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Abstract
In this paper, we propose a simple and efficient
method for value model training on long-context
reasoning traces. Compared to existing process
reward models (PRMs), our method does not re-
quire a fine-grained notion of “step,” which is dif-
ficult to define for long-context reasoning models.
By collecting a dataset of 2.5 million reasoning
traces, we train a 1.5B token-level value model
and apply it to DeepSeek models for improved
performance with test-time compute scaling. We
find that block-wise value-guided search (VGS)
with a final weighted majority vote achieves
better test-time scaling than standard methods
such as majority voting or best-of-n. With an
inference budget of 64 generations, VGS with
DeepSeek-R1-Distill-1.5B achieves an
average accuracy of 45.7% across four compe-
tition math benchmarks (AIME 2024 & 2025,
HMMT Feb 2024 & 2025), reaching parity with
o3-mini-medium. Moreover, VGS reduces
the inference FLOPs required to achieve the same
performance of majority voting. Our dataset,
model and codebase are open-sourced.

1. Introduction
Recent large language models (LLMs), such as OpenAI o1
& o3, Claude Sonnet 3.7, Gemini Pro 2.5 and DeepSeek
R1 (Guo et al., 2025) are trained via reinforcement learning
(RL) to “think” for many tokens before generating a final
answer. Through multi-step reasoning and self-correction,
these reasoning models have state-of-the-art performance
in competition math, coding (El-Kishky et al., 2025) and
scientific research (Starace et al., 2025), often surpassing the
average human. However, this enhanced capability comes
at a cost: each generation involves a long chain-of-thought
(CoT), thus requiring more inference compute. Further,

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

these CoT traces can often be repetitive and get stuck in
unproductive loops (Petrov et al., 2025). This raises two
questions. Can we extract the same performance at a fraction
of the inference compute by refining the thinking process?
Can we improve the performance ceiling of these models
with productive search methods?

Search with guidance models is a natural solution that ad-
dresses longer chain-of-thought reasoning by managing the
exponential growth of possible paths with guidance mod-
els identifying optimal routes (Davies et al., 1998; Sutton
et al., 1998; Silver et al., 2017). Prior works that combined
search with LLMs proposed to guide search with process
reward models (PRMs), predicting the correctness of each
step (e.g., delimited by newlines) in the model-generated
solution (Lightman et al., 2023; Wang et al., 2023b; Zhang
et al., 2025). While PRM-guided search has been shown to
improve test-time compute (TTC) (Beeching et al., 2024;
Snell et al., 2025; Setlur et al., 2025; Liu et al., 2025), it
is challenging to scale existing PRM training techniques
to long-context reasoning models. First, existing methods
require a pre-defined notion of “step,” but, per Guo et al.
(2025), “it is challenging to explicitly define a fine-grain
step in general reasoning.” Second, even if we can define
a “step,” collecting step-wise labels is prohibitively expen-
sive, since it requires annotations from humans (Lightman
et al., 2023), LLM-as-a-Judge (Zhang et al., 2025), or mul-
tiple Monte Carlo roll-outs (Wang et al., 2023b; Luo et al.,
2024). Thus, there has been limited success to scale PRMs
to long-context reasoning models (Guo et al., 2025).

We propose value-guided search (VGS) – a block-level
search method guided by a token-level value model – as
a promising approach to scale TTC for reasoning models.
In Section 2, we present an effective pipeline for value
model training on tasks with outcome labels, such as com-
petition math. Our data pipeline collects solution prefixes
from various models and then, starting from random pre-
fixes, generates completed solutions using a lean reasoning
model (e.g., DeepSeek-R1-Distill-1.5B). Notably,
our data collection does not require a pre-defined notion of
step and is more efficient than existing techniques (Wang
et al., 2023b; Luo et al., 2024). With this pipeline, we col-
lect a dataset of 2.5 million math reasoning traces (over 30
billion tokens) from a filtered subset of the OpenR1-Math
dataset (Allal et al., 2025). Then, we train a 1.5B token-level
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Figure 1: Performance and Efficiency of Value Guidance: (Left) Value-guided search improves the overall quality
of DeepSeek-R1-Distill responses across four combined competition math benchmarks (AIME & HMMT). The
inference budget for 1.5B, 7B and 14B are 256, 128 and 64 generations, respectively. (Right) Value-guided search also
reduces the inference FLOPs required to achieve the same accuracy levels as majority voting, a standard TTC scaling
baseline, showing value-guidance is promising for improving efficiency.

value model called DeepSeek-VM-1.5B by regressing
(via classification) the final reward of the completed solu-
tion.

Next, in Section 3, we apply our value model to perform
block-wise search with DeepSeek models (Guo et al., 2025)
on competition math, where we evaluate on four presti-
gious high school math competitions in the US (AIME
2024 & 2025 and HMMT 2024 & 2025). Our experi-
ments show that block-wise VGS significantly improves
TTC compared to majority voting or weighted major-
ity voting, strong baselines from the literature (Wang
et al., 2022; Beeching et al., 2024). We also show that
VGS with DeepSeek-VM-1.5B leads to higher perfor-
mance than searching with state-of-the-art PRMs, demon-
strating that our value model can provide better feed-
back. When given an inference budget of 64 genera-
tions, VGS on DeepSeek-R1-Distill-Qwen-1.5B
can outperform o3-mini-medium, and VGS on
DeepSeek-R1-Distill-Qwen-14B (total size with
value model is 15.5B) is on par with DeepSeek-R1
(671B) on our competition math evaluations (Fig. 1 left).
Moreover, we show that VGS reduces the amount of infer-
ence compute required to attain the same performance as
majority voting (Fig. 1 right). In summary, we find that
block-wise VGS not only improves the performance ceil-
ing of reasoning models, but also reduces the amount of
inference compute required to match the performance of
standard TTC methods. Our contributions are summarized
below:

1. A simple recipe for token-level value model training that
does not require a pre-defined notion of “step” and scales

to long-context reasoning traces (Section 2).

2. Block-wise search, guided by our 1.5B value model,
achieves impressive performance on four challenging
math competitions, outperforming standard TTC meth-
ods (e.g., best-of-N , majority voting) and search with
existing PRMs (Section 3).

3. We open-source our dataset of 2.5 million reason-
ing traces, value model, and codebase (including
data filtering and distributed training scripts) to sup-
port future work on applying VGS to other domains.
https://ANONYMIZED.

Please see Appendix A for a detailed discussion of related
works.

2. Methods
We present an end-to-end pipeline for training a token-level
value model and applying it to guide block-wise search. In
Section 2.1, we introduce necessary notation and present
a regression-via-classification algorithm for learning the
token-level value model (Cobbe et al., 2021). Then, in
Section 2.2, we outline an efficient data pipeline for creating
our dataset of 2.5 million reasoning traces from DeepSeek
models. Finally, in Section 2.3, we describe several TTC
methods and baselines, e.g., best-of-N , (weighted) majority
voting and search algorithms that can leverage our value
model. While we focus on competition math in this paper,
we remark that our pipeline can in principle be applied to
any task with automated outcome supervision (e.g., a reward
model). In Appendix B, we summarize a simple recipe for
applying VGS to other such domains.
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Figure 2: Summary of Methods. (Left) Diagrams how we collect multiple roll-ins (grey circles representing tokens) per
problem, and branch off multiple roll-outs per roll-in at random points. The class label for each roll-out token is the outcome
label at the very end. (Right) Shows the beam search process (beam width 2 and budget 4) guided by a value model.

2.1. Learning Algorithm for Value Model

We describe our training process for a language value model
by performing regression via classification (Bellemare et al.,
2017). Let V be the vocabulary and let S =

⋃
n∈N Vn de-

note the input sequence space. Given a problem prompt x ∈
S and a response y ∈ S , let κ = Γ(x, y) ∈ [0, 1, . . . ,K−1]
denote its class label, where K is the number of classes. Fur-
thermore, let r = R(x, y) denote the scalar reward, which
we assume to be binary since we focus on competition math
(see Appendix B for the general case). For our value model,
κ = 2 if the response is an incomplete generation (i.e., ex-
ceeds max generation length), κ = 0 if the response finished
and is incorrect, and κ = 1 if the response finished and is
correct. Thus, the event that κ = 1 corresponds to r = 1
(correct answer), and κ ∈ {0, 2} corresponds to r = 0 (in-
correct or exceeds max length). We adopt this convention
in the rest of the paper. We remark that regression-via-
classification is a standard approach that leads to better
down-stream decision making than regressing via squared
error (Bellemare et al., 2017; Imani et al., 2024; Farebrother
et al., 2024; Ayoub et al., 2024; Wang et al., 2023a; 2025b).

We employ datasets of the form D = {(xi, yi, zi, κi)}i∈[N ],
where xi is the problem prompt, yi is a partial response
(which we call a “roll-in”), zi is a completion starting from
yi (which we call a “roll-out”), and κi = Γ(xi, yi, zi) is
the label of the full response, where x, y, z denotes the
concatenation of x, y and z. In this paper, we assume that
the completions / roll-outs zi are generated by a fixed roll-
out policy πref, i.e., zi ∼ πref(· | xi, yi) for all i. We remark
that a good choice for πref is a cost-efficient model which is
capable of producing diverse responses with positive reward,
e.g., a distilled version of a large reasoning model.

We train a classifier fθ : S 7→ ∆([K]) via gradient descent
on the following loss on data batch B: L(θ;B) defined as∑

(xi,yi,zi,κi)∈B
1

|zi|
∑

h∈range(|zi|) ℓce(fθ(xi, yi, z
:h
i ), κi),

where ℓce(p̂, κ) = − ln(p̂[κ]) is the standard cross-entropy

loss for classification and z:hi denotes the first h tokens of
zi. The rationale for the inner average is analogous to next-
token prediction training of autoregressive models: since zi
is generated autoregressively by πref, any suffix zh:i is also a
roll-out from πref and hence can be viewed as another data-
point. We found this to be an important training detail for
performance, which is consistent with prior work who used
a similar objective for training an outcome reward model
(Cobbe et al., 2021; Lightman et al., 2023).

We can now view the classifier as a value model. Since κ =
1 corresponds to the event that r = 1, we have that Vθ(x) :=
fθ(x)[1] predicts the correctness probability of roll-outs
from πref. Indeed, if f⋆ denotes the optimal classifier that
minimizes the population-level loss, then f⋆(x, y)[1] =
Ez∼πref(·|x,y)[R(x, y, z) | x, y] which is the expected reward
of a completed response from rolling-out πref starting from
x, y. In sum, our value model is learned via predicting labels
(one of which corresponds to reward 1), and the training
objective is the standard cross-entropy loss.

2.2. Dataset Creation Process

We describe our process for creating OpenR1-VM, a novel
dataset of 2.5 million reasoning responses from DeepSeek
models, across 45k math problems from OpenR1-Math
(Allal et al., 2025).

Pre-Filtering. We start from the OpenR1-Math dataset
(default split) (Allal et al., 2025) which contains 94k math
problems with solutions that were already filtered for qual-
ity. Upon manual inspection, we found that this dataset
still contained unsolvable problems (e.g., problems that
require web browsing but our models cannot access the
web) and ambiguous or unverifiable answers (e.g., multiple
\boxed{} expressions or unparsable answers). We filter out
all such problematic problems, producing a cleaned sub-
set of 50k problems with solutions verifiable by sympy or
math-verify (Kydlíček, 2025). We call this pre-filtered
dataset OpenR1-Cleaned.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Value-Guided Search for Efficient Chain-of-Thought Reasoning

Response Generation. Next, we collect roll-
ins and roll-outs from DeepSeek models (Guo
et al., 2025). We fix the roll-out policy πref as
DeepSeek-R1-Distill-Qwen-1.5B. To ensure di-
versity in the roll-in distribution, we sample 14 independent
roll-ins from four DeepSeek-R1-Distill-Qwen
model sizes: 1.5B, 7B, 14B, and 32B by generating until
the end of thinking token <\think>.1 For each roll-in
ỹi, we then sample four random prefix locations where we
generate complete roll-outs {zji }j∈[4] from πref. Finally, to
compute the class label (incomplete, incorrect, or correct),
we parse the response for the final answer (enclosed in
\boxed{}) and use math-verify to check for correctness
against the ground truth answer. In total, this process
(illustrated in Fig. 2 left) yields 56 labeled roll-in, roll-out
pairs per problem, leading to 2.8 million datapoints.

Post-Filtering. We filter out problems where all 56 roll-
outs for that problem were incomplete or incorrect (i.e., has
reward 0). This post-filtering removes any ambiguous or
unanswerable problems that we missed during pre-filtering,
and also removes problems that are too difficult for πref and
do not provide a useful learning signal. This step filters
roughly 10% of problems, yielding a final dataset of 2.5
million datapoints.

Notably, our approach does not require a fine-grained notion
of step and our data collection is cheaper than existing PRM
techniques. Specifically, Lightman et al. (2023) used per-
step annotations by human experts, Zhang et al. (2025) used
per-step annotations via LLM-as-a-Judge, and Wang et al.
(2023b) used multiple Monte Carlo roll-outs at every step.
Since the number of newlines in reasoning CoT traces can
grow very quickly, per-step labels are quite expensive to
collect for reasoning models. In contrast, our approach
only requires a handful of roll-ins (from any policy) and
roll-outs (from πref) per problem, and this number can be
flexibly tuned up or down to trade-off data coverage and
data collection cost. Please refer to Appendix D for further
details on each step. We also release our filtering code and
datasets to support future research.

2.3. Algorithms for Test-Time Compute and Search

Equipped with a value model V : S 7→ R, we can now
apply it to scale test-time compute of a generator model
π. For search-based approaches, we focus on block-wise
search where a “block” refers to a sequence of tokens (e.g.,
blocks of 4096 tokens worked best in our experiments). We
let N denote the inference budget, which is the number of
generations we can sample (e.g., generating four responses
and taking a majority vote is N = 4).

1DeepSeek-R1 and its distilled variants output CoT reason-
ing between tokens <think> and <\think> followed by a final
solution, which is usually a summarization of the CoT reasoning.

Algorithm 1 Beam Search with Width w

1: Input: prompt x.
2: Set num beams B ← N

w .
3: Initialize beams y1, . . . , yB ← x.
4: while ∃j s.t. yj is not finished do
5: For each j s.t. yj is not finished, sample w i.i.d.

blocks {bi,j}i∈[w] from π(· | yj).
6: Update unfinished beams to be the best continua-

tions with the highest V (yj , bi,j).
7: end while
8: return BoN or WMV on {y1, . . . , yB}.

Algorithm 2 Best-of-N

1: Input: prompt x, responses {yi}i∈[N ].
2: return ybon = argmaxyi

V (x, yi).

Algorithm 3 (Weighted) Majority Vote

1: Input: prompt x, responses {yi}i∈[N ], weights
{wi}i∈[N ], equivalence relation ∼.

2: Partition {yi}i into equiv. classes {pk}k.
3: return A response from the highest weight partition

argmaxpk

∑
yi∈pk

wi.

BFS. Breadth-first-search (BFS) (Yao et al., 2023; Mudgal
et al., 2023) is a natural search method that approximates the
optimal KL-regularized policy given a good value model
(Zhou et al., 2025). Given a prompt x, BFS samples N
parallel blocks bi from π and selects the block with the
highest value b⋆ = argmaxbi V (x, bi), which gets added
to the prompt, i.e., x ← x, b⋆. The process repeats until
the response finishes. Note the number of tokens generated
from π is roughly equivalent to N independent generations
from π.

Beam Search. One weakness of BFS is that parallel blocks
are correlated because they share the same prefix, which
limits diversity. Beam search with width w (Algorithm 1) is
a generalization that keeps B = N/w (assume to be integer)
partial responses and branches w parallel blocks from each
one (Lowerre, 1976; Batra et al., 2012; Vijayakumar et al.,
2016; Beeching et al., 2024; Snell et al., 2025). Given a
prompt x, beam search first generates N parallel blocks.
However, unlike BFS, beam search keeps the top B beams
with the highest scores, and then samples w parallel blocks
per beam at the next step. Since B × w = N blocks are
sampled at each step, the compute budget is also N . We
illustrate beam search with N = 4 and w = 2 in Fig. 2
(right).

DVTS. Diverse verifier tree search (DVTS) is a meta-
algorithm that further increases diversity by running parallel
searches each with smaller budgets (Beeching et al., 2024).
Specifically, DVTS-M runs M parallel beam searches each

4
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with budget N/M (assume to be integer), and aggregates
responses into a final answer.

We remark a crucial detail of beam search and DVTS is
how the final set of beams/responses are aggregated. Prior
works (Beeching et al., 2024; Snell et al., 2025; Setlur et al.,
2025) select the response with the highest score, which is
analogous to a final best-of-N (BoN; Algorithm 2). Instead,
we found that taking a weighted majority vote (WMV; Al-
gorithm 3) led to much better performance, which is demon-
strated by Fig. 3 (left).

Computational Efficiency of Block-wise Search. Since
value scores are only used at the end of each block or the
end of the whole response, the FLOPs required for block-
wise value model guidance is a tiny fraction (≪ 1%) of the
generation cost from π. We compute FLOP estimates in
Appendix H to concretely show this.

3. Experiments
We extensively evaluate value-guided search (VGS) with
our 1.5B value model DeepSeek-VM-1.5B, focusing on
guiding the CoT reasoning of DeepSeek models (Guo et al.,
2025). The best VGS setup for our value model is beam
search with final WMV aggregation, beam width 2, block
size 4096 and with DVTS (for larger inference budgets).
We show this setup outperforms other test-time compute
methods (e.g., MV, WMV, BoN) and other scoring models
(e.g., existing 7B PRMs and a 1.5B Bradley-Terry reward
model trained on our dataset). We remark our search results
use a fixed beam width and block size for all problems; this
is more practical than prior works on “compute-optimal
scaling” which vary search parameters for each problem
and require estimating each problem’s difficulty (Beeching
et al., 2024; Snell et al., 2025; Liu et al., 2025). Please see
Appendices E and F for additional details on value model
training and inference.

Benchmarks. We evaluate on the 2024 and 2025 editions
of the American Invitational Mathematics Exam (AIME)
and the February Harvard-MIT Mathematics Tournament
(HMMT).2 Both AIME and HMMT are prestigious high
school math competitions in the US that have also been
used to evaluate frontier LLMs (Qwen Team, 2025; Guo
et al., 2025; Abdin et al., 2025). We use AIME I & II
and the individual part of HMMT, yielding 30 problems
per competition. To mitigate overfitting on a single widely
used benchmark, we report the overall averaged accuracy
unless otherwise stated. Per-benchmark plots are relegated
to Appendix C.

Baseline Models. We evaluate two state-of-
2https://maa.org/maa-invitational-competitions

and https://www.hmmt.org

the-art 7B PRMs with distinct training styles:
Math-Shepherd-Mistral-7B-PRM (Wang et al.,
2023b) and Qwen2.5-Math-PRM-7B (Zhang et al.,
2025). Math-Shepherd uses Monte-Carlo roll-outs from
each step to estimate per-step value while the Qwen2.5 PRM
uses LLM-Judge annotation for each step, similar to the per-
step human annotation of PRM800K (Lightman et al., 2023).
As a step-level value model, Math-Shepherd-PRM-7B
is more related to our token-level value model. Finally,
we also evaluate a 1.5B Bradley-Terry (BT) (Bradley and
Terry, 1952) model, called DeepSeek-BT-1.5B, which
we trained using our dataset (see Appendix G for training
details).

3.1. Main Results (Table 1)

In the top section of Table 1, we fix the generator to
DeepSeek-1.5B3 and test-time budget to N = 256,
and compare VGS to weighted majority voting (WMV),
using our value model, the BT model and baseline PRMs.
We see that VGS and WMV with DeepSeek-VM-1.5B
achieve the two highest scores, outperforming the BT re-
ward model and prior PRMs. This shows that our value
model is not only a strong outcome reward model (ORM)
but also an effective value model for guiding search. No-
tably, with a budget of 256, our 1.5B value model can guide
DeepSeek-1.5B (total parameter count is 3B) to reach
parity with the pass@1 of o3-mini-medium, a strong
math reasoning model from OpenAI. Intriguingly, while
DeepSeek-BT-1.5B was only trained as an ORM, we
find that VGS also improves performance relative to WMV,
suggesting that BT models may also provide meaningful
block-wise feedback to guide search. We also observe that
accuracies for the 7B baseline PRMs (MathSheperd and
Qwen2.5-Math) are only slightly higher than MV@256 and
do not improve with search, which suggests that these PRMs
are likely out-of-distribution (OOD) for the long CoTs gen-
erated by DeepSeek-1.5B.

In the middle section of Table 1, we guide stronger
DeepSeek models with sizes 7B and 14B, and compare
VGS to MV, a standard TTC method that does not use an ex-
ternal scoring model. We see that VGS again achieves higher
accuracy than MV for both 7B and 14B, which suggests that
DeepSeek-VM-1.5B is also useful in guiding the CoT
of stronger DeepSeek models. However, we observe that
the gap between VGS and MV becomes smaller for larger
DeepSeek models, suggesting that DeepSeek-14B CoTs
may be becoming OOD for our value model, which was
trained on DeepSeek-1.5B CoTs. To guide more capa-
ble models, new value models should be trained on rollouts
from similarly capable models; we however do not foresee

3Throughout the paper, we use DeepSeek-XB as shorthand
for DeepSeek-R1-Distill-Qwen-XB.
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Test-time scaling DeepSeek-1.5B (N = 256) AIME-24 AIME-25 HMMT-24 HMMT-25 AVG

VGS w/ DeepSeek-VM-1.5B (ours) 72.0± 0.4 46.7± 0.7 31.4± 2.0 32.8± 0.8 45.7± 1.0
WMV w/ DeepSeek-VM-1.5B (ours) 69.6± 3.9 45.1± 2.2 29.1± 2.6 28.9± 2.6 43.2± 1.4
VGS w/ DeepSeek-BT-1.5B (ours) 73.1± 1.4 40.6± 0.8 28.1± 1.9 27.5± 0.0 42.3± 0.5
WMV w/ DeepSeek-BT-1.5B (ours) 72.0± 3.3 40.5± 2.9 25.3± 2.3 24.6± 4.7 40.6± 1.6
VGS w/ Qwen2.5-Math-PRM-7B 71.1± 1.0 38.9± 1.4 26.7± 1.2 24.2± 0.2 40.2± 0.5
WMV w/ Qwen2.5-Math-PRM-7B 70.6± 3.1 39.1± 2.1 25.4± 2.4 24.0± 3.2 39.8± 1.4
VGS w/ MathShepherd-PRM-7B 70.6± 3.1 41.9± 1.4 30.0± 1.4 23.9± 1.4 41.6± 0.9
WMV w/ MathShepherd-PRM-7B 71.2± 3.2 40.0± 2.5 27.9± 2.3 25.6± 3.1 41.2± 1.4
MV@256 71.0± 3.5 38.9± 1.9 24.4± 1.7 24.3± 2.9 39.7± 1.2

Test-time scaling larger models with our DeepSeek-VM-1.5B

VGS w/ DeepSeek-7B (N = 128) 82.2± 0.8 59.4± 0.8 42.8± 2.8 41.1± 1.6 56.4± 0.8
MV w/ DeepSeek-7B (N = 128) 77.1± 1.1 56.5± 1.6 34.7± 1.6 33.8± 2.5 50.5± 0.9

VGS w/ DeepSeek-14B (N = 64) 86.7± 2.7 59.6± 0.6 46.7± 2.7 51.1± 1.6 61.0± 0.9
MV w/ DeepSeek-14B (N = 64) 80.6± 1.2 67.0± 2.0 40.6± 1.8 50.1± 2.0 59.6± 0.9

Pass@N baselines for various models

DeepSeek-1.5B Pass@1 28.2± 6.1 22.4± 4.1 13.9± 4.2 13.0± 3.9 19.4± 1.1
DeepSeek-32B Pass@1 77.2± 4.9 60.4± 6.0 38.0± 4.6 42.1± 5.2 54.4± 1.3
Deepseek-R1 (671B) Pass@1 85.0± 2.1 70.0± 0.9 41.7± 3.5 46.7± 2.4 60.8± 0.5

o3-mini-medium Pass@1 49.2± 6.8 45.8± 6.6 32.4± 5.4 36.6± 6.0 41.0± 1.5
o3-mini-medium Pass@8 83.0± 4.6 77.4± 3.9 55.9± 4.3 64.9± 4.4 70.3± 2.1
o4-mini-medium Pass@1 85.4± 4.3 82.3± 4.5 50.4± 5.0 61.1± 6.4 69.8± 2.5
o4-mini-medium Pass@8 95.4± 2.6 93.3± 0.4 69.7± 3.2 84.5± 2.5 85.7± 1.1

Table 1: (Top) Weighted majority vote (WMV) and VGS results for DeepSeek-1.5B with an inference budget of
N = 256, using various scoring models. (Middle) Compares MV and VGS for larger DeepSeek models guided with our
DeepSeek-VM-1.5B. (Bottom) Lists performance of DeepSeek models and strong close-sourced reasoning models. For
VGS, ± indicates standard deviation across 3 seeds; for MV, WMV, Pass@N, ± denotes bootstrap with 100 repetitions. We
bold the highest avg. accuracy and underline second highest. Appendix C.1 contains more baselines.

this being a practical concern given the scalability of our
training process (described in Section 2 and summarized
in Appendix B). Finally, we note that the performance of
all models on AIME-24 is consistently higher than other
competitions, suggesting the importance of evaluating on
diverse and newer competitions to reduce risk of overfitting
or data contamination.

3.2. Test-Time Compute Scaling for Search

This section presents three experiments designed to ana-
lyze the TTC scaling properties of VGS. Our investigation
addresses three key research questions:

1. Does VGS, with its block-wise guidance, demonstrate
superior performance compared to response-level aggre-
gation methods such as BoN or WMV?

2. How does the TTC scaling of VGS compare to the stan-
dard score-free baseline MV?

3. How does the TTC scaling of DeepSeek-VM-1.5B
compare to baseline models?

4 16 64 256 1024
Inference Budget (N)

30

35
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45

A
cc

ur
ac

y

BoN
VGS + BoN

WMV
VGS + WMV

4 16 64 256 1024
Inference Budget (N)

30
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70

Pass@N
VGS + WMV

MV

Figure 3: Test-Time Compute with DeepSeek-VM-1.5B.
(Left) Compares best-of-N (BoN), weighted majority voting
(WMV) and VGS with either BoN or WMV for the final
aggregation. (Right) Compares VGS to majority voting
(MV), a standard baseline that does not require a scorer.

Response-Level vs Block-Level Selection. While BoN and
WMV represent standard approaches for selecting responses
using an ORM, block-wise VGS guides response generation
through sequential block-by-block selection. As Fig. 3 (left)
illustrates, WMV consistently outperforms BoN across all
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inference budget scales, which demonstrates the benefits of
combining MV with value scores. Furthermore, VGS (with
WMV as a final aggregation step) yields additional improve-
ments beyond WMV alone. This confirms the benefits of
search and aligns with conclusions from previous studies
(Beeching et al., 2024; Snell et al., 2025; Liu et al., 2025).
Interestingly, we do not observe the same benefits of search
if BoN is used as a final aggregation step, suggesting that
WMV is a critical component to VGS.

Response Length for VGS. In addition to consistent per-
formance gains, VGS also produces noticeably shorter re-
sponses compared to the base DeepSeek-1.5B model.
In Figure 14 (Appendix C.7), we present histograms of re-
sponse lengths across all benchmarks. The results show that
VGS consistently generates more concise outputs, whereas
the base model often reaches the generation cap, with up
to 50% of its responses being unfinished. On average, VGS
responses are 11,219 tokens long, compared to 12,793 for
DeepSeek-1.5B, representing a reduction of over 12%
in token and thus FLOPs usage.

VGS vs Majority Voting. As Fig. 3 (right) demonstrates,
VGS consistently achieves higher accuracy than MV, attain-
ing equivalent performance while requiring substantially
lower inference budgets (also shown in Fig. 1 right). Fully
closing the gap with the oracle Pass@N curve may require
a larger value model trained on more extensive datasets.

DeepSeek-VM-1.5B vs Baseline Scoring Models. Fig. 4
benchmarks DeepSeek-VM-1.5B against existing PRMs
and our BT model. We observe that DeepSeek-VM-1.5B
consistently delivers superior performance when employed
both as an ORM for WMV (left) and as a guidance mech-
anism for block-wise search (right). Note that we find our
BT model to be surprisingly effective as a search guidance
model which suggests the importance of our token-level
dataset playing an important role in successful search.

4 16 64 256 1024
Inference Budget (N)

25

30

35

40

45

A
cc

ur
ac

y

Weighted Majority Voting

4 16 64 256 1024
Inference Budget (N)

Value-Guided Search

VM BT Math Shepherd 7B Qwen PRM 7B

Figure 4: TTC Scaling of Various Scorers. Comparison of
our 1.5B value model (VM), our 1.5B Bradley-Terry reward
model (BT), and two 7B state-of-the-art PRMs for two TTC
scaling methods: (Left) WMV or (Right) VGS (with WMV
as a final aggregation step).
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Figure 5: (Left) VGS + WMV Performance when Guiding
Larger Models. With the same DeepSeek-VM-1.5B
providing guidance, search continues to improve with more
test-time compute. (Right) Ablation: Search Block Size.
AIME-24 accuracies for beam search (width 2) with varying
block sizes from 16 to 16384. We found 4096 to be optimal
across test-time budgets and benchmarks.

3.3. Scaling up the Generator Model Sizes

In Fig. 5, we scale up our experiments to guide larger
7B and 14B DeepSeek models. Here, we run VGS
with the same search parameters using the same value
model DeepSeek-VM-1.5B. Although the 7B and
14B DeepSeek models are in theory OOD for our
value model (Zhou et al., 2025), which was trained on
DeepSeek-1.5B rollouts, we observe that VGS continues
to scale without plateauing as test-time compute increases.
This provides some evidence that a value model trained
with a weaker verifier policy can generalize effectively and
guide the CoTs of stronger models. Such generalization is
particularly valuable, as it is significantly cheaper to collect
training data from smaller πref models. This form of “weak-
to-strong” generalization (Burns et al., 2023) appears to be
a promising direction for future research.

4. Ablation Studies
To investigate the role of key hyperparameters in search, we
perform sensitivity analyses of block size and beam width
on AIME-24 across varying inference budgets. We also
ablate the amount of DVTS parallelism. These tests suggest
that there is a consistent choice of search hyperparameters
that work well across inference budgets.

4.1. Different Search Parameters and Methods

Block Size. We perform beam search with width 2 using
search block sizes from 16 to 16384. Fig. 5 (right) shows
AIME-24 accuracies across three inference budgets N , re-
vealing that the optimal choice of 4096 stays consistent
across different N . We see a decline in performance when
searching with more fine-grained blocks.

Beam Width. We perform beam search with block size
4096 using varying beam widths, with breadth-first-search
(BFS) being a special case where beam width is equal to N .

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Value-Guided Search for Efficient Chain-of-Thought Reasoning

8 16 32 64 128
Inference Budget (N)

45

50

55

60

65

70

75
A

IM
E

-2
4 

A
cc

ur
ac

y

Beam 2 Beam 4 Beam 8 BFS

8 32 128 512
Inference Budget (N)

30

35

40

45

A
cc

ur
ac

y

With DVTS Without DVTS

Figure 6: Ablations: Beam-Width and DVTS. (Left)
AIME-24 accuracies for beam search with various widths
(Section 2.3) across inference budgets N . BFS is equivalent
to setting width as N . We find that the optimal beam width
is robust across multiple TTC budgets. (Right) Averaged
accuracy for beam 2 with and without DVTS. For DVTS, we
report the best result with parallelism M > 1 per inference
budget N , which we find scales better at higher budgets.

Fig. 6 (left) shows AIME-24 accuracies across five inference
budgets, demonstrating that beam width 2 is consistently
optimal across different N . We note our optimal beam width
is different from prior works’ which found 4 to work best
(Beeching et al., 2024; Snell et al., 2025; Liu et al., 2025).

DVTS Parallelism. Fig. 6 (right) shows the role of ablat-
ing DVTS from VGS. For each inference budget, we report
average accuracies without DVTS and with the best DVTS
parallelism M . We observe that DVTS becomes more effec-
tive at higher budgets and scales better than a single search
tree, which is consistent with findings from prior works
(Beeching et al., 2024). However, we find that DVTS is
never worse than a single search tree even at smaller infer-
ence budgets, which is the opposite conclusion reached by
prior works (Beeching et al., 2024). This discrepancy may
be explained by the fact that we use WMV to combine the
DVTS responses, which seems to be a more robust way to
perform DVTS than BoN (used in prior works) given our
findings from Fig. 3.

4.2. Random vs. Value-Guided Search
Finally, we directly ablate the role of our value model’s
guidance during the search process. We perform VGS (w/
same width, block size and DVTS) but randomly select
blocks instead of selecting blocks with the highest value.
We still aggregate the final beams via WMV with our value
model, so the only change is how intermediate blocks are
chosen. We call this process “random search”. Thus, if our
value model is helpful for search, we should expect VGS to
outperform random search. Indeed, Fig. 7 validates this hy-
pothesis. We also evaluate a hybrid approach where half of
DVTS’s parallel trees use random search and the other half
use VGS. We find that this hybrid approach lands roughly
between pure VGS and pure random search, again validating
that block-selection from our value model improves over
random selection.
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Figure 7: Ablation: Random Search. Random search is
the same search process as VGS except intermediate blocks
are randomly selected instead of using our value model.
Hybrid is a mixture where we flip a fair coin at the start
of a search tree that decides whether to use random search
or VGS. We see that selecting blocks with highest value
improves accuracy across inference budgets.

5. Conclusion
In this paper, we introduced block-wise Value-Guided
Search (VGS), a simple yet effective strategy for steering
long-context CoT reasoning models. We proposed a scal-
able token-level value model training pipeline that does
not require a pre-defined notion of “step” or expensive
per-step annotations. We collect a large dataset of rea-
soning CoTs (OpenR1-VM) and train a lean 1.5B value
model (DeepSeek-VM-1.5B), which we show can effec-
tively guide the CoTs of DeepSeek models up to 14B in
size. With extensive experiments, we demonstrate that VGS
with DeepSeek-VM-1.5B enjoys better test-time com-
pute scaling than standard methods (e.g., majority voting,
best-of-N ) and other scoring models (e.g., existing PRMs
and a BT model), achieving a higher performance ceiling
while reducing the FLOPs needed to extract the same per-
formance as baseline methods (Fig. 1). Our results point
to VGS as a promising approach to scale TTC of emerging
reasoning models.

Discussion of Limitations. Our value model
is trained exclusively on completions / roll-
outs from a lean reasoning model πref (e.g.,
DeepSeek-R1-Distill-Qwen-1.5B). As fron-
tier LLMs continue to advance, the distribution of their
generated responses may increasingly diverge from our
training distribution, potentially degrading scoring and
search performance. To maintain optimal performance, new
value models will need to be retrained on rollouts from
updated generator policies. However, we do not foresee this
as a major practical concern given the simplicity and scala-
bility of our pipeline. To facilitate retraining and adaptation
to similar verifiable domains, we open-source our codebase
and provide a step-by-step recipe in Appendix B for data
collection, training and search inference.
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Note: In the appendix, we also provide additional empirical results in Appendix C. Two new results are worth highlighting
here. First, in Appendix C.6, we provide test-time scaling results for guiding DeepSeek-1.5B further trained with PPO
on our math dataset. We find that VGS improves test-time scaling compared to MV and WMV, which shows that our
method nicely complements policy-based RL training. Moreover, in Appendix C.7, we include three qualitative examples of
contrastive blocks that were selected or rejected by our value model during beam search process. We see that our value
model prefers blocks with more straightforward logical deductions, yielding more efficient and effective CoT for reasoning.

A. Related Works

Test-Time Compute

Score-Free Score-Based

Outcome-Level Process-LevelMajority Voting (MV) Sequential CoT

Best-of-N PRMs Value ModelWeighted MV

Figure 8: Taxonomy of TTC Methods. Score-free TTC methods do not require an external scoring model, e.g., by taking a
majority vote. Score-based TTC methods require an external scoring model. The coarsest scoring model is an outcome
reward model (ORM), which scores a whole response and can be used for best-of-N or weighted MV. A more fine-grained
scoring model are process-level scorers, which includes process reward models (PRMs) and value models; these more
fine-grained scoring models can be used for search.

Test-time compute (TTC) broadly refers to algorithms that improve problem-solving performance when given more compute
(i.e., FLOPs) at test-time. Fig. 8 summarizes the taxonomy of TTC methods. The simplest TTC methods are score-free in
the sense that they do not require access to an external scoring model. A notable example is majority voting (MV), which
selects the most frequent answer among N responses, breaking ties randomly (Cobbe et al., 2021; Wang et al., 2023c;
Brown et al., 2024). Also known as self-consistency, MV can be applied to tasks where the output space is equipped with
an equivalence relation, e.g., mathematical formulae that can be symbolically checked for equality. Other score-free TTC
methods include sequentially revising the response via CoT prompting (Sun et al., 2024; Muennighoff et al., 2025) and
hybrid methods (Wang et al., 2025a).
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There are also score-based TTC methods that employ an external scorer. The coarsest type of a scorer is an outcome
reward model (ORM), which takes the full prompt and response as input and produces a scalar that measures the quality /
correctness of the response. Popular examples of ORMs include Bradley-Terry reward models (Bradley and Terry, 1952) or
LLM-as-a-Judge (Bai et al., 2022). ORMs can be used for best-of-N (BoN), which selects the response with the highest
score (Cobbe et al., 2021; Bai et al., 2022). ORMs can also be used for weighted majority voting (WMV), which generalizes
MV where the strength of a response’s vote is proportional to its ORM score. Weighted MV (WMV) typically provides an
improvement over vanilla (unweighted) MV (Beeching et al., 2024; Liu et al., 2025), which is also what we observe in our
experiments (Fig. 3).

Outcome-level TTC methods (e.g., BoN, WMV) may be further refined with process-level scorers that guide the generation
process in a fine-grained manner. We remark that our value model can act as both an outcome-level and a process-level
scorer. When queried with a partial response, the value model predicts the expected quality of future completions under
πref. When queried at the end of a full response, the value model predicts the quality of the final response. Indeed, our best
performing setup for value-guided search (VGS) uses intermediate values to guide block-wise beam search and uses final
values via WMV to aggregate the final beams, which employs both the process-level and outcome-level scoring capabilities
of the value model. Finally, to the best of our knowledge, the combination of search with WMV is novel to this work, and
we found this to be a crucial ingredient to effectively scale TTC of DeepSeek models.

Prior works on process-level TTC largely focused on step-wise search with process reward models (PRMs), which measures
the correctness of a fine-grained step (Lightman et al., 2023). They showed that step-wise search can provide better
performance than outcome-level TTC methods (Mudgal et al., 2023; Yao et al., 2023; Liu et al., 2023; Snell et al., 2025;
Zhang et al., 2024a; Setlur et al., 2025; Chen et al., 2024). However, training step-wise PRMs requires a pre-defined notion
of step, which is challenging to explicitly define for general reasoning (Guo et al., 2025); e.g., prior works used newlines \n
to separate steps, but DeepSeek’s CoTs often contain newlines in-between coherent thoughts. Moreover, prior PRM training
techniques require per-step annotations, via humans (Lightman et al., 2023), LLM-Judges (Zhang et al., 2025), or per-step
MC rollouts (Wang et al., 2023b; Luo et al., 2024), which are expensive to collect for long reasoning traces; e.g., a single
response from DeepSeek models typically contains hundreds of newlines.

These limitations make it difficult to scale PRMs to long-context reasoning models (Guo et al., 2025), and all these prior
works could only evaluate on short-context models with easier benchmarks such as GSM8k (Cobbe et al., 2021) and
MATH (Lightman et al., 2023). In contrast, our paper focuses on scaling process-level guidance to long-context reasoning
models, and we propose a block-level search method that mitigates the above limitations. We train a token-level value
model by collecting rollouts from random solution prefixes, which requires neither a pre-defined notion of step nor per-step
annotations. We use our value model to guide a block-wise search process, where the block size is a hyperparameter and we
find there exists a consistent choice that works well across inference budgets (Fig. 5 right). Crucially, we are able to scale
our value-guided search (VGS) to long-context DeepSeek models and demonstrate impressive performance and efficiency
gains on challenging math competitions (Fig. 1).

Closely related to our work is Setlur et al. (2025), who propose to train a token-level process advantage verifier (PAV), which
is the sum of πref’s Q-function and an (off-policy) expert’s advantage function, to guide step-wise search. This method is
similar to ours since the training process also occurs at a token-level and is agnostic to the definition of step. However,
a limitation of the PAV is that if the expert disagrees with the underlying policy, then maximizing the PAV can lead to
suboptimal behavior (Chang et al., 2015). Our approach of directly using the value model does not have this issue. Moreover,
Setlur et al. (2025) proposed to use PAVs to guide step-wise search, which still requires a definition of step at inference time;
in contrast, we propose to use block-wise search which does not require a definition of step at inference. At a technical level,
Setlur et al. (2025) trained the PAV by minimizing the mean-squared error (MSE) loss; in contrast, we propose to use the
cross-entropy loss, which has been shown to work better for downstream decision making (Farebrother et al., 2024; Wang
et al., 2025b; Zhou et al., 2025).

We remark that some prior works proposed to use token-level value models to reweight the next-token distribution of the
generator (Mudgal et al., 2023; Zhang et al., 2024b; Han et al., 2024; Zhou et al., 2025). However, these methods require
one classifier call per token, which is more expensive than block-wise search. Moreover, token-level guidance might also be
less effective because the imperfect value model may introduce cascading errors if queried at every token. We highlight
that Mudgal et al. (2023) also experimented with block-wise BFS and found this to be more effective at scaling test-time
compute than reweighting the next-token distribution (i.e., token-wise guidance). One drawback of block-wise BFS is that
the blocks may all become correlated due to sharing the same prefix. Thus, we build upon Mudgal et al. (2023) by proposing

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Value-Guided Search for Efficient Chain-of-Thought Reasoning

to use beam search, which we show yields better test-time scaling for reasoning models (Fig. 5 right). Finally we note that
optimizing the value function, including block-wise CD (Mudgal et al., 2023) and our work, can be viewed as a one-step
policy improvement step similar to Brandfonbrener et al. (2021).

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Value-Guided Search for Efficient Chain-of-Thought Reasoning

B. Summary of VGS Pipeline
We provide a step-by-step recipe for running VGS on any verifiable domain of interest. This recipe is applicable to any task
with a reward label for responses (i.e., outcome-level feedback). If the task has continuous rewards, a standard trick from
distributional RL is to discretize the reward distribution as a histogram, and then the value model is simply the expected
reward under the learned distribution (Bellemare et al., 2017; Imani et al., 2024; Farebrother et al., 2024; Wang et al., 2023a;
2025b).

1. Start with a verifiable domain, where responses are identified with a label and a reward.

2. Identify a good dataset of prompts.

3. Identify a set of roll-in policies and a single roll-out policy. The roll-in policies should provide a diverse distribution of
solutions, and the roll-out policy should be strong enough to complete responses given a partial roll-in.

4. For each prompt, sample n roll-in responses from the set of roll-in policies.

5. For each roll-in response, sample m random indices {ij}j∈[m], and collect a roll-out per index. Thus, there are nm
roll-in, roll-out pairs per prompt.

6. Post-filter by removing prompts where all roll-out responses fail to complete or solve the prompt.

7. At this point, we have created our dataset of roll-in, roll-out pairs. We are now ready to train our value model.

8. Train a classifier / value model by following (Section 2.1). Sweep hyperparameters such as learning rate.

9. Choose a generator policy to be guided by the value model. The most in-distribution choice is to use the roll-out policy
πref.

10. Perform model selection by running outcome-level TTC (e.g., WMV) on some validation benchmark.

11. Sweep search parameters (e.g., block size, beam width, DVTS parallelism) on the validation benchmark.

12. Run the final model on the test benchmark with the best search parameters.

The sampling distribution for the cut-off index (Step 5) is also worth tuning. For example, values at earlier or middle indices
may be harder to predict than final indices, so it is worth sampling more cut-off indices from these earlier regions.
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C. Additional Experiment Results
C.1. Full Main Results Table

We reproduce Table 1 with additional baselines: DeepSeek-7B, DeepSeek-14B, o1-mini-medium.

Test-time scaling DeepSeek-1.5B (N = 256) AIME-24 AIME-25 HMMT-24 HMMT-25 AVG

VGS w/ DeepSeek-VM-1.5B (ours) 72.0± 0.4 46.7± 0.7 31.4± 2.0 32.8± 0.8 45.7± 1.0
WMV w/ DeepSeek-VM-1.5B (ours) 69.6± 3.9 45.1± 2.2 29.1± 2.6 28.9± 2.6 43.2± 1.4
VGS w/ DeepSeek-BT-1.5B (ours) 73.1± 1.4 40.6± 0.8 28.1± 1.9 27.5± 0.0 42.3± 0.5
WMV w/ DeepSeek-BT-1.5B (ours) 72.0± 3.3 40.5± 2.9 25.3± 2.3 24.6± 4.7 40.6± 1.6
VGS w/ Qwen2.5-Math-PRM-7B 71.1± 1.0 38.9± 1.4 26.7± 1.2 24.2± 0.2 40.2± 0.5
WMV w/ Qwen2.5-Math-PRM-7B 70.6± 3.1 39.1± 2.1 25.4± 2.4 24.0± 3.2 39.8± 1.4
VGS w/ MathShepherd-PRM-7B 70.6± 3.1 41.9± 1.4 30.0± 1.4 23.9± 1.4 41.6± 0.9
WMV w/ MathShepherd-PRM-7B 71.2± 3.2 40.0± 2.5 27.9± 2.3 25.6± 3.1 41.2± 1.4
MV@256 71.0± 3.5 38.9± 1.9 24.4± 1.7 24.3± 2.9 39.7± 1.2

Test-time scaling larger models with our DeepSeek-VM-1.5B

VGS w/ DeepSeek-7B (N = 128) 82.2± 0.8 59.4± 0.8 42.8± 2.8 41.1± 1.6 56.4± 0.8
MV w/ DeepSeek-7B (N = 128) 77.1± 1.1 56.5± 1.6 34.7± 1.6 33.8± 2.5 50.5± 0.9

VGS w/ DeepSeek-14B (N = 64) 86.7± 2.7 59.6± 0.6 46.7± 2.7 51.1± 1.6 61.0± 0.9
MV w/ DeepSeek-14B (N = 64) 80.6± 1.2 67.0± 2.0 40.6± 1.8 50.1± 2.0 59.6± 0.9

Pass@N baselines for various models

DeepSeek-1.5B Pass@1 28.2± 6.1 22.4± 4.1 13.9± 4.2 13.0± 3.9 19.4± 1.1
DeepSeek-1.5B Pass@256 81.9± 1.7 62.6± 3.6 54.2± 4.9 57.1± 3.8 63.9± 0.9
DeepSeek-7B Pass@1 54.8± 6.0 40.9± 6.1 31.5± 4.4 25.5± 4.6 38.2± 1.3
DeepSeek-14B Pass@1 72.4± 5.4 53.9± 5.5 36.4± 4.8 36.5± 5.5 49.8± 1.3
DeepSeek-32B Pass@1 77.2± 4.9 60.4± 6.0 38.0± 4.6 42.1± 5.2 54.4± 1.3
Deepseek-R1 (671B) Pass@1 85.0± 2.1 70.0± 0.9 41.7± 3.5 46.7± 2.4 60.8± 0.5

o1-mini-medium Pass@1 63.3± 6.6 52.3± 6.8 33.1± 5.1 34.0± 5.9 45.7± 1.5
o1-mini-medium Pass@8 83.7± 2.7 81.8± 3.7 58.0± 4.0 52.8± 3.4 69.1± 1.7
o3-mini-medium Pass@1 49.2± 6.8 45.8± 6.6 32.4± 5.4 36.6± 6.0 41.0± 1.5
o3-mini-medium Pass@8 83.0± 4.6 77.4± 3.9 55.9± 4.3 64.9± 4.4 70.3± 2.1
o4-mini-medium Pass@1 85.4± 4.3 82.3± 4.5 50.4± 5.0 61.1± 6.4 69.8± 2.5
o4-mini-medium Pass@8 95.4± 2.6 93.3± 0.4 69.7± 3.2 84.5± 2.5 85.7± 1.1

Table 2: (Top) Weighted majority vote (WMV) and VGS accuracies for DeepSeek-1.5B with an inference budget of
N = 256, with various scoring models. (Middle) Compares MV and VGS for larger DeepSeek models guided with our
DeepSeek-VM-1.5B. (Bottom) Lists performance of DeepSeek models and strong close-sourced reasoning models. For
VGS, ± indicates standard deviation across 3 seeds, and for MV, WMV, Pass@N, it denotes bootstrap with 100 repetitions.
We bold the highest avg. accuracy and underline second highest.
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C.2. Per-benchmark Plots for Fig. 3
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Figure 9: Per-benchmark results for Fig. 3. (Left) Compares best-of-N (BoN), weighted majority voting (WMV) and VGS
with either BoN or WMV for the final aggregation. (Right) Compares VGS to majority voting (MV), a standard baseline that
does not require a scorer.

C.3. Per-benchmark Plots for Fig. 4
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Figure 10: Per-benchmark results for Fig. 4. Comparison of our 1.5B value model (VM), our 1.5B Bradley-Terry reward
model (BT), and two 7B state-of-the-art PRMs for two TTC scaling methods: (Left) WMV or (Right) VGS (with WMV as a
final aggregation step).

C.4. Per-benchmark Plots for Fig. 5

C.5. Per-benchmark Plots for Fig. 7
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Figure 11: Per-benchmark results for Fig. 5. With the same DeepSeek-VM-1.5B providing guidance, search continues
to improve with more test-time compute.

C.6. Results for Guiding a PPO Policy

Guo et al. (2025) mentions that the performance of distilled DeepSeek models can be further enhanced through rein-
forcement learning (RL). In this section, we explore whether we could guide the generation of a RL trained policy.
Specifically, we apply Proximal Policy Optimization (PPO) (Schulman et al., 2017) to DeepSeek-1.5B using prompts
from OpenR1-Cleaned and guide the trained model with DeepSeek-VM-1.5B.

We perform full parameter training with 8 H100 GPUs and use the same model as the policy for critic. We use a rule-based
reward function based solely on the correctness of the response, assigning +1 for correct answers and 0 for incorrect or
incomplete ones. To ensure that the learned policy π remains close to the reference policy πref , an additional KL penalty is
applied to the reward:

r(x, y)− γKL (lnπ(y | x)− lnπref(y | x)) , (1)

where r(x, y) is the rule-based reward for prompt x and response y, and γKL controls the strength of the KL penalty. To
further encourage exploration, we apply standard entropy regularization by subtracting the policy entropy from the loss
weighted by a coefficient γentropy:

LPPO − γentropyH[π(· | x)], (2)

The hyperparameter settings are shown below.

Table 3 presents the comparison between the DeepSeek-1.5B model and the PPO-trained model
(DeepSeek-1.5B-PPO). As N increases, the performance gap gradually narrows. While the PPO-trained model performs
competitively at lower N values, it is surpassed by the base model at Pass@32 on both the AIME-24 and HMMT-25
datasets. This decline in performance could be attributed to the reduced entropy of the model after PPO training, which
limits the diversity of model generations and negatively impacts performance at higher Pass@N.
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Figure 12: Per-benchmark results for Fig. 7. Random search is the same search process as VGS except intermediate blocks
are randomly selected instead of using our value model.

PPO Hyperparameter Setting

Setting Parameters

Generation (train) temperature: 1.0 top p: 1

PPO batch size: 256
mini batch size: 128
micro batch size: 1
policy learning rate: 1e-6
critic learning rate: 1e-5
train epochs: 25

γentropy: 1e-3
γKL: 1e-4
gae γ: 1
gae λ: 1
clip ratio: 0.2
Total number of steps: 2250

We report our value-guided results of the PPO-trained model in Fig. 13. We observe that VGS nicely complements PPO
training and provides additional test-time compute gains in performance compared to WMV and MV.
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DeepSeek-1.5B Pass@4 Pass@8 Pass@16 Pass@32 Pass@64 Pass@128 Pass@256

AIME-24 48.7± 5.0 58.9± 4.9 67.3± 4.7 74.1± 3.2 78.4± 3.0 80.4± 2.4 81.9± 1.7
AIME-25 33.1± 4.1 39.1± 4.4 43.7± 3.9 49.0± 3.8 54.0± 3.9 58.8± 3.4 62.6± 3.6
HMMT-24 24.0± 4.6 28.6± 3.9 32.9± 3.6 37.7± 4.4 42.9± 4.2 48.1± 3.7 54.2± 4.9
HMMT-25 21.6± 4.6 26.7± 4.0 30.1± 4.8 37.8± 5.1 45.6± 4.6 52.6± 4.2 57.1± 3.8

DeepSeek-1.5B-PPO Pass@4 Pass@8 Pass@16 Pass@32 Pass@64 Pass@128 Pass@256

AIME-24 54.0± 5.0 61.4± 4.6 67.6± 4.1 73.3± 3.4 76.8± 2.4 78.3± 1.7 79.6± 1.1
AIME-25 35.9± 3.9 39.8± 3.8 45.8± 4.2 50.9± 3.5 56.1± 3.0 59.8± 3.6 64.1± 3.9
HMMT-24 27.2± 4.2 32.8± 4.4 37.6± 3.6 41.5± 3.6 45.0± 3.3 48.8± 3.3 52.4± 3.4
HMMT-25 22.8± 4.0 26.8± 4.3 32.5± 4.4 36.9± 4.4 43.7± 3.8 48.9± 3.8 52.6± 3.6

Table 3: Pass@N results for DeepSeek-1.5B model and PPO-trained DeepSeek-1.5B-PPO model.
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Figure 13: Guiding DeepSeek-1.5B Trained with PPO. Comparison of VGS, WMV and MV for TTC scaling our PPO
policy.
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C.7. Qualitative Examples

Figures 16, 17, and 18 (at the end of the paper) show representative qualitative examples where value scores from VGS are
used to guide beam search. At each step, two blocks of tokens are proposed, and the one with the higher value is selected to
continue the solution. Due to space constraints, parts of the beams are abridged with . . . , and for ease of visualization, blue
highlights indicate correct reasoning steps, while red highlights denote incorrect ones.

Low-scoring beams exhibit different types of failure. In Figure 16, the rejected beam alternates between correct and incorrect
steps, resulting in confused and ultimately incorrect reasoning. In Figure 17, the beam begins with a plausible strategy
involving GCD analysis but eventually resorts to ineffective trial and error. In Figure 18, the beam makes a critical error in
the algebraic transformation early on and fails to recover. In contrast, the selected beams across all examples demonstrate
systematic reasoning and successfully solve the problems.

Interestingly, despite the critical error in Figure 18, VGS assigns a moderately high score (0.337) to the rejected beam—higher
than scores for less subtle failures in earlier examples—suggesting that even significant mistakes can be difficult to detect
when embedded in otherwise coherent reasoning.

Finally, we empirically compare the distribution of generation lengths between the DeepSeek-1.5B base model and
VGS with DeepSeek-1.5B across all benchmarks (Figure 14). On average, VGS generates noticeably shorter responses
(11,219 tokens vs. 12,793 for the DeepSeek-1.5B base model), suggesting that beam search not only enhances accuracy
but also promotes more concise reasoning. This trend is consistent with our qualitative analysis, where beam search tends to
favor token blocks that are direct and solution-oriented, rather than verbose or meandering reasoning. Notably, the sharp
peak near 16,000 tokens corresponds to the maximum generation length of DeepSeek models (16,384). For the base model,
as many as 50% of the generations reach this limit, often resulting in incomplete outputs.
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Figure 14: Histogram of generation lengths for the DeepSeek-1.5B base model vs. VGS. VGS consistently produces
shorter responses across benchmarks, with average lengths of 11,219 and 12,793 tokens for VGS and the base model,
respectively. The peak around 16,000 tokens reflects the generation cap of DeepSeek models, which the base model
frequently hits, often resulting in incomplete outputs.

D. Further Details of Data Collection
Pre-filtering process. Here we describe the pre-filtering process for constructing OpenR1-Cleaned in more detail.
Below are the sequence of filtering operations we performed on OpenR1-Math (Allal et al., 2025). We arrived at these
rules by manually inspecting the data, by sampling 100 random problems from the dataset and checking if all problems’
solutions looked reasonable to us. In OpenR1-Math, a solution is a fleshed-out solution to the math problem, an answer is
the final answer to the math problem.

1. Filter out all solutions with 0 or > 1 boxed answers (enclosed in \boxed{}). These are ambiguous and difficult to parse
out the answer.

2. Filter out answers which are difficult to automatically parse or verify. This includes answers containing: ‘or’, ‘and’
\mathrm, \quad, answers with equal signs, commas, semicolons, \cup, \cap, inequality symbols, approximation
symbols.

3. Filter out multiple-choice questions, which are labeled with question_type = ‘MCQ’.

4. Filter out questions with multiple parts, as it is ambiguous which part the answer is for.

5. Filter out questions containing links (http:// or https://), since the models we test cannot access the web.

Roll-in roll-out process. We also provide further intuition for the roll-in vs. roll-out process (illustrated in Fig. 2 left). The
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roll-in and then roll-out process is a standard technique in imitation learning (Chang et al., 2015) and reinforcement learning
(Chang et al., 2023).

Roll-out. The roll-out process uses a fixed policy πref to roll-out from any partial solution provided by the roll-in process.
The rationale for using a fixed roll-out policy is to fix the target of the classification / value regression problem. In particular,
the classifier is trained to predict the probability of each class under the roll-out policy, given the partial solution.

Roll-in. The main point of the roll-in process is to create a diverse distribution of partial solutions to roll-out from. By
creating a diverse roll-in distribution with multiple roll-in policies, we can ensure that the classifier is trained on a diverse
context distribution and will generalize better to new traces. To select where to cut a roll-in (to start the roll-out), we sample
a cut index from the distribution of p(i) =

√
i∑

j∈[L]

√
j

where L is the length of the roll-in. We chose this such that the cut

index is more likely to occur at earlier positions of the roll-in. We want to encourage more learning at earlier positions since
those prediction problems are more difficult than at later positions. The following figure (Fig. 15) illustrates the distribution
of the length of roll-outs, which shows that this indexing scheme indeed yields many long roll-outs.

Figure 15: Distribution of roll-out length.
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E. Further Details for Value Model Training
Our value model DeepSeek-VM-1.5B uses the same base architecture as the DeepSeek-R1-Distill-Qwen-1.5B
model, which is a 1.5B parameter transformer model with 28 layers and 1536 hidden size. To turn this model into a value
model, we replace the LM head with a scoring head, parameterized by a two-layer MLP, that outputs logits for three classes:
‘correct’, ‘incorrect’, and ‘incomplete’. The number of classes can be modified to suit the task at hand.

Category Parameter Value

Model

Base Model Initialization DeepSeek-R1-Distill-Qwen-1.5B
Hidden size dmodel 1536
Score Head two-layer MLP with hidden size dmodel
Score Head Bias False
Score Head Labels 0=Incorrect, 1=Correct, 2=Incomplete

Data
Dataset OpenR1-VM
Validation split 500
Max sequence length 16384

Training

Batch size 1024
Learning-rate schedule Cosine with max_lr=1e-4
Warm-up steps 10% of total steps
Dropout 0.05
Number of epochs 5

Optimizer

Optimizer type AdamW
β1 0.9
β2 0.95
Weight decay 0.1
Grad Norm Clip 5

Compute
GPUs 16 nodes of 8× NVIDIA H100
Wall-clock time (h) 24 hours
Tokens Throughput (tokens/s) 2.07M
Loss Tokens Throughput (loss tokens/s) 835k
Total Tokens Processed (per epoch) 35.7B
Total Loss Tokens Processed (per epoch) 14.4B

Table 4: Value Model Training Parameters.

We sweeped learning rates 1e-4, 3e-4, 7e-5 and we save checkpoints at every epoch. We selected the best checkpoint via
WMV performance on AIME-24.
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F. Further Details for Inference with Search
Given a problem, the prompt we used is:

<|begin_of_sentence|><|User|>{problem} Please think step-by-step and put
your final answer within \boxed{}.<|Assistant|><think>\n

We use the same decoding parameters as in the original DeepSeek paper (Guo et al., 2025).

Category Parameter Value

Decoding

Inference Engine SGLang (Zheng et al., 2024)
Max generation length 16384
Temperature 0.6
Top-p 0.95
Think Token <think>
End of Think Token </think>

Best Parameters for Search (VGS)

Model DeepSeek-VM-1.5B
Beam width 2
Block size (tokens) 4096
Parallel branches (DVTS) budget dependent
Final aggregation rule Weighted Majority Vote (WMV)

Table 5: Decoding and Search Parameters.

G. Further Details for Training Bradley-Terry Reward Model
Dataset. Recall that our dataset for value model training (OpenR1-VM) contains 56 responses per problem. To construct a
Bradley-Terry dataset, we sample up to 4 response pairs per problem, where a pair consists of a response with reward 0 (the
‘reject’ response) and a response with reward 1 (the ‘chosen’ response). Some prompts may have fewer than 4 responses
with reward 0 or 1, and in those cases, we include as many as possible. This yields a dataset of roughly 122k pairs.

Model. We use the same model architecture as the value model (Appendix E) except that the score head outputs a single
scalar score instead of a three-dimensional vector. We use the same training pipeline, except that the training loss is swapped
to the standard BT loss (Bradley and Terry, 1952):

LBT(θ,B) =
1

|B|
∑

(x,yr,yc)∈B

− log σ(fθ(x, yc)− fθ(x, yr)), (3)

where σ is the sigmoid function, yr is the reject response and yc is the chosen response. We use a batch size of 128 pairs
and we train for one epoch. We sweeped many learning rates: 3e-4, 1e-4, 7e-5, 3e-5, 7e-6. We found that the BT loss drops
and plateaus much quicker than the value model loss, and all learning rates yielded similar final losses. We consider the
last ckpt of each run and we selected lr=3e-5 as best ckpt with search (width 2, block size 4096, WMV aggregation) on
aime-24. We note that one detail for getting BT to work with weighted majority is to use the sigmoid of the BT score, i.e.,
take WMV with σ(fθ(x, y)) instead of fθ(x, y) itself. While this doesn’t affect BoN performance, we found that taking
sigmoid was crucial for WMV performance to scale well.
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H. Inference FLOPS Computation
In this section, we compute the FLOPs for search and show that adding value model guidance at the block-level introduces
negligible compute overhead, as the vast majority of the compute is from generator model. We follow the approach
outlined in Kaplan et al. (2020); Sardana et al. (2023) to compute the FLOPs for a single forward pass of the transformer,
ignoring the embedding layers for simplicity. Consider a transformer with nlayer layers, d dimensional residual stream, dff
dimensional feed-forward layer, and d dimensional attention outputs. Then the number of non-embedding parameters is
N = 2nlayerd(2d+ dff ), and the number of FLOPs for a single forward pass over a context of length nctx is

C(nctx) = 2N + 2nlayernctxd. (4)

Then, in the regime where dmodel > nctx/12, Kaplan et al. (2020); Sardana et al. (2023) further approximate the above by
ignoring the nctx term, i.e., C becomes independent of nctx. We adopt this approximation when estimating the inference
FLOPs of our generator models. Thus, for a context length of nctx = 16, 384, the inference FLOPs for one complete
generation for each generator model is 2Nnctx:

1. DeepSeek-R1-Distill-Qwen-1.5B: 2× 1.5B × 16384 = 49.1T .

2. DeepSeek-R1-Distill-Qwen-7B: 2× 7B × 16384 = 229T .

3. DeepSeek-R1-Distill-Qwen-14B: 2× 14B × 16384 = 459T .

4. DeepSeek-R1 (671B, with 37B activated params): 2× 37B × 16384 = 1212T .

We now compute the FLOPs needed for one forward pass of the value model. Since we use a block-size of 4096, there are at
most 16384/4096 = 4 value model inferences per generation. Thus, the FLOPs from the value model is:

1. 1.5B classifier: 2× 1.5B × 4 = 12B.

2. 7B classifier (baselines): 2× 7B × 4 = 56B.

Thus, we can see that the value model FLOPs is negligible compared to the generator model FLOPs. In particular, when
guiding a 1.5B generator with a 1.5B classifier, the classifier FLOPs is only 0.024% of the generator FLOPs. With a compute
budget of 256, this amounts to a total FLOPs of (49.1T + 12B)× 256 = 12.6P . When guiding with a 7B classifier, the
total FLOPs is (49.1T + 56B)× 256 = 12.6P . Note that the FLOPs required for generating 256 independent generations
is 49.1T × 256 = 12.6P . Thus, search has a negligible overhead comapred to (weighted) majority voting or best of n.
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AIME-24 Problem: Jen enters a lottery by picking 4 distinct numbers from S = {1, 2, 3, · · · , 9, 10}. 4 numbers are randomly
chosen from S. She wins a prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins the grand prize
if all four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she won
a prize is m

n
where m and n are relatively prime positive integers. Find m+ n.

Rejected beam with score 0.009: Okay, so I need to figure out the probability that Jen wins the grand prize given that she
won a prize. That means I have to use conditional probability here. I remember that conditional probability is P (A|B) =
P (A ∩B)/P (B). In this case, event A is her winning the grand prize, and event B is her winning a prize. So, I need to find the
probability that she won both the grand prize and a prize, which is just her winning the grand prize, divided by the probability that
she won a prize. First, let me figure out the total number of possible ways Jen can pick 4 numbers from S, which has 10 numbers.
That should be the combination of 10 choose 4, right? So, C(10, 4) = 210. So, the total number of possible combinations is 210.
So, she can win a prize in two scenarios: either exactly two of her numbers are the randomly chosen ones, or all four are. . . . The
number of ways she can have exactly two numbers correct is C(4, 2) ways to choose the correct numbers, and then C(6, 2) ways
to choose the incorrect ones from the remaining 6 numbers. Similarly, the number of ways she can have all four numbers correct
is just C(4, 4) = 1. So, the total number of winning ways is C(4, 2) ∗ C(6, 2) + C(4, 4). . . .C(4, 2) is 6, and C(6, 2) is 15.
So, 6*15 = 90. Then, C(4, 4) is 1. So, total winning ways are 90 + 1 = 91.
Alternatively, I can compute the probability of not winning a prize, which is the probability that she has 0 or 1 correct numbers.
Let me compute that and subtract from 1 to see if it matches.
Number of ways to have 0 correct numbers: C(4, 0) ∗ C(6, 4) = 1 ∗ 15 = 15. Number of ways to have 1 correct number:
C(4, 1) ∗ C(6, 3) = 4 ∗ 20 = 80. So, total non-winning ways: 15 + 80 = 95.
Therefore, probability of not winning a prize is 95/210, so probability of winning a prize is 1− 95/210 = (210− 95)/210 =
115/210. Wait, that doesn’t match with the previous result. Hmm, something’s wrong here.
Wait, why did I get 91 before? Let me see. I had C(4, 2) ∗C(6, 2) +C(4, 4). So, that’s 6*15 +1=91. But that’s only the number
of winning ways where she has exactly two or exactly four correct numbers. So, 91 winning ways, 95 non-winning, which adds
to 186, which is less than 210. So, the rest must be the impossible case? No, because in reality, she can’t have 0 correct numbers
if she has 4 numbers. Wait, no, she can have 0 correct numbers if all her numbers are among the 6 incorrect ones. So, that’s 15
ways. Similarly, 1 correct number is 80 ways, and 2 correct numbers is 90 ways, and 4 correct numbers is 1 way. So, 15 +80 +90
+1=186. Wait, so actually, 186 winning ways and 24 non-winning ways. So, probability of winning is 186/210, which simplifies
to 31/35. . . .
Therefore, P (A|B) = (1/210)/(186/210) = 1/186. So, m is 1 and n is 186. Are they relatively prime? 1 and 186 share no
common factors besides 1, so yes. So, m+ n = 1 + 186 = 187. . . .

Selected Beam with score 0.996: Okay, so this is a conditional probability problem. The formula for conditional probability is
P (A|B) = P (A ∩B)/P (B), where A is the event that she wins the grand prize, and B is the event that she wins a prize. Since
winning the grand prize is a specific case of winning a prize, A is a subset of B. So, P (A ∩ B) is just P (A). Therefore, the
probability we’re looking for is P (A)/P (B). . . .
Since she picks 4 numbers from 10, the total number of possible 4-number combinations is C(10, 4). The number of favorable
outcomes for A is 1 (since there’s only one exact set of four numbers that could be the randomly chosen ones). So, P (A) is
1/C(10, 4). . . .
To find P (B), it might be easier to compute the probability of the complementary event, which is that Jen wins zero prizes or
one prize, and subtract that from 1. So, P (B) = 1 - P(0 prizes) - P(1 prize). Let me compute P(0 prizes) and P(1 prize).
First, P(0 prizes): This is the probability that none of Jen’s four numbers are among the four randomly chosen. So, all four
numbers she picked are from the remaining six numbers (since S has 10 numbers, and if she picks 4, the remaining are 6). So, the
number of ways to choose 4 numbers from 6 is C(6, 4). Therefore, P(0 prizes) = C(6, 4)/C(10, 4).
Similarly, P(1 prize): This is the probability that exactly one of Jen’s numbers is among the four randomly chosen. So,
we need to choose 1 number from her 4, and 3 numbers from the remaining 6 (since 10 - 4 = 6). So, the number of
ways is C(4, 1) ∗ C(6, 3). Therefore, P(1 prize) = [C(4, 1) ∗ C(6, 3)]/C(10, 4). . . . So, putting it all together: P (B) =
1− [C(6, 4)/C(10, 4)]− [C(4, 1) ∗ C(6, 3)/C(10, 4)] . . .
Therefore, P (B) = 1− 15/210− 80/210. . . . Therefore, P (B) is 23/42. . . . Therefore, the conditional probability P (A|B) is
(1/210)/(23/42) = (1/210) ∗ (42/23) = (42)/(210 ∗ 23) . . . Therefore, the probability becomes (1/5)/23 = 1/(5 ∗ 23) =
1/115. . . . But 1/115 can’t be simplified further, so m is 1 and n is 115, which are coprime. Therefore, m + n is 1 + 115 = 116. . . .

Figure 16: Example of selected and rejected beams during beam search with VGS. The high-scoring beam (score 0.996)
follows a correct and coherent line of reasoning, arriving at the correct answer. In contrast, the rejected beam (score 0.009)
contains several inconsistencies and incorrect steps, despite occasionally making correct logical deduction—demonstrating
the effectiveness of VGS as a value model. Highlighting is added for clarity: blue indicates correct reasoning steps or results,
while red indicates incorrect ones. Part of generations are abridged with . . . notation.
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AIME-25 Problem: Find the sum of all positive integers n such that n+ 2 divides the product 3(n+ 3)(n2 + 9).

Rejected beam with score 0.395: First, let’s parse the problem. I need to find all positive integers n where n+ 2 is a divisor
of 3(n+ 3)(n2 + 9). So, mathematically, this means that n+ 2 divides 3(n+ 3)(n2 + 9). In other words, when you divide
3(n+ 3)(n2 + 9) by n+ 2, there should be no remainder. So, n+ 2 must be a factor of this product.
One way to approach this is by using the Factor Theorem. The Factor Theorem states that if n+ 2 is a factor of a polynomial
P (n), then P (−2) = 0. So, if I let P (n) = 3(n+ 3)(n2 + 9), then P (−2) should be equal to zero if n+ 2 divides P (n). Let
me compute P (−2):
P (−2) = 3(−2+3)((−2)2+9) Simplify each part: (−2+3) = 1 (−2)2 = 4, so 4+9 = 13 Thus, P (−2) = 3∗1∗13 = 39
. . . Wait, perhaps I’m misapplying the Factor Theorem here. Let me think again.
Alternatively, another approach is to express n + 2 as k, so k = n + 2. Then, n = k − 2. Substitute n = k − 2 into the
expression 3(n + 3)(n2 + 9) and see what conditions must hold for k to divide this. . . . Therefore, the product becomes:
3(k + 1)(k2 − 4k + 13) . . .
Which implies that k divides 3(k + 1)(k2 − 4k + 13). Since k divides the product, it must divide at least one of the factors. But
k divides k, so we can consider the other factors.
But wait, k divides 3(k + 1)(k2 − 4k + 13), so k divides 3(k + 1)(k2 − 4k + 13). Since k and k + 1 are consecutive integers,
their GCD is 1. Similarly, k and k2 − 4k + 13 may have a GCD. Let me check:
Let me denote d = gcd(k, k2 − 4k + 13). Then d divides k and k2 − 4k + 13. So, d divides k2 − 4k + 13 − k(k − 4) =
k2 − 4k+13−k2 +4k = 13. So, d divides 13. Therefore, d = 1 or 13. Wait, maybe I’m complicating things. Let me approach
this differently. . . .
But maybe there’s another way to approach this. Let me try plugging in small positive integers for n and see if n+ 2 divides the
product 3(n+ 3)(n2 + 9). That might help confirm if n = 1 is the only solution.
Testing n = 1: As above, product is 120, which is divisible by 3.
Testing n = 2: n+ 2 = 4. Product is 3(5)(13) = 195. 195 divided by 4 is 48.75, which isn’t an integer. So, 4 doesn’t divide
195.
. . .
Testing n = 9: n+ 2 = 11. Product is 3(12)(90) = 3240. 3240 divided by 11 is approximately 294.545, not integer.
Testing n = 10: n+ 2 = 12. Product is 3(13)(109) = 4209. 4209 divided by 12 is 350.75, not integer.
Wait, so up to n = 10, only n = 1 works. Maybe n = 1 is the only solution. . . .

Selected Beam with score 0.998: First, let me understand what the problem is asking. It says that n+2 divides 3(n+3)(n2+9).
In other words, when we divide the product 3(n+ 3)(n2 + 9) by n+ 2, the result should be an integer. So, I need to find all
positive integers n for which this condition holds and then sum them up.
Let me write this out mathematically. If n+ 2 divides 3(n+ 3)(n2 + 9), then there exists some integer k such that:

3(n+ 3)(n2 + 9) = k(n+ 2)

But since we’re looking for integer solutions, maybe it’s better to think about this in terms of divisibility. So, n+ 2 must be a
divisor of 3(n+ 3)(n2 + 9). That suggests that n+ 2 divides this product.
I remember that if a number a divides another number b, then b modulo a is zero. So, maybe I can use modular arithmetic here.
Let me see.
Since n+ 2 divides 3(n+ 3)(n2 + 9), it must be that:

3(n+ 3)(n2 + 9) ≡ 0 (mod n+ 2)

. . . First, n+ 3 modulo n+ 2. Let’s substitute n = −2 + k, but maybe that’s not necessary. Alternatively, we can note that
n+ 3 = (n+ 2) + 1. So, modulo n+ 2, n+ 3 ≡ 1.
Similarly, n2 + 9. Let me compute n2 modulo n + 2. Since n ≡ −2 (mod n + 2), then n2 ≡ (−2)2 = 4 (mod n + 2).
Therefore, n2 + 9 ≡ 4 + 9 = 13 (mod n+ 2).
So, putting it all together, modulo n+ 2, the product becomes:

3(n+ 3)(n2 + 9) ≡ 3× 1× 13 = 39 (mod n+ 2)

So, this implies that 39 ≡ 0 (mod n+ 2), which means that n+ 2 divides 39. Therefore, n+ 2 must be a positive divisor of
39. Now, the positive divisors of 39 are 1, 3, 13, and 39. But since n is a positive integer, n + 2 must be at least 3 (because
if n = 1, n+ 2 = 3). So, the possible values for n+ 2 are 3, 13, and 39. Therefore, the corresponding values for n are: - If
n+ 2 = 3, then n = 1. - If n+ 2 = 13, then n = 11. - If n+ 2 = 39, then n = 37. . . . Therefore, the sum of all such positive
integers n is 1 + 11 + 37. Let me compute that: 1 + 11 is 12, 12 + 37 is 49. . . .

Figure 17: Additional examples of selected and rejected beams under VGS. The high-scoring beam applies a concise and
effective modular reasoning strategy whereas the rejected beam attempts several approaches—including an incorrect use
of the Factor Theorem and trial-and-error—but ultimately fails. Color coding follows Figure 16. Part of generations are
abridged with . . . notation.
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HMMT-25 Problem: Mark writes the expression
√

abcd on the board, where abcd is a four-digit number and a ̸= 0. Derek, a
toddler, decides to move the a, changing Mark’s expression to a

√
bcd. Surprisingly, these two expressions are equal. Compute

the only possible four-digit number abcd.

Rejected beam with score 0.337: Okay, so I have this problem where Mark writes the square root of a four-digit number, which
is written as

√
(abcd), where a isn’t zero. Then Derek moves the first digit ’a’ to the end, making the expression a

√
(bcd). And

the interesting part is that both expressions are equal. I need to find the only possible four-digit number abcd that satisfies this
condition.
First, let me try to understand the problem step by step. Mark’s expression is the square root of a four-digit number, so that’s√

(1000a+ 100b+ 10c+ d). Derek changes this by moving the first digit ’a’ to the end, so the new number is 1000b+100c+

10d+ a, and Derek’s expression is a multiplied by the square root of this new number, which is a
√

(1000b+ 100c+ 10d+ a).
And both of these are equal.
So, mathematically, I can write this as:√

(1000a+ 100b+ 10c+ d) = a
√

(1000b+ 100c+ 10d+ a)
If I square both sides to eliminate the square roots, I get:
So, 1000a+ 100b+ 10c+ d = a ∗ (1000b+ 100c+ 10d+ a) . . .

Selected Beam with score 0.999: Let me write this down step by step. Let’s denote the four-digit number as N = 1000a +

100b+10c+ d. So, Mark’s expression is
√
N . Then, Derek changes it to a

√
(bcd), which is a

√
(100b+ 10c+ d). According

to the problem, these two expressions are equal,
Which means:√

(1000a+ 100b+ 10c+ d) = a
√

(100b+ 10c+ d)
Let me square both sides to eliminate the square roots:
1000a + 100b + 10c + d = a² * (100b + 10c + d)
Hmm, that gives me an equation:
1000a + 100b + 10c + d = a² (100b + 10c + d)
Let me denote the four-digit number as N, so N = 1000a + 100b + 10c + d, and the three-digit number as M = 100b + 10c + d. So,
the equation becomes: N = a² * M
But since N is a four-digit number and a is a single digit (from 1 to 9, since a ̸= 0), and M is a three-digit number (from 0 to
999). So, let me rewrite N as 1000a + M.
So, 1000a + M = a² * M
Let me rearrange this equation:
1000a = a² * M - M
Factor out M on the right side:
1000a = M(a² - 1)
Therefore, M = (1000a) / (a² - 1)
Since M must be an integer (as it’s a three-digit number), (1000a) must be divisible by (a² - 1). So, (a² - 1) must be a divisor of
1000a.
Let me note that a is a digit from 1 to 9. So, I can try each a from 1 to 9 and see if (a² - 1) divides 1000a, and then check if M is a
three-digit integer.
Let’s compute for each a:
Starting with a=1:
a=1: M = 1000*1 / (1 - 1) = 1000 / 0, which is undefined. So, a=1 is invalid.
a=2:
M = 1000*2 / (4 - 1) = 2000 / 3 ≈ 666.666..., which is not an integer. So, a=2 is invalid.
a=3:
M = 1000*3 / (9 - 1) = 3000 / 8 = 375. That’s an integer. So, M=375.
a=4:
M = 1000*4 / (16 - 1) = 4000 / 15 ≈ 266.666..., not integer. So, a=4 invalid.
a=5:
M = 1000*5 / (25 - 1) = 5000 / 24 ≈ 208.333..., not integer.
a=6:
M = 1000*6 / (36 - 1) = 6000 / 35 ≈ 171.428..., not integer.
a=7:
M = 1000*7 / (49 - 1) = 7000 / 48 ≈ 145.833..., not integer.
a=8:
M = 1000*8 / (64 - 1) = 8000 / 63 ≈ 127.450..., not integer.
a=9:
M = 1000*9 / (81 - 1) = 9000 / 80 = 112.5, which is not integer.
So, only a=3 gives us an integer M=375, which is a three-digit number. Therefore, the only possible four-digit number is 3375.
. . .

Figure 18: Additional examples of selected and rejected beams under VGS. The rejected beam misrepresents Derek’s
transformation, leading to an incorrect equation that derails the solution. In contrast, the high-scoring beam correctly
models the relationship and systematically solves for the unique valid value of a. Color coding follows Figure 16. Part of
generations are abridged with . . . notation.
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