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Abstract

Neural radiance fields (NeRFs) are able to synthesize realistic novel views from
multi-view images captured from distinct positions and perspectives. In NeRF’s
rendering pipeline, neural networks are used to represent a scene independently
or transform queried learnable feature vector of a point to the expected color or
density. With the aid of geometry guides either in the form of occupancy grids
or proposal networks, the number of color neural network evaluations can be
reduced from hundreds to dozens in the standard volume rendering framework.
However, many evaluations of the color neural network are still a bottleneck for
fast NeRF reconstruction. This paper revisits volume feature rendering (VFR) for
the purpose of fast NeRF reconstruction. The VFR integrates the queried feature
vectors of a ray into one feature vector, which is then transformed to the final pixel
color by a color neural network. This fundamental change to the standard volume
rendering framework requires only one single color neural network evaluation
to render a pixel, which substantially lowers the high computational complexity
of the rendering framework attributed to a large number of color neural network
evaluations. Consequently, we can use a comparably larger color neural network to
achieve a better rendering quality while maintaining the same training and rendering
time costs. This approach achieves the state-of-the-art rendering quality on both
synthetic and real-world datasets while requiring less training time compared with
existing methods.

1 Introduction

For the task of view synthesis, unobserved views of a scene are synthesized from captured multi-view
images. This is a long-standing problem that has been studied for several decades in computer vision
and computer graphics. The most popular solution to this problem at present is the neural radiance
field (NeRF) [18]] since it can render views with high fidelity. NeRF represents the density and color
of a spatial point in a given direction using a neural network (NN), typically the multilayer perceptron
(MLP). With the predicted densities and colors of sampled points along a ray, the NeRF and its
variants [2| 3, [28]] use the volume rendering technique to aggregate colors to obtain the final rendered
pixel color. As many samples are required to render one pixel, the underlying MLP needs to run many
times, leading to high computational complexities for both training and rendering. Alternatively,
researchers introduced extra learnable features in the form of 3D grids [25} [17], hash tables [[19]] and
decomposed tensors [6, 12, [7, 23] in addition to MLP’s parameters to represent a scene’s density and
color fields. As querying the feature vector of a sampled point by interpolation is much faster than
one MLP evaluation, only a small MLP is used to transform the queried feature vector to the density
or color, leading to substantial speed acceleration compared with pure MLP representations.
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Furthermore, modeling the density field independently by computational efficient representations
can greatly reduce the number of samples in the color field. The density representations could be
occupancy grids [[19], hash grids with less parameters [16], and small MLPs [3]]. These coarse density
fields enable importance sampling to make the model focus on non-empty points near the surface. As
aresult, only dozens of samples in the color field (typically represented by both learnable features
and NNs) are needed to render a pixel. For example, Zip-NeRF [4] uses 32 samples after importance
sampling through efficient density representations.

Nevertheless, standard volume rendering techniques still need to run a color NN dozens of times to
render a single pixel. This is why Instant-NGP [[19] uses a small color MLP for fast training and
rendering, and why the latest Zip-NeRF [4]] is comparably slow when using large color MLPs to
achieve a better rendering quality. Although a radiance field can be implemented even without NNs
[9], the importance of large color NNs for high-quality rendering is undoubted, considering that
the state-of-the-art rendering quality can be achieved by pure MLP representations. The authors
of Zip-NeRF [4] and NRFF [12] also highlight the importance of large color NNs in modeling
view-dependent effects. Unfortunately, the standard volume rendering technique limits the size of
color NNs for the sake of fast training and rendering.

One the other hand, research in generative NeRF models [5, [11} 21] and fast NeRF rendering [[13]
shows that the feature vectors of samples along a ray can be rendered or integrated first to enable one
single evaluation of following NNs. However, it is unclear whether this volume feature rendering
(VFR) technique can also be used for fast NeRF reconstruction. Towards this end, this paper revisits
the VFR method for the purpose of fast NeRF reconstruction. Our investigation reveals that the VFR
can be integrated into the training phase of NeRF models, thereby enabling the utilization of large
color neural networks to either enhance rendering quality while maintaining the same training time,
or to achieve a similar rendering quality with much faster training.

2 Related work

The volume rendering technique integrates the colors of samples along a ray according to their
densities [15]. A global density field that is differentiable is very effective in finding the underlying
geometry of a scene from multi-view 2D color observations using volume rendering. This capability
is one of the essential reasons to NeRF’s success. As every point in a scene has a density value,
the density field is capable of modeling complex geometry. However, standard volume rendering
employed by NeRF and its successors [[18} 12} 13, 26, 35, 127, 16, 134]] suffer from high computational
complexity caused by many NN calls even with importance sampling guided by coarse density fields,
as discussed in the preceding section.

Representing the underlying geometry by the signed distance function (SDF) leads to a well-defined
surface to to enable one sample-based fast rendering [33} 8} 29, 20, |10, 132]]. However, the SDF
struggles with modeling complex geometry in the context of neural inverse rendering, e.g., trees and
leaves, and this is why the best rendering quality is still achieved by volume representations. In this
paper, we revisit the VFR framework that uses density as the geometry representation but shares a
similar behavior as the SDF that processes a feature vector by color NNs only once. Thus, the VFR
inherits the advantage of volume representation in modeling complex geometry and also has the
strength of the SDF in single NN evaluation.

Generative NeRF models such as EG3D [5], StyleNeRF [11] and StyleSDF [21] focus on 3D
consistency and fidelity of generated content using generalizable neural networks with NeRF’s
structure. In comparison, 3D reconstruction from multi-view images using NeRF is a different
task from 3D generation. As per-scene optimization is required for NeRF reconstruction, the
reconstruction speed is a critical issue in this field, but this problem has not been investigated in the
existing generative NeRF works. This paper revisits feature integration in volume rendering for fast
reconstruction and demonstrate its effectiveness in the NeRF reconstruction task.

It is noted that feature accumulation is also discussed in the Sparse Neural Radiance Grid (SNeRG)
[13] mainly for the purpose of modeling specular effects. However, the diffuse color is still obtained
using the standard volume rendering method in [13]], which requires many times of MLP evaluations.
Besides, the SNeRG needs to train a NeRF first (require days to train) and then bakes the trained
NeRF to a sparse grid with specular features. In this work, we demonstrate that this pre-training is
not necessary, and the accumulated feature vector can be used to predict the final view-dependent



color instead of only the specular color. Our VFR method can be directly optimized from scratch
instead of baking the optimized features in the SNeRG. As a result, our method requires significantly
less training time but achieves a much better rendering quality compared with the SNeRG.

Integrating feature vectors of samples along the ray is natural in transformer models [24, 30]. For
example, Suhail et al. proposed an epipolar transformer to aggregate features extracted from reference
views on epipolar lines [24]. However, the computational cost of transformer is much higher than MLP
and that transformer-based method is significantly (8 times) slower than MLP-based Mip-NeRF [2]]
on the same hardware. In this work, we demonstrate that the VFR’s aggregation only involves a
weighted combination of feature vectors based on densities such that the VFR is significantly faster
than transformer-based feature aggregation.

3 Model architecture

3.1 Standard volume rendering

Standard volume rendering integrates color along a cast ray according to density [15]. A high density
of a point on the ray indicates a high probability of hitting the surface. The NeRF and its various
variants adopt this standard volume rendering technique, where the color and density of a point are
typically predicted by a neural network. For a cast ray r(¢) = o + td, where o is the camera origin
and d is the view direction, the rendered color C'(r) using standard volume rendering is:

Cr) = / T(t)o(r(t))e(x(t), d) dt, where T(t) = exp (- /O U(r(s))ds) 0

where o(x) and c(x, d) are the density and color at position x, repsectively. In practice, the above
integral is solved by sampling and integration along the cast ray. After transforming the densities to
weights by w(t) = T'(t)o(r(t)), the color will be rendered as follows:
N
C(r) = Z w;NeuralNet (F(x;),d) (2)
i=1
where x is the position of a sample point on the ray and F' is a function to query the corresponding
feature vector of x. Pure MLP-based methods including the NeRF [[18], Mip-NeRF [2], Ref-NeRF
[28] and Mip-NeRF 360 [3] represent I’ by using MLPs. However, this representation imposes
a computational burden as N MLP evaluations are required to render a ray. Alternatively, recent
research [19} 25! 16]] shows that modeling F' by extra learnable features is significantly faster than
pure-MLP based representations, because linear interpolation of learnable features is much more
efficient than MLP evaluations. These learnable features are typically organized in the form of the
3D grids, hash tables, and decomposed tensors. With the learnable features, a small NN can achieve
the state-of-the-art rendering quality but accelerate both the training and rendering time significantly.

Furthermore, hierarchical importance sampling guided by coarse geometries is employed to greatly
reduce the number of samples in (2). This importance sampling can be achieved by modeling the
density fields independently [25, |6 [12], occupancy grid [19], and proposal networks [3| 4]. As
shown in Fig.[I] importance sampling makes the model focus on valuable samples on the surface.
For instance, by using two levels of importance sampling, Zip-NeRF [4]] reduces the final number
of valuable samples to 32. However, the color NN still needs to run 32 times to deliver the best
rendering quality. Although integrating colors predicted by the color NN is in line with the concept
in classical volume rendering, the many color NN calls are the main obstacle for fast training and
rendering. On the other hand, the importance of large color NNs for realistic rendering especially
in modeling the view-dependent effect is highlighted in recent works [3l[12]. Considering the fact
that valuable samples on the surface are close in terms of spatial position (see red sampling points in
Fig.[I), the queried feature vectors are also very similar as they are interpolated according to their
position. As such, evaluating the color NN with similar input feature vectors is not necessary. In the
next subsection, we will introduce the volume feature rendering method that integrates these feature
vectors to enable a single evaluation of the color NN.

3.2 Volume feature rendering

As shown in Fig.[I] the volume feature rendering method integrates queried feature vectors instead
of predicted colors to form a rendered feature vector. A subsequent color NN is then applied to
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Figure 1: Standard volume rendering needs to run NeuralNet many times for all the samples on the
surface, while the volume feature rendering only needs to evaluate NeuralNet once.

transform the feature vector to the final rendered color. By doing this, the color NN only needs to run
once. Specifically, we take the NN out of the integral as follows:

N
C(r) = NeuralNet Z wiF(x;) ] ,d]. 3)
i=1

This fundamental change to the standard volume rendering framework relieves the rendering frame-
work from the high computational cost caused by many NN evaluations. Consequently, we can use a
larger network to achieve a better rendering quality while maintaining a similar training time.

3.3 Pilot network

It is reasonable to integrate feature vectors of non-empty samples in the VFR. However, at the
beginning of training, the model does not have a coarse geometry to focus on samples on the surface.
The VFR will integrate feature vectors of all samples during the early training stage. We found that
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Figure 2: The VFR fails to converge on the scene of ship from the dataset in [18]. A small pilot
network functioning as standard volume rendering by a few training steps in the early training stage
resolves this problem.
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Figure 3: Architecture of the designed neural network for modeling view-dependent effects. Each
spherical harmonics basis function is multiplied by a feature vector to encode the input view direction.

this feature integration works well for most scenes but fails to converge for some scenes. Such failure
is more likely to occur when employing a comparably large NN. The VFR normally converges using
the NN with two hidden layers each of 256 neurons, but it does not converge when using four hidden
layers. Fig. 2]illustrates a failure case on the scene of ship from the NeRF synthetic dataset [18]).

As increasing the size of the NN only has a slight implication to reconstruction and rendering speeds
but can lead to a better rendering quality thanks to the VFR framework, we are motivated to use
a large NN. We hypothesize that the reason for the aforementioned convergence failure is that the
model cannot find the correct geometry due to the feature integration of all samples in the early
training stage. Motivated by this insight, we design a pilot network that functions as standard volume
rendering to aid the model in finding a coarse geometry in the early training stage. A small pilot
network and a few training steps are sufficient to achieve this goal. In this work, we use the pilot
network with two hidden layers, each with 64 neurons. The pilot network is only used in the first 300
training steps. After this training, the pilot network will be discarded, and we can use the VFR to
train the model normally. The number of pilot training steps is small compared with the total training
steps, e.g., 20K steps. Thus, it has a negligible effect on the overall training time. As shown in Fig.
the model converges normally with the aid of the pilot network.

3.4 View-dependent effect

We use the spherical harmonics (SH) feature encoding method to encode view direction for modeling
view-dependent effects. This approach can be seen as a variant of the rendering equation encoding
in [12]. Different from the vanilla SH encoding [19] employed in the literature, we multiply each
encoded SH coefficient by a feature vector as shown in Fig.[3] Specifically, the rendered feature
vector by the VFR is fed into a spatial MLP to produce two feature vectors: SH feature vector and
bottleneck feature vector. The SH feature vector will be split into small feature vectors f for SH
coefficients, i.e., {fg\l = 0}, {fl_l, flo, f11|l = 1}, etc. In the SH feature encoding block, the SH
feature vector f, will be multiplied with SH coefficient Y;™(d) with view direction d to form one
SH feature encoding vector eﬁn, written as

TVL f’"LY’l7n (d) (4)

A comphrehensive SH encoding is derwed by concatenating all encoding vectors as E =
{e)), e] . e{...}, which will be further concatenated with the bottleneck feature vector (view di-
rection independent). This concatenated vector is used to predict the final rendered color by a
directional MLP. The NN in (3] thus includes the spatial and directional MLPs.

4 Implemention details

We implement the proposed VFR using the NerfAcc library [16], which is based on the deep learning
framework PyTorch [22]. The learnable features are organized by a multiresolution hash grid (MHG)
[19]]. This feature representation models the feature function F' in (3) that accepts the input of the
position and outputs a feature vector. The color NN contains a spatial MLP and a directional MLP.
The spatial MLP has two layers and the directional MLP has four layers, all with 256 hidden neurons.
The size of the bottleneck feature is set to 256. We use the GELU [14] instead of the commonly used
ReLU [1]] activation function, as we found the GELU results in a slightly better quality.



The density of a sample x; is derived from the queried feature vector F'(x;) by a tiny density mapping
layer. On the real-world 360 dataset [3]], the mapping layer is a linear transform from the feature
vector to the density value. On the NeRF synthetic [18] dataset, we found a tiny network with one
hidden layer and 64 neurons yields a slightly better rendering quality. The density mapping layers
have negligible impact on the overall training time for both datasets.

We employ a hierarchical importance sampling strategy on both the NeRF synthetic [18] and real-
world 360 datasets [3]. The occupancy grid is used for efficient sampling on the NeRF synthetic
dataset. For the 360 dataset, we follow the most recent Zip-NeRF [4] that uses two levels of
importance sampling. These two density fields are implemented by two small MHGs, where the
number of hashing levels is ten and the feature channel in each level is one. The final number of
samplings on the radiance field is 32. The models are trained using the Adam optimizer with a
learning rate of 0.01 and the default learning rate scheduler in NerfAcc [[16]]. We use PSNR, SSIM
[31] and LPIPS [36] to evaluate the rendered image quality. The running times are measured on one
RTX 3090 GPU. Table[I]summarizes other experimental settings in this work.

Table 1: Experimental settings on the NeRF synthetic and real-world 360 datasets. #Features
represents the number of learnable features in the underlying hash grids, which is estimated by
hash grid hyperparameters (HGH), i.e., the number of levels x the number of voxels each level x the
number of feature channels.

Dataset Model #MHG HGH  #Batch SH degree #SH feature
NeRF synthetic[18] VFR-small 13M 16x2'°x2 2'® points 4 4
Real-world 360[3] VFR-base 34M 32x2!9x2 213 rays 7 8
Real-world 360[3] VFR-large 134M 32x221x2 2!3 rays 7 8

S Experimental results

5.1 NeREF synthetic dataset

The VFR achieves the best rendering quality but uses the minimum training time compared with
state-of-the-art fast methods on the NeRF synthetic dataset. Since the original Instant-NGP [19] uses
the alpha channel in the training images to perform background augmentation, we report the results of
the Instant-NGP from NerfAcc [16], where such augmentation is not employed for fair comparison.
As shown in Table 2] the VFR outperforms Instant-NGP by 2.27 dB and NerfAcc by 1.51 dB, but
only uses 3.3 minutes for training. Compared with TensoRF [6], our method only uses 33% of its
training time while surpassing TensoRF by 1.48 dB in PSNR. In addition, the VFR achieves the best
SSIM and LPIPS on this dataset, which is consistent with the PSNR metric.

This significant improvement in rendering quality stems from the increased size of the NN. The MLP
in Instant-NGP and NerfAcc has 4 layers and 64 neurons in each layer. By comparison, we use a
six-layer MLP with 256 neurons. The computational cost of our MLP is roughly 24 times higher than
MLPs in Instant-NGP and NerfAcc. However, thanks to the VFR framework, our MLP only needs to
run one time instead of many times as in the standard volume rendering framework employed in the

Table 2: Rendering quality and training time on the NeRF synthetic dataset. The VFR trained with
6K steps in 0.97 minutes achieves a similar quality compared with existing methods.

PSNRt SSIM{1T LPIPS] Training timel

NeRF [[18] 31.69 0.953 0.050 hours
Mip-NeRF [2] 33.09 0.961 0.043 hours
TensoRF [6]] 33.14 0.963 0.047 10 mins
Instant-NGP [19]  32.35 0.960 0.042 4.2 mins
NerfAcc [16] 33.11 0.961 0.053 4.3 mins
VFR-small: 6K 33.02 0.960 0.055 0.97 mins
VFR-small: 20K 34.62 0.971 0.038 3.3 mins
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Figure 4: Visual comparison of the synthesized novel views on the scenes of (from top to bottom)
drums and hotdog in the NeRF synthetic dataset.

compared methods. As can be observed from Table |2} the single color NN evaluation property in the
VEFR leads to a minimum training time even when we use a much larger color NN. Noticeably, the
VEFR only needs 6K training steps to reach a similar rendering quality compared with the existing
algorithms. Such 6K training steps can be completed within 1 minute on one RTX 3090 GPU, which
is less than the 25% of training times of Instant-NGP and NerfAcc, and only 10% of the training time
in TensoRF.

Fig.[] provides a visual comparison of the rendered novel views by NerfAcc (based on Instant-NGP)
and the VFR. On the compared scenes, both NerfAcc and the VFR can recover good geometries.
However, for the scene of drums, obvious visual artefacts appear in the rendered views from NerfAcc
while our results do not have such visual artefacts. Besides, the VFR produces more realistic visual
effects such as shadow and reflection, as observed on the scenes of hotdog. The presented error maps
and objective PSNRs in Fig. 4 also demonstrate the advantage of the VFR in terms of rendering
quality. While NerfAcc and our method use the same feature representation, i.e., hash grids, we
believe the quality advantage of our method stems from the large color NN enabled by the VFR.

5.2 Real-world 360 dataset

We also experiment on seven real-world unbounded scenes from the 360 dataset [3]]. The scenes of
flowers and treehill in this dataset are not included as they are not publicly available. We use the
unbounded ray parameterization method proposed in Mip-NeRF 360 [3]], where points are mapped to
a sphere if their radius to the scene center is larger than one.

The visual comparison in Fig. [5|shows that the VFR is able to render views in similar quality with
Zip-NeRF but render more realistic views than NerfAcc (based on Instant-NGP). The VFR provides
a more accurate geometry reconstruction than NerfAcc on the scene of bicycle. As can be observed
from Fig.[3] the rendering results of NerfAcc contain obvious visual artefacts on the scenes of bonsai
and kitchen, while the VFR’s results are more realistic and closer to the ground truth. The reflective
effect in the highlighted patches on the scene of kitchen is also well modeled by our model thanks to
our new SH feature encoding method.

As shown in Table[3] the VFR is able to achieve similar rendering quality to the state-of-the-art Zip-
NeRF [4]] but using the minimum training time. Although Mip-NeRF 360 is able to synthesize novel
high-fidelity views, it requires days to train on high-end GPUs because it is based on a pure MLP
representation. Using learned features organized in hash grids, Instant-NGP achieves a comparable
rendering quality but reduces the training time from days to hours. The most recent Zip-NeRF uses
multisampling for high-quality anti-aliasing view rendering at the expense of training time relative to
Instant-NGP. The VFR achieves a slightly better rendering quality than Zip-NeRF in terms of the
PSNR. However, we achieve this state-of-the-art rendering quality with a significantly less training



Table 3: Rendering quality and training time on the real-world 360 dataset. The scale factor for
NerfAcc and the VFR-base models remains constant at four for both outdoor and indoor scenes. For
the VFR-large model, the scale factor is adjusted to four for outdoor scenes (bicycle, garden, stump)
and two for indoor scenes (bonsai, counter, kitchen, room) in order to maintain conformity with
Zip-NeRF [4].

PSNRT SSIM{ LPIPS] #Features| Training time)

NeRF [18] 24.85 0.659 0.426 N/A days
Mip-NeRF [2] 25.12 0.672 0.414 N/A days
NeRF++ [33] 26.21 0.729 0.348 N/A days
Mip-NeRF 360 [3] 29.11 0.846 0.203 N/A days
Instant-NGP [19] 27.06 0.796 0.265 84M 0.81 hrs
Zip-NeRF 29.82 0.874 0.170 84M 5.20 hrs
NerfAcc [16]] 28.69 0.834 0.221 34M 11 mins
VFR-base: 20K 29.48 0.830 0.233 34M 5.7 mins
VFR-base: 40K 29.92 0.850 0.208 34M 11 mins
VFR-large: 20K 29.51 0.846 0.252 134M 11 mins
VFR-large: 40K 29.90 0.862 0.231 134M 22 mins

Ground truth NerfAcc Zip-NeRF VFR

Figure 5: Visual comparison of synthesized novel views on the scenes of (from top to bottom) bicycle,
bonsai, and kitchen on the real-world 360 dataset [3]].

time. As a comparison, the VFR-large model only uses 22 minutes to train on one RTX 3090 GPU,
while Zip-NeRF’s training time is 5.2 hours on the same GPU.

It should be noted that we achieve this high-quality view rendering using an entirely different
approach than Zip-NeRF. As Zip-NeRF focuses on anti-aliasing, multisampling is a reasonable
solution but leads to a higher computational cost. Besides, the authors of Zip-NeRF found a larger
color NN helps in improving the rendering quality. Since Zip-NeRF still employs the standard volume
rendering method, a larger color NN will undoubtedly increase the training time. The VFR, however,
relieves the rendering framework from the high computational cost caused by many color network
evaluations. As only one color network evaluation is required in the VFR, NN evaluation is no longer
the computing bottleneck in the rendering framework. As a result, the VFR enables one to achieve a
similar rendering quality as Zip-NeRF but with a significantly less training time.

5.3 Ablation study

Table 4] shows the ablation study of the proposed methods. Compared with the commonly used
ReLU, we found that GELU activation improves the rendering quality for both the standard volume
rendering and the VFR. Larger MLP does increase the quality using the standard volume rendering
but at the expense of more training time. For the VFR, when increasing the size of the NN by using
more hidden neurons, the rendering quality constantly improves but the training time only slightly



Table 4: Ablation study. SH means spherical harmonics for view direction encoding (VDE) while
SHEFE stands for SH feature encoding. We use the NerfAcc’s implementation of Instant-NGP as
a baseline. MLP’s size is represented by layersxneurons. Times are measured in minutes by 20K
training steps.

NeRF synthetic (VFR-small)  Real-world 360 (VFR-base)
Activation MLP VDE Time] PSNRT SSIM1 LPIPS| Time] PSNR?T SSIM?T LPIPS|

Baseline ReLU 4x64 SH 44 33.11 09614 0.053 5.6 28.39 0.8147 0.245
+GELU GELU 4x64 SH 44 3343 09634 0.049 5.6 2843 0.8152 0.245
+Medium MLP GELU 4x128 SH 5.6 3392 09663 0.045 6.8 28.70 0.8205 0.239

VFR ReLU 4x64 SH 29 33.17 09619 0.053 5.0 2820 0.8013 0.262
+GELU GELU 4x64 SH 3.0 33.61 09641 0.048 5.0 2826 0.8064 0.254

+Medium MLP GELU 6x64 SHFE 3.0 34.05 09678 0.043 52 29.06 0.8215 0.240
+Large MLP GELU 6x128 SHFE 3.0 3433 09697 0.041 54 29.28 0.8266 0.236
W/O SHFE GELU 6x256 SH 32 3446 09701 0.040 5.5 2891 0.8192 0.245
Full model GELU 6x256 SHFE 33 34.62 09713 0.038 5.7 29.48 0.8301 0.233

increases. Replacing the SH encoding with the SH feature encoding (W/O SHFE vs Full model) also
leads to a better quality with negligible extra training time.

6 Limitations

Similar to many other neural rendering methods, the VFR requires per-scene optimization to deliver
high-fidelity view rendering. Although the VFR can be optimized in several minutes for one scene,
we are still far from realizing real-time reconstruction for 3D video applications. As for the rendering
time, our method can render 4~5 frames per second at the resolution of 800x800 on the NeRF
synthetic dataset, similar to the rendering speed of NerfAcc. On the real-world 360 dataset, the
rendering speed is about 1~2 frames per second at the resolution of 1300x 840.

Elaborate implementation optimization can help in achieving high-quality real-time rendering using
this VFR. However, compared with the recent work that specifically focuses on real-time rendering
such as BakedSDF [33]] and MobileNeRF [§]], the rendering speed of the VFR needs to be further
improved. BakedSDF and MobileNeRF represent a scene’s surface to enable one feature querying
and one neural network evaluation, at the expense of some rendering quality decline compared with
volume representation. The VFR uses the volume representation with one color NN evaluation to
deliver the state-of-the-art rendering quality, but the feature querying still needs to be conducted many
times for a cast ray. Considering the fact that the queried feature vectors of non-empty samples are
finally integrated into one feature vector using the VFR, we believe the number of feature querying
can also be reduced to a small value, e.g., from 32 to 5, to achieve high-quality and real-time rendering
simultaneously. An additional prospective constraint of the VFR lies in its potential inefficacy when
confronted with semitransparent objects as it integrates feature vectors first and then predicts a single
final color. This property is not well reflected in the NeRF synthetic and real-world 360 datasets and
requires further investigation in future work.

7 Conclusion

We revisited the volume feature rendering method in the context of fast NeRF reconstruction. The
VFR integrates the queried feature vectors of non-empty samples on a ray and then transforms the
integrated feature vector to the final rendered color using one single color neural network evaluation.
We found the VFR cannot guarantee the convergence on some scenes and thus introduced the pilot
network to guide the early-stage training to tackle this problem. The VFR is able to achieve the
state-of-the-art rendering quality while using significantly less training time. It has a great potential
to replace the standard volume rendering in many neural rendering methods based on volume
representation, with the benefits of either a better rendering quality by employing a larger color neural
network or a significantly reduced training time thanks to one single color neural network evaluation.
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