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ABSTRACT

The core bottleneck of Federated Learning (FL) lies in the communication rounds.
That is, how to achieve more effective local updates is crucial for reducing com-
munication rounds. Existing FL methods still primarily use element-wise local
optimizers (Adam/SGD), neglecting the geometric structure of the weight matri-
ces. This often leads to the amplification of pathological directions in the weights
during local updates, leading deterioration in the condition number and slow con-
vergence. Therefore, we introduce the Muon optimizer in local (named Local
Muon), which has matrix orthogonalization to optimize matrix-structured param-
eters. Experimental results show that, in IID setting, Local Muon significantly
accelerates the convergence of FL and reduces communication rounds compared
to Local SGD and Local AdamW. However, in non-IID setting, independent ma-
trix orthogonalization based on the local distributions of each client induces strong
client drift. Applying Muon in non-IID FL poses significant challenges: (1) client
preconditioner leading to client drift; (2) moment reinitialization. To address
these challenges, we propose a novel Federated Muon optimizer (FedMuon),
which incorporates two key techniques: (1) momentum aggregation, where clients
use the aggregated momentum for local initialization; (2) local-global alignment,
where the local gradients are aligned with the global update direction to signifi-
cantly reduce client drift. Theoretically, we prove that FedMuon achieves a linear
speedup convergence rate of O(

√
(L∆σ2

l )/(SKR) + (L∆)/R) without the het-
erogeneity assumption, where S is the number of participating clients per round,
K is the number of local iterations, and R is the total number of communica-
tion rounds. Empirically, we validate the effectiveness of FedMuon on language
and vision models. Compared to several baselines, FedMuon significantly re-
duces communication rounds and improves test accuracy. The code is available in
https://anonymous.4open.science/r/FedMuon-935D.

1 INTRODUCTION

With the rapid growth of data and rising concerns over user privacy, traditional centralized train-
ing paradigms have become inadequate. Federated Learning (FL) McMahan et al. (2017) offers a
scalable and privacy-preserving framework that enables collaborative model training across decen-
tralized clients without sharing raw data (Liu et al., 2024). As data becomes increasingly siloed,
FL is a practical solution for large-scale distributed deep learning. However, data heterogeneity and
limited communication rounds create significant bottlenecks in FL. Recent studies reveal that the
Hessian matrix in neural networks exhibits an approximate block-diagonal structure with several
dense sub-blocks (Collobert, 2004; Zhang et al., 2024), as shown in Figure 1. Understanding pa-
rameter matrix structures is crucial for effective federated aggregation, yet this perspective has been
largely overlooked in the federated learning literature. Currently, when clients use element-wise
optimizers (such as AdamW/SGD) for multi-step updates on their local data, the weight matrices
may gradually become ill-conditioned (see Figure 5), causing the update directions to either cancel
out or amplify after aggregation. As a result, in each communication round clients struggle to obtain
effective updates, and the global model converges slowly.

Recent advancements in the Muon optimizer offer a novel solution to this challenge. The Muon
optimizer (Jordan et al.) has recently demonstrated that orthogonal normalization of weight update
matrices can significantly accelerate neural network training (see Figure 2). By conditioning the
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Figure 1: (a–f):Block-wise Hessian structure of Transformer parameters and MLP (Zhang et al., 2024).

(a) Matrix orthogonalizatio with SVD (b) Matrix compression using SVD

Figure 2: (a) shows SVD-based matrix orthogonalization; (b) applies SVD to the momentum matrix M ∈
Rd×d, i.e., M ≈ UΣV ⊤, and keeps the top-k singular vectors to obtain U ∈Rd×k and V ∈Rk×d .

weight updates to produce consistent changes in the hidden states, orthogonal normalization updates
lead to faster convergence, improved training stability, and better hyperparameter transferability
across different model scales (Bernstein & Newhouse, 2024; Large et al., 2024; Pethick et al., 2025).
Moonshot AI (Liu et al., 2025) found that, when training a 16B model, Muon achieved nearly twice
the computational efficiency compared to AdamW (Loshchilov et al., 2017). Similarly, Essential
AI (Shah et al., 2025) observed significant improvements with Muon in large-batch training. Both
GLM 4.5 and K2 are trained with the Muon optimizer (Liu et al., 2025). These features suggest
that using Muon for local training in FL (Local Muon) could accelerate local training and reduce
communication rounds.

We have also validated the effectiveness of Local Muon in FL in IID setting. Local Muon
significantly outperforms Local SGD and Local AdamW (see Figure 4). Local Muon accelerates
local convergence and reduces the number of communication rounds required to reach the same
level of precision, with faster local loss decrease, smoother training curves, and faster global model
convergence (see Figure 4). However, in non-IID setting, although the local losses of each client
still decrease rapidly, the global model after aggregation becomes significantly unstable or even
fails to converge (see Figure 4). We identify the reasons why the Muon optimizer fails in the case of
non-IID federated learning from two complementary perspectives.

(Challenge 1) Client preconditioner leading to client drift: In non-IID FL, Muon’s client-specific
preconditioner scales gradients from local data distribution, causing misalignment in aggregation.

(Challenge 2) Moment reinitialization: reinitializing the moment of Muon from scratch in every
round hinders the convergence.

These challenges motivate us to develop a novel Federated Muon optimizer, FedMuon, the first
FL optimizer that explicitly accounts for the structure of update matrices. FedMuon addresses the
impact of non-IID data through two key mechanisms: (1) local-global alignment, where the current
local gradients are aligned with the global update to significantly reduce cross-client inconsistency;
(2) momentum aggregation, where clients initialize using the aggregated momentum.

Our contributions are summarized as follows:

• Introducing Muon into Federated Learning. We are the first to design a federated optimizer that
explicitly considers the structure of parameter matrices, introducing the matrix orthogonalization
method (i.e., Muon) into federated learning. Extensive experiments demonstrate its superiority.
However, in highly non-IID settings, severe client drift arises. We analyze this issue from two
perspectives: (1) client preconditioner leading to client drift, (2) moment reinitialization.

• We propose FedMuon, a principled FL algorithm with Matrix Orthogonalization. To ad-
dress above challenges, FedMuon introduce the two mechanisms, local-global alignment and

2
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Figure 3: Singular value distributions of Local Muon, Local AdamW, Local SGD, and FedMuon.
Local SGD/AdamW are more ill-conditioned with heavier tails and larger singular values, while
FedMuon has a more balanced spectrum and a smaller condition number (where the condition num-
ber is defined as the ratio between the largest and smallest singular values).

(a) ResNet-18, IID (b) ViT-Tiny, IID (c) ResNet-18, non-IID (d) ViT-Tiny, non-IID

Figure 4: Performance of Local SGD, Local AdamW and Local Muon, we carefully tune the learning rate.

momentum aggregation. Inspired by the Hessian structure, we also design a communication-
efficient aggregation strategy that communicates the SVD compression of momentum.

• Theoretical guarantees with improved convergence. FedMuon achieves a linear convergence
rate ofO(

√
(L∆σ2

l )/(SKR)+(L∆)/R) without the widely used data heterogeneity assumption.
Due to the local-global alignment, its convergence speed is unaffected by data heterogeneity.

2 RELATED WORK

• Optimizers in non-IID Federated Learning. Data heterogeneity across clients is a fundamental
challenge in FL. A range of algorithms have been proposed to mitigate the adverse effects of non-
i.i.d. data distributions. For example, FedProx (Li et al., 2020a) introduces a proximal term to restrict
local updates; SCAFFOLD (Karimireddy et al., 2020b) applies control variates to correct client drift;
and FedCM (Xu et al., 2021) leverages client momentum to stabilize updates. FedOpt (Reddi et al.,
2020) incorporates server-side adaptivity using Adam. More recently, Sun et al. (2023) proposed
FedLADA to only aggregate the second-moment estimate of Adam to overcome client drift. Nov-
elty. Prior correction methods (e.g., SCAFFOLD, FEDCM) assume local SGD and overlook other

(a) Comparison of local optimizers in FL. (b) ViT-Tiny, non-IID

Figure 5: (a) Analysis on ViT-Tiny with CIFAR-100, showing optimizer state memory, condition number,
computation time, and convergence rounds. Local Muon achieves lower memory cost, lower the condition
number, and faster convergence. (b) Training loss curves of ViT-Tiny under non-IID.
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optimizers. Directly applying correction methods such as SCAFFOLD or FedCM into Muon op-
timizer becomes ineffective. We propose local–global alignment, injecting a global direction into
local updates to curb client drift with advanced optimizers (every local optimizers), while using half
the communication of SCAFFOLD.

• Optimizers in Centralized Settings. Although widely used optimizers such as SGD,
Adam (Kingma & Ba, 2014), and AdamW (Loshchilov et al., 2017) are effective in many deep
learning settings, they generally treat inherently structured parameters (e.g., matrices) as flattened
vectors during optimization. In contrast, recent work has increasingly focused on structure-aware
optimizers that make explicit use of the underlying parameter geometry. Examples include Adafac-
tor (Duchi et al., 2011), LAMB (Chen et al., 2023), and Adam-mini (Zhang et al., 2024), which
exploit matrix- or layer-level structure to reduce memory footprint. Shampoo (Gupta et al., 2018)
further targets matrix and tensor parameters and can be interpreted as an efficient approximation to
AdaGrad’s full-matrix preconditioner (Duchi et al., 2011). More recently, SOAP (Vyas et al., 2024)
integrates the ideas of Adam with Shampoo’s matrix-aware design. The Muon optimizer (Jordan
et al.) extends this line of work by orthogonalizing weight-update matrices, yielding substantially
faster and more stable neural network training.

•Our contributions. (1) FedMuon can be viewed as the first federated extension of the Muon opti-
mizer. Unlike standard local Muon, which applies matrix orthogonalization independently on each
client, FedMuon augments Muon with a local–global alignment to correct the client-drift induced
by heterogeneous data and matrix orthogonalization. (2) FedMuon bridges structured optimizers
and classical FL methods (Table 21), and we prove that matrix orthogonalization accelerates the
convergence of federated learning algorithms. (3) We design a federated framework that is applica-
ble to all matrix-structured optimizers (Muon / Shampoo / LAMB / Soap, etc.), which specifically
addresses the problem of preconditioner drift through local–global alignment and momentum ag-
gregation (Table 22).

3 FL PROBLEM SETUP

FL aims to optimize model parameters with local clients, i.e., minimizing the following problem:

f(x) =
1

N

N∑
i=1

(fi(x) := Eξi∼Di [Fi (x; ξi)]) . (1)

The function fi represents the loss function on client i. Eξi∼Di
[·] denotes the conditional expectation

with respect to the sample ξi. ξi is drawn from distributionDi in client i. N is the number of clients.

4 CHALLENGES OF MUON IN FL

4.1 THE MUON OPTIMIZER

Motivation Most parameters in neural networks are inherently matrix-valued (e.g., in linear layers
or the Q/K/V components of attention mechanisms). However, conventional optimization algorithms
such as SGD and AdamW treat these parameters as vectors, effectively flattening them during up-
dates and thereby neglecting their matrix structure. Muon is specifically designed to address this
limitation by operating Matrix Orthogonalization directly on update matrix.

The Muon Optimizer Muon has recently been proposed as an optimization method for training
neural network weights that can be represented as matrices. At iteration t, given the current weight
Wt−1, momentum β, learning rate ηt, and the objective F (W), the update rules for the Muon
optimizer are:

Mt = βMt−1 +∇F (Wt−1);

Ot = Newton-Schulz-5(Mt);

Wt = Wt−1 − ηtOt.

(2)

Here, Mt represents the momentum of the gradient at iteration t, initialized as a zero matrix
when t = 0. In Eq.(2), a Newton–Schulz iteration is employed to approximate the solution of
(MtM

⊤
t )

−1/2Mt. Let UΣV⊤ = Mt be the singular value decomposition (SVD) of Mt. Then,
we have (MtM

⊤
t )

−1/2Mt = UV⊤, which orthogonalizes Mt (see Figure 2(a)). Intuitively, this
orthogonalization ensures that the update matrices remain isomorphic, preventing the weights from

4
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learning solely along a few dominant directions.All matrix orthogonalization operations in this pa-
per are computed using five Newton-Schulz iterations, resulting in about 5% higher computation
time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.

4.2 CHALLENGES OF MUON IN FL

Despite the widespread use of Muon in centralized deep learning, its adaptation to federated settings
remains largely unexplored. In this subsection, we analyze two fundamental challenges that hinder
its effectiveness in FL settings.

(Challenge 1) In non-IID FL, Muon’s client-specific preconditioner scales gradients from the
client’s local data distribution, causing misalignment and cancellation in aggregation.

Challenge Analysis: The matrix orthogonalization in Muon can be viewed as applying a client-
specific linear preconditioner Pi to each client’s gradient (which can be approximated by Newton-
Schulz), transforming the update direction from gi to Pgi. In the case of non-IID, the gradients {gi}
are distributed across their respective dominant subspaces, and the Pi are independently estimated
from the local data geometry of each client. This leads to direction mismatch and correlation/am-
plification: the global update is approximated as

∑
i g̃i =

∑
i Pigi. When the {Pi} apply different

”rotations/scalings” to the gradient subspaces across clients, the sign and magnitude of ⟨g̃i, g̃j⟩ fluc-
tuate significantly, making it prone to direction cancellation (weakening the norm and making step
size ineffective) or phase misalignment (leading to oscillations as it crosses stable regions). These
mechanisms together result in the phenomenon of local–global inconsistency: the convergence
shown on the client side (local loss decreases rapidly) does not translate into global progress (global
loss/accuracy stagnates or degrades).

(Challenge 2) Moment reinitialization: reinitializing the moment of Muon from scratch in every
round hinders the convergence rate.

Challenge Analysis: In FL, the Muon optimizer state is reinitialized to zero at the beginning of
each round, i.e., M r,0

i ← 0. This reset erases temporal memory across rounds, preventing the
accumulation of momentum and thereby slowing convergence. Moreover, accumulating momentum
from zero exacerbates client drift.

Algorithm 1 FedMuon Algorithm

1: Initial model x0, β = 0.98, the number of all clients N , each round selected clients S.
2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, M r,0
i ← M̄ r;

5: for k = 1, . . . ,K do
6: Gr,k

i ← ∇fi(xr,k
i ; ξi); M

r,k
i = βM r,k−1

i +Gr,k
i ;

7: U r,k
i V r,k

i

⊤
= Newton-Schulz-5(M r,k

i ); xr,k+1
i =xr,k

i −η[(1−α)U
r,k
i V r,k

i

⊤
+α∆r

G];
8: end for
9: Communicate (xr,K

i −xr,0
i ,M r,K

i ≈ UΣV ⊤) to Server;
10: end for
11: ∆r+1

G = − 1
SKη

∑S
i=1(x

r,K
i − xr,0

i ); xr+1 = xr + 1
S

∑S
i=1(x

r,K
i − xr,0

i );

12: M̄ r+1 = 1
S

∑S
i=1 M

r,K
i ; Communicate (xr+1,M̄ r+1,∆r+1

G ) to Clients.
13: end for

5 OUR ALGORITHM: FEDMUON

To robustly leverage matrix orthogonalization in FL, we propose FedMuon, with two core mecha-
nisms for the non-IID regime.

5.1 MECHANISM I: LOCAL–GLOBAL ALIGNMENT

5
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Figure 6: An illustration of FedMuon, which corrects client drift through local-global alignment.

(Q1) How to overcome local–global inconsistency in Local Muon?

To address Challenge 1, we incorporate local-global alignment into the local update rule:

xr,k+1
i = xr,k

i −η
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
, (3)

where ∆r
G=− 1

SKη

∑S
i=1(x

r,K
i −xr,0

i ) is the estimated global update. α is the trade-off coefficient
between local and global updates. As shown in Figure 6, this alignment reduces the divergence of
local models and improves global consistency. We also validate its effectiveness in the following ex-
periments (see Table 5 below). All matrix orthogonalization operations and SVD operations in this
paper are computed using five Newton-Schulz iterations, resulting in about 5% higher computation
time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.

5.2 MECHANISM II: MOMENTUM AGGREGATION

(Q2) How to initialize momentum of Muon in local?

To achieve better initialization of the momentum M in local, we aggregate local momentum M r,K
i

and transmit the aggregated result M̄ back to the clients. This strategy partially mitigates the client
drift caused by reinitializing momentum from zero, and better aligns local updates with the global
update direction (see Table 5 below).

(Q3) How to efficiently communicate momentum matrices?

Momentum Compression via SVD. Directly communicating the full momentum matrix M would
introduce prohibitive communication overhead. To reduce the cost, we compress M using singular
value decomposition (SVD): M = UΣV ⊤, where U and V are orthogonal matrices and Σ is the
diagonal matrix of singular values. Instead of transmitting the full decomposition, we retain only
the top-k singular values (with k set to 5% of the matrix rank), yielding a low-rank approximation
(see Figure 2): M ≈ UkΣkV

⊤
k . This significantly reduces the communication cost 95%. We refer to

this variant as FedMuon SVD. In the following experiments, we show that this approach achieves
performance comparable to FedMuon (see Table 7). The communication cost of each algorithm is
reported in Table 13. The communication overhead of FedMuon increases by only 5%. Here we
consider only the upload-side communication cost, because client download bandwidth is typically
more than 100× faster than upload and can therefore be ignored in practice.

6 THEORETICAL ANALYSIS

In this part, we give the convergence theoretical analysis of our proposed FedMuon algorithm.
Firstly we state some standard assumptions for the non-convex function f .

Assumption 1 (Smoothness). The non-convex fi is a L-smooth function for all i ∈ [m], i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.

Assumption 2 (Bounded Stochastic Gradient). gr
i = ∇fi(xr

i , ξ
r
i ) computed by using a sampled

mini-batch data ξri in the local client i is an unbiased estimator of ∇fi with bounded variance, i.e.,
Eξri

[gr
i ] = ∇fi(xr

i ) and Eξri
∥gri −∇fi(xr

i )∥2 ≤ σ2
l , for all xr

i ∈ Rd.

These assumptions are standard in FL optimization literature (Fan et al., 2024; Sun et al., 2023).

6
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(a) ResNet18, Dir-0.1 (b) ResNet18, Dir-0.1 (c) ViT-Tiny, Dir-0.1 (d) ViT-Tiny, Dir-0.1

Figure 7: Training loss and Test acc curves on CIFAR-100 using ResNet-18 and ViT-Tiny in Dir-0.1.

Table 1: Test accuracy, training loss of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300
communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6) ResNet-18 (Dir-0.1) ViT-Tiny (Dir-0.6) ViT-Tiny (Dir-0.1)
Test Acc Loss Test Acc Loss Test Acc Loss Test Acc Loss

FedAvg 64.08±0.18 0.376 60.25±0.20 0.767 32.36±0.08 2.350 27.14±0.12 2.867
FedProx 63.12±0.15 0.458 59.66±0.28 0.812 31.51±0.12 2.425 26.84±0.15 2.875
FedDyn 66.12±0.28 0.352 63.01±0.28 0.615 33.25±0.22 2.125 27.66±0.18 2.723
Mime 67.34±0.21 0.312 63.37±0.18 0.604 34.12±0.14 2.101 27.76±0.22 2.702
FedAdam 67.23±0.18 0.332 63.61±0.21 0.512 34.32±0.32 1.965 28.50±0.11 2.425
SCAFFOLD 65.01±0.19 0.365 59.37±0.16 0.814 32.17±0.12 2.295 27.31±0.11 2.855
FedCM 70.42±0.11 0.282 66.73±0.14 0.639 26.33±0.12 2.681 23.18±0.12 3.038
FedLADA 65.07±0.17 0.671 57.78±0.18 0.498 38.33±0.12 2.121 31.50±0.12 2.678
Local AdamW 62.84±0.08 0.363 58.97±0.10 0.794 40.47±0.09 1.026 37.86±0.11 1.954
Local Muon 71.66±0.15 0.395 66.71±0.15 1.504 46.69±0.12 0.201 40.53±0.12 1.432
FedMuon 74.12±0.15 0.001 73.05±0.15 0.246 50.22±0.12 0.162 48.18±0.12 0.556

Theorem 1 (Convergence for non-convex functions). Under Assumptions 1, 2, if we take g0 =
0,β1 = 0, λ = 0 then FedMuon converges as follows

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲ O

(
L∆

R
+

√
L∆

R

σ2
l

SK

)
. (4)

Here G0 := 1
N

∑N
i=1

∥∥∇fi (x0
)∥∥2,∆ = f

(
x0
)
− f⋆, S is the number of participating clients per

round, K is the number of local iterations, and R is the total number of communication rounds, σ
is lower bound on singular values, d is the total dimensionality of the parameter.

The detailed proof is provided in the Appendix. The convergence rate of FedMuon is faster than

than that of Local Muon and Local SGD, O
(
L∆
R +

√
L∆
R

σ2
l +σ2

g

SK

)
. Notably, our result does not rely

on data heterogeneity Assumption. This improvement stems from the suppression of local drift
achieved by the proposed local–global alignment mechanism. The effectiveness of this design is
further validated in the ablation study (Table 5). The data heterogeneity Assumption is standard in
federated learning. With our global–local alignment, we mitigate data heterogeneity and no longer
rely on this assumption, achieving faster convergence than existing methods, as confirmed by both
theory and experiments.

7 EXPERIMENTS

Datasets. We evaluate FedMuon on both vision and language tasks. (i) For image classification,
we use CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015). (ii) For NLP
tasks, we adopt benchmark datasets from the GLUE benchmark, including SST-2 (Socher et al.,
2013), QQP (Socher et al., 2013), and OpenWebText dataset. To simulate data heterogeneity across
clients, we follow the Dirichlet partitioning scheme (Hsu et al., 2019), where a Dir-0.6 corresponds
to a low heterogeneity and Dir-0.1 implies high heterogeneity.
Model Architectures. We explore a variety of model types: (i) ResNet-18 (He et al., 2016) as a
representative convolutional neural network (CNN), (ii) Swin Transformer (Liu et al., 2021) and
ViT-Tiny (Dosovitskiy et al., 2020) for Vision Transformers, and (iii) RoBERTa-Base (Liu et al.,

7
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2019) and GPT-2 Radford et al. (2019) for large-scale language model.
Baselines. We compare our method against state-of-the-art FL algorithms: FedAvg (Local
SGD) (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), FedCM (Xu et al., 2021),
FedLADA (Sun et al., 2023), Local AdamW and Local Muon, FedProx Li et al. (2020b), Fed-
Dyn Acar et al. (2021), Mime Karimireddy et al. (2020a), and FedAdam Reddi et al. (2020). In the
Appendix (Table 15), we compare additional FL algorithms designed to address data heterogeneity.
Hyperparameter Settings. For FedAvg, SCAFFOLD, FedCM, FedProx, FedDyn, Mime, and
FedAdam, the lr is selected from {10−2, 3 × 10−2, 5 × 10−2, 10−1, 3 × 10−1}, with a weight
decay of 0.001. For FedLADA, Local AdamW, the lr is selected from {10−4, 3 × 10−4, 5 ×
10−4, 8× 10−4, 10−3}, with weight decay 0.01 or 0.001, β1 = 0.9, β2 = 0.999. We apply cosine
learning rate decay, and set FedMuon to α= 0.5, weight decay 0.01. We set the learning rate of
FedMuon and Local Muon to be 3 × 10−2, 2 × 10−2, 3 × 10−3. Additional hyperparameter
configurations are detailed in the Appendix (Table 10, Table 12). We release all code, configuration
files to ensure full reproducibility. All results are averaged over 5 runs with std reported with seeds
42, 43, 44, 45, 46.

7.1 RESULTS ON CONVOLUTIONAL NEURAL NETWORKS AND TRANSFORMER

Training on CIFAR-100 with ResNet-18. Table 1 and Figure 7 present the test accuracy and
training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of 74.12% and 73.05%, respectively. It also
attains the lowest training loss (0.001 and 0.246), demonstrating faster and more stable convergence.
Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
ization under data heterogeneity, confirming its effectiveness in CNNs. In our experiments, Muon
provides immediate speedups under IID data, but under non-IID data Local Muon initially con-
verges slowly due to mismatched client preconditioners and exacerbated client drift (Challenge 1).
FedMuon mitigates this issue, achieving fast and stable convergence, and also yields clear speedups
in IID settings (Table 16).

Training on CIFAR-100 with ViT-Tiny. Table 1 and Figure 7 show FedMuon achieves the
best performance across both heterogeneity levels, with 50.22% (Dir-0.6) and 48.18% (Dir-0.1),
and the lowest training loss (0.162 and 0.556), confirming its efficient convergence. These results
validate that FedMuon is particularly effective for federated vision Transformers under non-i.i.d.
conditions. The small dataset CIFAR100 is difficult to support the performance of ViT, resulting in
lower accuracy. Therefore, we continued to test on the pretrained model.

Table 2: Comparison of test accuracy and training loss
for Swin Transformer under Dir-0.1 with 100 rounds (100
clients, 5% participation, batch size 16, K = 50).

Method CIFAR-100 Tiny ImageNet

Test Acc Loss Test Acc Loss

FedAvg 80.02±0.28 0.588 80.38±0.22 0.826
FedProx 81.21±0.13 0.521 81.86±0.12 0.885
FedDyn 81.67±0.15 0.501 82.48±0.18 0.641
Mime 82.21±0.11 0.562 82.56±0.14 0.655
FedAdam 82.56±0.15 0.545 82.21±0.11 0.685
SCAFFOLD 81.30±0.18 0.514 82.41±0.18 0.650
FedCM 82.38±0.11 0.565 83.18±0.14 0.522
FedLADA 74.64±0.15 0.598 70.94±0.19 0.944
Local AdamW 83.35±0.16 0.381 80.26±0.12 0.686
Local Muon 79.73±0.18 0.396 80.24±0.10 0.734
FedMuon 84.88±0.17 0.123 84.95±0.12 0.394

Fine-tuning Results on Swin Trans-
former. Table 2 reports results on Swin
Transformer under Dir-0.1 with LoRA.
FedMuon achieves the highest test accu-
racy on both CIFAR-100 (84.88%) and
Tiny ImageNet (84.95%), while also at-
taining the lowest training loss, reflect-
ing faster convergence. FedMuon consis-
tently outperforms baselines (including Lo-
cal AdamW and Local Muon), demonstrat-
ing its effectiveness in fine-tuning Vision
Transformer models under non-IID data.
Fine-tuning Results on LLMs. Table 18
summarizes results on the GLUE bench-
mark using RoBERTa-Base with LoRA, 20
clients, 20% participation, batch size 16,
K = 50, rank=16. FedMuon achieves
the highest accuracy of GLUE outperform-
ing strong baselines such as FedAvg and
Local Muon. It is particularly strong on
challenging tasks like RTE and QQP, ex-
ceeding the next best methods by +1.65%
and +1.59%, respectively. In the appendix, we additionally report results under the setting with 4
clients, 100% client participation, and Dir-0.8 data partitioning (see Table 17).
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Table 3: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, K = 50)

Method (Dir-0.5) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 51.00±0.26 51.99±0.24 93.04±0.16 81.75±0.11 88.24±0.18 89.36±0.15 81.72±0.25

FedProx 53.11±0.14 53.25±0.21 92.26±0.18 81.15±0.11 87.36±0.12 88.12±0.14 81.41±0.21

FedDyn 53.21±0.28 52.22±0.30 92.36±0.21 81.35±0.21 87.89±0.11 89.12±0.21 82.18±0.21

Mime 52.15±0.17 51.62±0.21 92.21±0.28 80.26±0.18 88.04±0.12 89.11±0.21 82.51±0.20

FedAdam 53.21±0.28 52.52±0.31 92.36±0.25 82.22±0.28 88.12±0.34 88.01±0.23 82.66±0.22

SCAFFOLD 52.15±0.17 50.65±0.20 93.28±0.28 80.26±0.18 88.35±0.12 89.32±0.24 82.11±0.20

FedCM 53.21±0.28 52.22±0.30 92.56±0.25 81.22±0.28 88.56±0.13 89.02±0.23 82.12±0.27

FedLADA 54.66±0.17 57.02±0.08 93.88±0.16 81.56±0.20 89.01±0.28 89.86±0.29 82.44±0.17

Local AdamW 55.38±0.12 59.57±0.25 93.81±0.19 81.51±0.05 88.73±0.23 89.55±0.15 82.86±0.26

Local Muon 55.54±0.05 64.93±0.17 93.58±0.27 83.06±0.11 88.95±0.13 90.52±0.27 84.63±0.10

FedMuon(ours) 56.78±0.11 66.58±0.29 93.54±0.25 84.65±0.16 88.21±0.07 90.24±0.13 85.21±0.18

Table 4: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50), and
train loss of each method on OpenWebText data using GPT-2 Small, GPT-2 Medium, GPT-2 Large and
GPT-2 XL over 300 communication rounds (20 clients, 20% participation, batch size 16, K = 100).

Method CIFAR-100 (Test Acc, %) OpenWebText (Train Loss)

ViT-Tiny ViT-Small ViT-Base ViT-Large GPT-2 S GPT-2 M GPT-2 L GPT-2 XL

FedAvg 27.14 29.52 31.15 33.56 4.25 4.12 4.01 3.91
FedProx 26.84 28.63 31.05 33.25 4.33 4.21 4.15 4.05
FedDyn 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
Mime 27.66 31.23 33.11 35.34 4.10 4.02 3.89 3.78
FedAdam 28.50 33.15 33.15 33.15 4.02 3.95 3.82 3.75
SCAFFOLD 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
FedCM 23.18 25.15 27.88 29.01 4.32 4.21 4.02 3.91
FedLADA 31.50 33.15 33.15 33.15 3.56 3.45 3.33 3.24
Local AdamW 37.86 37.86 37.86 37.86 3.44 3.35 3.27 3.15
Local Muon 40.53 42.34 45.26 46.54 3.33 3.21 3.09 2.98
FedMuon(ours) 48.18 50.52 53.63 56.24 3.12 2.98 2.85 2.74

Table 4 compares FedMuon with a range of federated optimizers on both vision and language bench-
marks. On CIFAR-100, FedMuon consistently achieves the highest test accuracy across all ViT
scales, improving from 27.14% to 48.18% on ViT-Tiny and from 33.56% to 56.24% on ViT-Large
compared to FedAvg, and further outperforming Local AdamW and Local Muon by a large margin.
On C4 language modeling with GPT-2, FedMuon attains the lowest training loss for all model sizes,
reducing the loss from 4.25 to 3.12 on GPT-2 Small and from 3.91 to 2.74 on GPT-2 XL. These
results indicate that FedMuon scales effectively to larger Transformer models and consistently im-
proves optimization efficiency over strong baselines in both vision and language tasks.

7.2 ABLATION STUDY

Impact of ∆G and m̄. As shown in Table 5 left, we conduct an ablation study of FedMuon.
FedMuon incorporates momentum averaging m̄ and global update differences ∆G. The results
clearly indicate that Local Muon consistently outperforms both SGD and AdamW, demonstrating
its superior ability to handle non-IID FL. Moreover, our strategy consistently improves the perfor-
mance of other optimizers as well.

Impact of ∆G and m̄ on other optimizers. As shown in Table 5 right, we compare different local
optimizers with ∆G and m̄. The results demonstrate that Local Muon consistently achieves the
best performance, significantly outperforming SGD and AdamW, thereby highlighting its effective-
ness in mitigating data heterogeneity. Further results on additional optimizers in Table 22.

Accelerationof Matrix Orthogonalization on Federated Learning. See in Table 21.Matrix or-
thogonalization also provides acceleration benefits for other federated learning algorithms.
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Table 5: Ablation study of FedMuon on CIFAR-100 (Dir-0.1, 300 rounds). Left: effect of removing compo-
nents. Right: effect of different local optimizers.

Variant ResNet-18 ViT-Tiny
A1: w/o m̄ 69.12±0.18 43.67±0.19

A2: w/o ∆G 68.05±0.10 44.56±0.16

A3: FedMuon 73.05±0.15 48.18±0.12

Variant ResNet-18 ViT-Tiny
Local SGD + m̄+∆G 66.28±0.17 32.56±0.11

Local AdamW + m̄+∆G 64.25±0.12 41.26±0.17

Local Muon + m̄+∆G 73.05±0.15 48.18±0.12

Table 6: Impact of α and β on FedMuon using ViT-Tiny and ResNet-18 on CIFAR-100 (Dir-0.1).

Model α β

0.00 0.25 0.50 0.75 0.90 0.80 0.90 0.95 0.98 0.99

ResNet-18 68.05 69.89 73.01 72.12 67.56 68.22 70.56 71.23 73.01 72.66
ViT-Tiny 44.56 46.28 48.18 47.59 46.23 44.86 45.23 46.59 48.18 47.56

Table 7: Ablation of momentum aggregation strategies in FedMuon on CIFAR-100 under Dir-0.1. Comm-
Cost denotes communication cost per round (MB), and CompCost denotes computation time per round (s).

Aggregation ResNet-18 ViT-Tiny
Test Acc CommCost CompCost Test Acc CommCost CompCost

NoAgg 69.12 46.8 MB (1×) 6.23 s 43.67 22.8 MB (1×) 5.14 s
Agg-m 73.05 93.6 MB (2×) 6.44 s 48.18 45.6 MB (2×) 5.21 s
Agg-m-SVD 72.56 49.2 MB (1.05×) 6.48 s 47.66 23.9 MB (1.05×) 5.25 s

Impact of α. Table 6 evaluates the effect of the local-global alignment parameter α in FedMuon.
As shown by Theorem 1, incorporating global update direction helps suppress client drift and ac-
celerates convergence. We observe that α = 0.5 yields the best performance, striking a balance
between local adaptivity and global consistency, in line with our theoretical insight.

Impact of β. Table 6 verifies the effectiveness of local momentum accumulation. When the mo-
mentum parameter β is too small, the aggregated global momentum is quickly diluted. Conversely,
an overly large β slows local gradient accumulation and delays responsiveness to new data. These
results suggest that β should balance global momentum preservation with timely adaptation to client
updates. We observe that β = 0.98 yields the best performance.

Impact of Momentum Aggregation Strategy. Table 7 shows Momentum Aggregation Strategy,
Agg-m-SVD (FedMuon SVD), achieves the best balance between accuracy and communication
cost. While Agg-m improves performance, it introduces excessive communication (2×). In con-
trast, Agg-m-SVD attains similar benefits with only 1.05× communication cost.

8 CONCLUSION

In this work, we proposed FedMuon, a structure-aware federated optimizer for training large-scale
Transformer and vision models. FedMuon addresses core challenges of non-IID. Federated learn-
ing—client drift, unstable optimizer states, and inefficient communication—by coupling matrix-
orthogonalized local updates with local-globall alignment and cross-round momentum aggregation,
complemented by low-rank state sharing. We provided non-convex convergence analysis clarifying
how alignment and orthogonalization jointly control the bias introduced by multi-step local training,
and we documented strong empirical gains across vision and language tasks, particularly on Trans-
former architectures. These results highlight that treating optimizer updates as matrices (rather than
flat vectors) offers a principled route to reliable and efficient FL. We believe FedMuon opens a
pathway for adapting modern, structure-aware optimizers to federated settings and inspires future
extensions to related methods such as LAMB (Chen et al., 2023) or Lion (Chen et al., 2023). Be-
yond federated learning, the principles of FedMuon can be directly applied to large-scale distributed
training and parameter-efficient fine-tuning of foundation models, where communication efficiency
and stable optimization are equally critical.
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9 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study involves no human subjects or animal
experimentation. All experiments are conducted on public, license-compliant academic benchmarks
under non-IID federated partitions; no personally identifiable information is collected or processed.
Data usage follows the original dataset terms, and we apply standard safeguards to avoid amplifying
social or demographic biases (e.g., consistent splits, shared hyperparameter budgets, and reporting
of variance across seeds). The method—FEDMUON, which aggregates cross-round momentum and
performs matrix-orthogonalized local updates—does not require access to raw user data beyond
standard benchmark usage, and introduces no additional privacy risks beyond those present in con-
ventional federated optimization. We will release code and configurations to support transparent
verification.

10 REPRODUCIBILITY STATEMENT

We make every effort to ensure reproducibility. The paper specifies training steps, model configura-
tions (e.g., ResNet/ViT for vision and RoBERTa-style encoders for NLP), non-IID partition proto-
cols, client sampling, and hardware details. Unless noted otherwise, each configuration is repeated
with five independent seeds {42, 43, 44, 45, 46}; we report mean ± standard deviation and provide
per-run logs/curves. Implementation details for FEDMUON (orthogonalized updates, global–local
alignment, cross-round momentum aggregation, and low-rank SVD compression) are described in
algorithmic form with all tunables exposed. An anonymous repository includes source code, config-
uration files, data-partition scripts, and instructions to exactly reproduce the main tables and figures.

11 LLM USAGE

Large Language Models (LLMs) were used solely for language editing (grammar, phrasing, and
clarity) of the manuscript text. LLMs were not involved in research ideation, methodological design,
theoretical analysis, dataset preparation, implementation, or result selection. The authors are fully
responsible for the scientific content and verify that any LLM-assisted passages comply with ethical
guidelines and do not constitute plagiarism or scientific misconduct.
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Algorithm 2 FedMuon Algorithm (analysis variant)

1: Initial model x0, β1 = 0.98, the number of all clients N , each round selected clients S, weight
decay λ.

2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, M r,0
i ← M̄ r;

5: for k = 1, . . . ,K do
6: Gr,k

i ← ∇fi(xr,k
i ; ξi);

7: U r,k
i ,Σr,k

i ,V r,k
i = SVD(Gr,k

i );

8: xr,k+1
i = xr,k

i − η
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
;

9: end for
10: Communicate (xr,K

i − xr,0
i ,M r,K

i ) to Server;
11: end for
12: ∆r

G = −1
SKη

∑S
i=1(x

r,K
i − xr,0

i );

13: xr+1 = xr + 1
S

∑S
i=1(x

r,K
i − xr,0

i );
14: M̄ r+1 = 1

S

∑S
i=1 M

r,K
i ;

15: Communicate (xr+1,M̄ r+1,∆r+1
G ) to Clients.

16: end for

A APPENDIX A: PROOF OF THEOREM 1 AND CONVERGENCE ANALYSIS

A.1 FEDMUON ALGORITHM

To simplify the analysis, we consider the iterative rules as in Algorithm 2, where we let β1 = 0. The
local update takes the following rule:

xr,k+1
i = xr,k

i − ηt
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
.

Simplified setting for theoretical analysis. Our primary focus in this paper is to investigate how
the matrix orthogonalization mechanism accelerates convergence in federated learning. Introducing
an additional local momentum term (e.g., β1 > 0) would bring in temporal dependencies across
iterations, making the theoretical convergence analysis substantially more complex without offering
additional conceptual insights into the effect of orthogonalization itself.

Therefore, for analytical tractability, we consider a simplified variant where we set β1 = 0 in the
local update rule:

xr,k+1
i = xr,k

i − ηt
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
.

This simplification isolates the impact of low-rank orthogonalization and global gradient mixing,
allowing us to derive clean convergence bounds that clearly reveal how orthogonalization improves
communication efficiency and stability.

Importantly, we empirically verify that this simplified version performs on par with the full al-
gorithm using local momentum. The empirical results demonstrate that setting β1 = 0 does not
materially affect convergence speed or final accuracy, thereby justifying the use of this simplified
formulation for theoretical analysis.

A.2 ASSUMPTION

Assumption A.1 (Smoothness). The non-convex fi is one L-smooth function for all i ∈ [m], i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.
Assumption A.2 (Bounded Stochastic Gradient). gr

i = ∇fi(xr
i , ξ

r
i ) computed by using a sam-

pled mini-batch ξri in client i is an unbiased estimator of ∇fi with bounded variance: Eξri
[gr

i ] =

∇fi(xr
i ) and Eξri

∥gri −∇fi(xr
i )∥2 ≤ σ2

l .

In this section, we give the theoretical analysis of our proposed uon algorithm. Firstly we state some
standard assumptions for the non-convex function F .
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A.3 MAIN LEMMAS

Lemma 1. Suppose {X1, · · · , Xτ} ⊂ Rd be random variables that are potentially dependent. If
their marginal means and variances satisfy E [Xi] = µi and E [∥Xi− µi∥2

]
≤ σ2, then it holds

that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ ∥∥∥∥∥

τ∑
i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov way such that E [Xi | Xi−1, · · ·X1] = µi and E
[
∥Xi − µi∥2 |

µi] ≤ σ2, i.e., the variables {Xi − µi} form a martingale. Then the following tighter bound holds:

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2

.
Lemma 2. Given vectors v1, · · · , vN ∈ Rd and v̄ = 1

N

∑N
i=1 vi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = ∥v̄∥2 + N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2 .

Proof. Letting I{i ∈ S} be the indicator for the event i ∈ Sr, we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

viI{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥vi∥2 I{i ∈ S}+ 2
∑
i<j

v⊤i vjI{i, j ∈ S}


=

1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

v⊤i vj

=
1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

−
N∑
i=1

∥vi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi∥2 +
N(S − 1)

S(N − 1)
∥v̄∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2 + ∥v̄∥2.

A.4 BASIC ASSUMPTIONS AND NOTATIONS

Let F0 = ∅ and Fr,k
i := σ

({
xr,j
i

}
0≤j≤k

∪ Fr

)
and Fr+1 := σ

(
∪iFr,K

i

)
for all r ≥ 0 where

σ(·) indicates the σ-algebra. Let Er[·] := E [· | Fr] be the expectation, conditioned on the filtration

Fr, with respect to the random variables
{
Sr,
{
ξr,ki

}
1≤i≤N,0≤k<K

}
in the r-th iteration. We also

use E[·] to denote the global expectation over all randomness in algorithms. Through out the proofs,
we use

∑
i to represent the sum over i ∈ {1, . . . , N}, while

∑
i∈Sr denotes the sum over i ∈ Sr.
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Similarly, we use
∑

k to represent the sum of k ∈ {0, . . . ,K − 1}. For all r ≥ 0, we define the
following auxiliary variables to facilitate proofs:

Er := E
[∥∥∇f (xr)− gr+1

∥∥2]
Ur :=

1

NK

∑
i

∑
k

E
[∥∥∥xr,k

i − xr
∥∥∥]2

ζr,ki := E
[
xr,k+1
i − xr,k

i | Fr,k
i

]
Ξr :=

1

N

N∑
i=1

E
[∥∥∥ζr,0i

∥∥∥2]

Throughout the Appendix, we let ∆ := f
(
x0
)
− f⋆, G0 := 1

N

∑
i

∥∥∇fi (x0
)∥∥2 , x−1 := x0 and

E−1 :=E
[∥∥∇f (x0

)
− g0

∥∥2]. We will use the following foundational lemma for all our algorithms.

A.5 FEDMUON ALGORITHM ANALYZE AND PROOF

Lemma 3. Under Assumption A.1 , if γL ≤ 1
24 , the following holds all r ≥ 0 :

E
[
f
(
xr+1

)]
≤ E [f (xr)]− 11γ

24
E
[
∥∇f (xr)∥2

]
+

13γ

24
Er

Proof. Since f is L-smooth, we have

f(xr+1) ≤ f(xr) +
〈
∇f(xr), xr+1 − xr

〉
+

L

2

∥∥xr+1 − xr
∥∥2 (5)

= f(xr)− γ
〈
∇f(xr), gr+1

〉
+

Lγ2

2

∥∥gr+1
∥∥2 (6)

= f(xr)− γ ∥∇f(xr)∥2 + γ
〈
∇f(xr), ∇f(xr)− gr+1

〉
+

Lγ2

2

∥∥gr+1
∥∥2 . (7)

Since xr+1 = xr − γgr+1, using Young’s inequality, we further have:

f
(
xr+1

)
≤ f (xr)− γ

2
∥∇f (xr)∥2 + γ

2

∥∥∇f (xr)− gr+1
∥∥2 + Lγ2

(
∥∇f (xr)∥2 +

∥∥∇f (xr)− gr+1
∥∥2)

(8)

≤ f (xr)− 11γ

24
∥∇f (xr)∥2 + 13γ

24

∥∥∇f (xr)− gr+1
∥∥2 (9)

where the last inequality is due to γL ≤ 1
24 . Taking the global expectation completes the proof.

Lemma 4 (Gradient error bound under low-rank momentum surrogates). Let f be L-smooth and
denote the global iterate in round r by xr. In each round, a subset Sr of S clients participates and
each client performs K local steps. For client i ∈ Sr and local step k ∈ {1, . . . ,K}, let gr,ki be a
stochastic gradient such that

E
[
gr,ki | xr,k

i

]
= ∇fi(xr,k

i ), E
∥∥∥gr,ki −∇fi(x

r,k
i )
∥∥∥2 ≤ σ2

l .

Assume the average gradient drift satisfies

1

SK

∑
i∈Sr

K∑
k=1

∥∥∇fi(xr,k
i )−∇f(xr)

∥∥2 ≤ L2U2
r ,

17
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where U2
r ≜ 1

SK

∑
i∈Sr

∑K
k=1 ∥x

r,k
i − xr∥2. For each matrix-shaped block, let the low-

rank surrogate be Ur,k
i V r,k⊤

i and its singular-value–scaled version Ur,k
i Sr,k

i V r,k⊤
i with Sr,k

i =
diag(σi,k,1, . . . , σi,k,d). Assume there exists σ ∈ [0, 1] such that σi,k,j ≥ σ for all (i, k, j). Then

E

∥∥∥∥∥∇f(xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

∥∥∥∥∥
2

≤ 2L2U2
r +

2σ2
l

SK
+ 2(1− σ)2d.

Proof. Add and subtract 1
SK

∑
i∈Sr

∑K
k=1 g

r,k
i and apply ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

E
∥∥∥∇f(xr)− 1

SK

∑
i,k

Ur,k
i V r,k⊤

i

∥∥∥2 ≤ 2E
∥∥∥∇f(xr)− 1

SK

∑
i,k

gr,ki

∥∥∥2
+ 2E

∥∥∥ 1
SK

∑
i,k

(
Ur,k
i V r,k⊤

i − gr,ki

)∥∥∥2.
For the first term, by variance decomposition and the stated bounds,

E
∥∥∥∇f(xr)− 1

SK

∑
i,k

gr,ki

∥∥∥2 ≤ σ2
l

SK
+ L2U2

r .

For the second term, insert the scaled factorization and use the triangle inequality and Jensen’s
inequality:

E
∥∥∥ 1
SK

∑
i,k

(
Ur,k
i V r,k⊤

i − Ur,k
i Sr,k

i V r,k⊤
i

)∥∥∥2 = E
∥∥∥ 1
SK

∑
i,k

Ur,k
i (I − Sr,k

i )V r,k⊤
i

∥∥∥2
≤ 1

SK

∑
i,k

E
∥∥Ur,k

i (I − Sr,k
i )V r,k⊤

i

∥∥2
F

=
1

SK

∑
i,k

d∑
j=1

E
(
1− σi,k,j

)2
≤ (1− σ)2d,

where the last step uses σi,k,j ≥ σ. Combining the two parts and the prefactor 2 yields the claim.

Remark. The bound decomposes into (i) the client–server drift term 2L2U2
r , (ii) the stochastic

variance term 2σ2
l /(SK) that vanishes as participation and local steps grow, and (iii) the low-rank

surrogate bias 2(1 − σ)2d, which shrinks as the singular-value floor σ increases (e.g., with larger
retained rank).

Lemma 5. If γL ≤ β
6 , the following holds for r ≥ 1 :

Er ≤
(
1− 8β

9

)
Er−1 +

4γ2L2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 2β2σ2
l

SK
+ 8βL2Ur + 8β(1− σ)2d

Additionally, it holds for r = 0 that

E0 ≤ (1− β)E−1 +
4β2σ2

l

SK
+ 8β2L2U0 + 8β(1− σ)2d
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Proof. For r > 1,

Er =E

∥∥∥∥∥ 1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr+1

∥∥∥∥∥
2


=E

∥∥∥∥∥(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)
+ β

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

)∥∥∥∥∥
2


≤E

∥∥∥∥∥(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)∥∥∥∥∥
2
+ β2E

∥∥∥∥∥∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

∥∥∥∥∥
2


+ 2βE

[〈
(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)
,

1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

〉]
.

Note that
{
∇F

(
xr,k
i ; ξr,ki

)}
0≤k<K

are sequentially correlated. Applying the AM-GM inequality

and Lemma 1, we have

Er ≤
(
1 +

β

2

)
E
[
∥(1− β) (∇f (xr)− gr)∥2

]
+4βL2Ur+4β2(1−σ)2d+4β2

(
σ2
l

SK
+ L2Ur + (1− σ)2d

)
Using the AM-GM inequality again and Assumption A.1, we have

Er ≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

2

)
Er−1 +

(
1 +

2

β

)
L2E

[∥∥xr − xr−1
∥∥2]]+ 4β2σ2

l

SK
+ 8βL2Ur + 8β(1− σ)2d

≤ (1− β)Er−1 +
2

β
L2E

[∥∥xr − xr−1
∥∥2]+ 4β2σ2

l

SK
+ 8β2L2Ur + 8β(1− σ)2d

≤
(
1− 8β

9

)
Er−1 + 4

γ2L2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 4β2σ2
l

SK
+ 8βL2Ur + 8β2(1− σ)2d

where we plug in
∥∥xr − xr−1

∥∥2 ≤ 2γ2
(∥∥∇f (xr−1

)∥∥2 + ∥∥gr −∇f (xr−1
)∥∥2) and use γL ≤ β

6

in the last inequality. Similarly for r = 0,

E0 ≤
(
1 +

β

2

)
E
[∥∥(1− β)

(
∇f

(
x0
)
− g0

)∥∥2]+ 4βL2U0 + 4β2

(
σ2
l

SK
+ L2U0

)
≤ (1− β)E−1 +

4β2σ2
l

SK
+ 8β2L2U0 + 8β(1− σ)2d

Lemma 6. If ηLK ≤ 1
β , the following holds for r ≥ 0 :

Ur ≤ 2eK2Ξr +Kη2β2σ2
l

(
1 + 2K3L2η2β2

)
Proof. Recall that ζr,ki := E

[
xr,k+1
i − xr,k

i | Fr,k
i

]
= −η

(
(1− β)gr + β∇fi

(
xr,k
i

))
. Then we

have

E
[∥∥∥ζr,ji − ζr,j−1

i

∥∥∥2] ≤ η2L2β2E
[∥∥∥xr,j

i − xr,j−1
i

∥∥∥2]
≤ η2L2β2

(
η2β2σ2

l + E
[∥∥∥ζr,j−1

i

∥∥∥2)
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For any 1 ≤ j ≤ k − 1 ≤ K − 2, using ηL ≤ 1
βK ≤

1
β(k+1) , we have

E
[∥∥∥ζr,ji

∥∥∥2] ≤ (1 + 1

k

)
E
[∥∥∥ζr,j−1

i

∥∥∥2]+ (1 + k)E
[∥∥∥ζr,ji − ζr,j−1

i

∥∥∥2]
≤
(
1 +

2

k

)
E
[∥∥∥ζr,j−1

i

∥∥∥2]+ (k + 1)L2η4β4σ2
l

≤ e2E
[∥∥∥ζr,0i

∥∥∥2]+ 4k2L2η4β4σ2
l

where the last inequality is by unrolling the recursive bound and using
(
1 + 2

k

)k ≤ e2. By Lemma
1 , it holds that for k ≥ 2,

E
[∥∥∥xr,k

i − xr
∥∥∥2] ≤ 2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2kη2β2σ2

l

≤ 2k

k−1∑
j=0

E
[∥∥∥ζr,ki

∥∥∥2]+ 2kη2β2σ2
l

≤ 2e2k2E
[∥∥∥ζr,0i

∥∥∥2]+ 2kη2β2σ2
l

(
1 + 4k3L2η2β2

)
This is also valid for k = 0, 1. Summing up over i and k finishes the proof.

Lemma 7. If 288e(ηKL)2
(
(1− β)2 + e(βγLR)2

)
≤ 1, then it holds for r ≥ 0 that

R−1∑
r=0

Ξr ≤
1

72eK2L2

R−2∑
r=−1

(
Er + E

[
∥∇f (xr)∥2

])
+ 2η2β2eRG0

Proof. Note that ζr,0i = −η ((1− β)gr + β∇fi (xr)),

1

N

N∑
i=1

∥∥∥ζr,0i

∥∥∥2 ≤ 2η2

(
(1− β)2 ∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi (xr)∥2
)

Using Young’s inequality, we have for any q > 0 that

E
[
∥∇fi (xr)∥2

]
≤ (1 + q)E

[∥∥∇fi (xr−1
)∥∥2]+ (1 + q−1

)
L2E

[∥∥xr − xr−1
∥∥2]

≤ (1 + q)E
[∥∥∇fi (xr−1

)∥∥2]+ 2
(
1 + q−1

)
γ2L2

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

≤ (1 + q)rE
[∥∥∇fi (x0

)∥∥2]+ 2

q
γ2L2

r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2) (1 + q)r−j

Take q = 1
r and we have

E
[
∥∇fi (xr)∥2

]
≤ eE

[∥∥∇fi (x0
)∥∥2]+ 2e(r + 1)γ2L2

r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2) (10)
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Note that this inequality is valid for r = 0. Therefore, using equation 10, we have

R−1∑
r=0

Ξr ≤
R−1∑
r=0

2η2E

[
(1− β)2 ∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi (xr)∥2
]

≤
R−1∑
r=0

2η2

(
2(1− β)2

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])+ β2 1

N

N∑
i=1

E
[
∥∇fi (xr)∥2

])

≤
R−1∑
r=0

4η2(1− β)2
(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

+ 2η2β2
R−1∑
r=0

 e

N

N∑
i=1

E
[∥∥∇fi (x0

)∥∥2]+ 2e(r + 1)(γL)2
r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2])

≤4η2(1− β)2
R−1∑
r=0

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

+ 2η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(
Er + E

[
∥∇f (xr)∥2

]))

Rearranging the equation and applying the upper bound of η completes the proof.

Theorem 2 (Convergence for non-convex functions). Under Assumptions 1-2 , if we take g0 = 0,

β = min

{
,

√
SKL∆

σ2
l R

}
for any constant c ∈ (0, 1], γ = min

{
1

24L
,
β

6L

}
,

ηKL ≲ min

{
1,

1

βγLR
,

(
L∆

G0β3R

)1/2

,
1

(βN)1/2
,

1

(β3NK)
1/4

}

then FedMuon converges as

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲

L∆

R
+

√
L∆

R

(
σ2
l

SK
+ (1− σ)2d

)
.

Here G0 := 1
N

∑N
i=1

∥∥∇fi (x0
)∥∥2.

Proof. Combining Lemma 3 and 5, we have

Er ≤
(
1− 8β

9

)
Er−1 + 4

(γL)2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 4β2σ2
l

SK
+ 8β2(1− σ)2d

+ 4βL2
(
2eK2Ξr +Kη2β2σ2

l

(
1 + 2K3L2η2β2

)
and

E0 ≤ (1− β)E−1 +
4β2σ2

l

SK
+ 8β(1− σ)2d+ 4βL2

(
2eK2Ξ0 +Kη2β2σ2

l

(
1 + 2K3L2η2β2
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.
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Summing over r from 0 to R− 1 and applying Lemma 7,

R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er + 4
(γL)2

β
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Here in the last inequality we apply

4β(ηKL)2
(

1

K
+ 2(ηKLβ)2

)
≤ 2

NK
and γL ≤ β

6
.

Therefore,
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9
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Combine this inequality with Lemma 3 and we get

1

γ
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[
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Finally, noticing that g0 = 0 implies E−1 ≤ 2L
(
f
(
x0
)
− f∗) = 2L∆, we obtain

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲

L∆

γLR
+
E−1

βR
+ (βηKL)2G0 +

βσ2
l

SK
+ β(1− σ)2d.

≲
L∆

R
+

L∆

βR
+

βσ2
l

SK
+ (βηKL)2G0 + β(1− σ)2d

≲
L∆

R
+

√
L∆

R

(
σ2
l

SK

)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: A detailed summary of 100 and Tiny ImageNet: number of classes, image size, and dataset
splits.

Dataset #Classes Image Size Train Val Test Total Train / class

CIFAR-100 100 3× 32× 32 50,000 — 10,000 60,000 500
Tiny ImageNet 200 3× 64× 64 100,000 10,000 10,000 120,000 500

Notes. (1) CIFAR-10/100 provide no official validation split; a subset of the training set is commonly
reserved as dev/val.
(2) CIFAR-100 contains 100 fine-grained classes; 20 coarse superclasses are also defined for hierarchical
labeling.
(3) Tiny ImageNet is a subset of ImageNet synsets: per class 500 train, 50 val, and 50 test images (test
labels are not publicly released).
(4) All three datasets are single-label classification with RGB images resized to fixed resolutions.

B APPENDIX B: EXPERIMENTAL SETUP

B.1 SETTING FOR RESNET-18

We evaluate our methods on two widely-used benchmark datasets in federated learning: CIFAR-100
and Tiny ImageNet.

• CIFAR-100 (Krizhevsky et al., 2009): Contains 100 classes with 600 color images per class at
a resolution of 32× 32. It is a standard benchmark for evaluating federated image classification
methods.

• Tiny ImageNet: A subset of ImageNet with 200 classes and 500 images per class, providing a
more challenging and high-resolution classification task.

B.2 FEDERATED LEARNING CONFIGURATION

We simulate a cross-device federated learning environment using the following settings:

Table 9: Hyperparameter configuration of ResNet-18 and Vit-Tiny (CIFAR100) across different
algorithms.

Method Local Optimizer Local LR α β1 β2 Weight Decay

FedAvg (Local SGD) SGD 0.1 — — — 0.001
FedProx SGD 0.1 — — — 0.001
FedDyn SGD 0.1 — — — 0.001
Mime SGD 0.1 — — — 0.001
FedAdam SGD 0.1 — 0.9 0.98 0.001
SCAFFOLD SGD 0.1 — — — 0.001
FedCM SGD 0.1 0.9 — — 0.001
FedLADA AdamW 3e-4 0.9 0.9 0.999 0.01
Local AdamW AdamW 3e-4 — 0.9 0.999 0.01
Local Muon Muon 3e-2 — 0.98 — 0.01
FedMuon Muon 3e-2 0.5 0.98 — 0.01

Note: The paper specifies that “FedMuon and Local Muon use local LR = 1e-3, α = 0.5, β = 0.98”, we use

α = 0.5 and β = 0.98 for all tasks throughout the paper; this combination of hyperparameters is highly robust
and stable.; however, α = 0.5 only applies to FedMuon as a global-local alignment coefficient and not to

Local Muon, which is indicated by “—”.In the training task from scratch, the learning rate of Muon is usually
100 times higher than that of AdamW

• Number of clients: 100
• Client participation rate: 10% per round
• Communication rounds: 300
• Local update steps: 50 iterations
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Table 10: Hyperparameter configuration of ViT-Base, Swin-Base, RoBERTa-base fine-tuning across
different algorithms.

Method Local Optimizer Local LR α β1 β2 Weight Decay

FedAvg (Local SGD) SGD 0.1 — — — 0.001
FedProx SGD 0.1 0.01 — — 0.001
FedDyn SGD 0.1 0.01 — — 0.001
Mime SGD 0.1 — — — 0.001
FedAdam SGD 0.1 — 0.9 0.98 0.001
SCAFFOLD SGD 0.1 — — — 0.001
FedCM SGD 0.1 0.9 — — 0.001
FedLADA AdamW 1e-4 0.9 0.9 0.999 0.01
Local AdamW AdamW 1e-4 — 0.9 0.999 0.01
Local Muon Muon 1e-3 — 0.98 — 0.01
FedMuon Muon 1e-3 0.5 0.98 — 0.01

Note: The paper specifies that “FedMuon and Local Muon use local LR = 1e-3, α = 0.5, β = 0.98”; however,
α = 0.5 only applies to FedMuon as the global–local alignment coefficient and not to Local Muon, which is
indicated by “—”. In fine-tuning tasks, the learning rate of Muon is typically set to be 10× that of AdamW.

• Batch size: 50

We perform grid search to tune the learning rates for each algorithm:

• FedAvg, SCAFFOLD, FedCM, and FedAdam use a local learning rate of 0.1.
• FedLADA, Local AdamW, use a local learning rate of 3e-4.
• FedMuon and Local Muon use a local learning rate of 3e-2,α = 0.5, β = 0.98

B.3 MODEL ARCHITECTURE

We adopt ResNet-18 as the backbone model. To better adapt it to CIFAR-100, we modify its archi-
tecture following standard practices (He et al., 2016):

• Replace the original 7× 7 convolution with a 3× 3 kernel.
• Remove the initial downsampling layers (stride-2 convolution and max pooling).

We also compare Batch Normalization (BN) and Group Normalization (GN) in ResNet-18.
Empirically, BN outperforms GN on CIFAR-100, so we adopt the BN-based version, denoted as
ResNet-18-BN, throughout our experiments.

B.4 SETTING FOR VIT-TINY

We construct a lightweight Vision Transformer model, ViT-Tiny, specifically tailored for federated
learning on the CIFAR-100 dataset. The design is based on the standard ViT architecture (Doso-
vitskiy et al., 2020), with modifications to accommodate the small input size and limited data per
client.

• Input resolution: 32× 32

• Patch size: 4× 4, resulting in 64 tokens per image
• Embedding dimension: 192
• Number of Transformer layers: 6
• Number of attention heads: 3
• Normalization: LayerNorm (applied before attention and MLP blocks)
• Classification head: Linear projection to 100 classes (CIFAR-100)
• Activation: GELU
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• Initialization: Xavier/Glorot for linear layers; sinusoidal positional encoding

To regularize training, we apply dropout (0.1) to both attention and MLP layers. All models are
trained from scratch without pretraining.

Federated Learning Configuration. We adopt the same federated learning setup as used in our
ResNet experiments for a fair comparison:

• Number of clients: 100
• Client participation rate: 10%
• Communication rounds: 300
• Local update steps: 50 iterations per round
• Local batch size: 50

Learning Rate Schedule. We perform grid search to identify optimal learning rates for each al-
gorithm:

• FedAvg, SCAFFOLD, FedCM, and FedAdam: local learning rate of 0.1
• ,FedLADA, Local AdamW: local learning rate of 3e-4
• FedMuon and Local Muon: local learning rate of 3e-2, ,α = 0.5, β = 0.98

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM, FedAdam: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Optimizer. We use Adam or AdamW as the local optimizer depending on the method. All opti-
mizers use β1 = 0.9, β2 = 0.999, and weight decay of 0.01 when applicable.

Remarks. Due to the smaller capacity of ViT-Tiny and limited data per client, we find that careful
normalization (e.g., LayerNorm placement) and early learning rate warmup are beneficial. For future
work, more advanced token-mixing techniques or hybrid CNN-ViT backbones may further improve
performance in federated settings.

B.5 SWIN TRANSFORMER FINE-TUNING SETTINGS

To demonstrate the effectiveness of our method on large-scale vision models, we conduct fine-tuning
experiments using Swin Transformer-Tiny and ViT-Base on Tiny ImageNet and CIFAR-100.
For both models, we initialize from official ImageNet-22K pre-trained weights (Liu et al., 2021;
Dosovitskiy et al., 2020) to ensure consistency across methods.

Model Architecture: Swin-Tiny. Swin-Tiny adopts a hierarchical Transformer structure that
gradually reduces the spatial resolution while increasing the feature dimensions, mimicking a CNN-
like pyramid:

• Stage depth: [2, 2, 6, 2]
• Number of attention heads: [3, 6, 12, 24]
• Embedding dimensions: 96, 192, 384, 768 across stages
• Patch size: 4× 4

• Window size: 7
• MLP ratio: 4
• Normalization: LayerNorm
• Positional encoding: Relative positional bias
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• Regularization: DropPath (with decay rate linearly scaled to depth)

We fine-tune all layers during federated training.

Data Preprocessing. To align with the input resolution required by Swin and ViT, we resize im-
ages from both datasets to 224 × 224 using bilinear interpolation. Standard data augmentation
techniques such as random cropping, horizontal flipping, and RandAugment are applied locally at
the client side.

Federated Learning Configuration. To simulate a realistic cross-device setting, we configure:

• Number of clients: 100

• Client participation rate: 5% per communication round

• Communication rounds: 100

• Local update steps: 50 iterations

• Batch size: 16

Learning Rate Configuration. We apply grid search to find optimal learning rates and use cosine
learning rate decay with no warmup unless otherwise stated:

• FedAvg, SCAFFOLD, FedCM: local LR = 0.1

• FedLADA, Local AdamW: local LR = 1e-4

• FedMuon and Local Muon: local LR = 1e-3

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Optimization. Local optimizers are Adam or AdamW depending on the algorithm, with parame-
ters β1 = 0.9, β2 = 0.999, and weight decay of 0.01. Cosine decay is applied to local learning rates
over the 50 local steps per round. No learning rate warmup is used unless otherwise specified.

Remarks. We find that Swin Transformer benefits from hierarchical attention and DropPath when
training with limited local data. Our method shows stable convergence and avoids loss spikes of-
ten seen in large-scale federated fine-tuning. All models are implemented using the HuggingFace
Transformers and Timm libraries.

B.6 ROBERTA-BASE FINE-TUNING SETTINGS

We fine-tune the RoBERTa-Base model using LoRA (Low-Rank Adaptation) on a subset of the
GLUE benchmark. The LoRA adaptation is applied to the query and value projection matrices of
the self-attention modules. The following table summarizes the hyperparameter settings used across
tasks.

Explanation. We use a uniform batch size of 32 and sequence length of 128 across all tasks. LoRA
is configured with a rank of 16 and scaling factor α = 32. The optimizer is AdamW with a weight
decay of 0.01 and dropout set to 0.1. No layer freezing is used; all LoRA-injected weights are
trained, while the base RoBERTa backbone remains frozen.

B.7 ADDITIONAL FEDERATED TRAINING CONFIGURATION OF LLM

To evaluate our algorithm under a smaller-scale federation, we further conduct experiments with a
reduced number of clients and adjusted participation parameters.
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Table 11: Summary of GLUE datasets: task type, number of classes, and dataset sizes.

Dataset Task Type #Classes Train Size Test Size

MNLI Natural Language Inference (entailment) 3 392,702 9,815
SST-2 Sentiment Classification (binary) 2 67,349 1,821
MRPC Paraphrase Detection (binary) 2 3,668 1,725
CoLA Linguistic Acceptability (binary) 2 8,551 1,043
QNLI Question-Answer NLI (binary) 2 104,743 5,463
QQP Duplicate Question Detection (binary) 2 363,846 390,965
RTE Recognizing Textual Entailment (binary) 2 2,490 3,000

Table 12: Hyperparameter configuration for RoBERTa-Base with LoRA across GLUE tasks. LoRA is applied
with r = 16 to both query and value projections. All tasks use AdamW as the optimizer.

Method Setting GLUE Tasks

MNLI SST-2 MRPC CoLA QNLI QQP RTE

RoBERTa-Base
+ LoRA

Batch size 16 16 16 16 16 16 16
Max seq. length 128 128 128 128 128 128 128
LoRA ranks (rq = rv) 16 16 16 16 16 16 16
LoRA scaling α 32 32 32 32 32 32 32
Dropout 0.1

Federated Setup. We simulate a federated learning environment with the following configuration:

• Number of clients: 4 or 20
• Client participation rate:100% or 20% (i.e., 4 clients per round)
• Communication rounds: 100
• Local update steps: 50
• Local batch size: 16

Learning Rate Schedule. We apply grid search for local and global learning rates and use cosine
learning rate decay across local updates:

• FedAvg, SCAFFOLD, FedCM: local LR = 0.1

• FedLADA, Local AdamW: local LR = 1e-4

• Local Muon, FedMuon: local LR = 1e-3

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Other Settings. AdamW optimizers use β1 = 0.9, β2 = 0.999. Learning rates follow cosine
decay without warmup.
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Table 13: Per-round communication cost of different momentum aggregation strategies. Here |x|
denotes the number of model parameters (in floats), and CommCost is per-round communication
cost, Compute-Cost is per-round computation time. (ViT-Tiny, R = 300, Dir-0.1, K = 50)

Method / Strategy Communication CommCost Compute-Cost (s) Acc(%) Comm@23%Acc (MB)

FedAvg |x| 22.8 MB 4.56 s 27.14 4190 MB
FedProx |x| 22.8 MB 4.58 s 26.84 5244 MB
FedDyn |x| 22.8 MB 4.75 s 27.66 4788 MB
Mime 2|x| 45.6 MB 5.26 s 27.76 9804 MB
FedAdam |x| 28.50 MB 4.57 s 28.50 4651 MB
SCAFFOLD 2|x| 45.6 MB 5.22 s 27.31 8390 MB
FedCM |x| 22.8 MB 4.68 s 23.18 6156 MB
FedLADA 2|x| 45.6 MB 5.02 s 31.50 4879 MB
Local AdamW |x| 22.8 MB 4.89 s 37.86 1482 MB
Local Muon |x| 22.8 MB 5.14 s 40.53 2394 MB
FedMuon |x|+ |M |SVD 23.9 MB 5.25 s 48.18 550 MB
|M |SVD ≈ 0.05|M | since we only keep the top 5% singular values/vectors, thus the additional momentum

communication is about 5% of the baseline model communication.

Table 14: Per-round communication and computation cost of different methods on QQP us-
ing RoBERTa-Base with LoRA. Here |x| denotes the number of model parameters (in floats),
CommCost is per-round communication cost (MB), and Compute-Cost is per-round computation
time (s). (QQP, RoBERTa-Base, R = 100, Dir-0.5, 20 clients, 20% participation, batch size 16,
K = 50)

Method / Strategy CommCost (MB) Compute-Cost (s) ACC(%))
FedAvg 7.1 MB 8.56 s 81.75
FedProx 7.1 MB 8.62 s 81.15
FedDyn 7.1 MB 8.89 s 81.35
Mime 14.2 MB 11.25 s 80.26
FedAdam 7.1 MB 8.76 s 82.22
SCAFFOLD 14.2 MB 11.56 s 80.26
FedCM 7.1 MB 8.98 s 81.22
FedLADA 14.2 MB 9.58 s 81.56
Local AdamW 7.1 MB 9.26 s 81.51
Local Muon 7.1 MB 9.73 s 83.06
FedMuon (ours) 7.45 MB 9.91 s 84.65

C APPENDIX C: EXPERIMENTAL APPENDIX

C.1 COMMUNICATION AND COMPUTATION COST ANALYSIS

As shown in Table 14, we evaluate various federated learning and local optimization strategies on
the QQP dataset using RoBERTa-Base with LoRA for parameter-efficient fine-tuning. Most first-
order methods (FedAvg, FedProx, FedDyn, FedAdam, FedCM, Local AdamW, Local Muon) require
around 7.1 MB of communication per round, while methods that maintain additional control vari-
ables or gradient information (Mime, SCAFFOLD, FedLADA) incur a higher communication cost
of 14.2 MB. In contrast, FedMuon increases the per-round communication cost only slightly to 7.45
MB while achieving a notable improvement in model performance.

Regarding computation cost, the per-round training time of these methods ranges from 8 to 11 sec-
onds. FedAvg and FedProx take approximately 8.6 seconds, while FedAdam, FedDyn, and FedCM
exhibit slightly higher computation times. Mime and SCAFFOLD require additional computation
for maintaining control variates, resulting in 11.25 s and 11.56 s per round, respectively. Local Muon
and FedMuon require 9.73 s and 9.91 s per round, slightly higher than FedAvg but still within a rea-
sonable range. Most importantly, FedMuon achieves the highest accuracy of 84.65%, outperforming
common baselines such as FedAvg (81.75%), FedAdam (82.22%), and the locally optimized Local
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Table 15: Test accuracy, training loss of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300
communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6) ResNet-18 (Dir-0.1) ViT-Tiny (Dir-0.6) ViT-Tiny (Dir-0.1)
Test Acc Loss Test Acc Loss Test Acc Loss Test Acc Loss

FedAvg 64.08 0.376 60.25 0.767 32.36 2.350 27.14 2.867
FedProx 63.12 0.458 59.66 0.812 31.51 2.425 26.84 2.875
FedDyn 66.12 0.352 63.01 0.615 33.25 2.125 27.66 2.723
Mime 67.34 0.312 63.37 0.604 34.12 2.101 27.76 2.702
FedAdam 67.23 0.332 63.61 0.512 34.32 1.965 28.50 2.425
SCAFFOLD 65.01 0.365 62.56 0.658 32.17 2.295 27.31 2.752
FedCM 70.42 0.282 66.73 0.639 26.33 2.681 23.18 3.038
FedLADA 65.07 0.671 57.78 0.498 38.33 2.121 31.50 2.678
Local AdamW 62.84 0.363 58.97 0.794 40.47 1.026 37.86 1.954
Local Muon 71.66 0.395 66.71 1.504 46.69 0.201 40.53 1.432
FedMuon 74.12 0.001 73.05 0.246 50.22 0.162 48.18 0.556

Muon (83.06%). Overall, FedMuon provides an improved efficiency–performance trade-off by sig-
nificantly enhancing accuracy while keeping communication overhead nearly unchanged.

C.2 MORE BASELINE EXPERIMENT COMPARISONS

To substantiate our method’s advantages under non-i.i.d. conditions, we extend the comparison to
additional federated baselines such as FedProx, FedDyn, and FedAdam, Mime. The comprehensive
results are presented in Table 15.

Training on CIFAR-100 with ResNet-18. Table 15 and Figure 7 present the test accuracy and
training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of 74.12% and 73.05%, respectively. It also
attains the lowest training loss (0.001 and 0.246), demonstrating faster and more stable convergence.
Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
ization under data heterogeneity, confirming its effectiveness in CNNs.

Training on CIFAR-100 with ViT-Tiny. Table 15 and Figure 7 show FedMuon achieves the
best performance across both heterogeneity levels, with 50.22% (Dir-0.6) and 48.18% (Dir-0.1),
and the lowest training loss (0.162 and 0.556), confirming its efficient convergence. Compared to
Local AdamW, it provides consistent improvements in both accuracy and stability. Moreover,
other adaptive baselines such as FedLADA perform significantly worse under high heterogeneity,
highlighting the effectiveness of global update correction and decoupled weight decay. These
results validate that FedMuon is particularly effective for federated vision Transformers under
non-i.i.d. conditions. The small dataset CIFAR100 is difficult to support the performance of ViT,
resulting in lower accuracy. Therefore, we continued to test on the pretrained model.

C.3 MORE BASELINE EXPERIMENT ON IID DATA

As shown in Table 16, on CIFAR-100, our proposed FedMuon consistently achieves the best test ac-
curacy across both ResNet-18 and ViT-Tiny under IID and non-IID (Dir-0.6 and Dir-0.1) settings.
For ResNet-18, FedMuon reaches 74.32 accuracy in the IID case, outperforming strong baselines
such as Mime and FedAdam by approximately 6.4 and 6.2 percentage points, respectively. Even
under highly heterogeneous data (Dir-0.1), FedMuon still achieves 73.05, significantly higher than
FedCM (66.73) and FedAdam (63.61). A similar trend is observed for ViT-Tiny: FedMuon achieves
50.56 accuracy in the IID setting, nearly 10 percentage points higher than Local AdamW; and in the
Dir-0.1 scenario, it maintains a strong performance of 48.18, outperforming all baselines by a large
margin.

It is also noteworthy that Local Muon performs particularly well under IID conditions. For ex-
ample, it achieves 72.04 with ResNet-18 and 47.69 with ViT-Tiny, indicating that Local Muon
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Table 16: Test accuracy of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300 communica-
tion rounds under IID, Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 ViT-Tiny

IID Dir-0.6 Dir-0.1 IID Dir-0.6 Dir-0.1

FedAvg 65.74 64.08 60.25 32.45 32.36 27.14
FedProx 65.52 63.12 59.66 32.25 31.51 26.84
SCAFFOLD 65.67 65.01 62.56 32.67 32.17 27.31
FedDyn 66.58 66.12 63.01 33.66 33.25 27.66
Mime 67.89 67.34 63.37 34.52 34.12 27.76
FedCM 70.57 70.42 66.73 27.88 26.33 23.18
FedLADA 66.23 65.07 57.78 38.56 38.33 31.50
FedAdam 68.12 67.23 63.61 34.83 34.32 28.50
Local AdamW 64.60 62.84 58.97 40.78 40.47 37.86
Local Muon 72.04 71.66 66.71 47.69 46.69 40.53
FedMuon 74.32 74.12 73.05 50.56 50.22 48.18

converges rapidly and achieves strong performance when the data distribution across clients is ho-
mogeneous. However, when the data becomes non-IID—especially under Dir-0.1—the performance
of Local Muon drops significantly (e.g., from 72.04 to 66.71 on ResNet-18, and from 47.69 to
40.53 on ViT-Tiny), revealing a severe client drift issue. In contrast, our FedMuon not only pre-
serves the fast convergence and strong performance in the IID setting, but also effectively mitigates
client drift under non-IID conditions. As a result, FedMuon consistently achieves the best per-
formance across all data distributions and model architectures, demonstrating its robustness and
stability in federated learning.

C.4 MORE EXPERIMENT ON FINE-TUNING RESULTS ON LLMS.

Fine-tuning Results on LLMs. Table 18 summarizes results on the GLUE benchmark using
RoBERTa-Base with LoRA, 20 clients, 20% participation, batch size 16, K = 50, rank=16.
FedMuon achieves the highest accuracy of GLUE outperforming strong baselines such as FedAvg
and Local Muon.

Table 18 reports the performance of various federated optimization methods on the GLUE bench-
mark using RoBERTa-Base with LoRA under a more challenging heterogeneous setting: a Dirichlet-
0.5 partition and only 20% client participation. This scenario introduces substantially higher data
imbalance and inconsistency across clients, making communication and optimization significantly
more difficult. Despite this increased heterogeneity, our proposed FedMuon consistently achieves
the best accuracy across almost all tasks.

Compared with classical methods such as FedAvg and SCAFFOLD, FedMuon shows clear im-
provements, especially on more sensitive tasks like CoLA, RTE, QQP, and MNLI. For example,
FedMuon achieves 56.78 on CoLA and 66.58 on RTE, outperforming the next-best method by 1.24
and 1.65 points respectively. Even when compared to stronger baselines such as FedLADA and
Local AdamW, our method maintains a noticeable margin. On MNLI, FedMuon reaches 85.21,
compared to 84.63 from Local Muon and only 82.44 from FedLADA. Overall, FedMuon ob-
tains the highest average accuracy (80.74), demonstrating its robustness under severe heterogeneity.

It is particularly worth noting that Local Muon again performs strongly, achieving the second-best
results on most tasks. This highlights the effectiveness of the Muon optimizer itself in improving
local training stability. However, similar to previous observations under non-IID image benchmarks,
Local Muon lacks a mechanism to correct client drift, which becomes increasingly problematic
when client updates diverge under heterogeneous data. As a result, although Local Muon obtains
competitive accuracy, it is consistently surpassed by FedMuon.

By contrast, our FedMuon integrates the advantages of Muon optimization with a federated correc-
tion mechanism that effectively mitigates client drift. This enables the algorithm to maintain stable
global convergence even with highly imbalanced data and limited participation. The strong results
across all GLUE tasks under Dir-0.5 clearly demonstrate that FedMuon remains robust, scalable,
and superior in more challenging real-world federated learning scenarios.
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Table 17: Test accuracy using RoBERTa-Base with LoRA across GLUE tasks over 100 communication rounds
(Dirichlet-0.8, 4 clients, 100% participation, batch size 16, K = 50).

Method (Dir-0.8) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 57.32±0.22 62.71±0.35 93.32±0.08 84.13±0.15 87.02±0.19 90.19±0.12 84.18±0.21

SCAFFOLD 58.14±0.25 63.62±0.28 93.54±0.09 84.62±0.17 87.56±0.22 90.26±0.11 84.26±0.20

FedCM 58.14±0.27 66.14±0.31 93.61±0.07 84.56±0.18 87.11±0.16 90.08±0.13 84.32±0.23

FedLADA 59.10±0.21 74.14±0.29 93.66±0.10 84.86±0.16 87.42±0.18 90.18±0.14 84.46±0.19

Local AdamW 59.33±0.23 74.04±0.27 93.55±0.11 84.68±0.15 87.16±0.20 90.11±0.12 84.54±0.18

Local Muon 60.16±0.20 71.48±0.34 93.34±0.09 85.11±0.13 87.45±0.21 90.97±0.15 84.59±0.17

FedMuon (ours) 63.04±0.19 77.12±0.30 94.12±0.08 85.73±0.14 88.23±0.17 91.43±0.10 85.05±0.16

Table 18: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, K = 50)

Method (Dir-0.5) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 51.00±0.26 51.99±0.24 93.04±0.16 81.75±0.11 88.24±0.18 89.36±0.15 81.72±0.25

FedProx 53.11±0.14 53.25±0.21 92.26±0.18 81.15±0.11 87.36±0.12 88.12±0.14 81.41±0.21

FedDyn 53.21±0.28 52.22±0.30 92.36±0.21 81.35±0.21 87.89±0.11 89.12±0.21 82.18±0.21

Mime 52.15±0.17 51.62±0.21 92.21±0.28 80.26±0.18 88.04±0.12 89.11±0.21 82.51±0.20

FedAdam 53.21±0.28 52.52±0.31 92.36±0.25 82.22±0.28 88.12±0.34 88.01±0.23 82.66±0.22

SCAFFOLD 52.15±0.17 50.65±0.20 93.28±0.28 80.26±0.18 88.35±0.12 89.32±0.24 82.11±0.20

FedCM 53.21±0.28 52.22±0.30 92.56±0.25 81.22±0.28 88.56±0.13 89.02±0.23 82.12±0.27

FedLADA 54.66±0.17 57.02±0.08 93.88±0.16 81.56±0.20 89.01±0.28 89.86±0.29 82.44±0.17

Local AdamW 55.38±0.12 59.57±0.25 93.81±0.19 81.51±0.05 88.73±0.23 89.55±0.15 82.86±0.26

Local Muon 55.54±0.05 64.93±0.17 93.58±0.27 83.06±0.11 88.95±0.13 90.52±0.27 84.63±0.10

FedMuon(ours) 56.78±0.11 66.58±0.29 93.54±0.25 84.65±0.16 88.21±0.07 90.24±0.13 85.21±0.18

C.5 MORE PRE-TRAINING EXPERIMENTS ON VIT MODEL.

To further investigate the scalability of our method on modern Transformer-based architectures,
we conduct federated pre-training experiments on the CIFAR-100 dataset using a family of ViT
models, including ViT-Tiny, ViT-Small, ViT-Base, and ViT-Large. Specifically, we adopt ViT
backbones as the global model and perform federated optimization under a highly heterogeneous
Dir-0.1 partition with 100 clients, 10% client participation per round, batch size 50, and K = 50
local update steps. This setting mimics a realistic scenario in which data are strongly non-IID across
devices and only a small fraction of clients can participate in each communication round, making it
particularly challenging for large-capacity models that are more sensitive to optimization instability
and client drift.

The results in Table 19 show that, across all four ViT variants, our proposed FedMuon consis-
tently achieves the highest accuracy, significantly outperforming both classical federated optimiza-
tion methods (FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM, FedLADA, FedAdam) and
strong local training baselines (Local AdamW, Local Muon). As the model size increases from
ViT-Tiny to ViT-Large, the performance gains of FedMuon also become more pronounced, demon-
strating that our algorithm can effectively leverage the additional capacity of larger ViT models even
under severe data heterogeneity. These results confirm that FedMuon is well suited for federated
pre-training of ViT-style architectures on CIFAR-100, providing stable and efficient optimization
across a wide range of model scales.

Table 19 reports the test accuracy on CIFAR-100 under a highly heterogeneous Dir-0.1 partition
using four ViT architectures of increasing capacity: ViT-Tiny, ViT-Small, ViT-Base, and ViT-
Large. We consider a challenging federated setting with 100 clients, 10% participation per round,
batch size 50, and K = 50 local steps. Overall, the results clearly demonstrate that our proposed
FedMuon consistently outperforms all baselines across all model scales, and that it is particularly
effective at exploiting larger model capacity under non-IID data.

Classical optimization methods such as FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM,
FedLADA, and FedAdam exhibit only moderate gains as the ViT model becomes larger. For exam-
ple, FedAvg improves from 27.14 on ViT-Tiny to 33.56 on ViT-Large, and FedDyn from 27.66 to
35.34. Even though these methods benefit from increased model capacity, their performance is still
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Table 19: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ViT-Tiny ViT-Small ViT-Base ViT-Large

FedAvg 27.14 29.52 31.15 33.56
FedProx 26.84 28.63 31.05 33.25
SCAFFOLD 27.31 30.24 32.85 34.58
FedDyn 27.66 31.23 33.11 35.34
Mime 27.76 31.12 33.01 35.43
FedCM 23.18 25.15 27.88 29.01
FedLADA 31.50 33.15 33.15 33.15
FedAdam 28.50 33.15 33.15 33.15
Local AdamW 37.86 37.86 37.86 37.86
Local Muon 40.53 42.34 45.26 46.54
FedMuon 48.18 50.52 53.63 56.24

Table 20: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50), and
train loss of each method on OpenWebText data using GPT-2 Small, GPT-2 Medium, GPT-2 Large and
GPT-2 XL over 300 communication rounds (20 clients, 20% participation, batch size 16, K = 100).

Method CIFAR-100 (Test Acc, %) OpenWebText (Train Loss)

ViT-Tiny ViT-Small ViT-Base ViT-Large GPT-2 S GPT-2 M GPT-2 L GPT-2 XL

FedAvg 27.14 29.52 31.15 33.56 4.25 4.12 4.01 3.91
FedProx 26.84 28.63 31.05 33.25 4.33 4.21 4.15 4.05
FedDyn 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
Mime 27.66 31.23 33.11 35.34 4.10 4.02 3.89 3.78
FedAdam 28.50 33.15 33.15 33.15 4.02 3.95 3.82 3.75
SCAFFOLD 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
FedCM 23.18 25.15 27.88 29.01 4.32 4.21 4.02 3.91
FedLADA 31.50 33.15 33.15 33.15 3.56 3.45 3.33 3.24
Local AdamW 37.86 37.86 37.86 37.86 3.44 3.35 3.27 3.15
Local Muon 40.53 42.34 45.26 46.54 3.33 3.21 3.09 2.98
FedMuon(ours) 48.18 50.52 53.63 56.24 3.12 2.98 2.85 2.74

severely limited by client drift and the strong non-IID nature of the Dir-0.1 partition. Local train-
ing baselines, such as Local AdamW, achieve higher accuracy than most federated methods (e.g.,
37.86 across all model sizes), but they do not effectively leverage larger architectures in this setting,
indicating that naive local optimization quickly saturates under heterogeneous data.

In contrast, Local Muon significantly boosts performance for all ViT variants (e.g., from 37.86
with Local AdamW to 40.53 on ViT-Tiny and up to 46.54 on ViT-Large), showing that the Muon
optimizer itself provides stronger local training dynamics and better utilization of the transformer
capacity. However, Local Muon still suffers from client drift, and its gains plateau as data hetero-
geneity persists.

Our federated variant, FedMuon, further amplifies these benefits by coupling the Muon optimizer
with an appropriate global aggregation and drift-mitigation mechanism. As a result, FedMuon
achieves the best performance at every model scale, from 48.18 on ViT-Tiny to 56.24 on ViT-Large.
The gap between FedMuon and the strongest baselines widens as the model becomes larger (e.g.,
over 10 points improvement compared to FedDyn on ViT-Large), indicating that FedMuon not only
stabilizes optimization under non-IID data, but also scales more effectively with model capacity.
These results demonstrate that our method is particularly suitable for federated training of large
vision transformers in realistic, highly heterogeneous environments.

C.6 EFFECTIVENESS OF MUON AND OUR CORRECTION STRATEGY.

Table 21 summarizes the effect of replacing the local optimizer with Muon under different FL al-
gorithms. Using Local Muon already brings consistent improvements over Local SGD on both
backbones (e.g., +6.03 on ResNet-18 and +13.39 on ViT-Tiny). When combined with existing
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Table 21: Effect of local optimizer Muon on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
denote absolute improvement over the baseline in the previous row.

Variant ResNet-18 ViT-Tiny
Local SGD 60.25 27.14
Local Muon 66.28 (↑ 6.03) 40.53 (↑ 13.39)

SCAFFOLD 62.56 27.31
Local Muon + SCAFFOLD 68.23 (↑ 5.67) 42.26 (↑ 14.95)

FedCM 66.73 23.18
Local Muon + FedCM 68.77 (↑ 2.04) 44.23 (↑ 21.05)

FedDyn 63.01 27.66
Local Muon + FedDyn 67.15 (↑ 4.14) 43.56 (↑ 15.90)

FedProx 59.66 26.84
Local Muon + FedProx 67.25 (↑ 7.59) 43.11 (↑ 16.27)

Local SGD + m̄+∆G 67.56 33.23
Local Muon + m̄+∆G 73.05 (↑ 5.49) 48.18 (↑ 14.95)

personalized or corrective FL methods such as SCAFFOLD, FedCM, FedDyn, and FedProx, the
variants with Muon (Local Muon + Method) consistently outperform their baselines by a substantial
margin (2–8 points on ResNet-18 and 15–21 points on ViT-Tiny). Finally, after introducing our cor-
rection strategy m̄+∆G, Local Muon + m̄+∆G achieves the highest accuracy among all settings,
outperforming Local SGD + m̄+∆G by 5.49 (ResNet-18) and 14.95 (ViT-Tiny). These results val-
idate two key findings: (1) our correction strategy consistently improves different local optimizers,
and (2) compared with other matrix-based or preconditioned optimizers, FedMuon exhibits clear
and significant advantages.

C.7 EFFECT OF MUON-BASED MATRIX ORTHOGONALIZATION ACROSS FL ALGORITHMS.

Table 21 systematically examines the effect of replacing the local optimizer with Muon under a
variety of federated optimization frameworks. Across all baselines—including plain local training
(Local SGD), control-variate methods (SCAFFOLD), proximal or dynamic regularization meth-
ods (FedProx, FedDyn), aggregation-corrected methods (FedCM), and our momentum-aggregated
variant—the incorporation of Muon consistently yields substantial accuracy improvements.

In particular, Muon provides 6.03% and 13.39% absolute gains over Local SGD on ResNet-18 and
ViT-Tiny, respectively, demonstrating that Muon can significantly accelerate client-side adaptation
even without any server-side correction. Similar improvements are observed when Muon is com-
bined with stronger FL algorithms:

• SCAFFOLD + Muon gains 5.67% / 14.95%,

• FedCM + Muon gains 2.04% / 21.05%,

• FedDyn + Muon gains 4.14% / 15.90%,

• FedProx + Muon gains 7.59% / 16.27%

on ResNet-18 / ViT-Tiny, respectively.

These improvements are consistent and often large, indicating that the benefit of Muon is largely
orthogonal to the benefit of the federated optimization algorithms themselves: regardless of whether
the baseline relies on variance reduction, bias correction, or proximal regularization, Muon enables
faster local convergence, mitigates drift accumulation, and enhances cross-round stability. The effect
is most pronounced when Muon is combined with our momentum-aggregation strategy (m̄+∆G),
which achieves the highest accuracy among all variants. Overall, Table 21 shows that Muon acts as
a universal performance amplifier for federated learning, producing significant acceleration across
diverse FL methodologies and model architectures.
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Table 22: Effect of different local optimizers on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
denote absolute improvement over the baseline in the previous row.

Variant ResNet-18 ViT-Tiny
Local SGD 60.25 27.14
Local SGD + m̄+∆G 67.56 (↑ 7.31) 33.23 (↑ 6.09)

Local AdamW 58.97 37.86
Local AdamW + m̄+∆G 66.25 (↑ 7.28) 41.26 (↑ 3.40)

Local Shampoo 59.62 37.56
Local Shampoo + m̄+∆G 66.52 (↑ 6.90) 42.25 (↑ 4.69)

Local Adafactor 58.23 36.52
Local Adafactor + m̄+∆G 65.52 (↑ 7.29) 40.11 (↑ 3.59)

Local LAMB 59.62 36.55
Local LAMB + m̄+∆G 64.35 (↑ 4.73) 38.65 (↑ 2.10)

FedLAMB 62.35 36.28

Local Muon 66.28 32.56
Local Muon + m̄+∆G 73.05 (↑ 6.77) 48.18 (↑ 15.62)

C.8 IMPACT OF ∆G AND m̄ ON OTHER OPTIMIZERS

Table 22 evaluates the effect of applying our correction mechanism, m̄+∆G, on a variety of local
optimizers. Across all optimizers—including AdamW, Shampoo, Adafactor, and LAMB—adding
our global momentum correction consistently improves performance on both ResNet-18 and ViT-
Tiny. These gains show that our correction effectively accelerates local training and alleviates client
drift regardless of the underlying preconditioner.

Notably, the improvement is substantially larger for Muon than for any other optimizer. While
AdamW, Shampoo, Adafactor, and LAMB obtain moderate gains (typically 3–7% on ResNet-18
and 2–6% on ViT-Tiny), the combination of Local Muon + m̄+∆G yields the largest boost:
+6.77% on ResNet-18 and a striking +15.62% on ViT-Tiny.

This pronounced improvement highlights a strong synergy between Muon and our correction mech-
anism. Muon’s orthogonalized updates produce well-conditioned local steps, and our global cal-
ibration further aligns these steps with the global descent direction. Together, they enhance both
optimization geometry and cross-client consistency, resulting in the fastest convergence and highest
accuracy among all tested optimizers.

Overall, the results demonstrate that while our correction mechanism consistently accelerates all
matrix-aware optimizers, Muon benefits the most, underscoring its unique suitability for federated
learning with structured parameters.

As shown in Table 22, our framework consistently improves both convolutional and transformer
backbones on CIFAR-100 under Dir-0.1 heterogeneity. Starting from standard Local SGD, incor-
porating our correction terms m̄ and ∆G yields gains of +7.31 and +6.09 absolute accuracy for
ResNet-18 and ViT-Tiny, respectively. A similar trend holds for other first-order optimizers: for
Local AdamW, the proposed framework improves accuracy by +7.28 (ResNet-18) and +3.40 (ViT-
Tiny); for Local Adafactor, by +7.29 and +3.59.

Beyond first-order methods, our framework also accelerates a range of matrix-based adaptive opti-
mizers. When applied to Local Shampoo, adding m̄ and ∆G leads to improvements of +6.90 and
+4.69 for ResNet-18 and ViT-Tiny, respectively. For Local LAMB, we observe consistent boosts
of +4.73 and +2.10, and the resulting models substantially outperform FedLAMB on ResNet-18
(64.35 vs. 62.35). The effect is most pronounced for Muon: Local Muon already performs strongly,
but our framework further lifts performance by +6.77 on ResNet-18 and a remarkable +15.62 on
ViT-Tiny, achieving the best overall accuracy among all variants. These results demonstrate that our
framework is not limited to Muon itself; it provides a generic correction and acceleration mecha-
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Table 23: Test accuracy, training loss on CIFAR-100 using ResNet-18 and ViT-Tiny over 300 communication
rounds under Dir-0.6 and Dir-0.1 settings (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6)ResNet-18 (Dir-0.1)ViT-Tiny (Dir-0.6)ViT-Tiny (Dir-0.1)
Test Acc Train Loss Test Acc Train Loss Test AccTrain LossTest AccTrain Loss

Local Muon 71.66 0.395 66.71 1.504 46.69 0.201 40.53 1.432
FedMuon(Algorithm 3) 74.12 0.001 73.05 0.246 50.22 0.162 48.18 0.556
FedMuon(Algorithm 2) 73.16 0.005 72.85 0.254 49.85 0.178 48.02 0.562

nism that benefits both classical first-order optimizers and a broad family of matrix-based adaptive
methods.

C.9 COMPARE FEDMUON (ALGORITHM 2) AND FEDMUON (ALGORITHM 3)

Table 23 reports the test accuracy and final training loss on the CIFAR-100 dataset using two back-
bone architectures, ResNet-18 and ViT-Tiny, under two non-IID data partitions generated by the
Dirichlet distribution with concentration parameters α = 0.6 and α = 0.1. The experiments are
conducted over 300 communication rounds with 100 clients, 10% client participation per round, a
local batch size of 50, and K = 50 local optimization steps.
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