

In this section, we provide a more detailed illustration of our datasets.

The CIFAR-10 dataset comprises 50,000 images across 10 classes. We designate the first 6 classes
as seen classes and divide them into 3 tasks, each encompassing 2 classes. For these 6 classes, we
further split data from them into labeled and unlabeled subsets. In our experiment, we adopt two
different division ratios for data from seen classes: 20% labeled (thus, 80% unlabeled) and 50%
labeled (equally, 50% unlabeled). For example, with a 20% labeling ratio, each class includes 1,000
labeled and 4,000 unlabeled instances, so |Dl| is 6,000. We then maintain the unlabeled dataset Du

using the unlabeled instances from the seen classes and all data from the 4 unknown classes, totaling
44,000 instances. Similarly, with a 50% labeling ratio, each class has 2,500 labeled and 2,500
unlabeled instances, leading to Dl with 15,000 labeled instances and Du with 35,000 unlabeled
instances.

For the CIFAR-100 dataset, which includes 50,000 images across 100 classes, the first 80 classes
are treated as seen classes and divided into 16 tasks with five classes each. Under a 20% labeled
and 80% unlabeled ratio, there are 8,000 labeled instances and 32,000 unlabeled instances across 80
seen classes. The corresponding unlabeled dataset Du consists of 32,000 unlabeled instances from
80 seen classes and 10,000 instances from 20 unknown classes.

The Tiny ImageNet contains 100000 images of 200 classes (500 for each class). We split the first
120 classes into 20 tasks, each containing 6 classes. Under a 20% labeled and 80% unlabeled ratio,
we have 12,000 labeled instances and 48,000 unlabeled instances. The unlabeled dataset Du consists
of 48,000 unlabeled instances from 120 seen classes and 40,000 instances from 80 unknown classes.

During training, for each task i, we simultaneously sample data from the labeled dataset Di
l for

the current task i and the shuffled unlabeled dataset Du. Du consists of data from all classes,
including previous task classes, current task classes, future task classes (whose labels have not been
revealed and are thus treated as OOD for the current task i), and unknown (OOD) classes that are not
included in the continual learning tasks. In each iteration, we sample both labeled and unlabeled data
for each batch, adhering to the respective proportions of labeled and unlabeled data in the datasets.
For example, in the CIFAR-10 dataset with a 50% labeling ratio, where we have 15,000 labeled
instances and 35,000 unlabeled instances, we maintain this proportion in our sampling approach for
each iteration. Consequently, in a single batch, we sample 10 labeled instances and 23 unlabeled
instances. For each task, we access 5,000 labeled instances from 2 classes, and 11,500 instances
from 10 classes. This approach ensures that each unlabeled data is utilized only once in the online
continual learning process.

A.2 ABLATION STUDY

A.2.1 ABLATION ON ADAPTATION

In this section, we conduct an ablation study on the CIFAR-100 and Tiny-ImageNet datasets by
removing each component separately to examine their importance. Specifically, we systematically
evaluate the impact of (i) Omitting the prototype adaptation (denoted as w/o PA), (ii) Excluding the
k-means initialization in the prototype adaptation (denoted as w/o K), (iii) Omitting prototype allo-
cation for new tasks while retaining the k-means initialization in the prototype adaptation (denoted
as w/o A). The analysis of w/o PA is intended to explain the effectiveness of prototype adaptation
when shifting to new tasks. Meanwhile, the evaluation of w/o K aims to affirm that the model’s
adaptability is mainly from our continual prototype learning mechanism, not the k-means initializa-
tion. OpenACL w/o A is discussed to show the sole influence of the k-means initialization.

As shown in Table 4, the performance of OpenACL is compromised upon the removal of any single
component. We mainly consider FWT in this experiment because the prototype adaptation is de-
signed to adapt to the new tasks. A comparison between OpenACL w/o PA and OpenACL demon-
strates a considerable enhancement in FWT with the use of the prototype adaptation. However, even
without the prototype adaptation, the model still manages a mild positive FWT which verifies that
our method can learn a general representation for both ID samples and OOD samples.

Furthermore, it also shows that the improvement of adaptation is not achieved by k-means initial-
ization. By looking at OpenACL w/o K, it still achieves good performance on FWT compared
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Table 4: Ablation study on the prototype adaptation. We report average accuracy over three runs
using different variants of OpenACL in Task-IL.

CIFAR-100 Tiny-ImageNet
ACC BWT FWT Acc BWT FWT

w/o PA 65.9±0.77 10.1±1.65 0.4±3.40 45.6±0.22 2.8±0.15 0.7±0.70

w/o K 66.2±0.94 10.2±1.49 9.8±1.13 46.2±0.36 3.4±1.54 9.9±0.38

w/o A 66.4±0.38 7.6±0.99 1.4±1.01 45.1±0.38 1.9±1.01 1.0±0.90

OpenACL 66.6±0.28 9.2±1.65 13.0±1.48 47.0±0.42 2.7±1.36 10.9±1.10

with others. Therefore, k-means initialization is only used to amplify the adaptability of the model.
Then, by analyzing the results of OpenACL w/o A, we could find that k-means initialization brings
about a minor improvement but still serves a role in augmenting our adaptation strategy. In addition,
ablation on the prototype adaptation also shows this component does not markedly affect accuracy.

A.2.2 ABLATION ON UNLABELED DATA

To demonstrate the advantage of using unlabeled data, we compare OpenACL with its supervised
learning counterpart, OpenACL(S). OpenACL(S) only uses eq equation 2 for model optimization
without the use of unlabeled data, but keeps the prototype adaptation with the k-means initialization.
The results are presented in Table 5. It is evident that, without using unlabeled data during training,
the performance of OpenACL(S) aligns more closely with that of ER and GEM in terms of accuracy
in table 1. Although OpenACL(S) retains some zero-shot learning capabilities, benefiting from the
prototype adaptation, this ability is diminished with the exclusion of unlabeled data.

Table 5: Average accuracy of the ablation study, focusing on unlabeled data usage, across three runs
on CIFAR-100 and Tiny-ImageNet within the Task-IL setting.

CIFAR-100 Tiny-ImageNet
ACC BWT FWT Acc BWT FWT

OpenACL(S) 58.8±1.24 3.0±0.57 7.8±1.89 38.3±1.12 −0.2±0.49 4.1±0.87

OpenACL 66.6±0.28 9.2±1.65 13.0±1.48 47.0±0.42 2.7±1.36 10.9±1.10

A.3 SUPPLEMENTARY RESULTS

Here, we present the full version of table 1 and 2 in table 6 and 7.

Table 6: Table 1 with standard deviation

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50 20 50
Single 57.5±3.67 / 57.6±3.49 / 54.7±2.54 59.3±2.78 / 57.0±1.83 / 57.6±2.05 33.5±1.27 / 34.1±3.10 / 32.3±2.48 37.9±2.82 / 36.3±2.63 / 37.2±1.61 20.9±1.99 / 20.5±0.69 / 19.6±0.54 25.9±1.14 / 23.3±0.83 / 23.1±1.16

Independent 62.5±3.22 / 64.2±1.35 / 61.3±2.56 63.9±3.69 / 62.3±2.43 / 62.5±2.83 26.7±3.98 / 30.3±3.28 / 31.8±2.88 36.2±2.30 / 36.2±2.15 / 33.4±1.67 21.6±0.83 / 21.5±1.07 / 23.2±1.72 26.5±0.84 / 28.0±2.21 / 27.0±1.79

EWC 57.1±2.36 / 56.1±3.10 / 58.9±3.91 57.8±2.57 / 56.3±1.70 / 59.2±2.79 33.4±3.06 / 34.9±4.06 / 33.8±2.54 35.8±1.20 / 35.6±2.48 / 36.3±1.31 20.0±1.31 / 20.2±1.48 / 19.8±1.65 25.0±1.29 / 22.4±2.61 / 24.1±1.42

iCaRL 56.0±1.07 / 57.4±1.38 / 56.7±2.19 57.2±1.35 / 58.7±0.97 / 58.3±2.20 45.8±1.50 / 45.9±2.68 / 46.4±0.58 44.1±1.38 / 42.3±1.70 / 41.8±1.09 25.2±1.03 / 25.3±1.75 / 23.5±1.39 31.3±1.01 / 29.0±1.72 / 26.5±2.71

DER 62.2±0.71 / 63.9±3.30 / 63.3±2.09 63.2±2.58 / 63.9±2.42 / 63.6±2.39 38.6±3.03 / 38.7±2.51 / 39.6±3.24 46.8±1.92 / 44.7±2.36 / 44.0±2.82 24.2±2.64 / 22.4±2.68 / 25.8±1.02 28.4±2.24 / 29.6±2.27 / 28.0±1.66

GEM 61.3±1.08 / 64.0±2.24 / 62.6±2.18 63.2±0.82 / 63.6±2.39 / 64.2±0.52 53.5±1.38 / 52.6±0.79 / 51.8±0.82 58.6±1.57 / 57.5±1.59 / 54.4±1.67 33.0±1.07 / 35.4±1.56 / 32.1±1.49 40.1±2.10 / 37.3±1.20 / 38.0±2.35

ER 62.9±1.17 / 62.3±3.32 / 61.3±3.58 64.9±3.88 / 63.8±6.12 / 62.6±2.89 54.8±1.74 / 55.3±0.65 / 53.7±1.09 59.9±2.87 / 58.5±1.39 / 57.8±0.84 35.2±0.55 / 36.3±1.79 / 35.7±1.20 41.7±0.34 / 41.4±0.39 / 40.2±0.10

DistillMatch 57.8±6.45 59.4±1.67 35.7±1.78 41.3±1.96 21.8±0.49 26.2±2.05

OpenACL 64.3±2.75 66.3±1.17 60.4±1.19 66.6±0.28 40.2±0.45 47.0±0.42

A.4 ADDITIONAL EXPERIMENTS

Open SSCL shares some common settings as Novel Class Discovery problems (NCD) (Joseph et al.,
2022; Roy et al., 2022). NCD considers unlabeled data only has novel classes, so Cu∩Cl = ∅. In the
continual learning setting, class-incremental NCD (Roy et al., 2022) leverages the model pre-trained
on sequential labeled data to discover novel categories in an unlabeled data set. Usually, NCD
methods (Joseph et al., 2022; Roy et al., 2022; Han et al., 2020; Wang et al., 2020) have separate
training phases: training on labeled datasets, and discovering novel classes in the unlabeled dataset.
Compared with the NCD problem, Open SSCL operates under the assumption that unlabeled data
comprises both known and unknown classes, thus defined as Cu = Cl ∪ Cn. In addition, Open
SSCL concurrently learns from labeled and unlabeled datasets and uses the information from novel
classes to enhance the model’s adaptability for future tasks.
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Table 7: Table 2 with standard deviation

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
Single 3.1±0.20 / 2.8±0.20 / 2.5±0.09 3.0±0.37 / 2.5±0.69 / 3.0±0.31 1.9±0.09 / 2.0±0.11 / 1.7±0.12 2.4±0.12 / 2.8±0.27 / 2.7±0.13

iCaRL 6.8±1.19 / 7.0±0.56 / 6.3±1.25 7.3±0.66 / 8.3±0.50 / 7.0±0.96 4.5±0.95 / 3.3±0.19 / 3.4±0.30 4.1±0.29 / 4.8±0.36 / 4.2±0.31

DER 3.7±0.11 / 3.7±0.23 / 3.5±0.31 3.6±0.23 / 3.9±0.57 / 3.9±0.81 2.4±0.11 / 2.5±0.13 / 2.1±0.19 2.4±0.10 / 2.6±0.16 / 2.3±0.27

GEM 7.0±0.14 / 8.0±0.47 / 6.9±1.48 9.7±1.06 / 7.7±2.15 / 6.7±2.27 2.4±0.08 / 3.4±0.24 / 2.7±0.17 2.3±0.66 / 2.6±0.09 / 1.8±0.44

GSS 12.8±0.64 / 11.2±0.32 / 10.3±1.28 16.8±1.11 / 15.3±2.27 / 15.2±1.54 3.3±0.21 / 5.4±0.63 / 3.8±0.33 5.3±0.40 / 5.6±0.36 / 5.0±0.13

ER 10.9±0.71 / 12.0±0.84 / 11.5±1.38 15.6±0.93 / 15.8±0.98 / 16.9±0.45 3.3±0.06 / 4.2±0.46 / 3.9±0.15 4.8±0.22 / 6.7±0.61 / 5.7±0.31

DistillMatch 2.8±0.06 3.2±0.17 2.0±0.18 2.7±0.14

OpenACL 15.7±0.44 20.0±1.23 7.9±0.37 11.9±1.06

In this section, we conducted a comparative analysis of our approach with existing NCD methods.
We adapt them to the Open SSCL framework to make them simultaneously train on both labeled
and unlabeled datasets. For baseline methods that require a pre-training phase, we utilized SimCLR
to pre-train the models. Our comparison encompassed the following methods:

1. AutoNovel (Han et al., 2020): AutoNovel is designed for the NCD problem by first training on
the labeled dataset and then transferring to the unlabeled dataset to discover novel classes using
rank statistics.

2. FRoST (Roy et al., 2022): FRoST uses feature replay and knowledge distillation on labeled data
to prevent forgetting and then use pseudo-labeling to discover novel classes in the unlabeled
dataset for class-incremental NCD.

3. FACT (Zhou et al., 2022): FACT reserves the embedding space for future tasks.

Also, we further compare some methods specifically designed for online continual learning (OCL):

1. ER-ACE (Caccia et al., 2022): It deploys asymmetric cross-entropy for online continual learning.
2. DVC (Huo et al., 2023): DVC improves representations with contrastive learning for online con-

tinual learning. We extend their contrastive learning module to our setting.

In our study, we present the average accuracy across three runs on both Task-IL and Class-IL bench-
marks, as detailed in Tables 8 and 10. These results demonstrate that NCD methods outperform
general continual learning approaches in Table 8 and 10. However, it is noteworthy that OpenACL
exhibits even stronger performance than NCD methods, underscoring the effectiveness of our pro-
posed method. The comparison with OCL baselines further proves the advantages of employing
OpenACL in addressing the Open SSCL problem. Additionally, we also report the BWT and FWT
on Task-IL benchmarks in Table 9. OpenACL still achieves the best FWT among these baselines-
demonstrating its superior zero-shot learning ability.

Table 8: Average accuracy over three runs of experiments on Task-IL benchmarks.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50 20 50
AutoNovel 56.3±1.82 56.5±2.11 58.7±0.13 63.3±0.83 37.4±0.74 43.1±4.74

FRoST 54.2±1.99 54.9±1.36 53.1±0.60 57.9±0.84 33.0±0.96 41.1±1.31

FACT 53.2±3.27 55.3±1.78 55.9±2.86 62.8±1.00 35.0±1.49 42.3±0.67

ER-ACE 61.2±1.83 / 61.6±3.78 / 61.3±2.45 62.4±0.91 / 64.2±2.95 / 63.9±1.99 53.8±2.08 / 55.0±0.78 / 54.8±1.78 61.7±0.71 / 62.4±0.93 / 62.1±0.86 36.2±1.36 / 37.2±0.78 / 35.4±1.25 41.4±0.54 / 42.4±1.63 / 40.6±0.74

DVC 57.4±0.86 61.7±3.23 57.6±0.92 62.7±2.08 36.8±0.61 43.5±0.35

OpenACL 64.3±2.75 66.3±1.17 60.4±1.19 66.6±0.28 40.2±0.45 47.0±0.42
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Table 9: BWT and FWT results on 50% labeled dataset. The results show as BWT / FWT.

AutoNovel FRoST FACT ER-ACE DVC OpenACL
CIFAR-100 10.6 / 1.1 5.7 / 1.4 7.8 / 2.4 12.4 / -1.7 11.1 / 1.6 9.2 / 13.0
Tiny-ImageNet 4.6 / 0.9 -0.1 / 0.7 3.7 / 3.9 6.0 / -0.1 5.9 / 0.5 2.7 / 10.9

Table 10: Average accuracy over three runs of experiments on Class-IL benchmarks.

Method CIFAR-100 Tiny-ImageNet
Labels % 20 50 20 50
AutoNovel 13.2±0.61 17.9±1.19 6.5±0.57 9.2±0.58

FRoST 7.6±0.46 10.5±0.84 3.7±0.09 4.3±0.18

FACT 12.9±0.84 16.3±0.89 5.9±0.90 8.2±1.18

ER-ACE 12.8±0.20 / 13.3±0.90 / 12.0±0.79 16.7±0.79 / 17.9±0.63 / 17.1±1.20 5.0±0.55 / 5.4±0.56 / 4.9±0.36 7.4±0.74 / 8.1±0.90 / 7.2±0.52

DVC 11.2±0.78 16.2±2.08 5.8±0.40 8.3±1.42

OpenACL 15.7±0.44 20.0±1.23 7.9±0.37 11.9±1.06
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