

000 001 002 003 004 005 FEDMUON: ACCELERATING FEDERATED LEARNING 006 WITH MATRIX ORTHOGONALIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

The core bottleneck of Federated Learning (FL) lies in the communication rounds. That is, how to achieve more effective local updates is crucial for reducing communication rounds. Existing FL methods still primarily use element-wise local optimizers (Adam/SGD), neglecting the geometric structure of the weight matrices. This often leads to the amplification of pathological directions in the weights during local updates, leading deterioration in the condition number and slow convergence. Therefore, we introduce the Muon optimizer in local (named `Local Muon`), which has matrix orthogonalization to optimize matrix-structured parameters. Experimental results show that, in IID setting, `Local Muon` significantly accelerates the convergence of FL and reduces communication rounds compared to Local SGD and Local AdamW. However, in non-IID setting, independent matrix orthogonalization based on the local distributions of each client induces strong client drift. Applying Muon in non-IID FL poses significant challenges: (1) client preconditioner leading to client drift; (2) moment reinitialization. To address these challenges, we propose a novel Federated Muon optimizer (`FedMuon`), which incorporates two key techniques: (1) momentum aggregation, where clients use the aggregated momentum for local initialization; (2) local-global alignment, where the local gradients are aligned with the global update direction to significantly reduce client drift. Theoretically, we prove that `FedMuon` achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L\Delta\sigma_l^2)/(SKR)} + (L\Delta)/R)$ without the heterogeneity assumption, where S is the number of participating clients per round, K is the number of local iterations, and R is the total number of communication rounds. Empirically, we validate the effectiveness of `FedMuon` on language and vision models. Compared to several baselines, `FedMuon` significantly reduces communication rounds and improves test accuracy. The code is available in <https://anonymous.4open.science/r/FedMuon-935D>.

1 INTRODUCTION

With the rapid growth of data and rising concerns over user privacy, traditional centralized training paradigms have become inadequate. Federated Learning (FL) McMahan et al. (2017) offers a scalable and privacy-preserving framework that enables collaborative model training across decentralized clients without sharing raw data (Liu et al., 2024). As data becomes increasingly siloed, FL is a practical solution for large-scale distributed deep learning. However, data heterogeneity and limited communication rounds create significant bottlenecks in FL. Recent studies reveal that the Hessian matrix in neural networks exhibits an approximate block-diagonal structure with several dense sub-blocks (Collobert, 2004; Zhang et al., 2024), as shown in Figure 1. Understanding parameter matrix structures is crucial for effective federated aggregation, yet this perspective has been largely overlooked in the federated learning literature. Currently, when clients use element-wise optimizers (such as AdamW/SGD) for multi-step updates on their local data, the weight matrices may gradually become ill-conditioned (see Figure 5), causing the update directions to either cancel out or amplify after aggregation. As a result, in each communication round clients struggle to obtain effective updates, and the global model converges slowly.

Recent advancements in the Muon optimizer offer a novel solution to this challenge. The Muon optimizer (Jordan et al.) has recently demonstrated that orthogonal normalization of weight update matrices can significantly accelerate neural network training (see Figure 2). By conditioning the

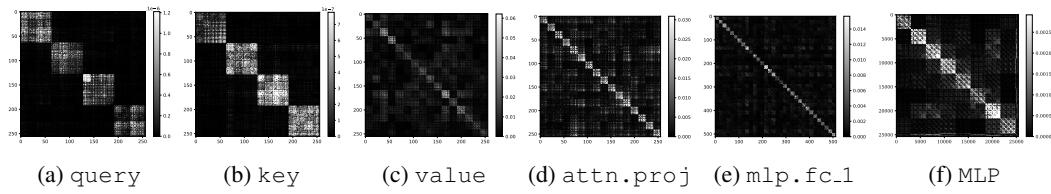
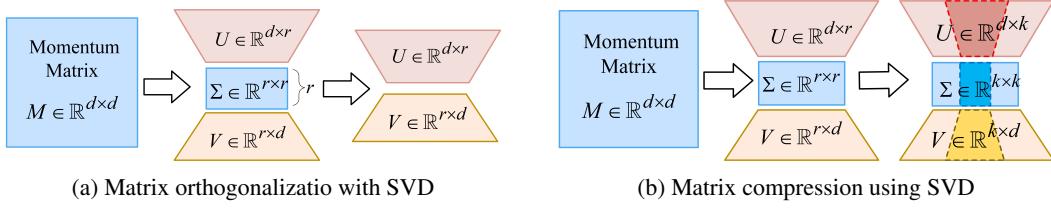


Figure 1: (a-f):Block-wise Hessian structure of Transformer parameters and MLP (Zhang et al., 2024).

Figure 2: (a) shows SVD-based matrix orthogonalization; (b) applies SVD to the momentum matrix $M \in \mathbb{R}^{d \times d}$, i.e., $M \approx U\Sigma V^\top$, and keeps the top- k singular vectors to obtain $U \in \mathbb{R}^{d \times k}$ and $V \in \mathbb{R}^{k \times d}$.

weight updates to produce consistent changes in the hidden states, orthogonal normalization updates lead to faster convergence, improved training stability, and better hyperparameter transferability across different model scales (Bernstein & Newhouse, 2024; Large et al., 2024; Pethick et al., 2025). Moonshot AI (Liu et al., 2025) found that, when training a 16B model, Muon achieved nearly twice the computational efficiency compared to AdamW (Loshchilov et al., 2017). Similarly, Essential AI (Shah et al., 2025) observed significant improvements with Muon in large-batch training. Both GLM 4.5 and K2 are trained with the Muon optimizer (Liu et al., 2025). These features suggest that using Muon for local training in FL (Local Muon) could accelerate local training and reduce communication rounds.

We have also validated the effectiveness of Local Muon in FL in IID setting. Local Muon significantly outperforms Local SGD and Local AdamW (see Figure 4). Local Muon accelerates local convergence and reduces the number of communication rounds required to reach the same level of precision, with faster local loss decrease, smoother training curves, and faster global model convergence (see Figure 4). *However, in non-IID setting, although the local losses of each client still decrease rapidly, the global model after aggregation becomes significantly unstable or even fails to converge (see Figure 4).* We identify the reasons why the Muon optimizer fails in the case of non-IID federated learning from two complementary perspectives.

(Challenge 1) Client preconditioner leading to client drift: In non-IID FL, Muon’s client-specific preconditioner scales gradients from local data distribution, causing misalignment in aggregation.

(Challenge 2) Moment reinitialization: reinitializing the moment of Muon from scratch in every round hinders the convergence.

These challenges motivate us to develop a novel **Federated Muon** optimizer, FedMuon, the first FL optimizer that explicitly accounts for the structure of update matrices. FedMuon addresses the impact of non-IID data through two key mechanisms: (1) **local-global alignment**, where the current local gradients are aligned with the global update to significantly reduce cross-client inconsistency; (2) **momentum aggregation**, where clients initialize using the aggregated momentum.

Our contributions are summarized as follows:

- **Introducing Muon into Federated Learning.** We are the first to design a federated optimizer that explicitly considers the structure of parameter matrices, introducing the matrix orthogonalization method (i.e., Muon) into federated learning. Extensive experiments demonstrate its superiority. However, in highly non-IID settings, severe client drift arises. We analyze this issue from two perspectives: (1) **client preconditioner leading to client drift**, (2) **moment reinitialization**.
- **We propose FedMuon, a principled FL algorithm with Matrix Orthogonalization.** To address above challenges, FedMuon introduce the two mechanisms, **local-global alignment** and

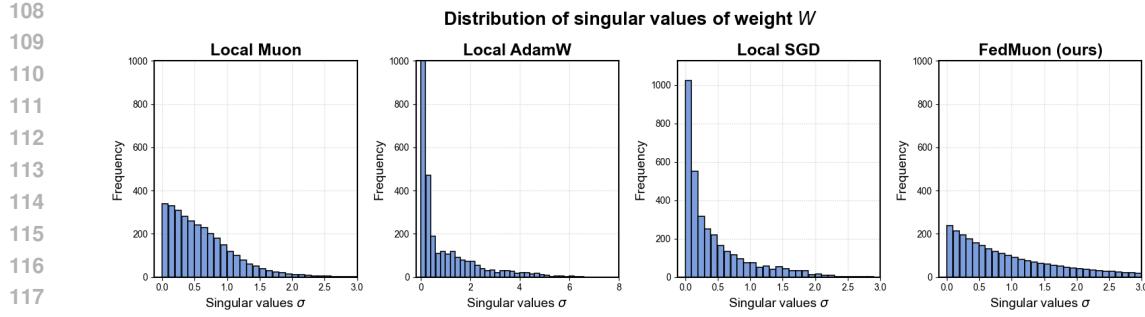


Figure 3: Singular value distributions of Local Muon, Local AdamW, Local SGD, and FedMuon. Local SGD/AdamW are more ill-conditioned with heavier tails and larger singular values, while FedMuon has a more balanced spectrum and a smaller condition number (where the condition number is defined as the ratio between the largest and smallest singular values).

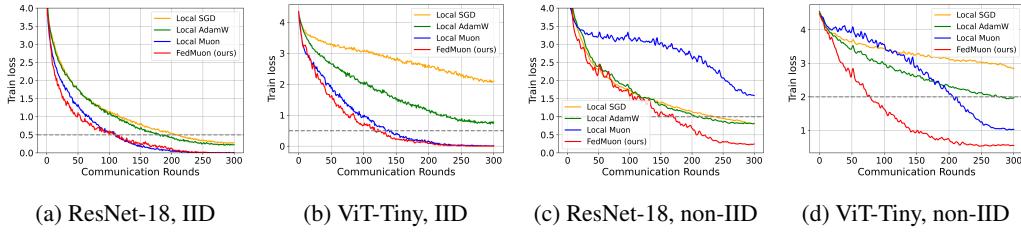


Figure 4: Performance of Local SGD, Local AdamW and Local Muon, we carefully tune the learning rate.

momentum aggregation. Inspired by the Hessian structure, we also design a communication-efficient aggregation strategy that communicates the SVD compression of momentum.

- **Theoretical guarantees with improved convergence.** FedMuon achieves a linear convergence rate of $\mathcal{O}(\sqrt{(L\Delta\sigma_l^2)/(SKR)} + (L\Delta)/R)$ without the widely used data heterogeneity assumption. Due to the local-global alignment, its convergence speed is unaffected by data heterogeneity.

2 RELATED WORK

• **Optimizers in non-IID Federated Learning.** Data heterogeneity across clients is a fundamental challenge in FL. A range of algorithms have been proposed to mitigate the adverse effects of non-i.i.d. data distributions. For example, FedProx (Li et al., 2020a) introduces a proximal term to restrict local updates; SCAFFOLD (Karimireddy et al., 2020b) applies control variates to correct client drift; and FedCM (Xu et al., 2021) leverages client momentum to stabilize updates. FedOpt (Reddi et al., 2020) incorporates server-side adaptivity using Adam. More recently, Sun et al. (2023) proposed FedLADA to only aggregate the second-moment estimate of Adam to overcome client drift. **Novelty.** Prior correction methods (e.g., SCAFFOLD, FEDCM) assume local SGD and overlook other

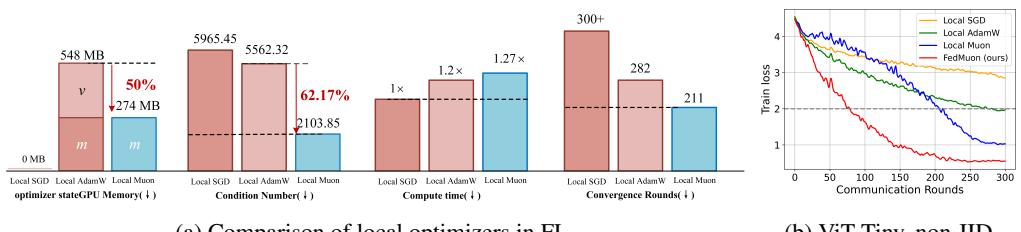


Figure 5: (a) Analysis on ViT-Tiny with CIFAR-100, showing optimizer state memory, condition number, computation time, and convergence rounds. Local Muon achieves lower memory cost, lower the condition number, and faster convergence. (b) Training loss curves of ViT-Tiny under non-IID.

162 optimizers. Directly applying correction methods such as SCAFFOLD or FedCM into Muon
 163 optimizer becomes ineffective. We propose **local-global alignment**, injecting a global direction into
 164 local updates to curb client drift with advanced optimizers (every local optimizers), while using *half*
 165 *the communication* of SCAFFOLD.

166 • **Optimizers in Centralized Settings.** Although widely used optimizers such as SGD,
 167 Adam (Kingma & Ba, 2014), and AdamW (Loshchilov et al., 2017) are effective in many deep
 168 learning settings, they generally treat inherently structured parameters (e.g., matrices) as flattened
 169 vectors during optimization. In contrast, recent work has increasingly focused on structure-aware
 170 optimizers that make explicit use of the underlying parameter geometry. Examples include Adafac-
 171 tor (Duchi et al., 2011), LAMB (Chen et al., 2023), and Adam-mini (Zhang et al., 2024), which
 172 exploit matrix- or layer-level structure to reduce memory footprint. Shampoo (Gupta et al., 2018)
 173 further targets matrix and tensor parameters and can be interpreted as an efficient approximation to
 174 AdaGrad’s full-matrix preconditioner (Duchi et al., 2011). More recently, SOAP (Vyas et al., 2024)
 175 integrates the ideas of Adam with Shampoo’s matrix-aware design. The Muon optimizer (Jordan
 176 et al.) extends this line of work by orthogonalizing weight-update matrices, yielding substantially
 177 faster and more stable neural network training.

178 • **Our contributions.** (1) FedMuon can be viewed as the first federated extension of the Muon opti-
 179 mizer. Unlike standard local Muon, which applies matrix orthogonalization independently on each
 180 client, FedMuon augments Muon with a **local-global alignment** to correct the client-drift induced
 181 by heterogeneous data and matrix orthogonalization. (2) FedMuon bridges structured optimizers
 182 and classical FL methods (Table 21), and we prove that matrix orthogonalization accelerates the
 183 convergence of federated learning algorithms. (3) We design a federated framework that is applica-
 184 ble to all matrix-structured optimizers (Muon / Shampoo / LAMB / Soap, etc.), which specifically
 185 addresses the problem of preconditioner drift through local-global alignment and momentum ag-
 186 gregation (Table 22).

187 3 FL PROBLEM SETUP

188 FL aims to optimize model parameters with local clients, i.e., minimizing the following problem:

$$189 \quad f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N (f_i(\mathbf{x}) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} [F_i(\mathbf{x}; \xi_i)]). \quad (1)$$

190 The function f_i represents the loss function on client i . $\mathbb{E}_{\xi_i \sim \mathcal{D}_i} [\cdot]$ denotes the conditional expectation
 191 with respect to the sample ξ_i . ξ_i is drawn from distribution \mathcal{D}_i in client i . N is the number of clients.

192 4 CHALLENGES OF MUON IN FL

193 4.1 THE MUON OPTIMIZER

194 **Motivation** Most parameters in neural networks are inherently matrix-valued (e.g., in linear layers
 195 or the Q/K/V components of attention mechanisms). However, conventional optimization algorithms
 196 such as SGD and AdamW treat these parameters as vectors, effectively flattening them during up-
 197 dates and thereby neglecting their matrix structure. Muon is specifically designed to address this
 198 limitation by operating Matrix Orthogonalization directly on update matrix.

199 **The Muon Optimizer** Muon has recently been proposed as an optimization method for training
 200 neural network weights that can be represented as matrices. At iteration t , given the current weight
 201 \mathbf{W}_{t-1} , momentum β , learning rate η_t , and the objective $F(\mathbf{W})$, the update rules for the Muon
 202 optimizer are:

$$203 \quad \begin{aligned} \mathbf{M}_t &= \beta \mathbf{M}_{t-1} + \nabla F(\mathbf{W}_{t-1}); \\ 204 \quad \mathbf{O}_t &= \text{Newton-Schulz-5}(\mathbf{M}_t); \\ 205 \quad \mathbf{W}_t &= \mathbf{W}_{t-1} - \eta_t \mathbf{O}_t. \end{aligned} \quad (2)$$

206 Here, \mathbf{M}_t represents the momentum of the gradient at iteration t , initialized as a zero matrix
 207 when $t = 0$. In Eq.(2), a Newton-Schulz iteration is employed to approximate the solution of
 208 $(\mathbf{M}_t \mathbf{M}_t^\top)^{-1/2} \mathbf{M}_t$. Let $\mathbf{U} \Sigma \mathbf{V}^\top = \mathbf{M}_t$ be the singular value decomposition (SVD) of \mathbf{M}_t . Then,
 209 we have $(\mathbf{M}_t \mathbf{M}_t^\top)^{-1/2} \mathbf{M}_t = \mathbf{U} \Sigma^{-1} \mathbf{V}^\top$, which orthogonalizes \mathbf{M}_t (see Figure 2(a)). Intuitively, this
 210 orthogonalization ensures that the update matrices remain isomorphic, preventing the weights from

216 learning solely along a few dominant directions. All matrix orthogonalization operations in this paper are computed using five Newton-Schulz iterations, resulting in about 5% higher computation time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.
 217
 218
 219

220 **4.2 CHALLENGES OF MUON IN FL**
 221

222 Despite the widespread use of Muon in centralized deep learning, its adaptation to federated settings
 223 remains largely unexplored. In this subsection, we analyze two fundamental challenges that hinder
 224 its effectiveness in FL settings.

225 **(Challenge 1) In non-IID FL, Muon’s client-specific preconditioner scales gradients from the**
 226 **client’s local data distribution, causing misalignment and cancellation in aggregation.**

227 **Challenge Analysis:** The matrix orthogonalization in Muon can be viewed as applying a client-
 228 specific linear preconditioner P_i to each client’s gradient (which can be approximated by Newton-
 229 Schulz), transforming the update direction from g_i to $P_i g_i$. In the case of non-IID, the gradients $\{g_i\}$
 230 are distributed across their respective dominant subspaces, and the P_i are independently estimated
 231 from the local data geometry of each client. This leads to direction mismatch and correlation/am-
 232 plification: the global update is approximated as $\sum_i \tilde{g}_i = \sum_i P_i g_i$. When the $\{P_i\}$ apply different
 233 “rotations/scalings” to the gradient subspaces across clients, the sign and magnitude of $\langle \tilde{g}_i, \tilde{g}_j \rangle$ fluc-
 234 tuate significantly, making it prone to direction cancellation (weakening the norm and making step
 235 size ineffective) or phase misalignment (leading to oscillations as it crosses stable regions). These
 236 mechanisms together result in the phenomenon of **local-global inconsistency**: the convergence
 237 shown on the client side (local loss decreases rapidly) does not translate into global progress (global
 238 loss/accuracy stagnates or degrades).

239 **(Challenge 2) Moment reinitialization:** reinitializing the moment of Muon from scratch in every
 240 round hinders the convergence rate.

241 **Challenge Analysis:** In FL, the Muon optimizer state is reinitialized to zero at the beginning of
 242 each round, i.e., $M_i^{r,0} \leftarrow 0$. This reset erases temporal memory across rounds, preventing the
 243 accumulation of momentum and thereby slowing convergence. Moreover, accumulating momentum
 244 from zero exacerbates client drift.

245 **Algorithm 1** FedMuon Algorithm

246 1: **Initial** model $\mathbf{x}^0, \beta = 0.98$, the number of all clients N , each round selected clients S .
 247 2: **for** $r = 1, \dots, R$ **do**
 248 3: **for** each selected client $i \in \{1, \dots, S\}$ in parallel **do**
 249 4: $\mathbf{x}_i^{r,0} \leftarrow \mathbf{x}^r, M_i^{r,0} \leftarrow \bar{M}^r$;
 250 5: **for** $k = 1, \dots, K$ **do**
 251 6: $\mathbf{G}_i^{r,k} \leftarrow \nabla f_i(\mathbf{x}_i^{r,k}; \xi_i); M_i^{r,k} = \beta M_i^{r,k-1} + \mathbf{G}_i^{r,k}$;
 252 7: $\mathbf{U}_i^{r,k} \mathbf{V}_i^{r,k^\top} = \text{Newton-Schulz-5}(M_i^{r,k})$; $\mathbf{x}_i^{r,k+1} = \mathbf{x}_i^{r,k} - \eta[(1-\alpha)\mathbf{U}_i^{r,k} \mathbf{V}_i^{r,k^\top} + \alpha \Delta_G^r]$;
 253 8: **end for**
 254 9: Communicate $(\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0}, M_i^{r,K} \approx U\Sigma V^\top)$ to Server;
 255 10: **end for**
 256 11: $\Delta_G^{r+1} = -\frac{1}{SK\eta} \sum_{i=1}^S (\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0})$; $\mathbf{x}^{r+1} = \mathbf{x}^r + \frac{1}{S} \sum_{i=1}^S (\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0})$;
 257 12: $\bar{M}^{r+1} = \frac{1}{S} \sum_{i=1}^S M_i^{r,K}$; Communicate $(\mathbf{x}^{r+1}, \bar{M}^{r+1}, \Delta_G^{r+1})$ to Clients.
 258 13: **end for**
 259
 260
 261

262 **5 OUR ALGORITHM: FEDMUON**
 263

264 To robustly leverage matrix orthogonalization in FL, we propose FedMuon, with two core mecha-
 265 nisms for the non-IID regime.

266 5.1 MECHANISM I: LOCAL-GLOBAL ALIGNMENT

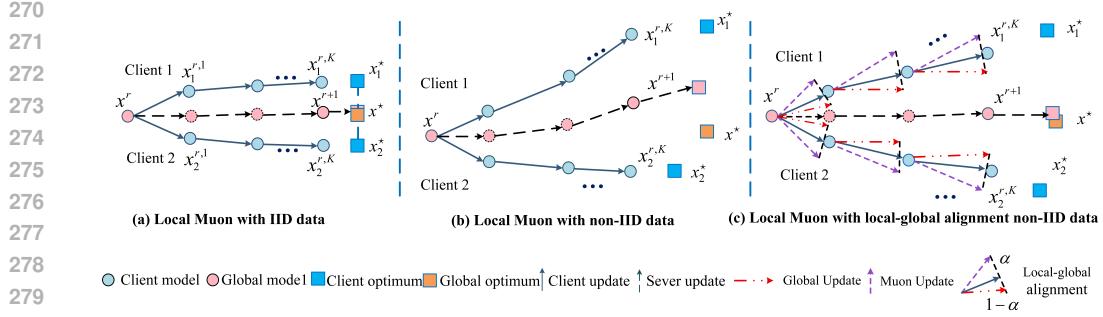


Figure 6: An illustration of FedMuon, which corrects client drift through local-global alignment.

(Q1) How to overcome local-global inconsistency in Local Muon?

To address **Challenge 1**, we incorporate local-global alignment into the local update rule:

$$\mathbf{x}_i^{r,k+1} = \mathbf{x}_i^{r,k} - \eta [(1 - \alpha) \mathbf{U}_i^{r,k} \mathbf{V}_i^{r,k\top} + \alpha \Delta_G^r], \quad (3)$$

where $\Delta_G^r = -\frac{1}{SK\eta} \sum_{i=1}^S (\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0})$ is the estimated global update. α is the trade-off coefficient between local and global updates. As shown in **Figure 6**, this alignment reduces the divergence of local models and improves global consistency. We also validate its effectiveness in the following experiments (see **Table 5** below). All matrix orthogonalization operations and SVD operations in this paper are computed using five Newton-Schulz iterations, resulting in about 5% higher computation time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.

5.2 MECHANISM II: MOMENTUM AGGREGATION

(Q2) How to initialize momentum of Muon in local?

To achieve better initialization of the momentum M in local, we aggregate local momentum $M_i^{r,K}$ and transmit the aggregated result \bar{M} back to the clients. This strategy partially mitigates the client drift caused by reinitializing momentum from zero, and better aligns local updates with the global update direction (see **Table 5** below).

(Q3) How to efficiently communicate momentum matrices?

Momentum Compression via SVD. Directly communicating the full momentum matrix M would introduce prohibitive communication overhead. To reduce the cost, we compress M using singular value decomposition (SVD): $M = U\Sigma V^\top$, where U and V are orthogonal matrices and Σ is the diagonal matrix of singular values. Instead of transmitting the full decomposition, we retain only the top- k singular values (with k set to 5% of the matrix rank), yielding a low-rank approximation (see Figure 2): $M \approx U_k \Sigma_k V_k^\top$. This significantly reduces the communication cost 95%. We refer to this variant as FedMuon_SVD. In the following experiments, we show that this approach achieves performance comparable to FedMuon (see Table 7). The communication cost of each algorithm is reported in Table 13. The communication overhead of FedMuon increases by only 5%. Here we consider only the upload-side communication cost, because client download bandwidth is typically more than 100x faster than upload and can therefore be ignored in practice.

6 THEORETICAL ANALYSIS

In this part, we give the convergence theoretical analysis of our proposed FedMuon algorithm. Firstly we state some standard assumptions for the non-convex function f .

Assumption 1 (Smoothness). *The non-convex f_i is a L -smooth function for all $i \in [m]$, i.e., $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \leq L\|\mathbf{x} - \mathbf{y}\|$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.*

Assumption 2 (Bounded Stochastic Gradient). *$\mathbf{g}_i^r = \nabla f_i(\mathbf{x}_i^r, \xi_i^r)$ computed by using a sampled mini-batch data ξ_i^r in the local client i is an unbiased estimator of ∇f_i with bounded variance, i.e., $\mathbb{E}_{\xi_i^r} [\mathbf{g}_i^r] = \nabla f_i(\mathbf{x}_i^r)$ and $\mathbb{E}_{\xi_i^r} \|\mathbf{g}_i^r - \nabla f_i(\mathbf{x}_i^r)\|^2 \leq \sigma_i^2$, for all $\mathbf{x}_i^r \in \mathbb{R}^d$.*

These assumptions are standard in FL optimization literature (Fan et al., 2024; Sun et al., 2023).

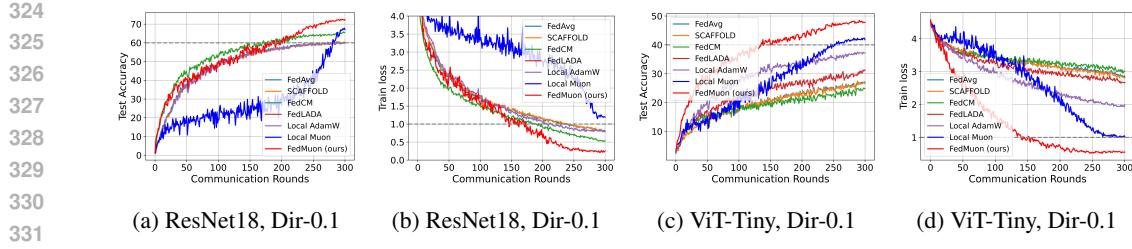


Figure 7: Training loss and Test acc curves on CIFAR-100 using ResNet-18 and ViT-Tiny in Dir-0.1.

Table 1: Test accuracy, training loss of each method on CIFAR-100 using **ResNet-18** and **ViT-Tiny** over 300 communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$).

Method	ResNet-18 (Dir-0.6)		ResNet-18 (Dir-0.1)		ViT-Tiny (Dir-0.6)		ViT-Tiny (Dir-0.1)	
	Test Acc	Loss						
FedAvg	64.08 \pm 0.18	0.376	60.25 \pm 0.20	0.767	32.36 \pm 0.08	2.350	27.14 \pm 0.12	2.867
FedProx	63.12 \pm 0.15	0.458	59.66 \pm 0.28	0.812	31.51 \pm 0.12	2.425	26.84 \pm 0.15	2.875
FedDyn	66.12 \pm 0.28	0.352	63.01 \pm 0.28	0.615	33.25 \pm 0.22	2.125	27.66 \pm 0.18	2.723
Mime	67.34 \pm 0.21	0.312	63.37 \pm 0.18	0.604	34.12 \pm 0.14	2.101	27.76 \pm 0.22	2.702
FedAdam	67.23 \pm 0.18	0.332	63.61 \pm 0.21	0.512	34.32 \pm 0.32	1.965	28.50 \pm 0.11	2.425
SCAFFOLD	65.01 \pm 0.19	0.365	59.37 \pm 0.16	0.814	32.17 \pm 0.12	2.295	27.31 \pm 0.11	2.855
FedCM	70.42 \pm 0.11	0.282	66.73 \pm 0.14	0.639	26.33 \pm 0.12	2.681	23.18 \pm 0.12	3.038
FedLADA	65.07 \pm 0.17	0.671	57.78 \pm 0.18	0.498	38.33 \pm 0.12	2.121	31.50 \pm 0.12	2.678
Local AdamW	62.84 \pm 0.08	0.363	58.97 \pm 0.10	0.794	40.47 \pm 0.09	1.026	37.86 \pm 0.11	1.954
Local Muon	71.66 \pm 0.15	0.395	66.71 \pm 0.15	1.504	46.69 \pm 0.12	0.201	40.53 \pm 0.12	1.432
FedMuon	74.12\pm0.15	0.001	73.05\pm0.15	0.246	50.22\pm0.12	0.162	48.18\pm0.12	0.556

Theorem 1 (Convergence for non-convex functions). *Under Assumptions 1, 2, if we take $g^0 = 0, \beta_1 = 0, \lambda = 0$ then FedMuon converges as follows*

$$\frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \left[\|\nabla f(\mathbf{x}^r)\|^2 \right] \lesssim \mathcal{O} \left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta \sigma_l^2}{R SK}} \right). \quad (4)$$

Here $G_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(\mathbf{x}^0)\|^2, \Delta = f(\mathbf{x}^0) - f^*, S$ is the number of participating clients per round, K is the number of local iterations, and R is the total number of communication rounds, σ is lower bound on singular values, d is the total dimensionality of the parameter.

The detailed proof is provided in the **Appendix**. The convergence rate of FedMuon is faster than that of Local Muon and Local SGD, $\mathcal{O} \left(\frac{L\Delta}{R} + \sqrt{\frac{L\Delta \sigma_l^2 + \sigma_g^2}{R SK}} \right)$. Notably, our result does not rely on data heterogeneity **Assumption**. This improvement stems from the suppression of local drift achieved by the proposed local-global alignment mechanism. The effectiveness of this design is further validated in the **ablation study** (Table 5). The data heterogeneity **Assumption** is standard in federated learning. With our global-local alignment, we mitigate data heterogeneity and no longer rely on this assumption, achieving faster convergence than existing methods, as confirmed by both theory and experiments.

7 EXPERIMENTS

Datasets. We evaluate FedMuon on both vision and language tasks. (i) For image classification, we use CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015). (ii) For NLP tasks, we adopt benchmark datasets from the GLUE benchmark, including SST-2 (Socher et al., 2013), QQP (Socher et al., 2013), and OpenWebText dataset. To simulate data heterogeneity across clients, we follow the Dirichlet partitioning scheme (Hsu et al., 2019), where a Dir-0.6 corresponds to a low heterogeneity and Dir-0.1 implies high heterogeneity.

Model Architectures. We explore a variety of model types: (i) ResNet-18 (He et al., 2016) as a representative convolutional neural network (CNN), (ii) Swin Transformer (Liu et al., 2021) and ViT-Tiny (Dosovitskiy et al., 2020) for Vision Transformers, and (iii) RoBERTa-Base (Liu et al.,

378 2019) and GPT-2 Radford et al. (2019) for large-scale language model.

379 **Baselines.** We compare our method against state-of-the-art FL algorithms: FedAvg (Local
380 SGD) (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), FedCM (Xu et al., 2021),
381 FedLADA (Sun et al., 2023), Local AdamW and Local Muon, FedProx Li et al. (2020b), Fed-
382 Dyn Acar et al. (2021), Mime Karimireddy et al. (2020a), and FedAdam Reddi et al. (2020). In the
383 Appendix (Table 15), we compare additional FL algorithms designed to address data heterogeneity.

384 **Hyperparameter Settings.** For FedAvg, SCAFFOLD, FedCM, FedProx, FedDyn, Mime, and
385 FedAdam, the lr is selected from $\{10^{-2}, 3 \times 10^{-2}, 5 \times 10^{-2}, 10^{-1}, 3 \times 10^{-1}\}$, with a weight
386 decay of 0.001. For FedLADA, Local AdamW, the lr is selected from $\{10^{-4}, 3 \times 10^{-4}, 5 \times$
387 $10^{-4}, 8 \times 10^{-4}, 10^{-3}\}$, with weight decay 0.01 or 0.001, $\beta_1 = 0.9, \beta_2 = 0.999$. We apply cosine
388 learning rate decay, and set FedMuon to $\alpha = 0.5$, weight decay 0.01. We set the learning rate of
389 FedMuon and Local Muon to be $3 \times 10^{-2}, 2 \times 10^{-2}, 3 \times 10^{-3}$. Additional hyperparameter
390 configurations are detailed in the Appendix (Table 10, Table 12). We release all code, configuration
391 files to ensure full reproducibility. All results are averaged over 5 runs with std reported with seeds
392 42, 43, 44, 45, 46.

393 7.1 RESULTS ON CONVOLUTIONAL NEURAL NETWORKS AND TRANSFORMER

394 **Training on CIFAR-100 with ResNet-18.** Table 1 and Figure 7 present the test accuracy and
395 training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
396 Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of **74.12%** and **73.05%**, respectively. It also
397 attains the lowest training loss (**0.001** and **0.246**), demonstrating faster and more stable convergence.
398 Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
399ization under data heterogeneity, confirming its effectiveness in CNNs. In our experiments, Muon
400 provides immediate speedups under IID data, but under non-IID data Local Muon initially con-
401 verges slowly due to mismatched client preconditioners and exacerbated client drift (Challenge 1).
402 FedMuon mitigates this issue, achieving fast and stable convergence, and also yields clear speedups
403 in IID settings (Table 16).

404 **Training on CIFAR-100 with ViT-Tiny.** Table 1 and Figure 7 show FedMuon achieves the
405 best performance across both heterogeneity levels, with **50.22%** (Dir-0.6) and **48.18%** (Dir-0.1),
406 and the lowest training loss (**0.162** and **0.556**), confirming its efficient convergence. These results
407 validate that FedMuon is particularly effective for federated vision Transformers under non-i.i.d.
408 conditions. The small dataset CIFAR100 is difficult to support the performance of ViT, resulting in
409 lower accuracy. Therefore, we continued to test on the pretrained model.

410 **Fine-tuning Results on Swin Transformer.** Table 2 reports results on Swin Transformer under
411 Dir-0.1 with LoRA. FedMuon achieves the highest test accuracy on both CIFAR-100 (**84.88%**) and
412 Tiny ImageNet (**84.95%**), while also attaining the lowest training loss, reflecting
413 faster convergence. FedMuon consistently outperforms baselines (including Local AdamW and Local Muon), demonstrating
414 its effectiveness in fine-tuning Vision Transformer models under non-IID data.

415 **Fine-tuning Results on LLMs.** Table 18
416 summarizes results on the GLUE benchmark using RoBERTa-Base with LoRA, 20
417 clients, 20% participation, batch size 16, $K = 50$, rank=16. FedMuon achieves
418 the highest accuracy of GLUE outperforming strong baselines such as FedAvg and
419 Local Muon. It is particularly strong on challenging tasks like RTE and QQP, ex-
420 ceeding the next best methods by **+1.65%** and **+1.59%**, respectively. In the appendix, we additionally report results under the setting with 4
421 clients, 100% client participation, and Dir-0.8 data partitioning (see Table 17).

Table 2: Comparison of test accuracy and training loss for **Swin Transformer** under Dir-0.1 with 100 rounds (100 clients, 5% participation, batch size 16, $K = 50$).

Method	CIFAR-100		Tiny ImageNet	
	Test Acc	Loss	Test Acc	Loss
FedAvg	80.02 ± 0.28	0.588	80.38 ± 0.22	0.826
FedProx	81.21 ± 0.13	0.521	81.86 ± 0.12	0.885
FedDyn	81.67 ± 0.15	0.501	82.48 ± 0.18	0.641
Mime	82.21 ± 0.11	0.562	82.56 ± 0.14	0.655
FedAdam	82.56 ± 0.15	0.545	82.21 ± 0.11	0.685
SCAFFOLD	81.30 ± 0.18	0.514	82.41 ± 0.18	0.650
FedCM	82.38 ± 0.11	0.565	83.18 ± 0.14	0.522
FedLADA	74.64 ± 0.15	0.598	70.94 ± 0.19	0.944
Local AdamW	83.35 ± 0.16	0.381	80.26 ± 0.12	0.686
Local Muon	79.73 ± 0.18	0.396	80.24 ± 0.10	0.734
FedMuon	84.88 ± 0.17	0.123	84.95 ± 0.12	0.394

432 Table 3: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
 433 rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, $K = 50$)

Method (Dir-0.5)	CoLA	RTE	SST-2	QQP	MRPC	QNLI	MNLI
FedAvg	51.00 \pm 0.26	51.99 \pm 0.24	93.04 \pm 0.16	81.75 \pm 0.11	88.24 \pm 0.18	89.36 \pm 0.15	81.72 \pm 0.25
FedProx	53.11 \pm 0.14	53.25 \pm 0.21	92.26 \pm 0.18	81.15 \pm 0.11	87.36 \pm 0.12	88.12 \pm 0.14	81.41 \pm 0.21
FedDyn	53.21 \pm 0.28	52.22 \pm 0.30	92.36 \pm 0.21	81.35 \pm 0.21	87.89 \pm 0.11	89.12 \pm 0.21	82.18 \pm 0.21
Mime	52.15 \pm 0.17	51.62 \pm 0.21	92.21 \pm 0.28	80.26 \pm 0.18	88.04 \pm 0.12	89.11 \pm 0.21	82.51 \pm 0.20
FedAdam	53.21 \pm 0.28	52.52 \pm 0.31	92.36 \pm 0.25	82.22 \pm 0.28	88.12 \pm 0.34	88.01 \pm 0.23	82.66 \pm 0.22
SCAFFOLD	52.15 \pm 0.17	50.65 \pm 0.20	93.28 \pm 0.28	80.26 \pm 0.18	88.35 \pm 0.12	89.32 \pm 0.24	82.11 \pm 0.20
FedCM	53.21 \pm 0.28	52.22 \pm 0.30	92.56 \pm 0.25	81.22 \pm 0.28	88.56 \pm 0.13	89.02 \pm 0.23	82.12 \pm 0.27
FedLADA	54.66 \pm 0.17	57.02 \pm 0.08	93.88 \pm 0.16	81.56 \pm 0.20	89.01 \pm 0.28	89.86 \pm 0.29	82.44 \pm 0.17
Local AdamW	55.38 \pm 0.12	59.57 \pm 0.25	93.81 \pm 0.19	81.51 \pm 0.05	88.73 \pm 0.23	89.55 \pm 0.15	82.86 \pm 0.26
Local Muon	55.54 \pm 0.05	64.93 \pm 0.17	93.58 \pm 0.27	83.06 \pm 0.11	88.95 \pm 0.13	90.52 \pm 0.27	84.63 \pm 0.10
FedMuon (ours)	56.78\pm0.11	66.58\pm0.29	93.54\pm0.25	84.65\pm0.16	88.21\pm0.07	90.24\pm0.13	85.21\pm0.18

446
 447 Table 4: Test accuracy of each method on CIFAR-100 using **ViT-Tiny**, **ViT-Small**, **ViT-Base** and **ViT-Large**
 448 over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$), and
 449 train loss of each method on OpenWebText data using **GPT-2 Small**, **GPT-2 Medium**, **GPT-2 Large** and
 450 **GPT-2 XL** over 300 communication rounds (20 clients, 20% participation, batch size 16, $K = 100$).

Method	CIFAR-100 (Test Acc, %)				OpenWebText (Train Loss)			
	ViT-Tiny	ViT-Small	ViT-Base	ViT-Large	GPT-2 S	GPT-2 M	GPT-2 L	GPT-2 XL
FedAvg	27.14	29.52	31.15	33.56	4.25	4.12	4.01	3.91
FedProx	26.84	28.63	31.05	33.25	4.33	4.21	4.15	4.05
FedDyn	27.31	30.24	32.85	34.58	4.12	4.01	3.95	3.82
Mime	27.66	31.23	33.11	35.34	4.10	4.02	3.89	3.78
FedAdam	28.50	33.15	33.15	33.15	4.02	3.95	3.82	3.75
SCAFFOLD	27.31	30.24	32.85	34.58	4.12	4.01	3.95	3.82
FedCM	23.18	25.15	27.88	29.01	4.32	4.21	4.02	3.91
FedLADA	31.50	33.15	33.15	33.15	3.56	3.45	3.33	3.24
Local AdamW	37.86	37.86	37.86	37.86	3.44	3.35	3.27	3.15
Local Muon	40.53	42.34	45.26	46.54	3.33	3.21	3.09	2.98
FedMuon (ours)	48.18	50.52	53.63	56.24	3.12	2.98	2.85	2.74

463
 464 Table 4 compares FedMuon with a range of federated optimizers on both vision and language benchmarks.
 465 On CIFAR-100, FedMuon consistently achieves the highest test accuracy across all ViT
 466 scales, improving from 27.14% to 48.18% on ViT-Tiny and from 33.56% to 56.24% on ViT-Large
 467 compared to FedAvg, and further outperforming Local AdamW and Local Muon by a large margin.
 468 On C4 language modeling with GPT-2, FedMuon attains the lowest training loss for all model sizes,
 469 reducing the loss from 4.25 to 3.12 on GPT-2 Small and from 3.91 to 2.74 on GPT-2 XL. These
 470 results indicate that FedMuon scales effectively to larger Transformer models and consistently
 471 improves optimization efficiency over strong baselines in both vision and language tasks.
 472

7.2 ABLATION STUDY

473
 474 **Impact of Δ_G and \bar{m} .** As shown in Table 5 left, we conduct an ablation study of FedMuon.
 475 FedMuon incorporates momentum averaging \bar{m} and global update differences Δ_G . The results
 476 clearly indicate that Local Muon consistently outperforms both SGD and AdamW, demonstrating
 477 its superior ability to handle non-IID FL. Moreover, our strategy consistently improves the per-
 478 formance of other optimizers as well.
 479

480
 481 **Impact of Δ_G and \bar{m} on other optimizers.** As shown in Table 5 right, we compare different local
 482 optimizers with Δ_G and \bar{m} . The results demonstrate that Local Muon consistently achieves the
 483 best performance, significantly outperforming SGD and AdamW, thereby highlighting its effective-
 484 ness in mitigating data heterogeneity. Further results on additional optimizers in Table 22.
 485

Acceleration of Matrix Orthogonalization on Federated Learning. See in Table 21. Matrix or-
 486 thogonalization also provides acceleration benefits for other federated learning algorithms.

486 Table 5: Ablation study of FedMuon on CIFAR-100 (Dir-0.1, 300 rounds). Left: effect of removing compo-
 487 nents. Right: effect of different local optimizers.

Variant	ResNet-18	ViT-Tiny	Variant	ResNet-18	ViT-Tiny
A1: w/o \bar{m}	69.12 \pm 0.18	43.67 \pm 0.19	Local SGD + $\bar{m} + \Delta_G$	66.28 \pm 0.17	32.56 \pm 0.11
A2: w/o Δ_G	68.05 \pm 0.10	44.56 \pm 0.16	Local AdamW + $\bar{m} + \Delta_G$	64.25 \pm 0.12	41.26 \pm 0.17
A3: FedMuon	73.05 \pm 0.15	48.18 \pm 0.12	Local Muon + $\bar{m} + \Delta_G$	73.05 \pm 0.15	48.18 \pm 0.12

494 Table 6: Impact of α and β on FedMuon using ViT-Tiny and ResNet-18 on CIFAR-100 (Dir-0.1).

Model	α					β				
	0.00	0.25	0.50	0.75	0.90	0.80	0.90	0.95	0.98	0.99
ResNet-18	68.05	69.89	73.01	72.12	67.56	68.22	70.56	71.23	73.01	72.66
ViT-Tiny	44.56	46.28	48.18	47.59	46.23	44.86	45.23	46.59	48.18	47.56

501 Table 7: Ablation of momentum aggregation strategies in FedMuon on CIFAR-100 under Dir-0.1. **Comm-**
 502 **Cost** denotes communication cost per round (MB), and **CompCost** denotes computation time per round (s).

Aggregation	ResNet-18			ViT-Tiny		
	Test Acc	CommCost	CompCost	Test Acc	CommCost	CompCost
NoAgg	69.12	46.8 MB (1 \times)	6.23 s	43.67	22.8 MB (1 \times)	5.14 s
Agg- \mathbf{m}	73.05	93.6 MB (2 \times)	6.44 s	48.18	45.6 MB (2 \times)	5.21 s
Agg- \mathbf{m} -SVD	72.56	49.2 MB (1.05 \times)	6.48 s	47.66	23.9 MB (1.05 \times)	5.25 s

511 **Impact of α .** Table 6 evaluates the effect of the local-global alignment parameter α in FedMuon.
 512 As shown by Theorem 1, incorporating global update direction helps suppress client drift and ac-
 513 celerates convergence. We observe that $\alpha = 0.5$ yields the best performance, striking a balance
 514 between local adaptivity and global consistency, in line with our theoretical insight.

515 **Impact of β .** Table 6 verifies the effectiveness of *local momentum accumulation*. When the mo-
 516 mentum parameter β is too small, the aggregated global momentum is quickly diluted. Conversely,
 517 an overly large β slows local gradient accumulation and delays responsiveness to new data. These
 518 results suggest that β should balance global momentum preservation with timely adaptation to client
 519 updates. We observe that $\beta = 0.98$ yields the best performance.

520 **Impact of Momentum Aggregation Strategy.** Table 7 shows Momentum Aggregation Strategy,
 521 Agg- \mathbf{m} -SVD (FedMuon-SVD), achieves the best balance between accuracy and communication
 522 cost. While Agg- \mathbf{m} improves performance, it introduces excessive communication (2 \times). In con-
 523 trast, Agg- \mathbf{m} -SVD attains similar benefits with only 1.05 \times communication cost.

525 8 CONCLUSION

527 In this work, we proposed FedMuon, a structure-aware federated optimizer for training large-scale
 528 Transformer and vision models. FedMuon addresses core challenges of non-IID. Federated learning—client drift,
 529 unstable optimizer states, and inefficient communication—by coupling *matrix-orthogonalized* local up-
 530 dates with *local-global alignment* and *cross-round momentum aggregation*, complemented by low-rank state
 531 sharing. We provided non-convex convergence analysis clarifying how alignment and orthogonalization
 532 jointly control the bias introduced by multi-step local training, and we documented strong empirical
 533 gains across vision and language tasks, particularly on Transformer architectures. These results highlight
 534 that treating optimizer updates as matrices (rather than flat vectors) offers a principled route to reliable and
 535 efficient FL. We believe FedMuon opens a pathway for adapting modern, structure-aware optimizers to
 536 federated settings and inspires future extensions to related methods such as LAMB (Chen et al., 2023) or
 537 Lion (Chen et al., 2023). Beyond federated learning, the principles of FedMuon can be directly applied to
 538 large-scale distributed training and parameter-efficient fine-tuning of foundation models, where communication
 539 efficiency and stable optimization are equally critical.

540 **9 ETHICS STATEMENT**
 541

542 This work adheres to the ICLR Code of Ethics. Our study involves no human subjects or animal
 543 experimentation. All experiments are conducted on public, license-compliant academic benchmarks
 544 under non-IID federated partitions; no personally identifiable information is collected or processed.
 545 Data usage follows the original dataset terms, and we apply standard safeguards to avoid amplifying
 546 social or demographic biases (e.g., consistent splits, shared hyperparameter budgets, and reporting
 547 of variance across seeds). The method—FEDMUON, which aggregates cross-round momentum and
 548 performs matrix-orthogonalized local updates—does not require access to raw user data beyond
 549 standard benchmark usage, and introduces no additional privacy risks beyond those present in con-
 550 ventional federated optimization. We will release code and configurations to support transparent
 551 verification.

552 **10 REPRODUCIBILITY STATEMENT**
 553

554 We make every effort to ensure reproducibility. The paper specifies training steps, model configura-
 555 tions (e.g., ResNet/ViT for vision and RoBERTa-style encoders for NLP), non-IID partition proto-
 556 cols, client sampling, and hardware details. Unless noted otherwise, each configuration is repeated
 557 with five independent seeds {42, 43, 44, 45, 46}; we report mean \pm standard deviation and provide
 558 per-run logs/curves. Implementation details for FEDMUON (orthogonalized updates, global-local
 559 alignment, cross-round momentum aggregation, and low-rank SVD compression) are described in
 560 algorithmic form with all tunables exposed. An anonymous repository includes source code, config-
 561 uration files, data-partition scripts, and instructions to exactly reproduce the main tables and figures.

562 **11 LLM USAGE**
 563

564 Large Language Models (LLMs) were used solely for language editing (grammar, phrasing, and
 565 clarity) of the manuscript text. LLMs were *not* involved in research ideation, methodological design,
 566 theoretical analysis, dataset preparation, implementation, or result selection. The authors are fully
 567 responsible for the scientific content and verify that any LLM-assisted passages comply with ethical
 568 guidelines and do not constitute plagiarism or scientific misconduct.

569 **REFERENCES**
 570

571 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
 572 and Venkatesh Saligrama. Federated learning based on dynamic regularization. *arXiv preprint*
 573 *arXiv:2111.04263*, 2021.

574 Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. *arXiv preprint*
 575 *arXiv:2410.21265*, 2024.

576 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 577 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
 578 *Advances in neural information processing systems*, 36:49205–49233, 2023.

579 Ronan Collobert. Large scale machine learning. *Idiap Res. Inst., Martigny, Switzerland, RR-04-42*,
 580 2004.

581 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 582 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 583 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 584 *arXiv:2010.11929*, 2020.

585 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 586 stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

587 Ziqing Fan, Shengchao Hu, Jiangchao Yao, Gang Niu, Ya Zhang, Masashi Sugiyama, and Yanfeng
 588 Wang. Locally estimated global perturbations are better than local perturbations for federated
 589 sharpness-aware minimization. *arXiv preprint arXiv:2405.18890*, 2024.

594 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
 595 mization. In *International Conference on Machine Learning*, pp. 1842–1850. PMLR, 2018.
 596

597 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 598 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 599 770–778, 2016.

600 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
 601 distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

602 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
 603 Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. *URL*
 604 <https://kellerjordan.github.io/posts/muon>, 6.

605

606 Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebas-
 607 tian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
 608 in federated learning. *arXiv preprint arXiv:2008.03606*, 2020a.

609 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 610 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 611 *International Conference on Machine Learning*, pp. 5132–5143. PMLR, 2020b.

612 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 613 *arXiv:1412.6980*, 2014.

614

615 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 616 2009.

617 Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
 618 optimization in the modular norm. *Advances in Neural Information Processing Systems*, 37:
 619 73501–73548, 2024.

620

621 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

622 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 623 Federated optimization in heterogeneous networks. In *Proceedings of Machine Learning and*
 624 *Systems*, 2020a.

625

626 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 627 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and sys-
 628 tems*, 2:429–450, 2020b.

629 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
 630 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint*
 631 *arXiv:2502.16982*, 2025.

632

633 Junkang Liu, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Yuangang Li, and YunXiang Gong.
 634 Fedbcgd: Communication-efficient accelerated block coordinate gradient descent for federated
 635 learning. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 2955–
 636 2963, 2024.

637

638 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 639 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 640 approach. *arXiv preprint arXiv:1907.11692*, 2019.

641

642 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 643 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 644 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

645

646 Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *arXiv preprint*
 647 *arXiv:1711.05101*, 5(5):5, 2017.

648

649 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 650 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 651 gence and statistics*, pp. 1273–1282. PMLR, 2017.

648 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 649 Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint*
 650 *arXiv:2502.07529*, 2025.

651

652 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 653 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

654

655 Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 656 Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. *arXiv preprint*
 657 *arXiv:2003.00295*, 2020.

658

659 Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 660 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
 661 pretraining. *arXiv preprint arXiv:2505.02222*, 2025.

662

663 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
 664 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 665 treebank. In *Proceedings of the 2013 conference on empirical methods in natural language pro-*
 666 *cessing*, pp. 1631–1642, 2013.

667

668 Yan Sun, Li Shen, Hao Sun, Liang Ding, and Dacheng Tao. Efficient federated learning via local
 669 adaptive amended optimizer with linear speedup. *IEEE Transactions on Pattern Analysis and*
 670 *Machine Intelligence*, 45(12):14453–14464, 2023.

671

672 Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
 673 Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. *arXiv preprint*
 674 *arXiv:2409.11321*, 2024.

675

676 Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
 677 client-level momentum. *arXiv preprint arXiv:2106.10874*, 2021.

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **LIST OF APPENDIX**
703704 A: Proof of Theorem 1 and Convergence Analysis
705706 A.1 FedMuon Algorithm
707708 A.2 Assumptions
709710 A.3 Main Lemmas
711712 A.4 Basic Assumptions and Notations
713714 A.5 FedMuon Algorithm Analysis and Proof
715716 B: Experimental Setup
717718 B.1 Setting for ResNet-18
719720 B.2 Federated Learning Configuration
721722 B.3 Model Architecture
723724 B.4 Setting for ViT-Tiny
725726 B.5 Swin Transformer Fine-Tuning Settings
727728 B.6 RoBERTa-Base Fine-Tuning Settings
729730 B.7 Additional Federated Training Configuration of LLM
731732 C: Experimental Appendix
733734 C.1 Communication and Computation Cost Analysis
735736 C.2 More Baseline Experiment Comparisons
737738 C.3 More Baseline Experiment on IID Data
739740 C.4 Effectiveness of Muon and Our Correction Strategy
741742 C.5 Effect of Muon-Based Matrix Orthogonalization Across FL Algorithms
743744 C.6 Impact of ΔG and \bar{m} on Other Optimizers
745746 C.7 Comparison Between FedMuon (Algorithm 2) and FedMuon (Algorithm 3)
747748
749
750
751
752
753
754
755

756

Algorithm 2 FedMuon Algorithm (analysis variant)

757

758

```

1: Initial model  $\mathbf{x}^0$ ,  $\beta_1 = 0.98$ , the number of all clients  $N$ , each round selected clients  $S$ , weight
2: decay  $\lambda$ .
3: for  $r = 1, \dots, R$  do
4:   for each selected client  $i \in \{1, \dots, S\}$  in parallel do
5:      $\mathbf{x}_i^{r,0} \leftarrow \mathbf{x}^r, \mathbf{M}_i^{r,0} \leftarrow \bar{\mathbf{M}}^r$ ;
6:     for  $k = 1, \dots, K$  do
7:        $\mathbf{G}_i^{r,k} \leftarrow \nabla f_i(\mathbf{x}_i^{r,k}; \xi_i)$ ;
8:        $\mathbf{U}_i^{r,k}, \mathbf{\Sigma}_i^{r,k}, \mathbf{V}_i^{r,k} = \text{SVD}(\mathbf{G}_i^{r,k})$ ;
9:        $\mathbf{x}_i^{r,k+1} = \mathbf{x}_i^{r,k} - \eta_t[(1 - \alpha)\mathbf{U}_i^{r,k}\mathbf{V}_i^{r,k\top} + \alpha\Delta_G^r]$ ;
10:      end for
11:      Communicate  $(\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0}, \mathbf{M}_i^{r,K})$  to Server;
12:    end for
13:     $\Delta_G^r = \frac{-1}{SK\eta_t} \sum_{i=1}^S (\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0})$ ;
14:     $\mathbf{x}^{r+1} = \mathbf{x}^r + \frac{1}{S} \sum_{i=1}^S (\mathbf{x}_i^{r,K} - \mathbf{x}_i^{r,0})$ ;
15:     $\bar{\mathbf{M}}^{r+1} = \frac{1}{S} \sum_{i=1}^S \mathbf{M}_i^{r,K}$ ;
16:    Communicate  $(\mathbf{x}^{r+1}, \bar{\mathbf{M}}^{r+1}, \Delta_G^{r+1})$  to Clients.
17:  end for

```

775

776

777

A APPENDIX A: PROOF OF THEOREM 1 AND CONVERGENCE ANALYSIS

778

A.1 FEDMUON ALGORITHM

779

780

781

To simplify the analysis, we consider the iterative rules as in Algorithm 2, where we let $\beta_1 = 0$. The local update takes the following rule:

782

783

$$\mathbf{x}_i^{r,k+1} = \mathbf{x}_i^{r,k} - \eta_t[(1 - \alpha)\mathbf{U}_i^{r,k}\mathbf{V}_i^{r,k\top} + \alpha\Delta_G^r].$$

784

785

Simplified setting for theoretical analysis. Our primary focus in this paper is to investigate how the *matrix orthogonalization mechanism* accelerates convergence in federated learning. Introducing an additional *local momentum term* (e.g., $\beta_1 > 0$) would bring in temporal dependencies across iterations, making the theoretical convergence analysis substantially more complex without offering additional conceptual insights into the effect of orthogonalization itself.

786

787

Therefore, for analytical tractability, we consider a simplified variant where we set $\beta_1 = 0$ in the local update rule:

788

789

$$\mathbf{x}_i^{r,k+1} = \mathbf{x}_i^{r,k} - \eta_t[(1 - \alpha)\mathbf{U}_i^{r,k}\mathbf{V}_i^{r,k\top} + \alpha\Delta_G^r].$$

790

791

This simplification isolates the impact of low-rank orthogonalization and global gradient mixing, allowing us to derive clean convergence bounds that clearly reveal how orthogonalization improves communication efficiency and stability.

792

793

794

Importantly, we empirically verify that this simplified version performs **on par** with the full algorithm using local momentum. The empirical results demonstrate that setting $\beta_1 = 0$ does not materially affect convergence speed or final accuracy, thereby justifying the use of this simplified formulation for theoretical analysis.

795

796

A.2 ASSUMPTION

797

798

799

800

801

802

Assumption A.1 (Smoothness). *The non-convex f_i is one L -smooth function for all $i \in [m]$, i.e., $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \leq L\|\mathbf{x} - \mathbf{y}\|$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.*

803

804

805

806

807

808

Assumption A.2 (Bounded Stochastic Gradient). *$\mathbf{g}_i^r = \nabla f_i(\mathbf{x}_i^r, \xi_i^r)$ computed by using a sampled mini-batch ξ_i^r in client i is an unbiased estimator of ∇f_i with bounded variance: $\mathbb{E}_{\xi_i^r}[\mathbf{g}_i^r] = \nabla f_i(\mathbf{x}_i^r)$ and $\mathbb{E}_{\xi_i^r}\|\mathbf{g}_i^r - \nabla f_i(\mathbf{x}_i^r)\|^2 \leq \sigma_l^2$.*

809

In this section, we give the theoretical analysis of our proposed uon algorithm. Firstly we state some standard assumptions for the non-convex function F .

810 A.3 MAIN LEMMAS
811812 **Lemma 1.** Suppose $\{X_1, \dots, X_\tau\} \subset \mathbb{R}^d$ be random variables that are potentially dependent. If
813 their marginal means and variances satisfy $\mathbb{E}[X_i] = \mu_i$ and $\mathbb{E}[\|X_i - \mu_i\|^2] \leq \sigma^2$, then it holds
814 that

815
$$\mathbb{E} \left[\left\| \sum_{i=1}^{\tau} X_i \right\|^2 \right] \leq \left\| \sum_{i=1}^{\tau} \mu_i \right\|^2 + \tau^2 \sigma^2.$$

816
817

818 If they are correlated in the Markov way such that $\mathbb{E}[X_i | X_{i-1}, \dots, X_1] = \mu_i$ and $\mathbb{E}[\|X_i - \mu_i\|^2 |$
819 $\mu_i] \leq \sigma^2$, i.e., the variables $\{X_i - \mu_i\}$ form a martingale. Then the following tighter bound holds:
820

821
$$\mathbb{E} \left[\left\| \sum_{i=1}^{\tau} X_i \right\|^2 \right] \leq 2\mathbb{E} \left[\left\| \sum_{i=1}^{\tau} \mu_i \right\|^2 \right] + 2\tau\sigma^2$$

822
823

824 **Lemma 2.** Given vectors $v_1, \dots, v_N \in \mathbb{R}^d$ and $\bar{v} = \frac{1}{N} \sum_{i=1}^N v_i$, if we sample $\mathcal{S} \subset \{1, \dots, N\}$
825 uniformly randomly such that $|\mathcal{S}| = S$, then it holds that
826

827
$$\mathbb{E} \left[\left\| \frac{1}{S} \sum_{i \in \mathcal{S}} v_i \right\|^2 \right] = \|\bar{v}\|^2 + \frac{N-S}{S(N-1)} \frac{1}{N} \sum_{i=1}^N \|v_i - \bar{v}\|^2.$$

828
829

830 *Proof.* Letting $\mathbb{I}\{i \in \mathcal{S}\}$ be the indicator for the event $i \in \mathcal{S}_r$, we prove this lemma by direct
831 calculation as follows:

832
$$\begin{aligned} \mathbb{E} \left[\left\| \frac{1}{S} \sum_{i \in \mathcal{S}} v_i \right\|^2 \right] &= \mathbb{E} \left[\left\| \frac{1}{S} \sum_{i=1}^N v_i \mathbb{I}\{i \in \mathcal{S}\} \right\|^2 \right] \\ 833 &= \frac{1}{S^2} \mathbb{E} \left[\left(\sum_i \|v_i\|^2 \mathbb{I}\{i \in \mathcal{S}\} + 2 \sum_{i < j} v_i^\top v_j \mathbb{I}\{i, j \in \mathcal{S}\} \right) \right] \\ 834 &= \frac{1}{SN} \sum_{i=1}^N \|v_i\|^2 + \frac{1}{S^2} \frac{S(S-1)}{N(N-1)} 2 \sum_{i < j} v_i^\top v_j \\ 835 &= \frac{1}{SN} \sum_{i=1}^N \|v_i\|^2 + \frac{1}{S^2} \frac{S(S-1)}{N(N-1)} \left(\left\| \sum_{i=1}^N v_i \right\|^2 - \sum_{i=1}^N \|v_i\|^2 \right) \\ 836 &= \frac{N-S}{S(N-1)} \frac{1}{N} \sum_{i=1}^N \|v_i\|^2 + \frac{N(S-1)}{S(N-1)} \|\bar{v}\|^2 \\ 837 &= \frac{N-S}{S(N-1)} \frac{1}{N} \sum_{i=1}^N \|v_i - \bar{v}\|^2 + \|\bar{v}\|^2. \end{aligned}$$

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
170100
170101
170102
170103
170104
170105
170106
170107
170108
170109
170110
170111
170112
170113
170114
170115
170116
170117
170118
170119
170120
170121
170122
170123
170124
170125
170126
170127
170128
170129
170130
170131
170132
170133
170134
170135
170136
170137
170138
170139
170140
170141
170142
170143
170144
170145
170146
170147
170148
170149
170150
170151
170152
170153
170154
170155
170156
170157
170158
170159
170160
170161
170162
170163
170164
170165
170166
170167
170168
170169
170170
170171
170172
170173
170174
170175
170176
170177
170178
170179
170180
170181
170182
170183
170184
170185
170186
170187
170188
170189
170190
170191
170192
170193
170194
170195
170196
170197
170198
170199
170200
170201
170202
170203
170204
170205
170206
170207
170208
170209
170210
170211
170212
170213
170214
170215
170216
170217
170218
170219
170220
170221
170222
170223
170224
170225
170226
170227
170228
170229
170230
170231
170232
170233
170234
170235
170236
170237
170238
170239
170240
170241
170242
170243
170244
170245
170246
170247
170248
170249
170250
170251
170252
170253
170254
170255
170256
170257
170258
170259
170260
170261
170262
170263
170264
170265
170266
170267
170268
170269
170270
170271
170272
170273
170274
170275
170276
170277
170278
170279
170280
170281
170282
170283
170284
170285
170286
170287
170288
170289
170290
170291
170292
170293
170294
170295
170296
170297
170298
170299
170300
170301
170302
170303
170304
170305
170306
170307
170308
170309
170310
170311
170312
170313
170314
170315
170316
170317
170318
170319
170320
170321
170322
170323
170324
170325
170326
170327
170328
170329
170330
170331
170332
170333
170334
170335
170336
170337
170338
170339
170340
170341
170342
170343
170344
170345
170346
170347
170348
170349
170350
170351
170352
170353
170354
170355
170356
170357
170358
170359
170360
170361
170362
170363
170364
170365
170366
170367
170368
170369
170370
170371
170372
170373
170374
170375
170376
170377
170378
170379
170380
170381
170382
170383
170384
170385
170386
170387
170388
170389
170390
170391
170392
170393
170394
170395
170396
170397
170398
170399
170400
170401
170402
170403
170404
170405
170406
170407
170408
170409
170410
170411
170412
170413
170414
170415
170416
170417
170418
170419
170420
170421
170422
170423
170424
170425
170426
170427
170428
170429
170430
170431
170432
170433
170434
170435
170436
170437
170438
170439
170440
170441
170442
170443
170444
170445
170446
170447
170448
170449
170450
170451
170452
170453
170454
170455
170456
170457
170458
170459
170460
170461
170462
170463
170464
170465
170466
170467
170468
170469
170470
170471
170472
170473
170474
170475
170476
170477
170478
170479
170480
170481
170482
170483
170484
170485
170486
170487
170488
170489
170490
170491
170492
170493
170494
170495
170496
170497
170498
170499
170500
170501
170502
170503
170504
170505
170506
170507
170508
170509
170510
170511
170512
170513
170514
170515
170516
170517
170518
170519
170520
170521
170522
170523
170524
170525
170526
170527
170528
170529
170530
170531
170532
170533
170534
170535
170536
170537
170538
170539
170540
170541
170542
170543
170544
170545
170546
170547
170548
170549
170550
170551
170552
170553
170554
170555
170556
170557
170558
170559
170560
170561
170562
170563
170564
170565
170566
170567
170568
170569
170570
170571
170572
170573
170574
170575
170576
170577
170578
170579
170580
170581
170582
170583
170584
170585
170586
170587
170588
170589
170590
170591
170592
170593
170594
170595
170596
170597
170598
170599
170600
170601
170602
170603
170604
170605
170606
170607
170608
1706

864 Similarly, we use \sum_k to represent the sum of $k \in \{0, \dots, K-1\}$. For all $r \geq 0$, we define the
 865 following auxiliary variables to facilitate proofs:
 866

$$\begin{aligned} \mathcal{E}_r &:= \mathbb{E} \left[\|\nabla f(x^r) - g^{r+1}\|^2 \right] \\ U_r &:= \frac{1}{NK} \sum_i \sum_k \mathbb{E} \left[\|x_i^{r,k} - x^r\|^2 \right] \\ \zeta_i^{r,k} &:= \mathbb{E} \left[x_i^{r,k+1} - x_i^{r,k} \mid \mathcal{F}_i^{r,k} \right] \\ \Xi_r &:= \frac{1}{N} \sum_{i=1}^N \mathbb{E} \left[\|\zeta_i^{r,0}\|^2 \right] \end{aligned}$$

877 Throughout the Appendix, we let $\Delta := f(x^0) - f^*$, $G_0 := \frac{1}{N} \sum_i \|\nabla f_i(x^0)\|^2$, $x^{-1} := x^0$ and
 878 $\mathcal{E}_{-1} := \mathbb{E} \left[\|\nabla f(x^0) - g^0\|^2 \right]$. We will use the following foundational lemma for all our algorithms.
 879

881 A.5 FEDMUON ALGORITHM ANALYZE AND PROOF

883 **Lemma 3.** *Under Assumption A.1, if $\gamma L \leq \frac{1}{24}$, the following holds all $r \geq 0$:*

$$\mathbb{E} [f(x^{r+1})] \leq \mathbb{E} [f(x^r)] - \frac{11\gamma}{24} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] + \frac{13\gamma}{24} \mathcal{E}_r$$

888 *Proof.* Since f is L -smooth, we have

$$f(x^{r+1}) \leq f(x^r) + \langle \nabla f(x^r), x^{r+1} - x^r \rangle + \frac{L}{2} \|x^{r+1} - x^r\|^2 \quad (5)$$

$$= f(x^r) - \gamma \langle \nabla f(x^r), g^{r+1} \rangle + \frac{L\gamma^2}{2} \|g^{r+1}\|^2 \quad (6)$$

$$= f(x^r) - \gamma \|\nabla f(x^r)\|^2 + \gamma \langle \nabla f(x^r), \nabla f(x^r) - g^{r+1} \rangle + \frac{L\gamma^2}{2} \|g^{r+1}\|^2. \quad (7)$$

898 Since $x^{r+1} = x^r - \gamma g^{r+1}$, using Young's inequality, we further have:

$$f(x^{r+1}) \leq f(x^r) - \frac{\gamma}{2} \|\nabla f(x^r)\|^2 + \frac{\gamma}{2} \|\nabla f(x^r) - g^{r+1}\|^2 + L\gamma^2 \left(\|\nabla f(x^r)\|^2 + \|\nabla f(x^r) - g^{r+1}\|^2 \right) \quad (8)$$

$$\leq f(x^r) - \frac{11\gamma}{24} \|\nabla f(x^r)\|^2 + \frac{13\gamma}{24} \|\nabla f(x^r) - g^{r+1}\|^2 \quad (9)$$

905 where the last inequality is due to $\gamma L \leq \frac{1}{24}$. Taking the global expectation completes the proof. \square

907 **Lemma 4** (Gradient error bound under low-rank momentum surrogates). *Let f be L -smooth and
 908 denote the global iterate in round r by x^r . In each round, a subset S^r of S clients participates and
 909 each client performs K local steps. For client $i \in S^r$ and local step $k \in \{1, \dots, K\}$, let $g_i^{r,k}$ be a
 910 stochastic gradient such that*

$$\mathbb{E} [g_i^{r,k} \mid x_i^{r,k}] = \nabla f_i(x_i^{r,k}), \quad \mathbb{E} \left\| g_i^{r,k} - \nabla f_i(x_i^{r,k}) \right\|^2 \leq \sigma_l^2.$$

914 *Assume the average gradient drift satisfies*

$$\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \|\nabla f_i(x_i^{r,k}) - \nabla f(x^r)\|^2 \leq L^2 U_r^2,$$

918 where $U_r^2 \triangleq \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \|x_i^{r,k} - x^r\|^2$. For each matrix-shaped block, let the low-
 919 rank surrogate be $U_i^{r,k} V_i^{r,k\top}$ and its singular-value-scaled version $U_i^{r,k} S_i^{r,k} V_i^{r,k\top}$ with $S_i^{r,k} =$
 920 $\text{diag}(\sigma_{i,k,1}, \dots, \sigma_{i,k,d})$. Assume there exists $\sigma \in [0, 1]$ such that $\sigma_{i,k,j} \geq \sigma$ for all (i, k, j) . Then
 921

$$\mathbb{E} \left\| \nabla f(x^r) - \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K U_i^{r,k} V_i^{r,k\top} \right\|^2 \leq 2L^2 U_r^2 + \frac{2\sigma_l^2}{SK} + 2(1-\sigma)^2 d.$$

922
 923
 924
 925
 926
 927
 928 *Proof.* Add and subtract $\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K g_i^{r,k}$ and apply $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$:
 929

$$\begin{aligned} \mathbb{E} \left\| \nabla f(x^r) - \frac{1}{SK} \sum_{i,k} U_i^{r,k} V_i^{r,k\top} \right\|^2 &\leq 2\mathbb{E} \left\| \nabla f(x^r) - \frac{1}{SK} \sum_{i,k} g_i^{r,k} \right\|^2 \\ &\quad + 2\mathbb{E} \left\| \frac{1}{SK} \sum_{i,k} (U_i^{r,k} V_i^{r,k\top} - g_i^{r,k}) \right\|^2. \end{aligned}$$

930
 931
 932
 933
 934
 935
 936 For the first term, by variance decomposition and the stated bounds,
 937

$$\mathbb{E} \left\| \nabla f(x^r) - \frac{1}{SK} \sum_{i,k} g_i^{r,k} \right\|^2 \leq \frac{\sigma_l^2}{SK} + L^2 U_r^2.$$

938
 939
 940
 941 For the second term, insert the scaled factorization and use the triangle inequality and Jensen's
 942 inequality:
 943

$$\begin{aligned} \mathbb{E} \left\| \frac{1}{SK} \sum_{i,k} (U_i^{r,k} V_i^{r,k\top} - U_i^{r,k} S_i^{r,k} V_i^{r,k\top}) \right\|^2 &= \mathbb{E} \left\| \frac{1}{SK} \sum_{i,k} U_i^{r,k} (I - S_i^{r,k}) V_i^{r,k\top} \right\|^2 \\ &\leq \frac{1}{SK} \sum_{i,k} \mathbb{E} \|U_i^{r,k} (I - S_i^{r,k}) V_i^{r,k\top}\|_F^2 \\ &= \frac{1}{SK} \sum_{i,k} \sum_{j=1}^d \mathbb{E} (1 - \sigma_{i,k,j})^2 \\ &\leq (1-\sigma)^2 d, \end{aligned}$$

944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955 where the last step uses $\sigma_{i,k,j} \geq \sigma$. Combining the two parts and the prefactor 2 yields the claim. \square
 956
 957

958 **Remark.** The bound decomposes into (i) the client-server drift term $2L^2 U_r^2$, (ii) the stochastic
 959 variance term $2\sigma_l^2/(SK)$ that vanishes as participation and local steps grow, and (iii) the low-rank
 960 surrogate bias $2(1-\sigma)^2 d$, which shrinks as the singular-value floor σ increases (e.g., with larger
 961 retained rank).

962
 963 **Lemma 5.** If $\gamma L \leq \frac{\beta}{6}$, the following holds for $r \geq 1$:

$$\mathcal{E}_r \leq \left(1 - \frac{8\beta}{9}\right) \mathcal{E}_{r-1} + \frac{4\gamma^2 L^2}{\beta} \mathbb{E} \left[\|\nabla f(x^{r-1})\|^2 \right] + \frac{2\beta^2 \sigma_l^2}{SK} + 8\beta L^2 U_r + 8\beta(1-\sigma)^2 d$$

964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139

972 *Proof.* For $r > 1$,

$$\begin{aligned}
974 \quad & \mathcal{E}_r = \mathbb{E} \left[\left\| \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - g^{r+1} \right\|^2 \right] \\
975 \quad & = \mathbb{E} \left[\left\| (1-\beta) \left(\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - g^r \right) + \beta \left(\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K U_i^{r,k} V_i^{r,k \top} \right) \right\|^2 \right] \\
976 \quad & \leq \mathbb{E} \left[\left\| (1-\beta) \left(\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - g^r \right) \right\|^2 \right] + \beta^2 \mathbb{E} \left[\left\| \nabla f(x^r) - \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K U_i^{r,k} V_i^{r,k \top} \right\|^2 \right] \\
977 \quad & \quad + 2\beta \mathbb{E} \left[\left\langle (1-\beta) \left(\frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - g^r \right), \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K \nabla f(x^r) - \frac{1}{SK} \sum_{i \in S^r} \sum_{k=1}^K U_i^{r,k} V_i^{r,k \top} \right\rangle \right].
\end{aligned}$$

978 Note that $\left\{ \nabla F(x_i^{r,k}; \xi_i^{r,k}) \right\}_{0 \leq k < K}$ are sequentially correlated. Applying the AM-GM inequality
979 and Lemma 1, we have

$$\begin{aligned}
991 \quad & \mathcal{E}_r \leq \left(1 + \frac{\beta}{2} \right) \mathbb{E} \left[\|(1-\beta)(\nabla f(x^r) - g^r)\|^2 \right] + 4\beta L^2 U_r + 4\beta^2 (1-\sigma)^2 d + 4\beta^2 \left(\frac{\sigma_l^2}{SK} + L^2 U_r + (1-\sigma)^2 d \right)
\end{aligned}$$

992 Using the AM-GM inequality again and Assumption A.1, we have

$$\begin{aligned}
995 \quad & \mathcal{E}_r \leq (1-\beta)^2 \left(1 + \frac{\beta}{2} \right) \left[\left(1 + \frac{\beta}{2} \right) \mathcal{E}_{r-1} + \left(1 + \frac{2}{\beta} \right) L^2 \mathbb{E} \left[\|x^r - x^{r-1}\|^2 \right] \right] + \frac{4\beta^2 \sigma_l^2}{SK} + 8\beta L^2 U_r + 8\beta(1-\sigma)^2 d \\
996 \quad & \leq (1-\beta) \mathcal{E}_{r-1} + \frac{2}{\beta} L^2 \mathbb{E} \left[\|x^r - x^{r-1}\|^2 \right] + \frac{4\beta^2 \sigma_l^2}{SK} + 8\beta^2 L^2 U_r + 8\beta(1-\sigma)^2 d \\
997 \quad & \leq \left(1 - \frac{8\beta}{9} \right) \mathcal{E}_{r-1} + 4 \frac{\gamma^2 L^2}{\beta} \mathbb{E} \left[\|\nabla f(x^{r-1})\|^2 \right] + \frac{4\beta^2 \sigma_l^2}{SK} + 8\beta L^2 U_r + 8\beta^2(1-\sigma)^2 d
\end{aligned}$$

1003 where we plug in $\|x^r - x^{r-1}\|^2 \leq 2\gamma^2 (\|\nabla f(x^{r-1})\|^2 + \|g^r - \nabla f(x^{r-1})\|^2)$ and use $\gamma L \leq \frac{\beta}{6}$
1004 in the last inequality. Similarly for $r = 0$,

$$\begin{aligned}
1005 \quad & \mathcal{E}_0 \leq \left(1 + \frac{\beta}{2} \right) \mathbb{E} \left[\|(1-\beta)(\nabla f(x^0) - g^0)\|^2 \right] + 4\beta L^2 U_0 + 4\beta^2 \left(\frac{\sigma_l^2}{SK} + L^2 U_0 \right) \\
1006 \quad & \leq (1-\beta) \mathcal{E}_{-1} + \frac{4\beta^2 \sigma_l^2}{SK} + 8\beta^2 L^2 U_0 + 8\beta(1-\sigma)^2 d
\end{aligned}$$

1007 \square

1014 **Lemma 6.** If $\eta L K \leq \frac{1}{\beta}$, the following holds for $r \geq 0$:

$$1017 \quad U_r \leq 2eK^2 \Xi_r + K\eta^2 \beta^2 \sigma_l^2 (1 + 2K^3 L^2 \eta^2 \beta^2)$$

1018 Recall that $\zeta_i^{r,k} := \mathbb{E} \left[x_i^{r,k+1} - x_i^{r,k} \mid \mathcal{F}_i^{r,k} \right] = -\eta \left((1-\beta)g^r + \beta \nabla f_i(x_i^{r,k}) \right)$. Then we
1019 have

$$\begin{aligned}
1020 \quad & \mathbb{E} \left[\left\| \zeta_i^{r,j} - \zeta_i^{r,j-1} \right\|^2 \right] \leq \eta^2 L^2 \beta^2 \mathbb{E} \left[\left\| x_i^{r,j} - x_i^{r,j-1} \right\|^2 \right] \\
1021 \quad & \leq \eta^2 L^2 \beta^2 \left(\eta^2 \beta^2 \sigma_l^2 + \mathbb{E} \left[\left\| \zeta_i^{r,j-1} \right\|^2 \right] \right)
\end{aligned}$$

1026 For any $1 \leq j \leq k-1 \leq K-2$, using $\eta L \leq \frac{1}{\beta K} \leq \frac{1}{\beta(k+1)}$, we have
 1027

$$\begin{aligned} 1028 \mathbb{E} \left[\left\| \zeta_i^{r,j} \right\|^2 \right] &\leq \left(1 + \frac{1}{k} \right) \mathbb{E} \left[\left\| \zeta_i^{r,j-1} \right\|^2 \right] + (1+k) \mathbb{E} \left[\left\| \zeta_i^{r,j} - \zeta_i^{r,j-1} \right\|^2 \right] \\ 1029 &\leq \left(1 + \frac{2}{k} \right) \mathbb{E} \left[\left\| \zeta_i^{r,j-1} \right\|^2 \right] + (k+1) L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1030 &\leq e^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 4k^2 L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1031 &\leq e^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 4k^2 L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1032 &\leq e^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 4k^2 L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1033 &\leq e^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 4k^2 L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1034 &\leq e^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 4k^2 L^2 \eta^4 \beta^4 \sigma_l^2 \\ 1035 \end{aligned}$$

1036 where the last inequality is by unrolling the recursive bound and using $(1 + \frac{2}{k})^k \leq e^2$. By Lemma
 1037 1, it holds that for $k \geq 2$,
 1038

$$\begin{aligned} 1039 \mathbb{E} \left[\left\| x_i^{r,k} - x^r \right\|^2 \right] &\leq 2 \mathbb{E} \left[\left\| \sum_{j=0}^{k-1} \zeta_i^{r,j} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 \\ 1040 &\leq 2k \sum_{j=0}^{k-1} \mathbb{E} \left[\left\| \zeta_i^{r,k} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 \\ 1041 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1042 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1043 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1044 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1045 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1046 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1047 &\leq 2e^2 k^2 \mathbb{E} \left[\left\| \zeta_i^{r,0} \right\|^2 \right] + 2k \eta^2 \beta^2 \sigma_l^2 (1 + 4k^3 L^2 \eta^2 \beta^2) \\ 1048 \end{aligned}$$

1049 This is also valid for $k = 0, 1$. Summing up over i and k finishes the proof. \square
 1050

1051 **Lemma 7.** *If $288e(\eta KL)^2 ((1-\beta)^2 + e(\beta\gamma LR)^2) \leq 1$, then it holds for $r \geq 0$ that*
 1052

$$\sum_{r=0}^{R-1} \mathbb{E}_r \leq \frac{1}{72eK^2L^2} \sum_{r=-1}^{R-2} \left(\mathcal{E}_r + \mathbb{E} \left[\left\| \nabla f(x^r) \right\|^2 \right] \right) + 2\eta^2 \beta^2 eRG_0$$

1053 *Proof.* Note that $\zeta_i^{r,0} = -\eta((1-\beta)g^r + \beta\nabla f_i(x^r))$,
 1054

$$\frac{1}{N} \sum_{i=1}^N \left\| \zeta_i^{r,0} \right\|^2 \leq 2\eta^2 \left((1-\beta)^2 \|g^r\|^2 + \beta^2 \frac{1}{N} \sum_{i=1}^N \left\| \nabla f_i(x^r) \right\|^2 \right)$$

1055 Using Young's inequality, we have for any $q > 0$ that
 1056

$$\begin{aligned} 1057 \mathbb{E} \left[\left\| \nabla f_i(x^r) \right\|^2 \right] &\leq (1+q) \mathbb{E} \left[\left\| \nabla f_i(x^{r-1}) \right\|^2 \right] + (1+q^{-1}) L^2 \mathbb{E} \left[\left\| x^r - x^{r-1} \right\|^2 \right] \\ 1058 &\leq (1+q) \mathbb{E} \left[\left\| \nabla f_i(x^{r-1}) \right\|^2 \right] + 2(1+q^{-1}) \gamma^2 L^2 \left(\mathcal{E}_{r-1} + \mathbb{E} \left[\left\| \nabla f(x^{r-1}) \right\|^2 \right] \right) \\ 1059 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1060 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1061 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1062 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1063 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1064 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1065 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1066 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1067 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1068 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1069 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1070 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1071 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1072 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1073 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1074 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1075 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1076 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1077 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1078 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \\ 1079 &\leq (1+q)^r \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + \frac{2}{q} \gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) (1+q)^{r-j} \end{aligned}$$

1080 Take $q = \frac{1}{r}$ and we have
 1081

$$\mathbb{E} \left[\left\| \nabla f_i(x^r) \right\|^2 \right] \leq e \mathbb{E} \left[\left\| \nabla f_i(x^0) \right\|^2 \right] + 2e(r+1)\gamma^2 L^2 \sum_{j=0}^{r-1} \left(\mathcal{E}_j + \mathbb{E} \left[\left\| \nabla f(x^j) \right\|^2 \right] \right) \quad (10)$$

1080 Note that this inequality is valid for $r = 0$. Therefore, using equation 10, we have
 1081

$$\begin{aligned}
 1082 \sum_{r=0}^{R-1} \Xi_r &\leq \sum_{r=0}^{R-1} 2\eta^2 \mathbb{E} \left[(1-\beta)^2 \|g^r\|^2 + \beta^2 \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^r)\|^2 \right] \\
 1083 &\leq \sum_{r=0}^{R-1} 2\eta^2 \left(2(1-\beta)^2 (\mathcal{E}_{r-1} + \mathbb{E} [\|\nabla f(x^{r-1})\|^2]) + \beta^2 \frac{1}{N} \sum_{i=1}^N \mathbb{E} [\|\nabla f_i(x^r)\|^2] \right) \\
 1084 &\leq \sum_{r=0}^{R-1} 4\eta^2(1-\beta)^2 (\mathcal{E}_{r-1} + \mathbb{E} [\|\nabla f(x^{r-1})\|^2]) \\
 1085 &\quad + 2\eta^2\beta^2 \sum_{r=0}^{R-1} \left(\frac{e}{N} \sum_{i=1}^N \mathbb{E} [\|\nabla f_i(x^0)\|^2] + 2e(r+1)(\gamma L)^2 \sum_{j=0}^{r-1} (\mathcal{E}_j + \mathbb{E} [\|\nabla f(x^j)\|^2]) \right) \\
 1086 &\leq 4\eta^2(1-\beta)^2 \sum_{r=0}^{R-1} (\mathcal{E}_{r-1} + \mathbb{E} [\|\nabla f(x^{r-1})\|^2]) \\
 1087 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1088 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1089 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1090 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1091 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1092 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1093 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1094 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1095 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1096 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1097 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1098 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1099 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right) \\
 1100 &\quad + 2\eta^2\beta^2 \left(eRG_0 + 2e(\gamma LR)^2 \sum_{r=0}^{R-2} (\mathcal{E}_r + \mathbb{E} [\|\nabla f(x^r)\|^2]) \right)
 \end{aligned}$$

1101 Rearranging the equation and applying the upper bound of η completes the proof. \square

1102

1103

1104 **Theorem 2** (Convergence for non-convex functions). *Under Assumptions 1-2, if we take $g^0 = 0$,*

1105

$$\begin{aligned}
 1106 \beta &= \min \left\{ \sqrt{\frac{SKL\Delta}{\sigma_l^2 R}}, \sqrt{\frac{SKL\Delta}{\sigma_l^2 R}} \right\} \text{ for any constant } c \in (0, 1], \quad \gamma = \min \left\{ \frac{1}{24L}, \frac{\beta}{6L} \right\}, \\
 1107 \eta KL &\lesssim \min \left\{ 1, \frac{1}{\beta\gamma LR}, \left(\frac{L\Delta}{G_0\beta^3 R} \right)^{1/2}, \frac{1}{(\beta N)^{1/2}}, \frac{1}{(\beta^3 NK)^{1/4}} \right\}
 \end{aligned}$$

1112

1113 then FedMuon converges as

$$1114 \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} [\|\nabla f(x^r)\|^2] \lesssim \frac{L\Delta}{R} + \sqrt{\frac{L\Delta}{R} \left(\frac{\sigma_l^2}{SK} + (1-\sigma)^2 d \right)}.$$

1119

1120 Here $G_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^0)\|^2$.

1121

1122

1123

1124 *Proof.* Combining Lemma 3 and 5, we have

1125

1126

$$\begin{aligned}
 1127 \mathcal{E}_r &\leq \left(1 - \frac{8\beta}{9} \right) \mathcal{E}_{r-1} + 4 \frac{(\gamma L)^2}{\beta} \mathbb{E} [\|\nabla f(x^{r-1})\|^2] + \frac{4\beta^2\sigma_l^2}{SK} + 8\beta^2(1-\sigma)^2 d \\
 1128 &\quad + 4\beta L^2 (2eK^2\Xi_r + K\eta^2\beta^2\sigma_l^2 (1 + 2K^3L^2\eta^2\beta^2))
 \end{aligned}$$

1129

1130

1131

1132

1133

and

$$\mathcal{E}_0 \leq (1-\beta)\mathcal{E}_{-1} + \frac{4\beta^2\sigma_l^2}{SK} + 8\beta(1-\sigma)^2 d + 4\beta L^2 (2eK^2\Xi_0 + K\eta^2\beta^2\sigma_l^2 (1 + 2K^3L^2\eta^2\beta^2)).$$

1134 Summing over r from 0 to $R - 1$ and applying Lemma 7,

1135

$$\begin{aligned}
 1136 \sum_{r=0}^{R-1} \mathcal{E}_r &\leq \left(1 - \frac{8\beta}{9}\right) \sum_{r=-1}^{R-2} \mathcal{E}_r + 4 \frac{(\gamma L)^2}{\beta} \sum_{r=0}^{R-2} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] + 4 \frac{\beta^2 \sigma_l^2}{SK} R + 8\beta(1-\sigma)^2 dR \\
 1137 &\quad + 4\beta L^2 \left(2eK^2 \sum_{r=0}^{R-1} \Xi_r + RK\eta^2\beta^2\sigma_l^2 (1 + 2K^3L^2\eta^2\beta^2) \right) \\
 1138 &\leq \left(1 - \frac{7\beta}{9}\right) \sum_{r=-1}^{R-2} \mathcal{E}_r + \left(4 \frac{(\gamma L)^2}{\beta} + \frac{\beta}{9}\right) \sum_{r=-1}^{R-2} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] + 16\beta^3(e\eta KL)^2 RG_0 \\
 1141 &\quad + \frac{4\beta^2 \sigma_l^2}{SK} R + 8\beta(1-\sigma)^2 dR + 4\beta^3(\eta KL)^2 \left(\frac{1}{K} + 2(\eta KL\beta)^2 \right) \sigma_l^2 R \\
 1144 &\leq \left(1 - \frac{7\beta}{9}\right) \sum_{r=-1}^{R-2} \mathcal{E}_r + \frac{2\beta}{9} \sum_{r=-1}^{R-2} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] + 16\beta^3(e\eta KL)^2 RG_0 + \frac{8\beta^2 \sigma_l^2}{SK} R + 8\beta(1-\sigma)^2 dR
 \end{aligned}$$

1150 Here in the last inequality we apply

1151

$$4\beta(\eta KL)^2 \left(\frac{1}{K} + 2(\eta KL\beta)^2 \right) \leq \frac{2}{NK} \quad \text{and} \quad \gamma L \leq \frac{\beta}{6}.$$

1154 Therefore,

1155

$$\sum_{r=0}^{R-1} \mathcal{E}_r \leq \frac{9}{7\beta} \mathcal{E}_{-1} + \frac{2}{7} \mathbb{E} \left[\sum_{r=-1}^{R-2} \|\nabla f(x^r)\|^2 \right] + \frac{144}{7} (e\beta\eta KL)^2 G_0 R + \frac{36\beta\sigma_l^2}{7SK} R + \frac{72}{7} (1-\sigma)^2 dR.$$

1158 Combine this inequality with Lemma 3 and we get

1159

$$\frac{1}{\gamma} \mathbb{E} [f(x^r) - f(x^0)] \leq -\frac{1}{7} \sum_{r=0}^{R-1} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] + \frac{39}{56\beta} \mathcal{E}_{-1} + \frac{78}{7} (e\beta\eta KL)^2 G_0 R + \frac{39\beta\sigma_l^2}{14SK} R + \frac{72}{7} (1-\sigma)^2 dR.$$

1160 Finally, noticing that $g^0 = 0$ implies $\mathcal{E}_{-1} \leq 2L(f(x^0) - f^*) = 2L\Delta$, we obtain

1161

$$\begin{aligned}
 1162 \frac{1}{R} \sum_{r=0}^{R-1} \mathbb{E} \left[\|\nabla f(x^r)\|^2 \right] &\lesssim \frac{L\Delta}{\gamma LR} + \frac{\mathcal{E}_{-1}}{\beta R} + (\beta\eta KL)^2 G_0 + \frac{\beta\sigma_l^2}{SK} + \beta(1-\sigma)^2 d. \\
 1163 &\lesssim \frac{L\Delta}{R} + \frac{L\Delta}{\beta R} + \frac{\beta\sigma_l^2}{SK} + (\beta\eta KL)^2 G_0 + \beta(1-\sigma)^2 d \\
 1164 &\lesssim \frac{L\Delta}{R} + \sqrt{\frac{L\Delta}{R} \left(\frac{\sigma_l^2}{SK} \right)}
 \end{aligned}$$

1165 \square

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 Table 8: A detailed summary of 100 and Tiny ImageNet: number of classes, image size, and dataset
 1189 splits.

1190 Dataset	1191 #Classes	1192 Image Size	1193 Train	1194 Val	1195 Test	1196 Total	1197 Train / class
CIFAR-100	100	$3 \times 32 \times 32$	50,000	—	10,000	60,000	500
Tiny ImageNet	200	$3 \times 64 \times 64$	100,000	10,000	10,000	120,000	500

1198 **Notes.** (1) CIFAR-10/100 provide no official validation split; a subset of the training set is commonly
 1199 reserved as dev/val.

1200 (2) CIFAR-100 contains 100 fine-grained classes; 20 coarse superclasses are also defined for hierarchical
 1201 labeling.

1202 (3) Tiny ImageNet is a subset of ImageNet synsets: per class 500 train, 50 val, and 50 test images (test
 1203 labels are not publicly released).

1204 (4) All three datasets are single-label classification with RGB images resized to fixed resolutions.

1205

1206 B APPENDIX B: EXPERIMENTAL SETUP

1207 B.1 SETTING FOR RESNET-18

1208 We evaluate our methods on two widely-used benchmark datasets in federated learning: **CIFAR-100**
 1209 and **Tiny ImageNet**.

- 1210 • **CIFAR-100** (Krizhevsky et al., 2009): Contains 100 classes with 600 color images per class at
 1211 a resolution of 32×32 . It is a standard benchmark for evaluating federated image classification
 1212 methods.
- 1213 • **Tiny ImageNet**: A subset of ImageNet with 200 classes and 500 images per class, providing a
 1214 more challenging and high-resolution classification task.

1215 B.2 FEDERATED LEARNING CONFIGURATION

1216 We simulate a cross-device federated learning environment using the following settings:

1217 Table 9: Hyperparameter configuration of ResNet-18 and Vit-Tiny (CIFAR100) across different
 1218 algorithms.

1219 Method	1220 Local Optimizer	1221 Local LR	1222 α	1223 β_1	1224 β_2	1225 Weight Decay
FedAvg (Local SGD)	SGD	0.1	—	—	—	0.001
FedProx	SGD	0.1	—	—	—	0.001
FedDyn	SGD	0.1	—	—	—	0.001
Mime	SGD	0.1	—	—	—	0.001
FedAdam	SGD	0.1	—	0.9	0.98	0.001
SCAFFOLD	SGD	0.1	—	—	—	0.001
FedCM	SGD	0.1	0.9	—	—	0.001
FedLADA	AdamW	3e-4	0.9	0.9	0.999	0.01
Local AdamW	AdamW	3e-4	—	0.9	0.999	0.01
Local Muon	Muon	3e-2	—	0.98	—	0.01
FedMuon	Muon	3e-2	0.5	0.98	—	0.01

1232 Note: The paper specifies that “FedMuon and Local Muon use local LR = 1e-3, $\alpha = 0.5$, $\beta = 0.98$ ”, we use
 1233 $\alpha = 0.5$ and $\beta = 0.98$ for all tasks throughout the paper; this combination of hyperparameters is highly robust
 1234 and stable.; however, $\alpha = 0.5$ only applies to FedMuon as a global-local alignment coefficient and not to
 1235 Local Muon, which is indicated by “—”. In the training task from scratch, the learning rate of Muon is usually
 1236 100 times higher than that of AdamW

- 1237 • **Number of clients:** 100
- 1238 • **Client participation rate:** 10% per round
- 1239 • **Communication rounds:** 300
- 1240 • **Local update steps:** 50 iterations

1242 Table 10: Hyperparameter configuration of ViT-Base, Swin-Base, RoBERTa-base fine-tuning across
 1243 different algorithms.
 1244

Method	Local Optimizer	Local LR	α	β_1	β_2	Weight Decay
FedAvg (Local SGD)	SGD	0.1	—	—	—	0.001
FedProx	SGD	0.1	0.01	—	—	0.001
FedDyn	SGD	0.1	0.01	—	—	0.001
Mime	SGD	0.1	—	—	—	0.001
FedAdam	SGD	0.1	—	0.9	0.98	0.001
SCAFFOLD	SGD	0.1	—	—	—	0.001
FedCM	SGD	0.1	0.9	—	—	0.001
FedLADA	AdamW	1e-4	0.9	0.9	0.999	0.01
Local AdamW	AdamW	1e-4	—	0.9	0.999	0.01
Local Muon	Muon	1e-3	—	0.98	—	0.01
FedMuon	Muon	1e-3	0.5	0.98	—	0.01

1257 Note: the paper specifies that “FedMuon and Local Muon use local LR = 1e-3, $\alpha = 0.5$, $\beta = 0.98$ ”; however,
 1258 $\alpha = 0.5$ only applies to FedMuon as the global-local alignment coefficient and not to Local Muon, which is
 1259 indicated by “—”. In fine-tuning tasks, the learning rate of Muon is typically set to be 10 \times that of AdamW.

1260
 1261 • **Batch size:** 50
 1262

1263 We perform grid search to tune the learning rates for each algorithm:

1264
 1265 • **FedAvg, SCAFFOLD, FedCM, and FedAdam** use a local learning rate of 0.1.
 1266 • **FedLADA, Local AdamW**, use a local learning rate of 3e-4.
 1267 • **FedMuon and Local Muon** use a local learning rate of 3e-2, $\alpha = 0.5$, $\beta = 0.98$

1269 B.3 MODEL ARCHITECTURE

1271 We adopt **ResNet-18** as the backbone model. To better adapt it to CIFAR-100, we modify its architecture following standard practices (He et al., 2016):

1273
 1274 • Replace the original 7 \times 7 convolution with a 3 \times 3 kernel.
 1275 • Remove the initial downsampling layers (stride-2 convolution and max pooling).

1277 We also compare **Batch Normalization (BN)** and **Group Normalization (GN)** in ResNet-18.
 1278 Empirically, BN outperforms GN on CIFAR-100, so we adopt the BN-based version, denoted as
 1279 **ResNet-18-BN**, throughout our experiments.

1280 B.4 SETTING FOR ViT-TINY

1282 We construct a lightweight Vision Transformer model, **ViT-Tiny**, specifically tailored for federated
 1283 learning on the CIFAR-100 dataset. The design is based on the standard ViT architecture (Dosovitskiy et al., 2020), with modifications to accommodate the small input size and limited data per
 1285 client.

1286
 1287 • **Input resolution:** 32 \times 32
 1288 • **Patch size:** 4 \times 4, resulting in 64 tokens per image
 1289 • **Embedding dimension:** 192
 1290 • **Number of Transformer layers:** 6
 1291 • **Number of attention heads:** 3
 1292 • **Normalization:** LayerNorm (applied before attention and MLP blocks)
 1293 • **Classification head:** Linear projection to 100 classes (CIFAR-100)
 1294 • **Activation:** GELU

1296 • **Initialization:** Xavier/Glorot for linear layers; sinusoidal positional encoding
 1297
 1298 To regularize training, we apply dropout (0.1) to both attention and MLP layers. All models are
 1299 trained from scratch without pretraining.
 1300
 1301 **Federated Learning Configuration.** We adopt the same federated learning setup as used in our
 1302 ResNet experiments for a fair comparison:
 1303
 1304 • **Number of clients:** 100
 1305 • **Client participation rate:** 10%
 1306 • **Communication rounds:** 300
 1307 • **Local update steps:** 50 iterations per round
 1308 • **Local batch size:** 50
 1309
 1310
 1311 **Learning Rate Schedule.** We perform grid search to identify optimal learning rates for each al-
 1312 gorithm:
 1313
 1314 • **FedAvg, SCAFFOLD, FedCM, and FedAdam:** local learning rate of 0 . 1
 1315 • **,FedLADA, Local AdamW:** local learning rate of 3e-4
 1316 • **FedMuon and Local Muon:** local learning rate of 3e-2, $\alpha = 0.5$, $\beta = 0.98$
 1317
 1318 **Weight Decay.** To ensure fair comparison under different regularization settings, we assign:
 1319
 1320 • **FedAvg, SCAFFOLD, FedCM, FedAdam:** weight decay = 0 . 001
 1321 • **Local Muon, FedLADA, Local AdamW, FedMuon:** weight decay = 0 . 01
 1322
 1323 **Optimizer.** We use Adam or AdamW as the local optimizer depending on the method. All opti-
 1324 mizers use $\beta_1 = 0.9$, $\beta_2 = 0.999$, and weight decay of 0.01 when applicable.
 1325
 1326 **Remarks.** Due to the smaller capacity of ViT-Tiny and limited data per client, we find that careful
 1327 normalization (e.g., LayerNorm placement) and early learning rate warmup are beneficial. For future
 1328 work, more advanced token-mixing techniques or hybrid CNN-ViT backbones may further improve
 1329 performance in federated settings.
 1330
 1331 **B.5 SWIN TRANSFORMER FINE-TUNING SETTINGS**
 1332
 1333 To demonstrate the effectiveness of our method on large-scale vision models, we conduct fine-tuning
 1334 experiments using **Swin Transformer-Tiny** and **ViT-Base** on **Tiny ImageNet** and **CIFAR-100**.
 1335 For both models, we initialize from official ImageNet-22K pre-trained weights (Liu et al., 2021;
 1336 Dosovitskiy et al., 2020) to ensure consistency across methods.
 1337
 1338 **Model Architecture: Swin-Tiny.** Swin-Tiny adopts a hierarchical Transformer structure that
 1339 gradually reduces the spatial resolution while increasing the feature dimensions, mimicking a CNN-
 1340 like pyramid:
 1341
 1342 • **Stage depth:** [2, 2, 6, 2]
 1343 • **Number of attention heads:** [3, 6, 12, 24]
 1344 • **Embedding dimensions:** 96, 192, 384, 768 across stages
 1345 • **Patch size:** 4×4
 1346 • **Window size:** 7
 1347 • **MLP ratio:** 4
 1348 • **Normalization:** LayerNorm
 1349 • **Positional encoding:** Relative positional bias

1350 • **Regularization:** DropPath (with decay rate linearly scaled to depth)
 1351

1352 We fine-tune all layers during federated training.
 1353

1354 **Data Preprocessing.** To align with the input resolution required by Swin and ViT, we resize im-
 1355 ages from both datasets to 224×224 using bilinear interpolation. Standard data augmentation
 1356 techniques such as random cropping, horizontal flipping, and RandAugment are applied locally at
 1357 the client side.
 1358

1359 **Federated Learning Configuration.** To simulate a realistic cross-device setting, we configure:
 1360

1361 • **Number of clients:** 100
 1362 • **Client participation rate:** 5% per communication round
 1363 • **Communication rounds:** 100
 1364 • **Local update steps:** 50 iterations
 1365 • **Batch size:** 16
 1366

1368 **Learning Rate Configuration.** We apply grid search to find optimal learning rates and use **cosine**
 1369 **learning rate decay** with no warmup unless otherwise stated:
 1370

1371 • **FedAvg, SCAFFOLD, FedCM:** local LR = 0.1
 1372 • **FedLADA, Local AdamW:** local LR = $1e-4$
 1373 • **FedMuon and Local Muon:** local LR = $1e-3$
 1374

1375 **Weight Decay.** To ensure fair comparison under different regularization settings, we assign:
 1376

1377 • **FedAvg, SCAFFOLD, FedCM:** weight decay = 0.001
 1378 • **Local Muon, FedLADA, Local AdamW, FedMuon:** weight decay = 0.01
 1379

1381 **Optimization.** Local optimizers are Adam or AdamW depending on the algorithm, with parame-
 1382 ters $\beta_1 = 0.9$, $\beta_2 = 0.999$, and weight decay of 0.01. Cosine decay is applied to local learning rates
 1383 over the 50 local steps per round. No learning rate warmup is used unless otherwise specified.
 1384

1385 **Remarks.** We find that Swin Transformer benefits from hierarchical attention and DropPath when
 1386 training with limited local data. Our method shows stable convergence and avoids loss spikes of-
 1387 ten seen in large-scale federated fine-tuning. All models are implemented using the HuggingFace
 1388 Transformers and Timm libraries.
 1389

1390 B.6 ROBERTA-BASE FINE-TUNING SETTINGS

1391 We fine-tune the **RoBERTa-Base** model using **LoRA** (Low-Rank Adaptation) on a subset of the
 1392 GLUE benchmark. The LoRA adaptation is applied to the query and value projection matrices of
 1393 the self-attention modules. The following table summarizes the hyperparameter settings used across
 1394 tasks.
 1395

1396 **Explanation.** We use a uniform batch size of 32 and sequence length of 128 across all tasks. LoRA
 1397 is configured with a rank of 16 and scaling factor $\alpha = 32$. The optimizer is AdamW with a weight
 1398 decay of 0.01 and dropout set to 0.1. No layer freezing is used; all LoRA-injected weights are
 1399 trained, while the base RoBERTa backbone remains frozen.
 1400

1401 B.7 ADDITIONAL FEDERATED TRAINING CONFIGURATION OF LLM

1402 To evaluate our algorithm under a smaller-scale federation, we further conduct experiments with a
 1403 reduced number of clients and adjusted participation parameters.
 1404

Table 11: Summary of GLUE datasets: task type, number of classes, and dataset sizes.

Dataset	Task Type	#Classes	Train Size	Test Size
MNLI	Natural Language Inference (entailment)	3	392,702	9,815
SST-2	Sentiment Classification (binary)	2	67,349	1,821
MRPC	Paraphrase Detection (binary)	2	3,668	1,725
CoLA	Linguistic Acceptability (binary)	2	8,551	1,043
QNLI	Question-Answer NLI (binary)	2	104,743	5,463
QQP	Duplicate Question Detection (binary)	2	363,846	390,965
RTE	Recognizing Textual Entailment (binary)	2	2,490	3,000

Table 12: Hyperparameter configuration for RoBERTa-Base with LoRA across GLUE tasks. LoRA is applied with $r = 16$ to both query and value projections. All tasks use AdamW as the optimizer.

Method	Setting	GLUE Tasks						
		MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE
RoBERTa-Base + LoRA	Batch size	16	16	16	16	16	16	16
	Max seq. length	128	128	128	128	128	128	128
	LoRA ranks ($r_q = r_v$)	16	16	16	16	16	16	16
	LoRA scaling α	32	32	32	32	32	32	32
	Dropout				0.1			

Federated Setup. We simulate a federated learning environment with the following configuration:

- **Number of clients:** 4 or 20
- **Client participation rate:** 100% or 20% (i.e., 4 clients per round)
- **Communication rounds:** 100
- **Local update steps:** 50
- **Local batch size:** 16

Learning Rate Schedule. We apply grid search for local and global learning rates and use cosine learning rate decay across local updates:

- **FedAvg, SCAFFOLD, FedCM:** local LR = 0.1
- **FedLADA, Local AdamW:** local LR = 1e-4
- **Local Muon, FedMuon:** local LR = 1e-3

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

- **FedAvg, SCAFFOLD, FedCM:** weight decay = 0.001
- **Local Muon, FedLADA, Local AdamW, FedMuon:** weight decay = 0.01

Other Settings. AdamW optimizers use $\beta_1 = 0.9$, $\beta_2 = 0.999$. Learning rates follow cosine decay without warmup.

1458 Table 13: Per-round communication cost of different momentum aggregation strategies. Here $|x|$
 1459 denotes the number of model parameters (in floats), and CommCost is per-round communication
 1460 cost, Compute-Cost is per-round computation time. (ViT-Tiny, $R = 300$, Dir-0.1, $K = 50$)
 1461

Method / Strategy	Communication	CommCost	Compute-Cost (s)	Acc(%)	Comm@23%Acc (MB)
FedAvg	$ x $	22.8 MB	4.56 s	27.14	4190 MB
FedProx	$ x $	22.8 MB	4.58 s	26.84	5244 MB
FedDyn	$ x $	22.8 MB	4.75 s	27.66	4788 MB
Mime	$2 x $	45.6 MB	5.26 s	27.76	9804 MB
FedAdam	$ x $	28.50 MB	4.57 s	28.50	4651 MB
SCAFFOLD	$2 x $	45.6 MB	5.22 s	27.31	8390 MB
FedCM	$ x $	22.8 MB	4.68 s	23.18	6156 MB
FedLADA	$2 x $	45.6 MB	5.02 s	31.50	4879 MB
Local AdamW	$ x $	22.8 MB	4.89 s	37.86	1482 MB
Local Muon	$ x $	22.8 MB	5.14 s	40.53	2394 MB
FedMuon	$ x + M _{\text{SVD}}$	23.9 MB	5.25 s	48.18	550 MB

1474 $|M|_{\text{SVD}} \approx 0.05|M|$ since we only keep the top 5% singular values/vectors, thus the additional momentum
 1475 communication is about 5% of the baseline model communication.

1476 Table 14: Per-round communication and computation cost of different methods on QQP using
 1477 **RoBERTa-Base** with LoRA. Here $|x|$ denotes the number of model parameters (in floats),
 1478 CommCost is per-round communication cost (MB), and Compute-Cost is per-round computation
 1479 time (s). (QQP, RoBERTa-Base, $R = 100$, Dir-0.5, 20 clients, 20% participation, batch size 16,
 1480 $K = 50$)
 1481

Method / Strategy	CommCost (MB)	Compute-Cost (s)	ACC(%)
FedAvg	7.1 MB	8.56 s	81.75
FedProx	7.1 MB	8.62 s	81.15
FedDyn	7.1 MB	8.89 s	81.35
Mime	14.2 MB	11.25 s	80.26
FedAdam	7.1 MB	8.76 s	82.22
SCAFFOLD	14.2 MB	11.56 s	80.26
FedCM	7.1 MB	8.98 s	81.22
FedLADA	14.2 MB	9.58 s	81.56
Local AdamW	7.1 MB	9.26 s	81.51
Local Muon	7.1 MB	9.73 s	83.06
FedMuon (ours)	7.45 MB	9.91 s	84.65

C APPENDIX C: EXPERIMENTAL APPENDIX

C.1 COMMUNICATION AND COMPUTATION COST ANALYSIS

1499 As shown in Table 14, we evaluate various federated learning and local optimization strategies on
 1500 the QQP dataset using RoBERTa-Base with LoRA for parameter-efficient fine-tuning. Most first-
 1501 order methods (FedAvg, FedProx, FedDyn, FedAdam, FedCM, Local AdamW, Local Muon) require
 1502 around 7.1 MB of communication per round, while methods that maintain additional control
 1503 variables or gradient information (Mime, SCAFFOLD, FedLADA) incur a higher communication cost
 1504 of 14.2 MB. In contrast, FedMuon increases the per-round communication cost only slightly to 7.45
 1505 MB while achieving a notable improvement in model performance.

1506 Regarding computation cost, the per-round training time of these methods ranges from 8 to 11 sec-
 1507 onds. FedAvg and FedProx take approximately 8.6 seconds, while FedAdam, FedDyn, and FedCM
 1508 exhibit slightly higher computation times. Mime and SCAFFOLD require additional computation
 1509 for maintaining control variates, resulting in 11.25 s and 11.56 s per round, respectively. Local Muon
 1510 and FedMuon require 9.73 s and 9.91 s per round, slightly higher than FedAvg but still within a rea-
 1511 sonable range. Most importantly, FedMuon achieves the highest accuracy of 84.65%, outperforming
 common baselines such as FedAvg (81.75%), FedAdam (82.22%), and the locally optimized Local

1512 Table 15: Test accuracy, training loss of each method on CIFAR-100 using **ResNet-18** and **ViT-Tiny** over 300
 1513 communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$).
 1514

Method	ResNet-18 (Dir-0.6)		ResNet-18 (Dir-0.1)		ViT-Tiny (Dir-0.6)		ViT-Tiny (Dir-0.1)	
	Test Acc	Loss	Test Acc	Loss	Test Acc	Loss	Test Acc	Loss
FedAvg	64.08	0.376	60.25	0.767	32.36	2.350	27.14	2.867
FedProx	63.12	0.458	59.66	0.812	31.51	2.425	26.84	2.875
FedDyn	66.12	0.352	63.01	0.615	33.25	2.125	27.66	2.723
Mime	67.34	0.312	63.37	0.604	34.12	2.101	27.76	2.702
FedAdam	67.23	0.332	63.61	0.512	34.32	1.965	28.50	2.425
SCAFFOLD	65.01	0.365	62.56	0.658	32.17	2.295	27.31	2.752
FedCM	70.42	0.282	66.73	0.639	26.33	2.681	23.18	3.038
FedLADA	65.07	0.671	57.78	0.498	38.33	2.121	31.50	2.678
Local AdamW	62.84	0.363	58.97	0.794	40.47	1.026	37.86	1.954
Local Muon	71.66	0.395	66.71	1.504	46.69	0.201	40.53	1.432
FedMuon	74.12	0.001	73.05	0.246	50.22	0.162	48.18	0.556

1528
 1529
 1530 Muon (83.06%). Overall, FedMuon provides an improved efficiency–performance trade-off by sig-
 1531 nificantly enhancing accuracy while keeping communication overhead nearly unchanged.
 1532

1533 C.2 MORE BASELINE EXPERIMENT COMPARISONS

1534 To substantiate our method’s advantages under non-i.i.d. conditions, we extend the comparison to
 1535 additional federated baselines such as FedProx, FedDyn, and FedAdam, Mime. The comprehensive
 1536 results are presented in Table 15.
 1537

1538 **Training on CIFAR-100 with ResNet-18.** Table 15 and Figure 7 present the test accuracy and
 1539 training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
 1540 Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of **74.12%** and **73.05%**, respectively. It also
 1541 attains the lowest training loss (**0.001** and **0.246**), demonstrating faster and more stable convergence.
 1542 Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
 1543 ization under data heterogeneity, confirming its effectiveness in CNNs.
 1544

1545 **Training on CIFAR-100 with ViT-Tiny.** Table 15 and Figure 7 show FedMuon achieves the
 1546 best performance across both heterogeneity levels, with **50.22%** (Dir-0.6) and **48.18%** (Dir-0.1),
 1547 and the lowest training loss (**0.162** and **0.556**), confirming its efficient convergence. Compared to
 1548 Local AdamW, it provides consistent improvements in both accuracy and stability. Moreover,
 1549 other adaptive baselines such as FedLADA perform significantly worse under high heterogeneity,
 1550 highlighting the effectiveness of global update correction and decoupled weight decay. These
 1551 results validate that FedMuon is particularly effective for federated vision Transformers under
 1552 non-i.i.d. conditions. The small dataset CIFAR100 is difficult to support the performance of ViT,
 1553 resulting in lower accuracy. Therefore, we continued to test on the pretrained model.
 1554

1555 C.3 MORE BASELINE EXPERIMENT ON IID DATA

1556 As shown in Table 16, on CIFAR-100, our proposed FedMuon consistently achieves the best test ac-
 1557 curacy across both **ResNet-18** and **ViT-Tiny** under **IID** and **non-IID** (Dir-0.6 and Dir-0.1) settings.
 1558 For ResNet-18, FedMuon reaches 74.32 accuracy in the IID case, outperforming strong baselines
 1559 such as Mime and FedAdam by approximately 6.4 and 6.2 percentage points, respectively. Even
 1560 under highly heterogeneous data (Dir-0.1), FedMuon still achieves 73.05, significantly higher than
 1561 FedCM (66.73) and FedAdam (63.61). A similar trend is observed for ViT-Tiny: FedMuon achieves
 1562 50.56 accuracy in the IID setting, nearly 10 percentage points higher than Local AdamW; and in the
 1563 Dir-0.1 scenario, it maintains a strong performance of 48.18, outperforming all baselines by a large
 1564 margin.
 1565

1566 It is also noteworthy that Local Muon performs particularly well under IID conditions. For ex-
 1567 ample, it achieves 72.04 with ResNet-18 and 47.69 with ViT-Tiny, indicating that Local Muon

1566 Table 16: Test accuracy of each method on CIFAR-100 using **ResNet-18** and **ViT-Tiny** over 300 communica-
 1567 tion rounds under IID, Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$).

Method	ResNet-18			ViT-Tiny		
	IID	Dir-0.6	Dir-0.1	IID	Dir-0.6	Dir-0.1
FedAvg	65.74	64.08	60.25	32.45	32.36	27.14
FedProx	65.52	63.12	59.66	32.25	31.51	26.84
SCAFFOLD	65.67	65.01	62.56	32.67	32.17	27.31
FedDyn	66.58	66.12	63.01	33.66	33.25	27.66
Mime	67.89	67.34	63.37	34.52	34.12	27.76
FedCM	70.57	70.42	66.73	27.88	26.33	23.18
FedLADA	66.23	65.07	57.78	38.56	38.33	31.50
FedAdam	68.12	67.23	63.61	34.83	34.32	28.50
Local AdamW	64.60	62.84	58.97	40.78	40.47	37.86
Local Muon	72.04	71.66	66.71	47.69	46.69	40.53
FedMuon	74.32	74.12	73.05	50.56	50.22	48.18

1582 converges rapidly and achieves strong performance when the data distribution across clients is ho-
 1583 mogeneous. However, when the data becomes non-IID—especially under Dir-0.1—the performance
 1584 of Local Muon drops significantly (e.g., from 72.04 to 66.71 on ResNet-18, and from 47.69 to
 1585 40.53 on ViT-Tiny), revealing a severe **client drift** issue. In contrast, our FedMuon not only pre-
 1586 serves the fast convergence and strong performance in the IID setting, but also effectively mitigates
 1587 client drift under non-IID conditions. As a result, FedMuon consistently achieves the best per-
 1588 formance across all data distributions and model architectures, demonstrating its robustness and
 1589 stability in federated learning.

1591 C.4 MORE EXPERIMENT ON FINE-TUNING RESULTS ON LLMs.

1593 **Fine-tuning Results on LLMs.** Table 18 summarizes results on the GLUE benchmark using
 1594 RoBERTa-Base with LoRA, 20 clients, 20% participation, batch size 16, $K = 50$, rank=16.
 1595 FedMuon achieves the highest accuracy of GLUE outperforming strong baselines such as FedAvg
 1596 and Local Muon.

1597 Table 18 reports the performance of various federated optimization methods on the GLUE bench-
 1598 mark using RoBERTa-Base with LoRA under a more challenging heterogeneous setting: a Dirichlet-
 1599 0.5 partition and only 20% client participation. This scenario introduces substantially higher data
 1600 imbalance and inconsistency across clients, making communication and optimization significantly
 1601 more difficult. Despite this increased heterogeneity, our proposed FedMuon consistently achieves
 1602 the best accuracy across almost all tasks.

1603 Compared with classical methods such as FedAvg and SCAFFOLD, FedMuon shows clear im-
 1604 provements, especially on more sensitive tasks like CoLA, RTE, QQP, and MNLI. For example,
 1605 FedMuon achieves 56.78 on CoLA and 66.58 on RTE, outperforming the next-best method by 1.24
 1606 and 1.65 points respectively. Even when compared to stronger baselines such as FedLADA and
 1607 Local AdamW, our method maintains a noticeable margin. On MNLI, FedMuon reaches 85.21,
 1608 compared to 84.63 from Local Muon and only 82.44 from FedLADA. Overall, FedMuon ob-
 1609 tains the highest average accuracy (80.74), demonstrating its robustness under severe heterogeneity.

1610 It is particularly worth noting that Local Muon again performs strongly, achieving the second-best
 1611 results on most tasks. This highlights the effectiveness of the Muon optimizer itself in improving
 1612 local training stability. However, similar to previous observations under non-IID image benchmarks,
 1613 Local Muon lacks a mechanism to correct client drift, which becomes increasingly problematic
 1614 when client updates diverge under heterogeneous data. As a result, although Local Muon obtains
 1615 competitive accuracy, it is consistently surpassed by FedMuon.

1616 By contrast, our FedMuon integrates the advantages of Muon optimization with a federated correc-
 1617 tion mechanism that effectively mitigates client drift. This enables the algorithm to maintain stable
 1618 global convergence even with highly imbalanced data and limited participation. The strong results
 1619 across all GLUE tasks under Dir-0.5 clearly demonstrate that FedMuon remains robust, scalable,
 and superior in more challenging real-world federated learning scenarios.

1620 Table 17: Test accuracy using RoBERTa-Base with LoRA across GLUE tasks over 100 communication rounds
 1621 (Dirichlet-0.8, 4 clients, 100% participation, batch size 16, $K = 50$).

Method (Dir-0.8)	CoLA	RTE	SST-2	QQP	MRPC	QNLI	MNLI
FedAvg	57.32 \pm 0.22	62.71 \pm 0.35	93.32 \pm 0.08	84.13 \pm 0.15	87.02 \pm 0.19	90.19 \pm 0.12	84.18 \pm 0.21
SCAFFOLD	58.14 \pm 0.25	63.62 \pm 0.28	93.54 \pm 0.09	84.62 \pm 0.17	87.56 \pm 0.22	90.26 \pm 0.11	84.26 \pm 0.20
FedCM	58.14 \pm 0.27	66.14 \pm 0.31	93.61 \pm 0.07	84.56 \pm 0.18	87.11 \pm 0.16	90.08 \pm 0.13	84.32 \pm 0.23
FedLADA	59.10 \pm 0.21	74.14 \pm 0.29	93.66 \pm 0.10	84.86 \pm 0.16	87.42 \pm 0.18	90.18 \pm 0.14	84.46 \pm 0.19
Local AdamW	59.33 \pm 0.23	74.04 \pm 0.27	93.55 \pm 0.11	84.68 \pm 0.15	87.16 \pm 0.20	90.11 \pm 0.12	84.54 \pm 0.18
Local Muon	60.16 \pm 0.20	71.48 \pm 0.34	93.34 \pm 0.09	85.11 \pm 0.13	87.45 \pm 0.21	90.97 \pm 0.15	84.59 \pm 0.17
FedMuon (ours)	63.04\pm0.19	77.12\pm0.30	94.12\pm0.08	85.73\pm0.14	88.23\pm0.17	91.43\pm0.10	85.05\pm0.16

1630
 1631 Table 18: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
 1632 rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, $K = 50$)

Method (Dir-0.5)	CoLA	RTE	SST-2	QQP	MRPC	QNLI	MNLI
FedAvg	51.00 \pm 0.26	51.99 \pm 0.24	93.04 \pm 0.16	81.75 \pm 0.11	88.24 \pm 0.18	89.36 \pm 0.15	81.72 \pm 0.25
FedProx	53.11 \pm 0.14	53.25 \pm 0.21	92.26 \pm 0.18	81.15 \pm 0.11	87.36 \pm 0.12	88.12 \pm 0.14	81.41 \pm 0.21
FedDyn	53.21 \pm 0.28	52.22 \pm 0.30	92.36 \pm 0.21	81.35 \pm 0.21	87.89 \pm 0.11	89.12 \pm 0.21	82.18 \pm 0.21
Mime	52.15 \pm 0.17	51.62 \pm 0.21	92.21 \pm 0.28	80.26 \pm 0.18	88.04 \pm 0.12	89.11 \pm 0.21	82.51 \pm 0.20
FedAdam	53.21 \pm 0.28	52.52 \pm 0.31	92.36 \pm 0.25	82.22 \pm 0.28	88.12 \pm 0.34	88.01 \pm 0.23	82.66 \pm 0.22
SCAFFOLD	52.15 \pm 0.17	50.65 \pm 0.20	93.28 \pm 0.28	80.26 \pm 0.18	88.35 \pm 0.12	89.32 \pm 0.24	82.11 \pm 0.20
FedCM	53.21 \pm 0.28	52.22 \pm 0.30	92.56 \pm 0.25	81.22 \pm 0.28	88.56 \pm 0.13	89.02 \pm 0.23	82.12 \pm 0.27
FedLADA	54.66 \pm 0.17	57.02 \pm 0.08	93.88 \pm 0.16	81.56 \pm 0.20	89.01 \pm 0.28	89.86 \pm 0.29	82.44 \pm 0.17
Local AdamW	55.38 \pm 0.12	59.57 \pm 0.25	93.81 \pm 0.19	81.51 \pm 0.05	88.73 \pm 0.23	89.55 \pm 0.15	82.86 \pm 0.26
Local Muon	55.54 \pm 0.05	64.93 \pm 0.17	93.58 \pm 0.27	83.06 \pm 0.11	88.95 \pm 0.13	90.52 \pm 0.27	84.63 \pm 0.10
FedMuon (ours)	56.78\pm0.11	66.58\pm0.29	93.54\pm0.25	84.65\pm0.16	88.21\pm0.07	90.24\pm0.13	85.21\pm0.18

C.5 MORE PRE-TRAINING EXPERIMENTS ON ViT MODEL.

To further investigate the scalability of our method on modern Transformer-based architectures, we conduct federated pre-training experiments on the CIFAR-100 dataset using a family of ViT models, including **ViT-Tiny**, **ViT-Small**, **ViT-Base**, and **ViT-Large**. Specifically, we adopt ViT backbones as the global model and perform federated optimization under a highly heterogeneous Dir-0.1 partition with 100 clients, 10% client participation per round, batch size 50, and $K = 50$ local update steps. This setting mimics a realistic scenario in which data are strongly non-IID across devices and only a small fraction of clients can participate in each communication round, making it particularly challenging for large-capacity models that are more sensitive to optimization instability and client drift.

The results in Table 19 show that, across all four ViT variants, our proposed **FedMuon** consistently achieves the highest accuracy, significantly outperforming both classical federated optimization methods (FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM, FedLADA, FedAdam) and strong local training baselines (Local AdamW, Local Muon). As the model size increases from ViT-Tiny to ViT-Large, the performance gains of **FedMuon** also become more pronounced, demonstrating that our algorithm can effectively leverage the additional capacity of larger ViT models even under severe data heterogeneity. These results confirm that **FedMuon** is well suited for federated pre-training of ViT-style architectures on CIFAR-100, providing stable and efficient optimization across a wide range of model scales.

Table 19 reports the test accuracy on CIFAR-100 under a highly heterogeneous Dir-0.1 partition using four ViT architectures of increasing capacity: **ViT-Tiny**, **ViT-Small**, **ViT-Base**, and **ViT-Large**. We consider a challenging federated setting with 100 clients, 10% participation per round, batch size 50, and $K = 50$ local steps. Overall, the results clearly demonstrate that our proposed **FedMuon** consistently outperforms all baselines across all model scales, and that it is particularly effective at exploiting larger model capacity under non-IID data.

Classical optimization methods such as FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM, FedLADA, and FedAdam exhibit only moderate gains as the ViT model becomes larger. For example, FedAvg improves from 27.14 on ViT-Tiny to 33.56 on ViT-Large, and FedDyn from 27.66 to 35.34. Even though these methods benefit from increased model capacity, their performance is still

1674 Table 19: Test accuracy of each method on CIFAR-100 using **ViT-Tiny**, **ViT-Small**, **ViT-Base** and **ViT-Large**
 1675 over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$).
 1676

Method	ViT-Tiny	ViT-Small	ViT-Base	ViT-Large
FedAvg	27.14	29.52	31.15	33.56
FedProx	26.84	28.63	31.05	33.25
SCAFFOLD	27.31	30.24	32.85	34.58
FedDyn	27.66	31.23	33.11	35.34
Mime	27.76	31.12	33.01	35.43
FedCM	23.18	25.15	27.88	29.01
FedLADA	31.50	33.15	33.15	33.15
FedAdam	28.50	33.15	33.15	33.15
Local AdamW	37.86	37.86	37.86	37.86
Local Muon	40.53	42.34	45.26	46.54
FedMuon	48.18	50.52	53.63	56.24

1688 Table 20: Test accuracy of each method on CIFAR-100 using **ViT-Tiny**, **ViT-Small**, **ViT-Base** and **ViT-Large**
 1689 over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, $K = 50$), and
 1690 train loss of each method on OpenWebText data using **GPT-2 Small**, **GPT-2 Medium**, **GPT-2 Large** and
 1691 **GPT-2 XL** over 300 communication rounds (20 clients, 20% participation, batch size 16, $K = 100$).
 1692

Method	CIFAR-100 (Test Acc, %)				OpenWebText (Train Loss)			
	ViT-Tiny	ViT-Small	ViT-Base	ViT-Large	GPT-2 S	GPT-2 M	GPT-2 L	GPT-2 XL
FedAvg	27.14	29.52	31.15	33.56	4.25	4.12	4.01	3.91
FedProx	26.84	28.63	31.05	33.25	4.33	4.21	4.15	4.05
FedDyn	27.31	30.24	32.85	34.58	4.12	4.01	3.95	3.82
Mime	27.66	31.23	33.11	35.34	4.10	4.02	3.89	3.78
FedAdam	28.50	33.15	33.15	33.15	4.02	3.95	3.82	3.75
SCAFFOLD	27.31	30.24	32.85	34.58	4.12	4.01	3.95	3.82
FedCM	23.18	25.15	27.88	29.01	4.32	4.21	4.02	3.91
FedLADA	31.50	33.15	33.15	33.15	3.56	3.45	3.33	3.24
Local AdamW	37.86	37.86	37.86	37.86	3.44	3.35	3.27	3.15
Local Muon	40.53	42.34	45.26	46.54	3.33	3.21	3.09	2.98
FedMuon (ours)	48.18	50.52	53.63	56.24	3.12	2.98	2.85	2.74

1705
 1706 severely limited by client drift and the strong non-IID nature of the Dir-0.1 partition. Local training
 1707 baselines, such as Local AdamW, achieve higher accuracy than most federated methods (e.g.,
 1708 37.86 across all model sizes), but they do not effectively leverage larger architectures in this setting,
 1709 indicating that naive local optimization quickly saturates under heterogeneous data.
 1710

1711 In contrast, Local Muon significantly boosts performance for all ViT variants (e.g., from 37.86
 1712 with Local AdamW to 40.53 on ViT-Tiny and up to 46.54 on ViT-Large), showing that the Muon
 1713 optimizer itself provides stronger local training dynamics and better utilization of the transformer
 1714 capacity. However, Local Muon still suffers from client drift, and its gains plateau as data hetero-
 1715 geneity persists.
 1716

1717 Our federated variant, FedMuon, further amplifies these benefits by coupling the Muon optimizer
 1718 with an appropriate global aggregation and drift-mitigation mechanism. As a result, FedMuon
 1719 achieves the best performance at every model scale, from 48.18 on ViT-Tiny to 56.24 on ViT-Large.
 1720 The gap between FedMuon and the strongest baselines widens as the model becomes larger (e.g.,
 1721 over 10 points improvement compared to FedDyn on ViT-Large), indicating that FedMuon not only
 1722 stabilizes optimization under non-IID data, but also scales more effectively with model capacity.
 1723 These results demonstrate that our method is particularly suitable for federated training of large
 1724 vision transformers in realistic, highly heterogeneous environments.
 1725

C.6 EFFECTIVENESS OF MUON AND OUR CORRECTION STRATEGY.

1726 Table 21 summarizes the effect of replacing the local optimizer with Muon under different FL al-
 1727 gorithms. Using Local Muon already brings consistent improvements over Local SGD on both
 1728 backbones (e.g., +6.03 on ResNet-18 and +13.39 on ViT-Tiny). When combined with existing

1728 Table 21: Effect of local optimizer Muon on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
 1729 denote absolute improvement over the baseline in the previous row.

Variant	ResNet-18	ViT-Tiny
Local SGD	60.25	27.14
Local Muon	66.28 (\uparrow 6.03)	40.53 (\uparrow 13.39)
SCAFFOLD	62.56	27.31
Local Muon + SCAFFOLD	68.23 (\uparrow 5.67)	42.26 (\uparrow 14.95)
FedCM	66.73	23.18
Local Muon + FedCM	68.77 (\uparrow 2.04)	44.23 (\uparrow 21.05)
FedDyn	63.01	27.66
Local Muon + FedDyn	67.15 (\uparrow 4.14)	43.56 (\uparrow 15.90)
FedProx	59.66	26.84
Local Muon + FedProx	67.25 (\uparrow 7.59)	43.11 (\uparrow 16.27)
Local SGD + $\bar{m} + \Delta_G$	67.56	33.23
Local Muon + $\bar{m} + \Delta_G$	73.05 (\uparrow 5.49)	48.18 (\uparrow 14.95)

1747 personalized or corrective FL methods such as SCAFFOLD, FedCM, FedDyn, and FedProx, the
 1748 variants with Muon (*Local Muon + Method*) consistently outperform their baselines by a substantial
 1749 margin (2–8 points on ResNet-18 and 15–21 points on ViT-Tiny). Finally, after introducing our
 1750 correction strategy $\bar{m} + \Delta_G$, *Local Muon + $\bar{m} + \Delta_G$* achieves the highest accuracy among all settings,
 1751 outperforming *Local SGD + $\bar{m} + \Delta_G$* by 5.49 (ResNet-18) and 14.95 (ViT-Tiny). These results val-
 1752 idate two key findings: (1) our correction strategy consistently improves different local optimizers,
 1753 and (2) compared with other matrix-based or preconditioned optimizers, **FedMuon exhibits clear**
 1754 **and significant advantages**.

1756 C.7 EFFECT OF MUON-BASED MATRIX ORTHOGONALIZATION ACROSS FL ALGORITHMS.

1758 Table 21 systematically examines the effect of replacing the local optimizer with Muon under a
 1759 variety of federated optimization frameworks. Across all baselines—including plain local training
 1760 (Local SGD), control-variate methods (SCAFFOLD), proximal or dynamic regularization meth-
 1761 ods (FedProx, FedDyn), aggregation-corrected methods (FedCM), and our momentum-aggregated
 1762 variant—the incorporation of Muon consistently yields substantial accuracy improvements.

1763 In particular, Muon provides 6.03% and 13.39% absolute gains over Local SGD on ResNet-18 and
 1764 ViT-Tiny, respectively, demonstrating that Muon can significantly accelerate client-side adaptation
 1765 even without any server-side correction. Similar improvements are observed when Muon is com-
 1766 bined with stronger FL algorithms:

- 1768 • SCAFFOLD + Muon gains 5.67% / 14.95%,
- 1769 • FedCM + Muon gains 2.04% / 21.05%,
- 1770 • FedDyn + Muon gains 4.14% / 15.90%,
- 1771 • FedProx + Muon gains 7.59% / 16.27%

1773 on ResNet-18 / ViT-Tiny, respectively.

1775 These improvements are consistent and often large, indicating that the benefit of Muon is largely
 1776 orthogonal to the benefit of the federated optimization algorithms themselves: regardless of whether
 1777 the baseline relies on variance reduction, bias correction, or proximal regularization, Muon enables
 1778 faster local convergence, mitigates drift accumulation, and enhances cross-round stability. The effect
 1779 is most pronounced when Muon is combined with our momentum-aggregation strategy ($\bar{m} + \Delta_G$),
 1780 which achieves the highest accuracy among all variants. Overall, Table 21 shows that Muon acts as
 1781 a universal performance amplifier for federated learning, producing significant acceleration across
 diverse FL methodologies and model architectures.

1782 Table 22: Effect of different local optimizers on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
 1783 denote absolute improvement over the baseline in the previous row.

Variant	ResNet-18	ViT-Tiny
Local SGD	60.25	27.14
Local SGD + $\bar{m} + \Delta_G$	67.56 ($\uparrow 7.31$)	33.23 ($\uparrow 6.09$)
Local AdamW	58.97	37.86
Local AdamW + $\bar{m} + \Delta_G$	66.25 ($\uparrow 7.28$)	41.26 ($\uparrow 3.40$)
Local Shampoo	59.62	37.56
Local Shampoo + $\bar{m} + \Delta_G$	66.52 ($\uparrow 6.90$)	42.25 ($\uparrow 4.69$)
Local Adafactor	58.23	36.52
Local Adafactor + $\bar{m} + \Delta_G$	65.52 ($\uparrow 7.29$)	40.11 ($\uparrow 3.59$)
Local LAMB	59.62	36.55
Local LAMB + $\bar{m} + \Delta_G$	64.35 ($\uparrow 4.73$)	38.65 ($\uparrow 2.10$)
FedLAMB	62.35	36.28
Local Muon	66.28	32.56
Local Muon + $\bar{m} + \Delta_G$	73.05 ($\uparrow 6.77$)	48.18 ($\uparrow 15.62$)

C.8 IMPACT OF Δ_G AND \bar{m} ON OTHER OPTIMIZERS

1806 Table 22 evaluates the effect of applying our correction mechanism, $\bar{m} + \Delta_G$, on a variety of local
 1807 optimizers. Across all optimizers—including AdamW, Shampoo, Adafactor, and LAMB—adding
 1808 our global momentum correction consistently improves performance on both ResNet-18 and ViT-
 1809 Tiny. These gains show that our correction effectively accelerates local training and alleviates client
 1810 drift regardless of the underlying preconditioner.

1811 Notably, the improvement is **substantially larger for Muon** than for any other optimizer. While
 1812 AdamW, Shampoo, Adafactor, and LAMB obtain moderate gains (typically 3–7% on ResNet-18
 1813 and 2–6% on ViT-Tiny), the combination of Local Muon + $\bar{m} + \Delta_G$ yields the **largest boost**:
 1814 **+6.77%** on ResNet-18 and a striking **+15.62%** on ViT-Tiny.

1815 This pronounced improvement highlights a strong synergy between Muon and our correction mech-
 1816 anism. Muon’s orthogonalized updates produce well-conditioned local steps, and our global cal-
 1817ibration further aligns these steps with the global descent direction. Together, they enhance both
 1818 optimization geometry and cross-client consistency, resulting in the fastest convergence and highest
 1819 accuracy among all tested optimizers.

1820 Overall, the results demonstrate that while our correction mechanism consistently accelerates all
 1821 matrix-aware optimizers, **Muon benefits the most**, underscoring its unique suitability for federated
 1822 learning with structured parameters.

1823 As shown in Table 22, our framework consistently improves both convolutional and transformer
 1824 backbones on CIFAR-100 under Dir-0.1 heterogeneity. Starting from standard Local SGD, incor-
 1825 porating our correction terms \bar{m} and Δ_G yields gains of +7.31 and +6.09 absolute accuracy for
 1826 ResNet-18 and ViT-Tiny, respectively. A similar trend holds for other first-order optimizers: for
 1827 Local AdamW, the proposed framework improves accuracy by +7.28 (ResNet-18) and +3.40 (ViT-
 1828 Tiny); for Local Adafactor, by +7.29 and +3.59.

1829 Beyond first-order methods, our framework also accelerates a range of matrix-based adaptive opti-
 1830 mizers. When applied to Local Shampoo, adding \bar{m} and Δ_G leads to improvements of +6.90 and
 1831 +4.69 for ResNet-18 and ViT-Tiny, respectively. For Local LAMB, we observe consistent boosts
 1832 of +4.73 and +2.10, and the resulting models substantially outperform FedLAMB on ResNet-18
 1833 (64.35 vs. 62.35). The effect is most pronounced for Muon: Local Muon already performs strongly,
 1834 but our framework further lifts performance by +6.77 on ResNet-18 and a remarkable +15.62 on
 1835 ViT-Tiny, achieving the best overall accuracy among all variants. These results demonstrate that our
 framework is not limited to Muon itself; it provides a generic correction and acceleration mecha-

1836 Table 23: Test accuracy, training loss on CIFAR-100 using **ResNet-18** and **ViT-Tiny** over 300 communication
 1837 rounds under Dir-0.6 and Dir-0.1 settings (100 clients, 10% participation, batch size 50, $K = 50$).
 1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889	1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889		1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889		1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889		
	Method	ResNet-18 (Dir-0.6)	ResNet-18 (Dir-0.1)	ViT-Tiny (Dir-0.6)	ViT-Tiny (Dir-0.1)	Test Acc	Train Loss
1842	Local Muon	71.66	0.395	66.71	1.504	46.69	0.201
1843	FedMuon(Algorithm 3)	74.12	0.001	73.05	0.246	50.22	0.162
1844	FedMuon(Algorithm 2)	73.16	0.005	72.85	0.254	49.85	0.178

nism that benefits both classical first-order optimizers and a broad family of matrix-based adaptive methods.

C.9 COMPARE FEDMUON (ALGORITHM 2) AND FEDMUON (ALGORITHM 3)

Table 23 reports the test accuracy and final training loss on the CIFAR-100 dataset using two backbone architectures, **ResNet-18** and **ViT-Tiny**, under two non-IID data partitions generated by the Dirichlet distribution with concentration parameters $\alpha = 0.6$ and $\alpha = 0.1$. The experiments are conducted over 300 communication rounds with 100 clients, 10% client participation per round, a local batch size of 50, and $K = 50$ local optimization steps.