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Abstract

Humans perceive the world through multiple senses, enabling them to create a
comprehensive representation of their surroundings and to generalize information
across domains. For instance, when a textual description of a scene is given, hu-
mans can mentally visualize it. In fields like robotics and Reinforcement Learning
(RL), agents can also access information about the environment through multiple
sensors; yet redundancy and complementarity between sensors is difficult to exploit
as a source of robustness (e.g. against sensor failure) or generalization (e.g. transfer
across domains). Prior research demonstrated that a robust and flexible multimodal
representation can be efficiently constructed based on the cognitive science notion
of a ‘Global Workspace’: a unique representation trained to combine information
across modalities, and to broadcast its signal back to each modality. Here, we
explore whether such a brain-inspired multimodal representation could be advanta-
geous for RL agents. First, we train a ‘Global Workspace’ to exploit information
collected about the environment via two input modalities (a visual input, or an
attribute vector representing the state of the agent and/or its environment). Then,
we train a RL agent policy using this frozen Global Workspace. In two distinct
environments and tasks, our results reveal the model’s ability to perform zero-shot
cross-modal transfer between input modalities, i.e. to apply to image inputs a policy
previously trained on attribute vectors (and vice-versa), without additional training
or fine-tuning. Variants and ablations of the full Global Workspace (including
a CLIP-like multimodal representation trained via contrastive learning) did not
display the same generalization abilities.
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1 Introduction

Humans gather information from the world through multiple sources, leading to a rich and robust
representation of their environment. Similarly, non-human agents should also learn to establish
meaningful connections between information from different modalities. Such multimodal represen-
tation learning offers distinct advantages for decision-making and in particular in Reinforcement
Learning. The benefits are evident when considering scenarios where one sensory input is noisy or
unavailable. For instance, humans will be able to navigate in a room with subdued lighting where
vision is compromised, as they can rely on other senses (hearing, touch...) to gather information
about their environment. In decision-making the ability to establish links between modalities allows
more efficient problem-solving, because information from one sense can be leveraged to complete or
verify data from another.

For these reasons, it seems advantageous to take inspiration from human multimodal integration
and apply this to embodied RL agents, e.g. for robotics. A popular theory in cognitive science
about how the brain handles multimodal information is the ‘Global Workspace Theory’ [Baars, 1988,
Dehaene et al., 1998]. According to this theory, different specialized modules compete to encode
their information into a shared space called the Global Workspace. The shared representation is then
broadcast back to all modules, leading to a unified interpretation of the environment. According
to the theory, this last step corresponds to our inner experience. Importantly, compared to the
unimodal representations in each specialized module, the shared representation enables multimodal
grounding [Silberer and Lapata, 2012, Kiela and Clark, 2015, Pham et al., 2019], by linking objects
and their properties across modalities. A deep learning-compatible adaptation of this theory has been
proposed by VanRullen and Kanai [2021]. The suggested model must meet several criteria (Fig 2): an
alignment of the different latent representations and the capacity to translate from one modality to the
other and to broadcast signals from the Global Workspace back to each module; ideally, the model
can be trained in a semi-supervised setting with unsupervised cycle-consistency objectives. An initial
implementation was reported in Devillers et al. [2023], and shown to provide reliable multimodal
representations that could be leveraged advantageously for downstream classification tasks, all with
minimal supervision.

In this work, we explore the use of a similar multimodal representation, inspired by the Global
Workspace Theory, in the context of RL tasks. In particular, we show that this model is capable of
zero-shot cross-modal policy transfer, in two different environments (see section 4), each with two
modalities (vision: RGB images, attributes: a vector description of the agent and its environment).
The first environment is called Factory, a virtual factory environment simulated in Webots; the second
one is called Simple Shapes and made of simple geometric shapes. The goal by choosing attributes
and RGB images is to create two modalities that share common information without completely
overlapping, particularly in Factory environment (see section 4). Each modality must independently
contain enough information to form a policy that allows the advantages of a multimodal representation
(similar to the global workspace) to be compared with those of a unimodal representation.

2 Related Work

Representation learning for Reinforcement Learning is a vast and evolving field. Sutton and Barto
[1998] already discussed the importance of compact representations for an RL agent. Deep Generative
models, such as Variational Autoencoders (VAEs), have the capability to encode raw data into a
compact and disentangled latent space. Pioneering work by Watter et al. [2015] and Finn et al.
[2016] used this approach to encode representations for Reinforcement Learning, enhancing learning
efficiency from high-resolution images. Compact representations are also crucial for algorithms
relying on a World Model, such as the one introduced by Ha and Schmidhuber [2018]. Further
studies [Wang et al., 2023, Friede et al., 2023, Higgins et al., 2017] showed that learning disentangled
environmental representations from a VAE enables agents to develop policies robust to some shifts in
the original domain. Additionally, encoding observations in a well-structured space can be achieved
through contrastive learning [Laskin et al., 2020, Du et al., 2021]. With this method, Gupta et al.
[2017] were even able to measure policy transfer between robots having different numbers of joints.

Representation learning has now extended to multimodal RL setups. Lee et al. [2019] use fusion
mechanisms with Deep Neural Networks to handle multiple sources of observations. Singh et al.
[2023] align visual latent representations with graphs using a contrastive loss, while Hafner et al.
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[2023] extend the work of Ha and Schmidhuber [2018] by using concatenated multimodal inputs for
a world model. In a similar vein, Silva et al. [2020] extend DARLA’s work [Higgins et al., 2017]
to two modalities: sound and vision. They employ a multimodal VAE [Yin et al., 2017] and align
representations through an additional KL loss between the two modality-specific latent spaces. This
AVAE model, like ours, allows zero-shot cross-modal policy transfer, e.g. training the policy with
visual inputs and using audio inputs during inference. Thus, we will use this model as a baseline to
compare against our approach.

Other multimodal representation learning models like CLIP [Radford et al., 2021] have been proposed
to align two (or more) latent representations, and therefore to create a common space that can be
used for downstream tasks. However such models require very large amounts of paired data between
modalities to learn the aligned representation in a supervised way; in a robotic context, such paired
data can be difficult to obtain. In addition, it has been shown that the contrastive alignment objective
of CLIP tends to discard potentially important modality-specific information [Devillers et al., 2021].
In our study, these two factors are investigated through ablation studies. First, we remove cycle-
consistency objectives and train the model in a fully-supervised way. Second, we also remove the
broadcast property (the ability to project global-workspace information back to each specialized
module), leading to a contrastive-alignment version of our model similar to CLIP. As will be described
below, both manipulations severely impair our model’s ability to transfer policies between modalities.

3 Problem Formulation

Let E represent an environment, whose state at time t leads to an observation ot ∈ O, described as
either a latent feature vector ovt computed from an RGB image, or an attribute vector oattrt . Based on
these observations, the agent executes actions at ∈ A and receives a resulting reward rt+1.

In this study, we first train a model to learn a representation zt ∈ Z with two encoders zattrt =
eattr(o

attr
t ) and zvt = ev(o

v
t ). This step follows the approach previously described by Devillers et al.

[2023], leading to a shared representation across modalities, i.e. a Global Workspace (GW). In a
second step, with GW frozen, a policy π is trained to map GW-encoded observations from a specific
training source o ∈ Otrain, with train ∈ {attr, v}, to actions a ∈ A. During inference, the policy
can potentially be transferred to another observation source Otest, where test ∈ {attr, v}, test ̸=
train. The process is illustrated in Figure 1A, and the two training steps are further detailed below.

3.1 GW for multimodal Representation Learning

We closely follow the training setup described in Devillers et al. [2023]. That study evaluated the
properties of a multimodal GW for low-resource semi-supervised training, and for downstream
classification tasks; here, we are interested in applying such a system to train an RL agent. As in this
previous study, we consider a setting where matched training data across modalities can be scarce or
difficult to obtain, yet we have access to potentially large amounts of unimodal data (without matching
labels in the other modality). Thus, we sample unimodal observations from two sets Uattr and Uv,
and paired multimodal observations from the subset M = Uattr ∩Uv , composed of observations that
are paired across both unimodal sets.

As proposed in VanRullen and Kanai [2021], Devillers et al. [2023], we do not use raw images
or attributes as inputs to the GW, but encoded representations into a unimodal latent space. For
images, we use a Variational Autoencoder (VAE), pretrained using the set Uv (see Appendix B and
C for details) ; for attributes, we simply normalize them between -1 and 1. Then, we train the GW
itself, composed of a set of encoders for each modality {ev, eattr} with their corresponding decoders
{dv, dattr} (Figure 2A). The role of the encoders is to project the two unimodal latent representations
onto a shared one (the GW), where they should be aligned. The role of the decoders is to allow
broadcast from GW back to the unimodal representations. The training dataset Uv and Uattr are
collected by uniformly sampling the environment in Simple Shapes. For Factory we sampled with a
constraint that the table should be at least partially visible from the robot viewpoint.

To train the network, four different losses are used [Devillers et al., 2023] (see Supplementary
Material for losses definitions). The translation (Ltr) and contrastive alignment (Lcont) losses are
supervised losses, optimized using the set M. The full-cycle (Lcy) and demi-cycle (Ldcy) consistency
losses are optimized using the full sets Uattr and Uv. Figure 2B illustrates how these losses are

3



Figure 1: A: Overview of the general approach. Raw attributes are encoded in their latent representa-
tion thanks to pre-trained models (VAE arrow for images and Normalization arrow for attributes).
Latent image or attribute representations can be encoded into a shared space z ∈ Z (the Global
Workspace or GW) via encoders ev and eattr (respectively). The policy is trained (solid arrows) with
observations from a given modality (here vision), with GW frozen. At inference time the policy can
be tested with observations from a different modality (here attributes, dashed arrow); this is defined
as zero-shot cross-modal transfer. B: Illustration of the two environments and tasks: Factory (left)
and Simple Shapes (right). Example images and attributes are presented for each. For Factory, the
agent must reach the table by rotating and moving forward or backward. For Simple Shapes, the
agent must place the object at the center and pointing upwards, by moving to the right, left, top or
down and rotating.

computed using the encoders and decoders of the GW. The total loss is a weighted sum of these four.
Devillers et al. [2023] described implicit relations between the different losses, such that optimizing a
subset of the losses can indirectly improve the others. By combining the four losses, the GW model
optimizes the desired criteria of multimodal representation alignment and broadcast, while taking full
advantage of unsupervised training data.

3.2 Policy Learning and cross-modal transfer

We use Proximal Policy Optimization (PPO), a widely adopted Reinforcement Learning algorithm in-
troduced by Schulman et al. [2017]. We also tested Advantage Actor Critic (A2C) introduced by Mnih
et al. [2016], to validate our results on another algorithm (see Supplementary Materials).These two
algorithm were implemented thanks to the stable baselines 3 library [Raffin et al., 2021].

To obtain an upper baseline for cross-modal transfer, we train two policies in a more classical way
using only unimodal information (the two policies’ inputs are the unimodal representations of images
ov or attributes oattr). This is compared with policies trained from GW-encoded representations of
the observations, and tested either with observations from the same modality or from the opposite
modality (i.e. zero-shot cross-modal transfer).
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Figure 2: A: A generic view of the architecture of the Global Workspace where ov and oattr are
encoded representations of the two modalities (vision, attributes). ev , eattr are feed-forward encoders
into the GW representation, and dv , dattr are feed-forward decoders. Encoded representations of the
two modalities ev(ov) and eattr(o

attr) are separate in the architecture, but can be aligned by virtue
of the training objectives (illustrated in B), resulting in a shared GW. B: Illustration of the losses
used during training of the encoders and decoders. The arrows represent the path used by the data to
compute the losses. Ltr and Lcont are supervised losses for translation and contrastive alignment,
respectively; they require paired training samples across the two modalities. In contrast, Ldcy and
Lcy are self-supervised losses for demi-cycle and full-cycle consistency, respectively; they can be
trained with unpaired samples from each modality.

While our main test relies on a GW trained using all four losses (Figure 2B), we also trained policies
from GW models optimized with fewer losses, serving as ablations of the full model. A GW trained
in a fully supervised way (without the cycles losses Lcy and Ldcy) serves to assess the impact of
semi-supervision, especially in low-data regimes (i.e., with few paired data in M). We also trained a
policy using a GW trained only with a contrastive loss Lcont. This ablation evaluates the impact of
“broadcast” on the performance, and serves as a CLIP-like baseline because it is trained with the same
alignment objective as CLIP [Radford et al., 2021]. Finally, we compare our GW to an adaptation of
the AVAE model used in Silva et al. [2020]. We modify their visual VAE to match the architecture
of our own visual VAE in each environment; we also replace their audio VAE by an attribute VAE,
with an architecture adapted to match the dimensions of our attribute vectors (see Supplementary
Material for architecture details). This transition from audio to attribute VAE also leads to a change
in the reconstruction loss: we use the same attribute reconstruction loss as the one used in the GW
(see Supplementary Material). Apart from these architectural changes, the AVAE model is trained in
a supervised way (on the paired multimodal set M), as described in the original paper [Silva et al.,
2020].

For both environments, we evaluate policies based on multimodal systems (GW, GW without cycles,
CLIP-like, AVAE) trained with two data regimes: either a large amount of matched data (500 000 for
Simple Shapes and 200 000 for Factory), M ≡ Uattr ≡ Uv (full data regime), or a small amount of
paired data (low data regime: M contains 1/4th of the full dataset for Factory, 1/100th of the full
dataset for Simple Shapes). This assesses the impact of the unsupervised cycle-consistency losses,
and the performance of fully supervised models in a low data regime.

4 Environments

We evaluate our approach on two different environments. Each one captures observations across
the same two modalities: attributes describing the state of the agent, or an RGB image. The first
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environment, called ‘Factory’ is a simulated factory shop floor in a robotic simulator: Webots. The
second environment, named ‘Simple Shapes’ because it depicts a 2D shape on a dark background, is
simulated directly using a Python-based Gymnasium environment [Towers et al., 2023].

4.1 Factory Environment

Simulated in Webots, this environment represents a factory-like shop floor with a Tiago robot and a
table. The agent receives RGB images (128x128 pixels) from the robot’s viewpoint, or a set of seven
attributes describing the robot and table states (Figure 1B). Robot state attributes include position
(xr, yr) and rotation θr. Table state attributes include position (xt, yt), rotation θt, and color ht. The
color is defined only by the Hue of HSV, with saturation and value set to 1 to retain high-contrast
colors. The final attribute state vector concatenates attribute transformations: applying cosine and
sine to angles, normalizing all attributes between -1 and 1, and decomposing the table’s Hue into a
cosine-sine vector.

This environment displays an asymmetry between modalities, whereby images only provide partial
information while attribute vectors offer exact information, even when the robot is not facing the
table. At the beginning of each episode, table attributes are randomly sampled within their domains.
The robot is placed near the center with a random angle, and the agent’s goal is for the robot to reach
the table. The agent directly controls the position and rotation of the robot. The robot can move
forward/backward and rotate (by a maximum of 5cm and π

16 radians during each step). Collisions
with simulation objects (e.g. walls) lead to episode termination with a penalty of −10000. At each
timestep, the reward is equal to minus the distance between the robot and the table (in meters) minus
10× the angle (in radians) between the robot orientation and the robot-table vector, thus penalizing
the agent for not facing the table. This approach aims to guide the robot to first locate the table
by rotating and then move towards it, dividing the learning into two distinct goals and enhancing
performance in scenarios where the agent relies solely on the robot’s vision. When the robot reaches
the table, the episode concludes with no additional reward.

4.2 Simple Shapes Environment

The second environment, called ‘Simple Shapes’, was introduced in Devillers et al. [2023]. The
agent can receive two types of observations: 32× 32 pixel RGB images of a 2D shape on a black
background, or a set of eight attributes directly describing the environment’s state (Figure 1B). There
are three different types of shapes, an egg-like shape, an isosceles triangle, and a diamond. They are
represented by the variable shape ∈ {0, 1, 2}. The shape possesses a size s ∈ [smin, smax], a position
(x, y) ∈ [ smax

2 , 32− smax

2 [2, a rotation θ ∈ [0, 2π[ and an HSL color (ch, cs, cl) ∈ [0, 1]2 × [lmin, 1].
The final attribute state vector concatenates transformations of these attributes: decomposing the
rotation angle θ into (cθ, sθ) = (cos(θ), sin(θ)); translating HSL colors to the RGB domain,
expressing the shape variable as a one-hot vector of size three, and normalizing all the variables
between -1 and 1.

At the beginning of each episode, attributes are randomly sampled within their respective domains.
The agent’s goal is to move the shape to the center of the image at (x, y) = (16, 16) and align it to
point to the top, θ = 0. Actions available to the agent include moving the shape by one pixel in
cardinal directions (left, right, up, or down) and rotating the shape by an angle of π

32 clockwise or
anti-clockwise. The reward is initialized at zero. At each timestep, the reward is equal to minus the
current distance (in pixels) between the shape’s position and the image center minus 10× the smallest
angle (in radians) between the shape’s orientation and the null angle. The episode ends when the
shape reaches the goal state, with no additional reward.

5 Results

The performance (average episode return) of policies trained (via the PPO algorithm) using latent
representations from different models (GW and its baselines) and in different test settings is shown in
Figure 3. Results for the Factory environment are shown in the top panels, and in the bottom panels
for the Simple Shapes environment. In each case, models trained with a Full data regime are plotted
on the left, and with a Low data regime on the right.
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Figure 3: Performance (average episode return) of PPO trained using different latent representations
and tested in different settings. A fixed value was subtracted from the episode return, corresponding
to the performance of a fully-random policy in each environment; thus the random policy perfor-
mance (chance level) is equal to zero in all plots (negative values reflect a defective strategy, e.g.
systematically hitting walls and receiving penalties). All results are averaged across five different
runs (different random seeds for policy training), and the error bars reflect 95% confidence intervals
computed via bootstrapping. Models trained in the Factory environment are plotted in the top row,
and in the bottom row for the Simple Shapes environment. Multimodal networks trained with all
paired data are plotted in the left column (Full data regime); in the right column, the networks only
have access to a subset of multimodal paired data (Low data regime). Each plot is divided into three
parts: PPO trained directly from a unimodal latent representation; PPO trained and tested on the same
multimodal latent representation; PPO trained on one multimodal latent representation and tested
on the other (zero-shot cross modal policy transfer). In any given plot, bars sharing the same color
depict the same trained model, tested in different settings.

We first focus on the performance of PPO trained directly on unimodal representations, visible on
the left part of each plot in Figure 3. As expected, unimodal PPO acts as an upper baseline in the
Simple Shapes environment, which is fully observable from each input modality. This is not the case
in Factory, where PPO trained from attributes performs better than from vision; this highlights the
asymmetry between visual inputs (partial observation) and attributes (entire state observation) in this
environment.

The performance of PPO trained and tested on multimodal latent representations obtained in a Full
data regime are reported in the middle part of the two left plots in Figure 3. In both environments,
GW and GW without cycles yield similar rewards as the upper baseline (PPO trained directly from

7



attributes). AVAE achieves similar performance in Simple Shapes, but degraded performance in
Factory. Finally, the CLIP-like model performs poorly in both environments. We can also highlight
that in Factory, policies trained from GW and (to some extent) GW w/o cycles are able to bridge
the performance asymmetry between vision and attribute inputs. This is an example of multimodal
grounding in the GW, whereby the learned multimodal latent representation of visual inputs is richer
and more informative for a downstream decision task than the unimodal visual latent representation.
The difference with results from the CLIP-like model reveals the importance of adding broadcast
objectives in addition to contrastive alignment.

In the Full data regime scenario, both supervised and semi-supervised GW models (with and without
cycles) perform near-optimally when trained and tested on the same multimodal latent representa-
tions. However, the GW cycles are particularly important when we consider the Low data regime
scenario (middle part of the plots on the right in Figure 3). Here, we actually observe a drop in
PPO performance for all the models in at least one input modality, except for the full GW. The
decreased performance of GW w/o cycles highlights the crucial role played by the unsupervised
cycle-consistency objectives in maintaining broadcast and alignment properties when the amount of
multimodal paired data is low.

Finally, the zero-shot cross-modal policy transfer capabilities are shown on the right part of each
plot of Figure 3. In both the full and low data regimes, and for both environments, the full GW
allows for nearly optimal zero-shot transfer between modalities: a policy trained and tested on GW
latent representations of attributes performs equally well when tested on GW latent representations
of images (green bars), and vice-versa (red bars). The AVAE model is the only other model that
permits a similar zero-shot transfer, but only in one of the four experimental settings—Simple Shapes
in the Full data regime. In the Low data regime of Simple Shapes and in both regimes of Factory, the
policy trained in one AVAE modality does not transfer well to the other. This is also the case for the
CLIP-like baseline and for the GW w/o cycles ablation, in all four experimental settings.

In summary, policies learned from a GW latent representation are particularly efficient, and in some
cases (e.g., Factory) can even surpass policies trained from unimodal representations. In addition,
only policies trained from GW latents could systematically generalize to the opposite modality
(zero-shot cross-modal transfer). We found that relying only on a contrastive alignment objective to
establish a multimodal space (like CLIP) was insufficient. The introduction of broadcast objectives
(supported by the GW decoders, see Figure 2) compels the GW encoders to retain most information
present in the original unimodal latents, so that they can be accurately reconstructed by the broadcast
operation. Such a GW can be trained in a purely supervised way (GW w/o cycles) when both
modalities provide fully-observable information (Simple Shapes) and when large amounts of paired
multimodal data are available for supervised training (Full data regime). In all other scenarios,
the inclusion of unsupervised cycle-consistency objectives (full GW model) proves beneficial in
preserving information and maintaining alignment between multimodal representations.

6 Conclusion

Our study applied a multimodal representation learning approach previously proposed by Devillers
et al. [2023] (an adaptation of the Global Workspace Theory from Cognitive Science) to the training of
an RL agent. The implemented model enables the construction of a multimodal latent space, allowing
the encoding of unimodal information and exploiting the synergies between the different modalities.
We demonstrated the capability of a GW to enable zero-shot cross-modal policy transfer, illustrating
the adaptability and generalization of the learned policies across diverse modalities. Additionally, we
highlighted the potential advantages of employing a semi-supervised learning framework, as seen in
GW with cycle-consistency, especially in scenarios where data collection can be costly. Using a GW
to generate multimodal representations, instead of other existing methods such as CLIP [Radford
et al., 2021] or AVAE [Silva et al., 2020], was found to improve policy performance as well as
zero-shot policy transfer across modalities. This approach not only showcases the potential of the
Global Workspace Theory in enhancing the performance of RL agents, but also opens avenues for
the development of more robust and versatile artificial intelligence systems capable of seamlessly
transferring knowledge between different sensory domains. However, the choice of attributes as a
second modality may not fully capture the complexities of real-world applications. Using a textual
or proprioception (joints position of the robot) modality could present more significant challenges
and provide a more realistic assessment of the system’s capabilities. However, using sentences to
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describe agent’s state in such control environment would be very similar to using attributes. For this
reason, testing this approach in a more real-world environment is crucial for validating our findings
and ensuring the robustness and applicability of the developed systems.
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EWRL Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper present RL policy transfer across different modalities thanks to a
brain-inspired multimodal representation. Using other models doesn’t lead to such good
results as the Global Workspace as claimed in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We are aware of the limitations of our model, which we discussed in the
conclusion (Section 6). Using attributes instead of more complex and less overlapping
modalities like text or proprioception could have lead to more realistic case alongside with
less controlled environments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results, only experimental ones.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 3 we introduced information to introduced the problem (dataset,
global architecture, different step of training). This information is supplemented by more
detailed one on the architectures, the losses, the rewards, etc in Appendices B, C, D and E
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While EWRL does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: For the moment only the code for the Simple Shapes environment is available
on Github with checkpoints of the models used for the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the EWRL code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the EWRL code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Training and Test details are present in Appendices B and D but not in the core
of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures 3 and 6 show a 95% Confidence Interval for each bar. These confidence
intervals are performed with 5 different runs each time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All information about computational resources were put in Section .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
EWRL Code of Ethics https://ewrl.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We don’t see any violation of the EWRL Code of Ethics in this paper. To
satisfy at 100% all the points we plan to release a public repository with our code.

Guidelines:

• The answer NA means that the authors have not reviewed the EWRL Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The results are obtained on controled environment with small dataset and
modalities (like attributes) that cannot always being used in reality. To see concrete impact
on society other steps of scaling in complexity and size should be perform alongside with
more realistic use case
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We think that the paper doesn’t present such risk. The model is fully trained
internally on controlled datasets without a large pretrained model

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We took inspiration of the Global Workspace architecture from another paper
as said and cited many times in Section 3. We also used PPO from stable baselines 3 that
we cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: For the moment we didn’t release any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the EWRL Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the EWRL Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Code availability

We provide the code for our experiments, pretrained models, and our environments here: https:
//github.com/leopoldmt/RL_Simple_Shapes.git for Simple Shapes and https://github.
com/leopoldmt/Factory.git for Factory.

B Model Parameters

In this Appendix, we provide details about our models’ implementation, starting with the β-VAE used
in both visual environments: Simple Shapes (Table 1) and Factory (Table 2). In the VAE encoder,
all convolutions have a padding of 1, a stride of 2, and a kernel-size of 4. For the decoders, in
Simple Shapes (Table 1), the transposed convolutions have a padding of 1, a stride of 2, and a kernel
size of 4, except the first one which has a stride of 1. The final convolution has a stride of 1 and a
kernel size of 4. In Factory (Table 2), the transposed convolutions have a padding of 2, a stride of
2, and a kernel size of 5, except the first one which has a stride of 1 and a kernel size of 8 without
padding. The final convolution has a stride of 1 and a kernel size of 5. For both environments the β
value was set to 0.1. The β-VAE was always trained with the entire set Uv in both environments (500
000 images in Simple Shapes and 200 000 images in Factory).

VAE encoder (2.8M params) VAE decoder (3M params)
x ∈ R3×32×32 z ∈ R12

Conv128 − BN − ReLU FC8×8×1024

Conv256 − BN − ReLU ConvT512 − BN − ReLU
Conv512 − BN − ReLU ConvT256 − BN − ReLU
Conv1024 − BN − ReLU ConvT128 − BN − ReLU
Flatten − FC2×12 Conv1 − Sigmoid

Table 1: Architecture and number of parameters of the VAE used in the Simple Shapes environment.

VAE encoder (2.8M params) VAE decoder (5M params)
x ∈ R3×128×128 z ∈ R10

Conv128 − BN − ReLU FC8×8×512

Conv256 − BN − ReLU ConvT256 − BN − ReLU
Conv512 − BN − ReLU ConvT128 − BN − ReLU
Conv1024 − BN − ReLU ConvT64 − BN − ReLU
Flatten − FC10 Conv1 − Sigmoid

Table 2: Architecture and number of parameters of the VAE used in the Factory environment.

Table 3 and Table 4 present details about the Global Workspace architecture for respectively Simple
Shapes and Factory. The tables show the architecture for the encoder and decoder of only one
modality, since they are nearly identical across modalities. Only the last Fully Connected layer of the
decoders is different, outputting a vector of the original size of each domain.

GW encoder (35K params) GW decoder (50K params)
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC FC

Table 3: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Simple Shapes

The implementation details for AVAE are presented in Table 5 for Simple Shapes and Table 6 for
Factory. In both environments the parameters for the Conv and ConvT layers in the image VAE are
the same as the ones used in their respective VAE in Tables 1 and 2. For Simple Shapes, the input

19

https://github.com/leopoldmt/RL_Simple_Shapes.git
https://github.com/leopoldmt/RL_Simple_Shapes.git
https://github.com/leopoldmt/Factory.git
https://github.com/leopoldmt/Factory.git


GW encoder (1.3M params) GW decoder (1.3M params)
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC FC

Table 4: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Factory

layer of the attributes side is divided in two Fully Connected layers: one for the category of the shape
(one-hot vector) and one for the rest of the attributes (continuous values).

AVAE vision (6M params) AVAE attributes (0.6M params)
x ∈ R3×32×32 x ∈ {0, 1}3 × R8

Conv128 − BN − ReLU FC128 − ReLU
Conv256 − BN − ReLU FC128 − ReLU
Conv512 − BN − ReLU FC12 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×12 FC2×12

z ∈ R12 z ∈ R12

FC8×8×1024

ConvT512 − BN − ReLU FC128 − ReLU
ConvT256 − BN − ReLU FC128 − ReLU
ConvT128 − BN − ReLU [FC3,FC8 − Tanh]
Conv1 − Sigmoid

Table 5: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Simple Shapes environment.

AVAE vision (11M params) AVAE attributes (2M params)
x ∈ R3×128×128 x ∈ R10

Conv128 − BN − ReLU FC512 − ReLU
Conv256 − BN − ReLU FC512 − ReLU
Conv512 − BN − ReLU FC40 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×40 FC2×40

z ∈ R40 z ∈ R40

FC8×8×1024

ConvT512 − BN − ReLU FC512 − ReLU
ConvT256 − BN − ReLU FC512 − ReLU
ConvT128 − BN − ReLU FC10 − Tanh
Conv1 − Sigmoid

Table 6: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Factory environment.

C VAE exploration

Figures 4 and 5 illustrate the generation capabilities of each VAE in Factory and Simple Shapes.
To produce these Figures an image was encoded to obtain a latent vector. Each dimension of this
vector was modified by adding the value on top of the column keeping the rest frozen. The modified
vector was then decoded to obtain a resulting image. The image in the middle column in both Figure
represent the initial image encoded in the VAE because the change applied to the vector was null.
This technique allows to visualize the information contains in the different dimension. In Factory’s
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Figure 4: Latent traversal of the VAE used in Factory. The rows represent the modified dimension
and the columns the value added to the initial before decoding the latent vector.

VAE the background is always recognisable but the table can be blurry. We can still guess its colour
and approximate position with respect to the robot viewpoint (moreless on the right, left or in front
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Figure 5: Latent traversal of the VAE used in Simple Shapes. The rows represent the modified
dimension and the columns the values added to the initial before decoding the latent vector.

of the robot). For Simple Shapes the VAE is capable of generating a wide variety of images for this
environment covering all possible variations (type of shape, position, rotation, size, color).

D GW losses details

As explained in 3, the Global Workspace (GW) is trained with four different losses. Here we provide
details of their implementation, following Devillers et al. [2023].
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Ltr =
1

2
[Lattr(dattr(ev(o

i
v)), o

j
attr) + Lv(dv(eattr(o

j
attr)), o

i
v)]

Lcont = CONT [ev(o
i
v), eattr(o

j
attr)]

Ldcy =
1

2
[Lv(dv(ev(o

i
v)), o

i
v) + Lattr(dattr(eattr(o

j
attr)), o

j
attr)]

Lcy =
1

2
[Lv(dv(eattr(dattr(ev(o

i
v)))), o

i
v) + Lattr(dattr(ev(dv(eattr(o

j
attr)))), o

j
attr)]

Where CONT () is the contrastive loss used in the CLIP model [Radford et al., 2021]. Lattr repre-
sents the reconstruction loss used on the attributes side, which differs between the two environments.
In Factory (where all attributes have continuous values), it is computed with an MSE; in Simple
Shapes it is a combination of a negative log-likelihood for shape classes (discrete one-hot encoded
values) and MSE for the other (continuous) attributes. Lv represents the reconstruction loss on the
visual side, computed with an MSE in both environments. The total loss is then computed as follows :

LGW = α · Ltr + β · Lcont + γ · Ldcy + θ · Lcy

Where α, β, γ, θ are hyperparameters giving more or less importance to each loss. The following
table contains the hyperparameters for all Global Workspace models (and ablations) in the Full data
regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 1 γ = 0 γ = 0
θ = 1 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

The table below shows the hyperparameters used in the Low data regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 10 γ = 0 γ = 0
θ = 10 θ = 0 θ = 0

E Reward details

The reward in the Factory environment is given by a combination of the distance between the robot
and the table, and the angle between the orientation of the robot and the table (this is meant to
encourage the policy to turn the robot facing the table, regardless of its original location):

r = −distance − 10× angle

r = −
√
(xr − xt)2 + (yr − yt)2 − 10× | arccos([cθr , sθr ],

[xt − xr, yt − yr]

||[xt − xr, yt − yr]||2
)|

The reward in the Simple Shapes environment is given by a combination of the distance between the
position of the shape and the center of the image, and the angle of the shape:

r = −distance − 10× angle

r = −
√
(x− 16)2 + (y − 16)2 − 10× | arccos([cθ, sθ], [1, 0])|
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F Computational Resources

All the models training were performed on local NVIDIA Quadro RTX 5000 with 16Gb of RAM.
The two VAEs (one for Factory and one for Simple Shapes) and the AVAE training took 2 days each.
The training duration of the Global Workspace depends on the losses hyperparameters but took in
average 2 hours. Finally the agent for both environment was trained with a maximum of 1 million
steps. In Factory the agent was trained during 6 hours on NVIDIA Quadro RTX 5000. For Simple
Shapes the training was performed on NVIDIA A100 80GB during 8 hours.

G A2C in Simple Shapes scenario
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Figure 6: Performance of A2C in the Simple Shapes environment. Notations and conventions as in
Figure 3.

An additional experiment was performed in the Simple Shapes environment to verify that our results
were robust to the choice of policy training algorithm. For this, we used A2C, introduced by
Mnih et al. [2016]. Figure 6 shows that the results are reproducible with this alternative algorithm
(compare with Figure 3, bottom). A2C trained from a Global Workspace performs as well as when
trained on unimodal representations, both in terms of absolute performance and in terms of zero-shot
cross-modal transfer. AVAE performs similarly in the Full data regime, but poorly in the Low data
regime. The two other models (Global Workspace without cycles and CLIP-like ablation), give worse
performance in both regimes, as in the case of PPO.
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