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Abstract

Content is created for a well-defined purpose,001
often described by a metric or signal repre-002
sented in the form of structured information.003
The relationship between the goal (metrics)004
of target content and the content itself is non-005
trivial. While large-scale language models006
show promising text generation capabilities,007
guiding the generated text with external met-008
rics is challenging. These metrics and con-009
tent tend to have inherent relationships and010
not all of them may be of consequence. We011
introduce CaM-Gen: Causally-aware Gener-012
ative Networks guided by user-defined target013
metrics incorporating the causal relationships014
between the metric and content features. We015
leverage causal inference techniques to identify016
causally significant aspects of a text that lead017
to the target metric and then explicitly guide018
generative models towards these by a feedback019
mechanism. We propose this mechanism for020
variational autoencoder and Transformer-based021
generative models. The proposed models beat022
baselines in terms of the target metric control023
while maintaining fluency and language qual-024
ity of the generated text. To the best of our025
knowledge, this is one of the early attempts026
at controlled generation incorporating a metric027
guide using causal inference.028

1 Introduction029

Most content is created for a well defined goal. For030

example, a blog writer often publishes articles to031

gain popularity and trigger conversations, and a032

columnist may write an opinionated piece to gather033

feedback. In marketing applications, these goals034

are business objectives that need to be optimised035

using the content shared with the customers. The036

validation of whether the goal was met or not is037

done by tracking metrics that capture the reader038

behavior. In social media, metrics include number039

of comments, likes, or shares whereas for a pub-040

lishing house they are the number of views and041

readers. These engagement metrics (hereafter, met- 042

rics) are proxy for target goals. Based on historical 043

content, textual content characteristics that success- 044

fully achieve the desired metrics can be assessed 045

(Tan et al., 2019; Verma et al., 2020). Guiding text 046

generation models by these signals is important for 047

meeting the required goals. 048

While recent neural language models have 049

shown tremendous success towards fluent text gen- 050

eration (Radford et al., 2018; Devlin et al., 2019), 051

achieving controlled, goal-specific generation is 052

challenging. There have been work on text gener- 053

ation controlling for style, topic, or size (Keskar 054

et al., 2019). These methods are able to leverage 055

content characteristics that are common between 056

the definition of goal (i.e. control) and the text. 057

However, for metrics that are not explicit in the 058

text, controlled generation is non-trivial to codify. 059

The challenge is introduced due to the fact that for 060

external metrics, there is a need to first identify 061

the relationship between the content characteristics 062

and the metric and then to explicitly introduce a 063

guide/constraint enabling the generator to learn the 064

desired content properties. Contrary to style, these 065

choices might be difficult for a layman to manually 066

identify and input to the generative models. 067

Textual content is an amalgam of various linguis- 068

tic features (Verma and Srinivasan, 2019) – lexical, 069

pertaining to word choices; semantics, concerned 070

with the meaning; syntactic, relating to parts of 071

speech tags; and surface-level features, comprising 072

punctuation, word count, sentence count, etc. As is 073

expounded in causal literature, a correlation analy- 074

sis between these features and the target outcome 075

is insufficient (Aldrich, 1995). For a finer control, 076

we need to identify features that have direct and 077

significant impact on the outcome metric and guide 078

the generation along those features. A causally sig- 079

nificant relationship helps encode the ‘if this, then 080

that’ logic; adding such a guide for the generator 081

can help ensure on-metric generation. 082
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We discuss two modeling frameworks for metric-083

guided generation – conditional variational autoen-084

coders (Sohn et al., 2015) and Transformer-based085

language models (Vaswani et al., 2017). We pro-086

pose a modified graph for causal guidance in the087

conditional variational autoencoders (CVAE). We088

also introduce a causal guidance framework in089

Transformer-based language models using causal090

losses for explicit feedback on causal features.091

Our key contributions are introducing causal092

guidance frameworks for metric-guided, controlled093

text generation in CVAE and Transformer-based094

generative models. We experiment with a new095

dataset of news articles related to COVID-19 along096

with the NYT-comments dataset,1 showing im-097

proved performance against baseline methods. To098

the best of our knowledge, this is one of the first099

attempts towards controlled generation on engage-100

ment metrics and inclusion of causal guidance for101

controlled generation in generative models.102

2 Related Work103

The literature on text generation spans various gen-104

erative models, including variational autoencdoer105

(VAEs), generative adversarial networks (GANs),106

and sequential models. VAEs have been used for107

unconditional (Bowman et al., 2016), as well as108

constrained text generation (Zhang et al., 2016;109

Pagnoni et al., 2018). Pagnoni et al. (2018) gener-110

ate a sentence sequence y conditioned on the input111

sentence for machine translation, thus mimicing112

a sequence-to-sequence model. Hu et al. (2017)113

control sentiment and tense in text generation us-114

ing discriminators with VAEs. Zhao et al. (2017)115

introduce an additional reconstruction network in116

CVAEs for controlling linguistic features in dia-117

log generation. As we show in our experiments,118

this does not adapt well to controlled generation119

where the relationship with target goal is not as120

explicit in text. We identify these nuanced relation-121

ships between text and underlying goal and enable122

explicit control over text features influencing the123

target outcome by modifying the VAE graph.124

While VAEs enable controlled generation, they125

do not generate fluent language with limited data.126

Large Transformer-based language models (Rad-127

ford et al., 2018; Devlin et al., 2019) have shown128

efficacy in generating fluent language, allowing for129

fine-tuning for specific tasks on a smaller dataset130

1https://www.kaggle.com/aashita/
nyt-comments

while maintaining good language quality. Keskar 131

et al. (2019) introduce style control, such as do- 132

main (books, wikipedia, etc.), by conditioning the 133

generated distribution on the style token y, i.e. 134

p(x|y) =
∏n

i=1 p(xi|x<i, y). The language model 135

learns the conditional probability p(xi|x<i, y) by 136

training on sequences of raw text prepended with 137

the style control. This approach provides only weak 138

control, especially if the variation in textual fea- 139

tures for the same target metric is large. Zeng et al. 140

(2020) enable finer control over generation space 141

by introducing the control y in various internal lay- 142

ers of Transformer network. Singh et al. (2020) 143

control for a combination of lexical styles to re- 144

produce author’s styles using a RL framework for 145

Transformer-based language models. While style 146

is well reflected in the choice of vocabulary and lan- 147

guage distribution, the difference in the language 148

distribution is not as apparent for an external metric 149

as control. We observe that the external metric is 150

more influenced by various syntactic and surface- 151

level text features, as opposed to the underlying 152

vocabulary. We achieve finer control over these by 153

a causally-aware generative language model. 154

Causal Inference. Causal analysis entails dis- 155

secting the effect of specific treatments on outcome 156

variables, while controlling for other confound- 157

ing factors. These methods are widely used in 158

fields such as marketing, advertising, healthcare 159

and more recently textual analysis. Paul (2017) em- 160

ploy a propensity matching algorithm to identify 161

causal association between the text with its senti- 162

ment classification. Veitch et al. (2020) study the 163

effect of presence of elements such as theorems on 164

the acceptance rate of papers or the effect of gender 165

on the popularity of social media posts. Tan et al. 166

(2019), Verma et al. (2020) use a doubly robust 167

method on propensity-based matching to analyze 168

the effect of specific content features on the user 169

response by accounting for the confounding effect 170

of the content and other textual features. They use 171

adaptive and flexible multi-layer neural networks 172

to model potential outcomes. We adapt their tech- 173

nique to uncover causal effect of various syntactic 174

and surface-level features in textual data and then 175

use these for guiding causally-aware generation. 176

3 Causal Features Identification 177

To incorporate finer control over generation of text 178

to achieve specific target metric, we first identify 179

features that contribute to the respective outcome. 180
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Here, the outcome metric is the target value we181

wish to control. We consider various syntactic (e.g.182

noun/adjective count) and surface-level textual fea-183

tures (e.g. word/sentence/paragraph count) and184

measure their effect on the metric. Consider two185

text choices – S1: “The dog sprinted ahead so fast,186

the girl had much hard time keeping up with it.",187

S2: “The dog sprinted fast ahead. The girl panted188

trying to keep up.”; both meaningful and reason-189

able generations. Say, content with less words per190

sentence and more sentences is better liked. In this191

case, word count would have negative effect on192

outcome metric and sentence count would have a193

positive effect. Thus, the model should generate194

shorter sentences, resulting in S2.2 To this end, we195

perform a causal analysis to identify how changing196

a certain text feature will affect the outcome metric.197

The hypothetical change in an input feature of198

observed data is defined as an intervention, and199

the input feature in question is termed as the treat-200

ment variable (t). For a binary treatment, the ef-201

fect of treatment on the outcome (y) is defined as202

y1(xi) − y0(xi) for the ith text sample, where y0203

represents outcome in absence of treatment and y1204

represents outcome when treatment is applied and205

xi are the other covariates (text features). The av-206

erage treatment effect (ATE) is the expected effect207

of providing the treatment (i.e. including a spe-208

cific feature) and is given by E[y1(xi) − y0(xi)].209

This can not be directly calculated as we do not210

know what the outcome is if a certain part of text211

is changed in a certain way, i.e., y0(xi) and y1(xi)212

is not known for the same i. Moreover, in observed213

data, the treatment assignment is not independent214

of baseline covariates. We account for this by em-215

ploying a propensity-based scoring, which serves216

to balance treatment assignment in treated and un-217

treated groups (Austin, 2011).218

The propensity score is defined as the probabil-219

ity of treatment assignment conditional on baseline220

covariates, i.e. π(xi) = p(ti = 1|xi). We employ221

multi-layer neural networks to approximate propen-222

sity scores (Tan et al., 2019). The average treatment223

effect (ATE) can be estimated by inverse propensity224

treatment weighing (IPTW) (Austin, 2011), where225

each outcome is weighed by inverse probability of226

2This example uses semantically similar text pieces for
illustration. Generation task discussed in paper does not have
such parallel instances

receiving the corresponding treatment. Thus, 227

ATE =
1

n

n∑
i=1

[
tiyi
π(xi)

− (1− ti)yi
1− π(xi)

]
(1) 228

For a doubly robust estimate,3 we augment IPTW 229

with potential outcome model (Funk et al., 2011). 230

The potential outcome models estimate outcomes 231

if treatment is applied (t=1) or not applied (t=0), 232

given the other covariates. We model potential 233

outcome using two neural networks (for t=0, 1), 234

trained to minimize mean squared error in predicted 235

and actual outcome in observed articles with t=1 236

and t=0, respectively. The expected outcome in 237

presence of the treatment feature is then a func- 238

tion of the observed outcome with treatment for 239

the treated group and predicted outcome with treat- 240

ment for the untreated group, given article features, 241

weighted by a function of the propensity scores. 242

y1(xi) =
tiyi
π(xi)

− ti − π(xi)

π(xi)
ŷ1(xi) (2) 243

Similarly, the overall response in the absence of 244

treatment is estimated as 245

y0(xi) =
(1− ti)yi
1− π(xi)

+
ti − π(xi)

1− π(xi)
ŷ0(xi) (3) 246

The average effect of the treatment feature on the 247

outcome is estimated as the mean of the difference 248

of expected outcome with and without treatment. 249

ATE =
1

n

n∑
i=1

(y1(xi)− y0(xi)) (4) 250

This provides an estimate of which text features 251

have the most impact on the outcome (target) met- 252

ric.4 The ATE of continuous treatment features 253

can be estimated in a similar fashion, assuming a 254

normal treatment distribution (Tan et al., 2019). 255

4 CaM-Gen 256

We present a causally-aware text generation 257

method in VAE and Transformer-based models. 258

We consider metric-guided generation in VAE (sec- 259

tion 4.1) and then augment this conditional VAE 260

(CVAE) with a causal graph to incorporate causally 261

significant features in generative process (section 262

4.2). In Transformer-based text generation, we con- 263

dition on target metric by modifying Transformer 264

layers (section 4.3) and then introduce a causal 265

feedback for controlled generation (section 4.4). 266

3See Appendix A for more details
4List of features and their ATE is available in Appendix E
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Figure 1: VAE Graph - (a) Conditional generation, (b)
Causal feedback in conditional generation

4.1 Conditional Variational Autoencoder267

We first adapt the CVAE architecture, inspired by268

(Zhao et al., 2017). As opposed to generating a269

response to previous utterances, we model the con-270

ditional generation as a next sentence generation271

task – generate the next sentence x, given the pre-272

vious context c, and the target metric y.273

We consider a latent variable z that captures the274

latent distribution over the generation space. We275

estimate z using the prior network p(z|c, y), as-276

suming a multi-variate Gaussian distribution. The277

sentence x is generated by the decoder network278

pθ(x|c, z, y). The prior of the outcome metric is ap-279

proximated using pθ(y|c). Since the outcome met-280

ric depends on both the generated x and the given281

context c, we do not assume independence between282

the inputs c and y. We consider two recognition283

networks qϕ(y|x, c) and qϕ(z|x, c, y) to approxi-284

mate the true posteriors pθ(y|x, c) and pθ(z|x, c, y)285

(graph as shown in Fig. 1a). The CVAE network286

can be trained using the variational lower bound5287

LVnc(θ, ϕ;x, c, y) = Eqϕ(z,y|x,c)[log pθ(x|c, z, y)]
−Eqϕ(y|x,c) KL[qϕ(z|x, c, y)||pθ(z|c, y)]
−KL[qϕ(y|x, c)||pθ(y|c)]

(5)288

Intuitively, the first term is the reconstruction loss,289

the second term aligns latent variable z w.r.t. metric290

y and the generated text x, and the last term ensures291

that generation adheres to the target metric.292

4.2 Causal CVAE293

The above conditional generation controls the tar-294

get metric as a whole, but does not directly influ-295

ence specific aspects of the text that impact the out-296

come metric. Ideally, the latent variable z would297

implicitly learn these during training. However,298

5Proof included in Appendix B.1

Layer Normalisation

Self-attention layer

Fully connected layer

⊕

⊕
Layer Normalisation

× 12

Input Embedding

Positional 

Embedding⊕

Inputs

Output Embedding

Metric 

token

Token Embedding

ηt

γ1, β1

γ2, β2

Language 

Modeling Loss

Causally significant

Features

Causal Loss 

(Cross Entropy)

Figure 2: CaM-Gen: Transformer

in practice this is not so, especially in the case of 299

limited data and multiple confounders. Besides 300

aligning the latent space z w.r.t. x, we enable ex- 301

plicit causal guidance by aligning the latent space 302

to the causally significant features t (features signif- 303

icantly impacting the target metric) in the generated 304

text. Causal feature vector t comprises features 305

with ATE (section 3) higher than a threshold.6 306

The posterior distribution of latent variable z is 307

now estimated as qϕ(z|t, x, c, y). By definition, the 308

outcome metric distribution will be affected by the 309

causal features t in the generated x. The posterior 310

distribution for outcome metric y can hence be ap- 311

proximated as qϕ(y|t, x, c). The feedback of these 312

causal effects is propagated through the network by 313

minimizing the KL divergence between the prior 314

distribution pθ(y|c) and qϕ(y|t, x, c) (Fig. 1b). The 315

loss function7 for causal CVAE is 316

LVc(θ, ϕ; t, x, c, y) = Eqϕ(z,y|t,x,c)[log pθ(x|c, z, y)]
−Eqϕ(y|t,x,c) KL[qϕ(z|t, x, c, y)||pθ(z|c, y)]
+Eqϕ(z,y|t,x,c)[log pθ(t|x, c, z, y)]
−KL[qϕ(y|t, x, c)||pθ(y|c)]

(6) 317

4.3 Conditional generation in Transformer 318

The proposed Transformer model is based on the 319

GPT-2 architecture (Radford et al., 2018), which is 320

trained on language modeling loss for predicting 321

the next token given all the previous tokens. The 322

model is first pre-trained with language modeling 323

objective on a large corpora to build understand- 324

ing of language distribution enabling it to generate 325

6Significance threshold are chosen empirically, section 5.2
7Proof included in Appendix B.2
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coherent text. Although fine-tuning with the same326

objective shifts the language distribution of gener-327

ated text towards the fine-tuning corpus, explicitly328

controlling for a target metric is more nuanced. To329

introduce this explicit control, we use the metric330

to modify self-attention and normalisation layers331

in the Transformer blocks (Zeng et al., 2020), as332

shown in Fig. 2.8 In the former, attention weights333

of Transformer blocks are biased towards the target334

by changing the query vector in attention mecha-335

nism with the affine transformation of y. In the336

latter, the scale and bias parameters of layer nor-337

malisation are replaced by functions of y. This338

ensures that the target information does not wash339

away (Park et al., 2019) and is preserved through340

the normalisation layers. The generative model is341

trained with the language modeling loss given by,342

LG = Ex,y

[
−

n∑
i=1

logPG(xi|x<i, y)

]
(7)343

We introduce a metric loss as a feedback for344

the degree of metric control achieved during gen-345

eration. This is defined as the cross entropy loss346

between the input target metric and the projected347

metric for the generated text. The latter is calcu-348

lated using a fastText (Joulin et al., 2016) classi-349

fier trained on the outcome on the historical text350

across various metrics. Such a classifier, which351

predicts the engagement on held-out test set with352

high confidence, serves as an indicator of expected353

engagement on generated text. The metric loss is354

Lmetric = Ex,y,x̃=G(x,y)

[
− y logPF (y|x̃)

]
(8)355

PF (y|x̃) denotes the probability of the outcome of356

the generated text x̃ to be the target metric y.357

4.4 Causal guidance in Generative Model358

The addition of the target metric as control in in-359

put embedding, self-attention mechanism or layer360

normalisation guides the generative model towards361

the target metric by shifting the language distribu-362

tion of the generative model. However, an explicit363

guidance of different aspects of text that influence364

the outcome metric is absent. To achieve this, we365

add causal guidance in the generation process. We366

introduce a causal loss in the above Transformer367

model to lead the generated text to adopt causally368

significant features (t). The output tokens gener-369

ated from the Transformer are fed into an SVM370

8η, γ, β are the scale/bias parameters in respective layers
(details in Appendix C)

Dataset Metric Low Med. High
Webhose Participation 20482 9181 9529
(Total:39192) Replies 20440 9262 9490
NYT Comment 3160 3075 3168
(Total:9403) Upvote 3122 3126 3155

Table 1: Number of samples in across metrics

that extracts these features from the generated text. 371

The model is then trained with the additional objec- 372

tive of minimizing the cross entropy loss between 373

the target metric and the predicted outcome metric 374

based on these causal features in output text. 375

Lcausal = Ex,y,x̃=G(x,y)

[
− y logPF ′(y|t(x̃))

]
(9) 376

where PF ′ is the expected outcome metric given 377

the causal features t(x), estimated using a fastText 378

model trained on causal features extracted from 379

observed data. The proposed causal loss aims at 380

ensuring that the causal features in generated text 381

adheres to target metric, by isolating the effect of 382

causal features in text from its context. 383

The resultant loss optimized by the proposed 384

model is a weighted sum of these losses, i.e. L = 385

λGLG+λmetricLmetric+λcausalLcausal, where λG, 386

λmetric, λcausal are weights for different losses se- 387

lected by hyper-parameter tuning on validation set. 388

Equivalence between Causal CVAE and 389

Transformer: In the VAE-based models, we con- 390

sider the context c and discuss the next sentence (x) 391

generation task. At token-level, c is similar to the 392

context x<i in the next token (xi) generation objec- 393

tive. Thus, the decoding term in CVAE loss (first 394

term in Eq. 5) is equivalent to LG (Eq. 7) in the 395

Transformer model. Similarly, the KL divergence 396

between metric prior and posterior distribution in 397

LVnc (last term in Eq. 5) can be equated to the met- 398

ric loss in Eq. 8. The corresponding term in LVc 399

(last term in Eq. 6) serves as the causal loss, sim- 400

ilar to Lcausal in Eq. 9. With minor adjustments, 401

this causal guidance framework can be extended to 402

other generative networks in a similar fashion. 403

5 Experiments 404

Datasets. We experiment with 2 text datasets: 405

NYT comments, which comprises articles with 406

comments and metrics such as upvote and com- 407

ments count and the Webhose9 dataset comprising 408

of articles and comments with metrics such as total 409

participation on articles, replies count, and various 410

9https://webhose.io/free-datasets/
news-articles-that-mention-corona-virus/
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Metric/ Model Variation Control (↑) Perplexity BLEURT ROUGE (↑)
Dataset % accuracy (↓) (↑) 1 2 L

Pa
rt

ic
ip

at
io

n
(W

eb
ho

se
) Transformer

Baseline GPT-2 51.93 16.27 -0.98 0.010 0.0 0.002
LG 59.94 15.14 -0.81 0.110 0.013 0.085

LG + Lmetric 62.78 3.03 -0.83 0.113 0.012 0.074
Causal model (our) 69.86 3.19 -0.79 0.201 0.022 0.130

CVAE
Baseline CVAE 51.37 34.37 -0.80 0.113 0.010 0.063
metric-guided 54.43 28.21 -0.69 0.179 0.017 0.099

Causal model (our) 55.66 30.03 -0.71 0.130 0.012 0.079

R
ep

lie
s

(W
eb

ho
se

)

Transformer
Baseline GPT-2 51.79 17.76 -0.91 0.005 0.0 0.005

LG 59.87 13.94 -0.85 0.051 0.004 0.043
LG + Lmetric 60.17 3.48 -0.79 0.107 0.011 0.070

Causal model (our) 68.27 3.12 -0.81 0.211 0.022 0.133

CVAE
Baseline CVAE 50.58 38.41 -0.89 0.046 0.001 0.035
metric-guided 56.14 20.58 -0.8 0.124 0.002 0.072

Causal model (our) 60.00 30.24 -0.76 0.031 0.001 0.022

C
om

m
en

ts
(N

Y
T

)

Transformer
Baseline GPT-2 37.24 27.45 -0.83 0.140 0.088 0.135

LG 49.85 23.59 -0.87 0.095 0.051 0.088
LG + Lmetric 53.82 14.99 -0.89 0.10 0.011 0.052

Causal model (our) 54.36 13.18 -0.81 0.10 0.01 0.049

CVAE
Baseline CVAE 39.12 58.35 -1.41 0.059 0.002 0.031
metric-guided 44.42 41.64 -1.32 0.069 0.003 0.036

Causal model (our) 54.59 40.02 -1.29 0.064 0.003 0.032

U
pv

ot
es

(N
Y

T
)

Transformer
Baseline GPT-2 39.49 27.44 -0.83 0.132 0.080 0.127

LG 46.02 23.57 -0.88 0.077 0.032 0.070
LG + Lmetric 53.66 14.93 -0.82 0.110 0.011 0.053

Causal model (our) 53.96 13.19 -0.80 0.103 0.010 0.051

CVAE
Baseline CVAE 37.06 72.68 -0.89 0.057 0.002 0.031
metric-guided 43.21 65.94 -0.84 0.064 0.002 0.036

Causal model (our) 59.54 57.70 -0.84 0.056 0.001 0.030

Table 2: Automatic Evaluation for Webhose (Participation, Reply count) and NYT (Comments, Upvotes) Datasets.
The causal Transformer model beats all other methods on metric control while achieving comparable fluency.

social media reactions for these articles. These411

metrics are used as target goal for article text gener-412

ation. We filter and pre-process10 this data resulting413

in 39k article data which we use for our training414

with a train-dev-test split of 80-10-10 (Table 1).415

We categorize the target metrics into high, medium,416

and low classes, resulting in categorical target goal417

(e.g. high/ low replies count).418

Training details. For causal model, we use two se-419

quential feed forward neural networks with 5 dense420

layers of size 128, each followed by an activation421

layer, for the treatment and potential outcome net-422

work trained with Adam optimizer (Kingma and423

Ba, 2014). The parts of speech (POS) are ex-424

tracted using the POS tagging in textblob11 library.425

Both treatment and potential outcome networks are426

trained on 90-10 train-test split over 10 epochs.427

For CVAE, we use a bidirectional recurrent neu-428

ral network (bi-RNN), which encodes each context429

sentence to a fixed 300-sized vector. We pass these430

vectors through another GRU network with one431

hidden-layer of 600-dimension, resulting in the432

10Preprocessing details in Appendix D.
11https://textblob.readthedocs.io

context vector c. The decoder network is also a 433

one-layer GRU with dimensionality 400. The end- 434

to-end model is trained with an Adam optimizer. 435

We use a Transformer model with 16 multi- 436

attention heads with latent dimension of 768 and 437

a vocabulary size of 50527 with BPE encoding 438

(Sennrich et al., 2016). We use the GPT-2 (Rad- 439

ford et al., 2018) model with 117M parameters 440

pre-trained on the WebText dataset to initialize our 441

model and then fine-tune it with NYT and Webhose 442

datasets using our causal metric-guided framework. 443

For causal variants, the causal vector t is extracted 444

from the generated text based on a pre-determined 445

list of causally-significant features (identified be- 446

forehand using ATE analysis in section 3). 447

5.1 Evaluation metrics 448

Control: We measure target control accuracy 449

against predicted outcome metric in the generated 450

text using fastText classifiers trained on available 451

data. The classifiers have test accuracy of 79.8%, 452

81.4%, 80% and 79.9% for participation, replies, 453

comment, upvotes counts, respectively. 454

Fluency: We measure the text fluency and the 455
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Figure 3: Class-wise performance for Transformer-based model variants.

Treatment Loss Accuracy
Word Count 0.1791 0.9301
Sent Count 0.2268 0.9266
Noun Count 0.1520 0.9520
Verb Count 0.1437 0.9592
Adjective Count 0.2133 0.9349
Adverb Count 0.1863 0.9431
Pronoun Count 0.1522 0.9377

(a) Propensity scoring model

Outcome metrics MAE Accuracy
Upvotes 0.1357 0.9157
Replies count 0.2359 0.8455
Discussion depth 0.2549 0.8322
Comment count 0.1438 0.9104

(b) Potential outcome model

Table 3: Loss and test accuracy of models used for
causal effect identification

language model quality using perplexity, ROGUE456

(Lin, 2004) and BLEURT (Sellam et al., 2020)457

scores. The perplexity is a measure of likelihood458

of the generated sentence on a language model.459

We use a pre-trained GPT-2 model to evaluate text460

perplexity. A lower value is preferred. BLEURT461

is a pre-trained evaluation metric based on BERT462

(Devlin et al., 2019) that provides a robust measure463

for reference-based text generation. We calculate464

ROGUE and BLEURT scores against reference465

articles in test data with same keywords and target.466

5.2 Results467

We compare causal and non-causal variants of the468

proposed CVAE and Transformer-based models. In469

the Transformer variants, we evaluate the perfor-470

mance with metric added as a guide in embedding,471

attention, and normalisation layers, trained with472

LG (Eq. 7). Next, we introduce the metric loss to473

add feedback for adherence to target metric, train-474

ing the model with LG + Lmetric (Eq. 8). The final475

proposed causal model is trained with LG + Lmetric476

+ Lcausal (Eq. 9). For CVAE, non-causal and causal477

models are trained with LVnc and LVc (Eq. 5, 6)478

respectively. We fine-tune a GPT-2 (Radford et al.,479

2018) model with metric token added to the prompt480

for control, similar to (Keskar et al., 2019), and use481

it as a baseline. We also use the method proposed482

by (Zhao et al., 2017) as the baseline CVAE model.483

As seen in Table 2, adding metric as explicit484

guide improves accuracy both in Transformer and485

CVAE models, and the causal models outperforms486

all other variants in the same architecture. Addition-487

ally, our variants are at par in text quality, with the 488

Transformer models performing notably better on 489

language fluency than CVAE models. We attribute 490

this to generative pre-training with large corpus 491

equipping Transformer-based language model with 492

fluent language generation. Note that, given the 493

free-form nature of generative task, the references 494

considered for ROUGE and BLEURT are a poor fit 495

as the generation space could be pretty large. This 496

is reflected in low scores for these metrics across 497

all models. Hence, low perplexities are a better 498

indication of generation fluency. 499

Causal CVAE exhibits better metric control than 500

the non-causal and baseline CVAE, but performs 501

poorer than the causal Transformer model. This 502

could also be an artifact of language quality, since 503

the underlying classifiers are trained on fluent lan- 504

guage. Across Transformer variations, addition of 505

metric loss and causal guidance improves metric 506

control, validating our hypothesis. It is interest- 507

ing to note that the perplexity drops substantially 508

on adding the metric loss in Transformer-based 509

model. This could raise the question on how ad- 510

ditional losses (constraints) could result in more 511

fluent generation. We emphasize that, in baseline 512

and all other variants, the constraint is on the tar- 513

get metric. Thus, both baseline GPT-2 and modi- 514

fied Transformer (with only LG) attempt to align 515

their generation space to this target. An inadequate 516

alignment of generation space to the desired con- 517

trol is likely to result in noisy generations. In that 518

sense, metric/causal do not add more constraints, 519

rather add feedback to meet the specified constraint 520

(goal), leading to more controlled and less noisy 521

generations. This would potentially explain higher 522

perplexities observed in the first two variants. 523

Class-wise Performance. Table 2 aggregates re- 524

sults across target classes. To compare the perfor- 525

mance across high/medium/low class, we record 526

class-wise metric accuracy. Fig. 3 shows con- 527

fusion matrices for Transformer-based variants 528

with high/medium/low participation count as tar- 529
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(b) Replies Count

Figure 4: Average treatment effect of features like word
count, sentence count, POS tag counts across metrics.

get. Across methods, we observe that controlling530

for medium target metric is harder than either of531

the other classes. Compared to the baseline, vari-532

ants with causal guidance and metric loss show533

improved performance for both high and low target534

class. Our proposed causally-guided Transformer535

model is the best performing model on per class-536

level as well, confirming the efficacy of our pro-537

posed approach across different target classes.538

Causal Feature Identification. Table 3 shows the539

accuracy of the propensity scoring and potential540

outcome models. Our propensity scoring models541

have accuracy > 0.92 for all treatment features542

and the potential outcome model performs well for543

Upvote and Comment count. We use these as target544

metrics in generative models for NYT dataset. Sim-545

ilar analysis on Webhose data yields Participation546

and Replies count as target metric. Fig. 4 shows547

Average Treatment Effect (ATE) of various text548

features on these outcome metrics. We empirically549

choose significance level of 0.1 and consider fea-550

tures with ATE of greater than 0.1 (in magnitude)551

as ‘causally significant’ features. We include these552

as causal features in the generative models.553

Causal Analysis. We note that the fastText classi-554

fiers used for metric evaluation have relatively low555

accuracy (although much better than a random 33%556

classification). We attribute this to high variability557

in the text and unpredictability of resulting engage-558

ment. As discussed previously, a causal analysis559

of historical text accounts for semantic and topical560

variation. Similarly, a causal analysis of generated561

data, and subsequent comparison with historical562

trends, could compensate for any potential inade-563

quacies of classifier-based evaluation. To this end,564

we perform a causal analysis of the text generated565

by the baseline and our proposed model.566

We generate text with high, medium and low567

target participation count (pcount) as target and568

record average value of various treatment features569

(Fig. 5). Here, the word and sentence counts570
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(b) Baseline Model

Figure 5: Comparison of textual features in text gener-
ated by causal vs baseline Transformer model

are normalised and POS features are fraction of 571

words with certain POS tag over total number of 572

words in the generated text. We test the adoption of 573

‘causally significant’ features in the causal model 574

by analyzing feature distributions of text generated 575

by causal model and baseline Transformer model 576

across classes (high/medium/low). For instance, 577

word count has a negative ATE on pcount (Fig. 4a). 578

Thus, we would expect a text with higher word 579

count to have lesser pcount. As seen in Fig. 5a, 580

our causal model with ‘high’ target pcount gen- 581

erated articles with lower word count on average 582

than the causal model with ‘low’ target (red and 583

blue bars in first group in Fig. 5a respectively). 584

Similar trends are observed across other ‘causally- 585

significant’ treatment features. In contrast, the text 586

generated by baseline model (Fig. 5b) either do not 587

show significant variation in these features across 588

text generated with high, medium and low target 589

or the difference is inconsistent, reflecting the lack 590

of control over aspects of text in baseline models 591

where generation is only guided by target metric. 592

As these features, by definition, significantly im- 593

pact the outcome; this analysis adds further confi- 594

dence in stronger adherence to the target metric in 595

our proposed causal approach over the baseline. 596

6 Conclusion 597

We present a framework for causally-aware metric- 598

guided generation in VAE and Transformer-based 599

models. We successfully identify causally signifi- 600

cant text features using causal analysis and incor- 601

porate them into the generative model. We show 602

that integrating causal guidance in guided gener- 603

ation enables better control over the target met- 604

ric, while maintaining language quality. Our pro- 605

posed causally-guided Transformer model shows 606

improved performance across datasets. Moreover, 607

we show that the generated text adheres to these 608

causal features, in line with their observed effect 609

in historic data. This exploration opens up avenues 610

for leveraging causality for controlled generation. 611
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A Conditional Variational Autoencoder761

A.1 Non-Causal CVAE762

The graph for non-causal conditional generation763

using variational autoencoder is shown in Fig. ??.764

As discussed in section 4.1, we approximate the765

intractable posterior distribution pθ(z|x, c, y) with766

the recognition network qϕ(z|x, c, y), where767

qϕ(z|x, c, y) = qϕ(z, y|x, c)qϕ(y|x, c) (10)768

The variational parameters ϕ are chosen such that769

the approximate posterior distribution qϕ(z|x, c, y)770

is as close to the true posterior distribution771

pθ(z|x, c, y) as possible. This is done by mini- 772

mizing the KL divergence between the two distri- 773

butions. Thus, 774

ϕ∗ = argmin
ϕ

KL[qϕ(z, y|x, c)||pθ(z, y|x, c)],

(11) 775

where the KL divergence is given by, 776

KL[qϕ(z, y|x, c)||pθ(z, y|x, c)

= Eqϕ(z,y|x,c)

[
log

qϕ(z, y|x, c)
pθ(z, y|x, c)

]
= Eqϕ(z,y|x,c)

[
log qϕ(z, y|x, c)

− log
pθ(x, c, z, y)

pθ(x|c)

]
.

(12) 777

Rearranging equation 12 gives, 778

log pθ(x) = KL[qϕ(z, y|x, c)||pθ(z, y|x, c)
+Eqϕ(z,y|x,c)

[
log pθ(x, c, z, y)

− log qϕ(z, y|x, c)
] (13) 779

We want to minimize the KL divergence term on 780

R.H.S. of equation 13. Since, the KL divergence 781

is ≥ 0, the variational lower bound on the log 782

likelihood log pθ(x) is given by 783

L(θ, ϕ;x, c, y) = Eqϕ(z,y|x,c)
[
log pθ(x, c, z, y)

− log qϕ(z, y|x, c)
]

= Eqϕ(z,y|x,c)
[
log[pθ(x|c, z, y)p(z, y|c)]

− log qϕ(z, y|x, c)
]

= Eqϕ(z,y|x,c) log pθ(x|c, z, y)
−KL

[
qϕ(z, y|x, c)||pθ(z, y|c)

]
(14)

784

Using equation 10, we get 785

KL
[
qϕ(z, y|x, c)||pθ(z, y|c)

]
= Eqϕ(y|x,c)KL

[
qϕ(z|x, c, y)||pθ(z|c, y)

]
+KL

[
qϕ(y|x, c)||pθ(y|c)

] (15) 786

Replacing in equation 14, we get the variational 787

lower bound for non-causal CVAE as 788

L(θ, ϕ;x, c, y) = Eqϕ(z,y|x,c) log pθ(x|c, z, y)
−Eqϕ(y|x,c)KL

[
qϕ(z|x, c, y)||pθ(z|c, y)

]
−KL

[
qϕ(y|x, c)||pθ(y|c)

]
(16)

789
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A.2 Causal CVAE790

As discussed in section 4.2, we add causal guidance791

in CVAE framework by adding the treatment vector792

t for aligning the latent space of the Variational793

Autoencoder. The posterior distribution for the794

causal-CVAE graph in Fig. 1 is approximated by795

qϕ(z|x, c, y). Similar to equation 14, we get the796

variational lower bound for causal CVAE as797

L(θ, ϕ; t, x, c, y) = Eqϕ(z,y|t,x,c)
[
log pθ(t, x, c, z, y)

− log qϕ(z, y|t, x, c)
]

= Eqϕ(z,y|t,x,c)
[
log[pθ(t|x, c, z, y)

pθ(x|c, z, y)p(z, y|c)]
− log qϕ(z, y|t, x, c)

]
= Eqϕ(z,y|t,x,c) log pθ(t|x, c, z, y)
+Eqϕ(z,y|t,x,c) log pθ(x|c, z, y)
−KL

[
qϕ(z, y|t, x, c)||pθ(z, y|c)

]
.

(17)

798

The conditional posterior qϕ(z, y|t, x, c) is given799

by800

qϕ(z|t, x, c, y) = qϕ(z, y|t, x, c)qϕ(y|t, x, c).
(18)801

Thus,802

KL
[
qϕ(z, y|t, x, c)||pθ(z, y|c)

]
= Eqϕ(y|t,x,c)KL

[
qϕ(z|t, x, c, y)||pθ(z|c, y)

]
+KL

[
qϕ(y|t, x, c)||pθ(y|c)

]
.

(19)

803

Using this in equation 17 gives us the variational804

lower bound for causal CVAE as805

L(θ, ϕ; t, x, c, y) = Eqϕ(z,y|t,x,c) log pθ(t|x, c, z, y)
+Eqϕ(z,y|t,x,c) log pθ(x|c, z, y)
−Eqϕ(y|t,x,c)KL

[
qϕ(z|t, x, c, y)||pθ(z|c, y)

]
−KL

[
qϕ(y|t, x, c)||pθ(y|c)

]
(20)

806

B Conditional generation in Transformer807

As discussed in section 4.3, we modify attention808

and normalisation layers in a transformer architec-809

ture for adding metric as a guide. Inspired by Zeng810

et al. (2020), we introduce the metric as follows:811

(1) Input embedding: The metric control y is di-812

rectly added to the token and position embeddings813

of the input to the first transformer layer. This en-814

ables control by slanting the input representation815

towards the target metric. 816

(2) Self-attention: In self-attention mechanism of 817

transformers, each input token is weighted with 818

respect to other positions in the input. For each 819

token xt, query qt, key kt and value vt is calcu- 820

lated using learned weight matrices WQ, WK and 821

W V respectively. The attention score for token 822

xt is computed by a compatibility function of the 823

corresponding query qt with the keys ki of other 824

tokens and the attention vector is computed as the 825

weighted average of these attention scores with the 826

value vector vt. This can be written as 827

softmax

(
QKT

√
dk

)
V, (21) 828

where dk is the dimension of the key vector kt. We 829

modify this attention calculation to introduce the 830

control y by changing the query vector in the above 831

equation to qt = ηt(y), where ηt denoted an affine 832

transformation. Modifying the query vector accord- 833

ing to the specific target metric allows for biasing 834

attention weights towards the target and capturing 835

target control in the context representation, which 836

aids in targeted decoding and generation. 837

(3) Layer Normalisation: Classically, the layer nor- 838

malisation in transformers is calculated as 839

LayerNorm(ν) = γ
ν − µ

σ
+ β, (22) 840

where µ and σ are the mean and standard deviation 841

of the elements in ν and γ and β are the scale and 842

bias parameters. The metric control, y, is used to 843

modulate hidden representations of the generative 844

model via normalisation layers. The scale and bias 845

parameters in the layer normalisation are replaced 846

as functions of y, namely γ(y) and β(y) in the 847

above equation. As discussed in Park et al. (2019), 848

normalisation layer applied on input with same 849

target control would wash away the target informa- 850

tion captured in the input to normalisation layer. 851

Adding target control in the scale and bias parame- 852

ter ensures that the control is preserved through the 853

normalisation layers of transformer. 854

Training details: For fine-tuning, we prepend 855

the input sentence with metric identifiers, to keep 856

the input layer unchanged. We, then, extract the 857

prepended metric token and use it to modify atten- 858

tion and normalisation layers as described earlier. 859

The output of final transformer layer is fed into a 860

pre-trained fastText model to estimate the fitment 861

of generated text to the target metric class in the 862

form of metric loss12. During inference, the genera- 863

12The computing infrastructure and hyper-parameter details
are included in Appendix E
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Feature ↓ Average Treatment Effect
Dataset → Webhose NYT
Metric → Participation Replies Comment Upvote
Word count −0.3816 −0.1034 −0.1034 −0.0171
Paragraph count 0.0079 0.0038 0.0025 0.0078
Sentence count 1.2308 1.4453 0.0203 −0.0498
Images Count NA NA 0.0279 0.0387
Links Count NA NA −0.0459 −0.0225
Slideshow Count NA NA 0.0456 −0.0077
Noun count −1.4758 −0.1589 −0.0062 −0.0239
Verb count 0.1591 −0.8179 0.0386 0.0214
Adjective count −0.2364 0.9527 −0.0012 −0.0008
Adverb count −0.0372 −0.0372 −0.0173 −0.0037
Pronoun count −0.01949 0.0203 −0.0069 −0.0153

Table 4: Average Treatment Effect of various article features on Comment count and Upvotes count for Webhose
and NYT data

tion is conditioned on the prompt, which is a combi-864

nation of the topic and keywords. During training,865

the keywords and topic for the article is prepended866

to the input along with a {start of text} token.867

Thus, the input is {metric token}+{topic}+{start868

of keyword token}+{keywords}+{start of text to-869

ken}+{article text}. The keywords and topics are870

available for the NYT dataset for each article, and871

are extracted from input text using topic modeling872

(Blei et al., 2003) as described in next section.873

C Data Processing874

Webhose Covid-19 Dataset: We use the Webhose875

dataset available at https://webhose.io/free-876

datasets/news-articles-that-mention-corona-virus/877

that has 410, 120 data points in total. We choose878

the subset of this dataset limited to English. To879

remove any outliers, we heuristically choose880

articles with word count more than 30 but less881

than 5000 words in the article. The data contains882

engagement on various news articles in form of883

participation count, replies count and various other884

social media likes and share metrics. The social885

media metrics includes PinInterest, LinkedIn,886

Google+ shares and like, shares and comments887

on Facebook. Most of these are very sparse in888

the dataset, for instance, less than ∼ 12k data889

points have Facebook comments as non-zero.890

Thus, we choose participation count and replies891

count as good indicators to the engagement on892

the article and use these as our target metrics.893

We consider only the articles with participation894

count > 1, leaving us with 39192 data points in895

total. The metric value for participation count and896

replies count vary from 1 − 297 and 0 − 5751897

respectively with a mean and standard deviation898

of 14.37, 27.90 and 129.91, 446.71. To control for899

these metrics in our models, we convert these to 900

categorical variable with the threshold of 2 and 901

21 for participation count. The low bucket is the 902

largest bucket with least standard deviation in the 903

value of metric; the medium and high categories 904

have almost same number of data points as shown 905

in Table 1 in the paper. Similarly for replies 906

count, the threshold is 2 and 32 with equal size of 907

medium and high categories. 908

As mentioned earlier, the context for generative 909

models includes keywords and topic of the arti- 910

cle, that acts as “prompt" during inference stage. 911

For webhose data, the keywords are not directly 912

available in the dataset, NYT-comments dataset 913

has keywords. We extract the keywords as top n 914

(n = 10) words from the articles using TF-IDF 915

vectors. The topics are extracted by topic model- 916

ing using Latent Dirichlet Allocation (LDA) (Blei 917

et al., 2003). We choose 20 topics with a seed of 23 918

and then represent the topic of each input article as 919

the corresponding topic identifier ranging from 1- 920

20. For transformer-based model, the keyword and 921

topic tokens are added to the pre-trained tokenizer. 922

D Causal Features 923

The various textual features considered for causal 924

effect are as listed in Table 4. The average treat- 925

ment effect on NYT data metrics – Comment count 926

and Upvote count is as shown. Here, the signif- 927

icance level is empirically chosen as 0.01. Thus, 928

features with |ATE| > 0.01 on comment count or 929

upvote count y are included in the corresponding 930

causal generative model. For Webhose data, we 931

choose significance level of 0.1 and consider fea- 932

tures with ATE of greater than 0.1 in magnitude as 933

‘causally significant’ features. 934
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E Reproducibility checklist935

E.1 Hyper-parameters936

The causal feature identification models are trained937

on a train-test split of 90-10, using a random seed938

23 with stratified sampling over the outcome values,939

for over 10 epochs in batches of size of 5.940

For transformers, we use HuggingFace13 im-941

plementation of GPT-2 and make the model and942

training changes as described in the paper. The943

hyper-parameters are kept the same as the original944

implementation for uniformity. For the loss term945

mentioned in equation 11 of the paper, we set λG,946

λmetric, λcausal as 1. We train these models with a947

batch size of 2 for over 3 epochs. The training time948

over 4 GPUs was about 14 hours for webhose data949

and about 5 hours for NYT dataset.950

For the CVAE model, we use adam optimizer.951

We initiate the training with the learning rate of952

0.001 with learning rate decay of 0.6. We train953

the models over 30 epochs with an early stopping954

criteria of 0.996 threshold.955

E.2 Resources956

All the training experiments were run on a 4 GPU957

machine with 64-bit 16 core tesla v100 processor958

and 100 GB RAM.959

13https://github.com/huggingface/transformers

13


