
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDMUON: ACCELERATING FEDERATED LEARNING
WITH MATRIX ORTHOGONALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The core bottleneck of Federated Learning (FL) lies in the communication rounds.
That is, how to achieve more effective local updates is crucial for reducing com-
munication rounds. Existing FL methods still primarily use element-wise local
optimizers (Adam/SGD), neglecting the geometric structure of the weight matri-
ces. This often leads to the amplification of pathological directions in the weights
during local updates, leading deterioration in the condition number and slow con-
vergence. Therefore, we introduce the Muon optimizer in local (named Local
Muon), which has matrix orthogonalization to optimize matrix-structured param-
eters. Experimental results show that, in IID setting, Local Muon significantly
accelerates the convergence of FL and reduces communication rounds compared
to Local SGD and Local AdamW. However, in non-IID setting, independent ma-
trix orthogonalization based on the local distributions of each client induces strong
client drift. Applying Muon in non-IID FL poses significant challenges: (1) client
preconditioner leading to client drift; (2) moment reinitialization. To address
these challenges, we propose a novel Federated Muon optimizer (FedMuon),
which incorporates two key techniques: (1) momentum aggregation, where clients
use the aggregated momentum for local initialization; (2) local-global alignment,
where the local gradients are aligned with the global update direction to signifi-
cantly reduce client drift. Theoretically, we prove that FedMuon achieves a linear
speedup convergence rate of O(

√
(L∆σ2

l)/(SKR) + (L∆)/R) without the het-
erogeneity assumption, where S is the number of participating clients per round,
K is the number of local iterations, and R is the total number of communica-
tion rounds. Empirically, we validate the effectiveness of FedMuon on language
and vision models. Compared to several baselines, FedMuon significantly re-
duces communication rounds and improves test accuracy. The code is available in
https://anonymous.4open.science/r/FedMuon-935D.

1 INTRODUCTION

With the rapid growth of data and rising concerns over user privacy, traditional centralized train-
ing paradigms have become inadequate. Federated Learning (FL) McMahan et al. (2017) offers a
scalable and privacy-preserving framework that enables collaborative model training across decen-
tralized clients without sharing raw data (Liu et al., 2024). As data becomes increasingly siloed,
FL is a practical solution for large-scale distributed deep learning. However, data heterogeneity and
limited communication rounds create significant bottlenecks in FL. Recent studies reveal that the
Hessian matrix in neural networks exhibits an approximate block-diagonal structure with several
dense sub-blocks (Collobert, 2004; Zhang et al., 2024), as shown in Figure 1. Understanding pa-
rameter matrix structures is crucial for effective federated aggregation, yet this perspective has been
largely overlooked in the federated learning literature. Currently, when clients use element-wise
optimizers (such as AdamW/SGD) for multi-step updates on their local data, the weight matrices
may gradually become ill-conditioned (see Figure 5), causing the update directions to either cancel
out or amplify after aggregation. As a result, in each communication round clients struggle to obtain
effective updates, and the global model converges slowly.

Recent advancements in the Muon optimizer offer a novel solution to this challenge. The Muon
optimizer (Jordan et al.) has recently demonstrated that orthogonal normalization of weight update
matrices can significantly accelerate neural network training (see Figure 2). By conditioning the

1

https://anonymous.4open.science/r/FedMuon-935D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250

0

50

100

150

200

250 0.0

0.2

0.4

0.6

0.8

1.0

1.2
1e 6

(a) query

0 50 100 150 200 250

0

50

100

150

200

250 0

1

2

3

4

5

6

7

1e 7

(b) key

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.01

0.02

0.03

0.04

0.05

0.06

(c) value

0 50 100 150 200 250

0

50

100

150

200

250 0.000

0.005

0.010

0.015

0.020

0.025

0.030

(d) attn.proj

0 100 200 300 400 500

0

100

200

300

400

500 0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(e) mlp.fc 1

0 5000 10000 15000 20000 25000

0

5000

10000

15000

20000

25000 0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

(f) MLP

Figure 1: (a–f):Block-wise Hessian structure of Transformer parameters and MLP (Zhang et al., 2024).

(a) Matrix orthogonalizatio with SVD (b) Matrix compression using SVD

Figure 2: (a) shows SVD-based matrix orthogonalization; (b) applies SVD to the momentum matrix M ∈
Rd×d, i.e., M ≈ UΣV ⊤, and keeps the top-k singular vectors to obtain U ∈Rd×k and V ∈Rk×d .

weight updates to produce consistent changes in the hidden states, orthogonal normalization updates
lead to faster convergence, improved training stability, and better hyperparameter transferability
across different model scales (Bernstein & Newhouse, 2024; Large et al., 2024; Pethick et al., 2025).
Moonshot AI (Liu et al., 2025) found that, when training a 16B model, Muon achieved nearly twice
the computational efficiency compared to AdamW (Loshchilov et al., 2017). Similarly, Essential
AI (Shah et al., 2025) observed significant improvements with Muon in large-batch training. Both
GLM 4.5 and K2 are trained with the Muon optimizer (Liu et al., 2025). These features suggest
that using Muon for local training in FL (Local Muon) could accelerate local training and reduce
communication rounds.

We have also validated the effectiveness of Local Muon in FL in IID setting. Local Muon
significantly outperforms Local SGD and Local AdamW (see Figure 4). Local Muon accelerates
local convergence and reduces the number of communication rounds required to reach the same
level of precision, with faster local loss decrease, smoother training curves, and faster global model
convergence (see Figure 4). However, in non-IID setting, although the local losses of each client
still decrease rapidly, the global model after aggregation becomes significantly unstable or even
fails to converge (see Figure 4). We identify the reasons why the Muon optimizer fails in the case of
non-IID federated learning from two complementary perspectives.

(Challenge 1) Client preconditioner leading to client drift: In non-IID FL, Muon’s client-specific
preconditioner scales gradients from local data distribution, causing misalignment in aggregation.

(Challenge 2) Moment reinitialization: reinitializing the moment of Muon from scratch in every
round hinders the convergence.

These challenges motivate us to develop a novel Federated Muon optimizer, FedMuon, the first
FL optimizer that explicitly accounts for the structure of update matrices. FedMuon addresses the
impact of non-IID data through two key mechanisms: (1) local-global alignment, where the current
local gradients are aligned with the global update to significantly reduce cross-client inconsistency;
(2) momentum aggregation, where clients initialize using the aggregated momentum.

Our contributions are summarized as follows:

• Introducing Muon into Federated Learning. We are the first to design a federated optimizer that
explicitly considers the structure of parameter matrices, introducing the matrix orthogonalization
method (i.e., Muon) into federated learning. Extensive experiments demonstrate its superiority.
However, in highly non-IID settings, severe client drift arises. We analyze this issue from two
perspectives: (1) client preconditioner leading to client drift, (2) moment reinitialization.

• We propose FedMuon, a principled FL algorithm with Matrix Orthogonalization. To ad-
dress above challenges, FedMuon introduce the two mechanisms, local-global alignment and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 3: Singular value distributions of Local Muon, Local AdamW, Local SGD, and FedMuon.
Local SGD/AdamW are more ill-conditioned with heavier tails and larger singular values, while
FedMuon has a more balanced spectrum and a smaller condition number (where the condition num-
ber is defined as the ratio between the largest and smallest singular values).

(a) ResNet-18, IID (b) ViT-Tiny, IID (c) ResNet-18, non-IID (d) ViT-Tiny, non-IID

Figure 4: Performance of Local SGD, Local AdamW and Local Muon, we carefully tune the learning rate.

momentum aggregation. Inspired by the Hessian structure, we also design a communication-
efficient aggregation strategy that communicates the SVD compression of momentum.

• Theoretical guarantees with improved convergence. FedMuon achieves a linear convergence
rate ofO(

√
(L∆σ2

l)/(SKR)+(L∆)/R) without the widely used data heterogeneity assumption.
Due to the local-global alignment, its convergence speed is unaffected by data heterogeneity.

2 RELATED WORK

• Optimizers in non-IID Federated Learning. Data heterogeneity across clients is a fundamental
challenge in FL. A range of algorithms have been proposed to mitigate the adverse effects of non-
i.i.d. data distributions. For example, FedProx (Li et al., 2020a) introduces a proximal term to restrict
local updates; SCAFFOLD (Karimireddy et al., 2020b) applies control variates to correct client drift;
and FedCM (Xu et al., 2021) leverages client momentum to stabilize updates. FedOpt (Reddi et al.,
2020) incorporates server-side adaptivity using Adam. More recently, Sun et al. (2023) proposed
FedLADA to only aggregate the second-moment estimate of Adam to overcome client drift. Nov-
elty. Prior correction methods (e.g., SCAFFOLD, FEDCM) assume local SGD and overlook other

(a) Comparison of local optimizers in FL. (b) ViT-Tiny, non-IID

Figure 5: (a) Analysis on ViT-Tiny with CIFAR-100, showing optimizer state memory, condition number,
computation time, and convergence rounds. Local Muon achieves lower memory cost, lower the condition
number, and faster convergence. (b) Training loss curves of ViT-Tiny under non-IID.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

optimizers. Directly applying correction methods such as SCAFFOLD or FedCM into Muon op-
timizer becomes ineffective. We propose local–global alignment, injecting a global direction into
local updates to curb client drift with advanced optimizers (every local optimizers), while using half
the communication of SCAFFOLD.

• Optimizers in Centralized Settings. Although widely used optimizers such as SGD,
Adam (Kingma & Ba, 2014), and AdamW (Loshchilov et al., 2017) are effective in many deep
learning settings, they generally treat inherently structured parameters (e.g., matrices) as flattened
vectors during optimization. In contrast, recent work has increasingly focused on structure-aware
optimizers that make explicit use of the underlying parameter geometry. Examples include Adafac-
tor (Duchi et al., 2011), LAMB (Chen et al., 2023), and Adam-mini (Zhang et al., 2024), which
exploit matrix- or layer-level structure to reduce memory footprint. Shampoo (Gupta et al., 2018)
further targets matrix and tensor parameters and can be interpreted as an efficient approximation to
AdaGrad’s full-matrix preconditioner (Duchi et al., 2011). More recently, SOAP (Vyas et al., 2024)
integrates the ideas of Adam with Shampoo’s matrix-aware design. The Muon optimizer (Jordan
et al.) extends this line of work by orthogonalizing weight-update matrices, yielding substantially
faster and more stable neural network training.

•Our contributions. (1) FedMuon can be viewed as the first federated extension of the Muon opti-
mizer. Unlike standard local Muon, which applies matrix orthogonalization independently on each
client, FedMuon augments Muon with a local–global alignment to correct the client-drift induced
by heterogeneous data and matrix orthogonalization. (2) FedMuon bridges structured optimizers
and classical FL methods (Table 21), and we prove that matrix orthogonalization accelerates the
convergence of federated learning algorithms. (3) We design a federated framework that is applica-
ble to all matrix-structured optimizers (Muon / Shampoo / LAMB / Soap, etc.), which specifically
addresses the problem of preconditioner drift through local–global alignment and momentum ag-
gregation (Table 22).

3 FL PROBLEM SETUP

FL aims to optimize model parameters with local clients, i.e., minimizing the following problem:

f(x) =
1

N

N∑
i=1

(fi(x) := Eξi∼Di [Fi (x; ξi)]) . (1)

The function fi represents the loss function on client i. Eξi∼Di
[·] denotes the conditional expectation

with respect to the sample ξi. ξi is drawn from distributionDi in client i. N is the number of clients.

4 CHALLENGES OF MUON IN FL

4.1 THE MUON OPTIMIZER

Motivation Most parameters in neural networks are inherently matrix-valued (e.g., in linear layers
or the Q/K/V components of attention mechanisms). However, conventional optimization algorithms
such as SGD and AdamW treat these parameters as vectors, effectively flattening them during up-
dates and thereby neglecting their matrix structure. Muon is specifically designed to address this
limitation by operating Matrix Orthogonalization directly on update matrix.

The Muon Optimizer Muon has recently been proposed as an optimization method for training
neural network weights that can be represented as matrices. At iteration t, given the current weight
Wt−1, momentum β, learning rate ηt, and the objective F (W), the update rules for the Muon
optimizer are:

Mt = βMt−1 +∇F (Wt−1);

Ot = Newton-Schulz-5(Mt);

Wt = Wt−1 − ηtOt.

(2)

Here, Mt represents the momentum of the gradient at iteration t, initialized as a zero matrix
when t = 0. In Eq.(2), a Newton–Schulz iteration is employed to approximate the solution of
(MtM

⊤
t)

−1/2Mt. Let UΣV⊤ = Mt be the singular value decomposition (SVD) of Mt. Then,
we have (MtM

⊤
t)

−1/2Mt = UV⊤, which orthogonalizes Mt (see Figure 2(a)). Intuitively, this
orthogonalization ensures that the update matrices remain isomorphic, preventing the weights from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

learning solely along a few dominant directions.All matrix orthogonalization operations in this pa-
per are computed using five Newton-Schulz iterations, resulting in about 5% higher computation
time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.

4.2 CHALLENGES OF MUON IN FL

Despite the widespread use of Muon in centralized deep learning, its adaptation to federated settings
remains largely unexplored. In this subsection, we analyze two fundamental challenges that hinder
its effectiveness in FL settings.

(Challenge 1) In non-IID FL, Muon’s client-specific preconditioner scales gradients from the
client’s local data distribution, causing misalignment and cancellation in aggregation.

Challenge Analysis: The matrix orthogonalization in Muon can be viewed as applying a client-
specific linear preconditioner Pi to each client’s gradient (which can be approximated by Newton-
Schulz), transforming the update direction from gi to Pgi. In the case of non-IID, the gradients {gi}
are distributed across their respective dominant subspaces, and the Pi are independently estimated
from the local data geometry of each client. This leads to direction mismatch and correlation/am-
plification: the global update is approximated as

∑
i g̃i =

∑
i Pigi. When the {Pi} apply different

”rotations/scalings” to the gradient subspaces across clients, the sign and magnitude of ⟨g̃i, g̃j⟩ fluc-
tuate significantly, making it prone to direction cancellation (weakening the norm and making step
size ineffective) or phase misalignment (leading to oscillations as it crosses stable regions). These
mechanisms together result in the phenomenon of local–global inconsistency: the convergence
shown on the client side (local loss decreases rapidly) does not translate into global progress (global
loss/accuracy stagnates or degrades).

(Challenge 2) Moment reinitialization: reinitializing the moment of Muon from scratch in every
round hinders the convergence rate.

Challenge Analysis: In FL, the Muon optimizer state is reinitialized to zero at the beginning of
each round, i.e., M r,0

i ← 0. This reset erases temporal memory across rounds, preventing the
accumulation of momentum and thereby slowing convergence. Moreover, accumulating momentum
from zero exacerbates client drift.

Algorithm 1 FedMuon Algorithm

1: Initial model x0, β = 0.98, the number of all clients N , each round selected clients S.
2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, M r,0
i ← M̄ r;

5: for k = 1, . . . ,K do
6: Gr,k

i ← ∇fi(xr,k
i ; ξi); M

r,k
i = βM r,k−1

i +Gr,k
i ;

7: U r,k
i V r,k

i

⊤
= Newton-Schulz-5(M r,k

i); xr,k+1
i =xr,k

i −η[(1−α)U
r,k
i V r,k

i

⊤
+α∆r

G];
8: end for
9: Communicate (xr,K

i −xr,0
i ,M r,K

i ≈ UΣV ⊤) to Server;
10: end for
11: ∆r+1

G = − 1
SKη

∑S
i=1(x

r,K
i − xr,0

i); xr+1 = xr + 1
S

∑S
i=1(x

r,K
i − xr,0

i);

12: M̄ r+1 = 1
S

∑S
i=1 M

r,K
i ; Communicate (xr+1,M̄ r+1,∆r+1

G) to Clients.
13: end for

5 OUR ALGORITHM: FEDMUON

To robustly leverage matrix orthogonalization in FL, we propose FedMuon, with two core mecha-
nisms for the non-IID regime.

5.1 MECHANISM I: LOCAL–GLOBAL ALIGNMENT

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 6: An illustration of FedMuon, which corrects client drift through local-global alignment.

(Q1) How to overcome local–global inconsistency in Local Muon?

To address Challenge 1, we incorporate local-global alignment into the local update rule:

xr,k+1
i = xr,k

i −η
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
, (3)

where ∆r
G=− 1

SKη

∑S
i=1(x

r,K
i −xr,0

i) is the estimated global update. α is the trade-off coefficient
between local and global updates. As shown in Figure 6, this alignment reduces the divergence of
local models and improves global consistency. We also validate its effectiveness in the following ex-
periments (see Table 5 below). All matrix orthogonalization operations and SVD operations in this
paper are computed using five Newton-Schulz iterations, resulting in about 5% higher computation
time compared to AdamW (Jordan et al.). In Table 13, we report our computational time overhead.

5.2 MECHANISM II: MOMENTUM AGGREGATION

(Q2) How to initialize momentum of Muon in local?

To achieve better initialization of the momentum M in local, we aggregate local momentum M r,K
i

and transmit the aggregated result M̄ back to the clients. This strategy partially mitigates the client
drift caused by reinitializing momentum from zero, and better aligns local updates with the global
update direction (see Table 5 below).

(Q3) How to efficiently communicate momentum matrices?

Momentum Compression via SVD. Directly communicating the full momentum matrix M would
introduce prohibitive communication overhead. To reduce the cost, we compress M using singular
value decomposition (SVD): M = UΣV ⊤, where U and V are orthogonal matrices and Σ is the
diagonal matrix of singular values. Instead of transmitting the full decomposition, we retain only
the top-k singular values (with k set to 5% of the matrix rank), yielding a low-rank approximation
(see Figure 2): M ≈ UkΣkV

⊤
k . This significantly reduces the communication cost 95%. We refer to

this variant as FedMuon SVD. In the following experiments, we show that this approach achieves
performance comparable to FedMuon (see Table 7). The communication cost of each algorithm is
reported in Table 13. The communication overhead of FedMuon increases by only 5%. Here we
consider only the upload-side communication cost, because client download bandwidth is typically
more than 100× faster than upload and can therefore be ignored in practice.

6 THEORETICAL ANALYSIS

In this part, we give the convergence theoretical analysis of our proposed FedMuon algorithm.
Firstly we state some standard assumptions for the non-convex function f .

Assumption 1 (Smoothness). The non-convex fi is a L-smooth function for all i ∈ [m], i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.

Assumption 2 (Bounded Stochastic Gradient). gr
i = ∇fi(xr

i , ξ
r
i) computed by using a sampled

mini-batch data ξri in the local client i is an unbiased estimator of ∇fi with bounded variance, i.e.,
Eξri

[gr
i] = ∇fi(xr

i) and Eξri
∥gri −∇fi(xr

i)∥2 ≤ σ2
l , for all xr

i ∈ Rd.

These assumptions are standard in FL optimization literature (Fan et al., 2024; Sun et al., 2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) ResNet18, Dir-0.1 (b) ResNet18, Dir-0.1 (c) ViT-Tiny, Dir-0.1 (d) ViT-Tiny, Dir-0.1

Figure 7: Training loss and Test acc curves on CIFAR-100 using ResNet-18 and ViT-Tiny in Dir-0.1.

Table 1: Test accuracy, training loss of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300
communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6) ResNet-18 (Dir-0.1) ViT-Tiny (Dir-0.6) ViT-Tiny (Dir-0.1)
Test Acc Loss Test Acc Loss Test Acc Loss Test Acc Loss

FedAvg 64.08±0.18 0.376 60.25±0.20 0.767 32.36±0.08 2.350 27.14±0.12 2.867
FedProx 63.12±0.15 0.458 59.66±0.28 0.812 31.51±0.12 2.425 26.84±0.15 2.875
FedDyn 66.12±0.28 0.352 63.01±0.28 0.615 33.25±0.22 2.125 27.66±0.18 2.723
Mime 67.34±0.21 0.312 63.37±0.18 0.604 34.12±0.14 2.101 27.76±0.22 2.702
FedAdam 67.23±0.18 0.332 63.61±0.21 0.512 34.32±0.32 1.965 28.50±0.11 2.425
SCAFFOLD 65.01±0.19 0.365 59.37±0.16 0.814 32.17±0.12 2.295 27.31±0.11 2.855
FedCM 70.42±0.11 0.282 66.73±0.14 0.639 26.33±0.12 2.681 23.18±0.12 3.038
FedLADA 65.07±0.17 0.671 57.78±0.18 0.498 38.33±0.12 2.121 31.50±0.12 2.678
Local AdamW 62.84±0.08 0.363 58.97±0.10 0.794 40.47±0.09 1.026 37.86±0.11 1.954
Local Muon 71.66±0.15 0.395 66.71±0.15 1.504 46.69±0.12 0.201 40.53±0.12 1.432
FedMuon 74.12±0.15 0.001 73.05±0.15 0.246 50.22±0.12 0.162 48.18±0.12 0.556

Theorem 1 (Convergence for non-convex functions). Under Assumptions 1, 2, if we take g0 =
0,β1 = 0, λ = 0 then FedMuon converges as follows

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲ O

(
L∆

R
+

√
L∆

R

σ2
l

SK

)
. (4)

Here G0 := 1
N

∑N
i=1

∥∥∇fi (x0
)∥∥2,∆ = f

(
x0
)
− f⋆, S is the number of participating clients per

round, K is the number of local iterations, and R is the total number of communication rounds, σ
is lower bound on singular values, d is the total dimensionality of the parameter.

The detailed proof is provided in the Appendix. The convergence rate of FedMuon is faster than

than that of Local Muon and Local SGD, O
(
L∆
R +

√
L∆
R

σ2
l +σ2

g

SK

)
. Notably, our result does not rely

on data heterogeneity Assumption. This improvement stems from the suppression of local drift
achieved by the proposed local–global alignment mechanism. The effectiveness of this design is
further validated in the ablation study (Table 5). The data heterogeneity Assumption is standard in
federated learning. With our global–local alignment, we mitigate data heterogeneity and no longer
rely on this assumption, achieving faster convergence than existing methods, as confirmed by both
theory and experiments.

7 EXPERIMENTS

Datasets. We evaluate FedMuon on both vision and language tasks. (i) For image classification,
we use CIFAR-100 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015). (ii) For NLP
tasks, we adopt benchmark datasets from the GLUE benchmark, including SST-2 (Socher et al.,
2013), QQP (Socher et al., 2013), and OpenWebText dataset. To simulate data heterogeneity across
clients, we follow the Dirichlet partitioning scheme (Hsu et al., 2019), where a Dir-0.6 corresponds
to a low heterogeneity and Dir-0.1 implies high heterogeneity.
Model Architectures. We explore a variety of model types: (i) ResNet-18 (He et al., 2016) as a
representative convolutional neural network (CNN), (ii) Swin Transformer (Liu et al., 2021) and
ViT-Tiny (Dosovitskiy et al., 2020) for Vision Transformers, and (iii) RoBERTa-Base (Liu et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2019) and GPT-2 Radford et al. (2019) for large-scale language model.
Baselines. We compare our method against state-of-the-art FL algorithms: FedAvg (Local
SGD) (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), FedCM (Xu et al., 2021),
FedLADA (Sun et al., 2023), Local AdamW and Local Muon, FedProx Li et al. (2020b), Fed-
Dyn Acar et al. (2021), Mime Karimireddy et al. (2020a), and FedAdam Reddi et al. (2020). In the
Appendix (Table 15), we compare additional FL algorithms designed to address data heterogeneity.
Hyperparameter Settings. For FedAvg, SCAFFOLD, FedCM, FedProx, FedDyn, Mime, and
FedAdam, the lr is selected from {10−2, 3 × 10−2, 5 × 10−2, 10−1, 3 × 10−1}, with a weight
decay of 0.001. For FedLADA, Local AdamW, the lr is selected from {10−4, 3 × 10−4, 5 ×
10−4, 8× 10−4, 10−3}, with weight decay 0.01 or 0.001, β1 = 0.9, β2 = 0.999. We apply cosine
learning rate decay, and set FedMuon to α= 0.5, weight decay 0.01. We set the learning rate of
FedMuon and Local Muon to be 3 × 10−2, 2 × 10−2, 3 × 10−3. Additional hyperparameter
configurations are detailed in the Appendix (Table 10, Table 12). We release all code, configuration
files to ensure full reproducibility. All results are averaged over 5 runs with std reported with seeds
42, 43, 44, 45, 46.

7.1 RESULTS ON CONVOLUTIONAL NEURAL NETWORKS AND TRANSFORMER

Training on CIFAR-100 with ResNet-18. Table 1 and Figure 7 present the test accuracy and
training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of 74.12% and 73.05%, respectively. It also
attains the lowest training loss (0.001 and 0.246), demonstrating faster and more stable convergence.
Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
ization under data heterogeneity, confirming its effectiveness in CNNs. In our experiments, Muon
provides immediate speedups under IID data, but under non-IID data Local Muon initially con-
verges slowly due to mismatched client preconditioners and exacerbated client drift (Challenge 1).
FedMuon mitigates this issue, achieving fast and stable convergence, and also yields clear speedups
in IID settings (Table 16).

Training on CIFAR-100 with ViT-Tiny. Table 1 and Figure 7 show FedMuon achieves the
best performance across both heterogeneity levels, with 50.22% (Dir-0.6) and 48.18% (Dir-0.1),
and the lowest training loss (0.162 and 0.556), confirming its efficient convergence. These results
validate that FedMuon is particularly effective for federated vision Transformers under non-i.i.d.
conditions. The small dataset CIFAR100 is difficult to support the performance of ViT, resulting in
lower accuracy. Therefore, we continued to test on the pretrained model.

Table 2: Comparison of test accuracy and training loss
for Swin Transformer under Dir-0.1 with 100 rounds (100
clients, 5% participation, batch size 16, K = 50).

Method CIFAR-100 Tiny ImageNet

Test Acc Loss Test Acc Loss

FedAvg 80.02±0.28 0.588 80.38±0.22 0.826
FedProx 81.21±0.13 0.521 81.86±0.12 0.885
FedDyn 81.67±0.15 0.501 82.48±0.18 0.641
Mime 82.21±0.11 0.562 82.56±0.14 0.655
FedAdam 82.56±0.15 0.545 82.21±0.11 0.685
SCAFFOLD 81.30±0.18 0.514 82.41±0.18 0.650
FedCM 82.38±0.11 0.565 83.18±0.14 0.522
FedLADA 74.64±0.15 0.598 70.94±0.19 0.944
Local AdamW 83.35±0.16 0.381 80.26±0.12 0.686
Local Muon 79.73±0.18 0.396 80.24±0.10 0.734
FedMuon 84.88±0.17 0.123 84.95±0.12 0.394

Fine-tuning Results on Swin Trans-
former. Table 2 reports results on Swin
Transformer under Dir-0.1 with LoRA.
FedMuon achieves the highest test accu-
racy on both CIFAR-100 (84.88%) and
Tiny ImageNet (84.95%), while also at-
taining the lowest training loss, reflect-
ing faster convergence. FedMuon consis-
tently outperforms baselines (including Lo-
cal AdamW and Local Muon), demonstrat-
ing its effectiveness in fine-tuning Vision
Transformer models under non-IID data.
Fine-tuning Results on LLMs. Table 18
summarizes results on the GLUE bench-
mark using RoBERTa-Base with LoRA, 20
clients, 20% participation, batch size 16,
K = 50, rank=16. FedMuon achieves
the highest accuracy of GLUE outperform-
ing strong baselines such as FedAvg and
Local Muon. It is particularly strong on
challenging tasks like RTE and QQP, ex-
ceeding the next best methods by +1.65%
and +1.59%, respectively. In the appendix, we additionally report results under the setting with 4
clients, 100% client participation, and Dir-0.8 data partitioning (see Table 17).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, K = 50)

Method (Dir-0.5) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 51.00±0.26 51.99±0.24 93.04±0.16 81.75±0.11 88.24±0.18 89.36±0.15 81.72±0.25

FedProx 53.11±0.14 53.25±0.21 92.26±0.18 81.15±0.11 87.36±0.12 88.12±0.14 81.41±0.21

FedDyn 53.21±0.28 52.22±0.30 92.36±0.21 81.35±0.21 87.89±0.11 89.12±0.21 82.18±0.21

Mime 52.15±0.17 51.62±0.21 92.21±0.28 80.26±0.18 88.04±0.12 89.11±0.21 82.51±0.20

FedAdam 53.21±0.28 52.52±0.31 92.36±0.25 82.22±0.28 88.12±0.34 88.01±0.23 82.66±0.22

SCAFFOLD 52.15±0.17 50.65±0.20 93.28±0.28 80.26±0.18 88.35±0.12 89.32±0.24 82.11±0.20

FedCM 53.21±0.28 52.22±0.30 92.56±0.25 81.22±0.28 88.56±0.13 89.02±0.23 82.12±0.27

FedLADA 54.66±0.17 57.02±0.08 93.88±0.16 81.56±0.20 89.01±0.28 89.86±0.29 82.44±0.17

Local AdamW 55.38±0.12 59.57±0.25 93.81±0.19 81.51±0.05 88.73±0.23 89.55±0.15 82.86±0.26

Local Muon 55.54±0.05 64.93±0.17 93.58±0.27 83.06±0.11 88.95±0.13 90.52±0.27 84.63±0.10

FedMuon(ours) 56.78±0.11 66.58±0.29 93.54±0.25 84.65±0.16 88.21±0.07 90.24±0.13 85.21±0.18

Table 4: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50), and
train loss of each method on OpenWebText data using GPT-2 Small, GPT-2 Medium, GPT-2 Large and
GPT-2 XL over 300 communication rounds (20 clients, 20% participation, batch size 16, K = 100).

Method CIFAR-100 (Test Acc, %) OpenWebText (Train Loss)

ViT-Tiny ViT-Small ViT-Base ViT-Large GPT-2 S GPT-2 M GPT-2 L GPT-2 XL

FedAvg 27.14 29.52 31.15 33.56 4.25 4.12 4.01 3.91
FedProx 26.84 28.63 31.05 33.25 4.33 4.21 4.15 4.05
FedDyn 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
Mime 27.66 31.23 33.11 35.34 4.10 4.02 3.89 3.78
FedAdam 28.50 33.15 33.15 33.15 4.02 3.95 3.82 3.75
SCAFFOLD 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
FedCM 23.18 25.15 27.88 29.01 4.32 4.21 4.02 3.91
FedLADA 31.50 33.15 33.15 33.15 3.56 3.45 3.33 3.24
Local AdamW 37.86 37.86 37.86 37.86 3.44 3.35 3.27 3.15
Local Muon 40.53 42.34 45.26 46.54 3.33 3.21 3.09 2.98
FedMuon(ours) 48.18 50.52 53.63 56.24 3.12 2.98 2.85 2.74

Table 4 compares FedMuon with a range of federated optimizers on both vision and language bench-
marks. On CIFAR-100, FedMuon consistently achieves the highest test accuracy across all ViT
scales, improving from 27.14% to 48.18% on ViT-Tiny and from 33.56% to 56.24% on ViT-Large
compared to FedAvg, and further outperforming Local AdamW and Local Muon by a large margin.
On C4 language modeling with GPT-2, FedMuon attains the lowest training loss for all model sizes,
reducing the loss from 4.25 to 3.12 on GPT-2 Small and from 3.91 to 2.74 on GPT-2 XL. These
results indicate that FedMuon scales effectively to larger Transformer models and consistently im-
proves optimization efficiency over strong baselines in both vision and language tasks.

7.2 ABLATION STUDY

Impact of ∆G and m̄. As shown in Table 5 left, we conduct an ablation study of FedMuon.
FedMuon incorporates momentum averaging m̄ and global update differences ∆G. The results
clearly indicate that Local Muon consistently outperforms both SGD and AdamW, demonstrating
its superior ability to handle non-IID FL. Moreover, our strategy consistently improves the perfor-
mance of other optimizers as well.

Impact of ∆G and m̄ on other optimizers. As shown in Table 5 right, we compare different local
optimizers with ∆G and m̄. The results demonstrate that Local Muon consistently achieves the
best performance, significantly outperforming SGD and AdamW, thereby highlighting its effective-
ness in mitigating data heterogeneity. Further results on additional optimizers in Table 22.

Accelerationof Matrix Orthogonalization on Federated Learning. See in Table 21.Matrix or-
thogonalization also provides acceleration benefits for other federated learning algorithms.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Ablation study of FedMuon on CIFAR-100 (Dir-0.1, 300 rounds). Left: effect of removing compo-
nents. Right: effect of different local optimizers.

Variant ResNet-18 ViT-Tiny
A1: w/o m̄ 69.12±0.18 43.67±0.19

A2: w/o ∆G 68.05±0.10 44.56±0.16

A3: FedMuon 73.05±0.15 48.18±0.12

Variant ResNet-18 ViT-Tiny
Local SGD + m̄+∆G 66.28±0.17 32.56±0.11

Local AdamW + m̄+∆G 64.25±0.12 41.26±0.17

Local Muon + m̄+∆G 73.05±0.15 48.18±0.12

Table 6: Impact of α and β on FedMuon using ViT-Tiny and ResNet-18 on CIFAR-100 (Dir-0.1).

Model α β

0.00 0.25 0.50 0.75 0.90 0.80 0.90 0.95 0.98 0.99

ResNet-18 68.05 69.89 73.01 72.12 67.56 68.22 70.56 71.23 73.01 72.66
ViT-Tiny 44.56 46.28 48.18 47.59 46.23 44.86 45.23 46.59 48.18 47.56

Table 7: Ablation of momentum aggregation strategies in FedMuon on CIFAR-100 under Dir-0.1. Comm-
Cost denotes communication cost per round (MB), and CompCost denotes computation time per round (s).

Aggregation ResNet-18 ViT-Tiny
Test Acc CommCost CompCost Test Acc CommCost CompCost

NoAgg 69.12 46.8 MB (1×) 6.23 s 43.67 22.8 MB (1×) 5.14 s
Agg-m 73.05 93.6 MB (2×) 6.44 s 48.18 45.6 MB (2×) 5.21 s
Agg-m-SVD 72.56 49.2 MB (1.05×) 6.48 s 47.66 23.9 MB (1.05×) 5.25 s

Impact of α. Table 6 evaluates the effect of the local-global alignment parameter α in FedMuon.
As shown by Theorem 1, incorporating global update direction helps suppress client drift and ac-
celerates convergence. We observe that α = 0.5 yields the best performance, striking a balance
between local adaptivity and global consistency, in line with our theoretical insight.

Impact of β. Table 6 verifies the effectiveness of local momentum accumulation. When the mo-
mentum parameter β is too small, the aggregated global momentum is quickly diluted. Conversely,
an overly large β slows local gradient accumulation and delays responsiveness to new data. These
results suggest that β should balance global momentum preservation with timely adaptation to client
updates. We observe that β = 0.98 yields the best performance.

Impact of Momentum Aggregation Strategy. Table 7 shows Momentum Aggregation Strategy,
Agg-m-SVD (FedMuon SVD), achieves the best balance between accuracy and communication
cost. While Agg-m improves performance, it introduces excessive communication (2×). In con-
trast, Agg-m-SVD attains similar benefits with only 1.05× communication cost.

8 CONCLUSION

In this work, we proposed FedMuon, a structure-aware federated optimizer for training large-scale
Transformer and vision models. FedMuon addresses core challenges of non-IID. Federated learn-
ing—client drift, unstable optimizer states, and inefficient communication—by coupling matrix-
orthogonalized local updates with local-globall alignment and cross-round momentum aggregation,
complemented by low-rank state sharing. We provided non-convex convergence analysis clarifying
how alignment and orthogonalization jointly control the bias introduced by multi-step local training,
and we documented strong empirical gains across vision and language tasks, particularly on Trans-
former architectures. These results highlight that treating optimizer updates as matrices (rather than
flat vectors) offers a principled route to reliable and efficient FL. We believe FedMuon opens a
pathway for adapting modern, structure-aware optimizers to federated settings and inspires future
extensions to related methods such as LAMB (Chen et al., 2023) or Lion (Chen et al., 2023). Be-
yond federated learning, the principles of FedMuon can be directly applied to large-scale distributed
training and parameter-efficient fine-tuning of foundation models, where communication efficiency
and stable optimization are equally critical.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study involves no human subjects or animal
experimentation. All experiments are conducted on public, license-compliant academic benchmarks
under non-IID federated partitions; no personally identifiable information is collected or processed.
Data usage follows the original dataset terms, and we apply standard safeguards to avoid amplifying
social or demographic biases (e.g., consistent splits, shared hyperparameter budgets, and reporting
of variance across seeds). The method—FEDMUON, which aggregates cross-round momentum and
performs matrix-orthogonalized local updates—does not require access to raw user data beyond
standard benchmark usage, and introduces no additional privacy risks beyond those present in con-
ventional federated optimization. We will release code and configurations to support transparent
verification.

10 REPRODUCIBILITY STATEMENT

We make every effort to ensure reproducibility. The paper specifies training steps, model configura-
tions (e.g., ResNet/ViT for vision and RoBERTa-style encoders for NLP), non-IID partition proto-
cols, client sampling, and hardware details. Unless noted otherwise, each configuration is repeated
with five independent seeds {42, 43, 44, 45, 46}; we report mean ± standard deviation and provide
per-run logs/curves. Implementation details for FEDMUON (orthogonalized updates, global–local
alignment, cross-round momentum aggregation, and low-rank SVD compression) are described in
algorithmic form with all tunables exposed. An anonymous repository includes source code, config-
uration files, data-partition scripts, and instructions to exactly reproduce the main tables and figures.

11 LLM USAGE

Large Language Models (LLMs) were used solely for language editing (grammar, phrasing, and
clarity) of the manuscript text. LLMs were not involved in research ideation, methodological design,
theoretical analysis, dataset preparation, implementation, or result selection. The authors are fully
responsible for the scientific content and verify that any LLM-assisted passages comply with ethical
guidelines and do not constitute plagiarism or scientific misconduct.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

Ronan Collobert. Large scale machine learning. Idiap Res. Inst., Martigny, Switzerland, RR-04-42,
2004.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ziqing Fan, Shengchao Hu, Jiangchao Yao, Gang Niu, Ya Zhang, Masashi Sugiyama, and Yanfeng
Wang. Locally estimated global perturbations are better than local perturbations for federated
sharpness-aware minimization. arXiv preprint arXiv:2405.18890, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebas-
tian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms
in federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. Advances in Neural Information Processing Systems, 37:
73501–73548, 2024.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020b.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Junkang Liu, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Yuangang Li, and YunXiang Gong.
Fedbcgd: Communication-efficient accelerated block coordinate gradient descent for federated
learning. In Proceedings of the 32nd ACM International Conference on Multimedia, pp. 2955–
2963, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5(5):5, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Yan Sun, Li Shen, Hao Sun, Liang Ding, and Dacheng Tao. Efficient federated learning via local
adaptive amended optimizer with linear speedup. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(12):14453–14464, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
client-level momentum. arXiv preprint arXiv:2106.10874, 2021.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LIST OF APPENDIX

A: Proof of Theorem 1 and Convergence Analysis

A.1 FedMuon Algorithm
A.2 Assumptions
A.3 Main Lemmas
A.4 Basic Assumptions and Notations
A.5 FedMuon Algorithm Analysis and Proof

B: Experimental Setup

B.1 Setting for ResNet-18
B.2 Federated Learning Configuration
B.3 Model Architecture
B.4 Setting for ViT-Tiny
B.5 Swin Transformer Fine-Tuning Settings
B.6 RoBERTa-Base Fine-Tuning Settings
B.7 Additional Federated Training Configuration of LLM

C: Experimental Appendix

C.1 Communication and Computation Cost Analysis
C.2 More Baseline Experiment Comparisons
C.3 More Baseline Experiment on IID Data
C.4 Effectiveness of Muon and Our Correction Strategy
C.5 Effect of Muon-Based Matrix Orthogonalization Across FL Algorithms
C.6 Impact of ∆G and m̄ on Other Optimizers
C.7 Comparison Between FedMuon (Algorithm 2) and FedMuon (Algorithm 3)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 FedMuon Algorithm (analysis variant)

1: Initial model x0, β1 = 0.98, the number of all clients N , each round selected clients S, weight
decay λ.

2: for r = 1, . . . , R do
3: for each selected client i ∈ {1, . . . , S} in parallel do
4: xr,0

i ← xr, M r,0
i ← M̄ r;

5: for k = 1, . . . ,K do
6: Gr,k

i ← ∇fi(xr,k
i ; ξi);

7: U r,k
i ,Σr,k

i ,V r,k
i = SVD(Gr,k

i);

8: xr,k+1
i = xr,k

i − η
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
;

9: end for
10: Communicate (xr,K

i − xr,0
i ,M r,K

i) to Server;
11: end for
12: ∆r

G = −1
SKη

∑S
i=1(x

r,K
i − xr,0

i);

13: xr+1 = xr + 1
S

∑S
i=1(x

r,K
i − xr,0

i);
14: M̄ r+1 = 1

S

∑S
i=1 M

r,K
i ;

15: Communicate (xr+1,M̄ r+1,∆r+1
G) to Clients.

16: end for

A APPENDIX A: PROOF OF THEOREM 1 AND CONVERGENCE ANALYSIS

A.1 FEDMUON ALGORITHM

To simplify the analysis, we consider the iterative rules as in Algorithm 2, where we let β1 = 0. The
local update takes the following rule:

xr,k+1
i = xr,k

i − ηt
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
.

Simplified setting for theoretical analysis. Our primary focus in this paper is to investigate how
the matrix orthogonalization mechanism accelerates convergence in federated learning. Introducing
an additional local momentum term (e.g., β1 > 0) would bring in temporal dependencies across
iterations, making the theoretical convergence analysis substantially more complex without offering
additional conceptual insights into the effect of orthogonalization itself.

Therefore, for analytical tractability, we consider a simplified variant where we set β1 = 0 in the
local update rule:

xr,k+1
i = xr,k

i − ηt
[
(1− α)U r,k

i V r,k
i

⊤
+ α∆r

G

]
.

This simplification isolates the impact of low-rank orthogonalization and global gradient mixing,
allowing us to derive clean convergence bounds that clearly reveal how orthogonalization improves
communication efficiency and stability.

Importantly, we empirically verify that this simplified version performs on par with the full al-
gorithm using local momentum. The empirical results demonstrate that setting β1 = 0 does not
materially affect convergence speed or final accuracy, thereby justifying the use of this simplified
formulation for theoretical analysis.

A.2 ASSUMPTION

Assumption A.1 (Smoothness). The non-convex fi is one L-smooth function for all i ∈ [m], i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x,y ∈ Rd.
Assumption A.2 (Bounded Stochastic Gradient). gr

i = ∇fi(xr
i , ξ

r
i) computed by using a sam-

pled mini-batch ξri in client i is an unbiased estimator of ∇fi with bounded variance: Eξri
[gr

i] =

∇fi(xr
i) and Eξri

∥gri −∇fi(xr
i)∥2 ≤ σ2

l .

In this section, we give the theoretical analysis of our proposed uon algorithm. Firstly we state some
standard assumptions for the non-convex function F .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 MAIN LEMMAS

Lemma 1. Suppose {X1, · · · , Xτ} ⊂ Rd be random variables that are potentially dependent. If
their marginal means and variances satisfy E [Xi] = µi and E [∥Xi− µi∥2

]
≤ σ2, then it holds

that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ ∥∥∥∥∥

τ∑
i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov way such that E [Xi | Xi−1, · · ·X1] = µi and E
[
∥Xi − µi∥2 |

µi] ≤ σ2, i.e., the variables {Xi − µi} form a martingale. Then the following tighter bound holds:

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2

.
Lemma 2. Given vectors v1, · · · , vN ∈ Rd and v̄ = 1

N

∑N
i=1 vi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = ∥v̄∥2 + N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2 .

Proof. Letting I{i ∈ S} be the indicator for the event i ∈ Sr, we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

viI{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥vi∥2 I{i ∈ S}+ 2
∑
i<j

v⊤i vjI{i, j ∈ S}


=

1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)
2
∑
i<j

v⊤i vj

=
1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

−
N∑
i=1

∥vi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi∥2 +
N(S − 1)

S(N − 1)
∥v̄∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2 + ∥v̄∥2.

A.4 BASIC ASSUMPTIONS AND NOTATIONS

Let F0 = ∅ and Fr,k
i := σ

({
xr,j
i

}
0≤j≤k

∪ Fr

)
and Fr+1 := σ

(
∪iFr,K

i

)
for all r ≥ 0 where

σ(·) indicates the σ-algebra. Let Er[·] := E [· | Fr] be the expectation, conditioned on the filtration

Fr, with respect to the random variables
{
Sr,
{
ξr,ki

}
1≤i≤N,0≤k<K

}
in the r-th iteration. We also

use E[·] to denote the global expectation over all randomness in algorithms. Through out the proofs,
we use

∑
i to represent the sum over i ∈ {1, . . . , N}, while

∑
i∈Sr denotes the sum over i ∈ Sr.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Similarly, we use
∑

k to represent the sum of k ∈ {0, . . . ,K − 1}. For all r ≥ 0, we define the
following auxiliary variables to facilitate proofs:

Er := E
[∥∥∇f (xr)− gr+1

∥∥2]
Ur :=

1

NK

∑
i

∑
k

E
[∥∥∥xr,k

i − xr
∥∥∥]2

ζr,ki := E
[
xr,k+1
i − xr,k

i | Fr,k
i

]
Ξr :=

1

N

N∑
i=1

E
[∥∥∥ζr,0i

∥∥∥2]

Throughout the Appendix, we let ∆ := f
(
x0
)
− f⋆, G0 := 1

N

∑
i

∥∥∇fi (x0
)∥∥2 , x−1 := x0 and

E−1 :=E
[∥∥∇f (x0

)
− g0

∥∥2]. We will use the following foundational lemma for all our algorithms.

A.5 FEDMUON ALGORITHM ANALYZE AND PROOF

Lemma 3. Under Assumption A.1 , if γL ≤ 1
24 , the following holds all r ≥ 0 :

E
[
f
(
xr+1

)]
≤ E [f (xr)]− 11γ

24
E
[
∥∇f (xr)∥2

]
+

13γ

24
Er

Proof. Since f is L-smooth, we have

f(xr+1) ≤ f(xr) +
〈
∇f(xr), xr+1 − xr

〉
+

L

2

∥∥xr+1 − xr
∥∥2 (5)

= f(xr)− γ
〈
∇f(xr), gr+1

〉
+

Lγ2

2

∥∥gr+1
∥∥2 (6)

= f(xr)− γ ∥∇f(xr)∥2 + γ
〈
∇f(xr), ∇f(xr)− gr+1

〉
+

Lγ2

2

∥∥gr+1
∥∥2 . (7)

Since xr+1 = xr − γgr+1, using Young’s inequality, we further have:

f
(
xr+1

)
≤ f (xr)− γ

2
∥∇f (xr)∥2 + γ

2

∥∥∇f (xr)− gr+1
∥∥2 + Lγ2

(
∥∇f (xr)∥2 +

∥∥∇f (xr)− gr+1
∥∥2)

(8)

≤ f (xr)− 11γ

24
∥∇f (xr)∥2 + 13γ

24

∥∥∇f (xr)− gr+1
∥∥2 (9)

where the last inequality is due to γL ≤ 1
24 . Taking the global expectation completes the proof.

Lemma 4 (Gradient error bound under low-rank momentum surrogates). Let f be L-smooth and
denote the global iterate in round r by xr. In each round, a subset Sr of S clients participates and
each client performs K local steps. For client i ∈ Sr and local step k ∈ {1, . . . ,K}, let gr,ki be a
stochastic gradient such that

E
[
gr,ki | xr,k

i

]
= ∇fi(xr,k

i), E
∥∥∥gr,ki −∇fi(x

r,k
i)
∥∥∥2 ≤ σ2

l .

Assume the average gradient drift satisfies

1

SK

∑
i∈Sr

K∑
k=1

∥∥∇fi(xr,k
i)−∇f(xr)

∥∥2 ≤ L2U2
r ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where U2
r ≜ 1

SK

∑
i∈Sr

∑K
k=1 ∥x

r,k
i − xr∥2. For each matrix-shaped block, let the low-

rank surrogate be Ur,k
i V r,k⊤

i and its singular-value–scaled version Ur,k
i Sr,k

i V r,k⊤
i with Sr,k

i =
diag(σi,k,1, . . . , σi,k,d). Assume there exists σ ∈ [0, 1] such that σi,k,j ≥ σ for all (i, k, j). Then

E

∥∥∥∥∥∇f(xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

∥∥∥∥∥
2

≤ 2L2U2
r +

2σ2
l

SK
+ 2(1− σ)2d.

Proof. Add and subtract 1
SK

∑
i∈Sr

∑K
k=1 g

r,k
i and apply ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2:

E
∥∥∥∇f(xr)− 1

SK

∑
i,k

Ur,k
i V r,k⊤

i

∥∥∥2 ≤ 2E
∥∥∥∇f(xr)− 1

SK

∑
i,k

gr,ki

∥∥∥2
+ 2E

∥∥∥ 1
SK

∑
i,k

(
Ur,k
i V r,k⊤

i − gr,ki

)∥∥∥2.
For the first term, by variance decomposition and the stated bounds,

E
∥∥∥∇f(xr)− 1

SK

∑
i,k

gr,ki

∥∥∥2 ≤ σ2
l

SK
+ L2U2

r .

For the second term, insert the scaled factorization and use the triangle inequality and Jensen’s
inequality:

E
∥∥∥ 1
SK

∑
i,k

(
Ur,k
i V r,k⊤

i − Ur,k
i Sr,k

i V r,k⊤
i

)∥∥∥2 = E
∥∥∥ 1
SK

∑
i,k

Ur,k
i (I − Sr,k

i)V r,k⊤
i

∥∥∥2
≤ 1

SK

∑
i,k

E
∥∥Ur,k

i (I − Sr,k
i)V r,k⊤

i

∥∥2
F

=
1

SK

∑
i,k

d∑
j=1

E
(
1− σi,k,j

)2
≤ (1− σ)2d,

where the last step uses σi,k,j ≥ σ. Combining the two parts and the prefactor 2 yields the claim.

Remark. The bound decomposes into (i) the client–server drift term 2L2U2
r , (ii) the stochastic

variance term 2σ2
l /(SK) that vanishes as participation and local steps grow, and (iii) the low-rank

surrogate bias 2(1 − σ)2d, which shrinks as the singular-value floor σ increases (e.g., with larger
retained rank).

Lemma 5. If γL ≤ β
6 , the following holds for r ≥ 1 :

Er ≤
(
1− 8β

9

)
Er−1 +

4γ2L2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 2β2σ2
l

SK
+ 8βL2Ur + 8β(1− σ)2d

Additionally, it holds for r = 0 that

E0 ≤ (1− β)E−1 +
4β2σ2

l

SK
+ 8β2L2U0 + 8β(1− σ)2d

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. For r > 1,

Er =E

∥∥∥∥∥ 1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr+1

∥∥∥∥∥
2


=E

∥∥∥∥∥(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)
+ β

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

)∥∥∥∥∥
2


≤E

∥∥∥∥∥(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)∥∥∥∥∥
2
+ β2E

∥∥∥∥∥∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

∥∥∥∥∥
2


+ 2βE

[〈
(1− β)

(
1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− gr

)
,

1

SK

∑
i∈Sr

K∑
k=1

∇f (xr)− 1

SK

∑
i∈Sr

K∑
k=1

Ur,k
i V r,k⊤

i

〉]
.

Note that
{
∇F

(
xr,k
i ; ξr,ki

)}
0≤k<K

are sequentially correlated. Applying the AM-GM inequality

and Lemma 1, we have

Er ≤
(
1 +

β

2

)
E
[
∥(1− β) (∇f (xr)− gr)∥2

]
+4βL2Ur+4β2(1−σ)2d+4β2

(
σ2
l

SK
+ L2Ur + (1− σ)2d

)
Using the AM-GM inequality again and Assumption A.1, we have

Er ≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

2

)
Er−1 +

(
1 +

2

β

)
L2E

[∥∥xr − xr−1
∥∥2]]+ 4β2σ2

l

SK
+ 8βL2Ur + 8β(1− σ)2d

≤ (1− β)Er−1 +
2

β
L2E

[∥∥xr − xr−1
∥∥2]+ 4β2σ2

l

SK
+ 8β2L2Ur + 8β(1− σ)2d

≤
(
1− 8β

9

)
Er−1 + 4

γ2L2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 4β2σ2
l

SK
+ 8βL2Ur + 8β2(1− σ)2d

where we plug in
∥∥xr − xr−1

∥∥2 ≤ 2γ2
(∥∥∇f (xr−1

)∥∥2 + ∥∥gr −∇f (xr−1
)∥∥2) and use γL ≤ β

6

in the last inequality. Similarly for r = 0,

E0 ≤
(
1 +

β

2

)
E
[∥∥(1− β)

(
∇f

(
x0
)
− g0

)∥∥2]+ 4βL2U0 + 4β2

(
σ2
l

SK
+ L2U0

)
≤ (1− β)E−1 +

4β2σ2
l

SK
+ 8β2L2U0 + 8β(1− σ)2d

Lemma 6. If ηLK ≤ 1
β , the following holds for r ≥ 0 :

Ur ≤ 2eK2Ξr +Kη2β2σ2
l

(
1 + 2K3L2η2β2

)
Proof. Recall that ζr,ki := E

[
xr,k+1
i − xr,k

i | Fr,k
i

]
= −η

(
(1− β)gr + β∇fi

(
xr,k
i

))
. Then we

have

E
[∥∥∥ζr,ji − ζr,j−1

i

∥∥∥2] ≤ η2L2β2E
[∥∥∥xr,j

i − xr,j−1
i

∥∥∥2]
≤ η2L2β2

(
η2β2σ2

l + E
[∥∥∥ζr,j−1

i

∥∥∥2)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For any 1 ≤ j ≤ k − 1 ≤ K − 2, using ηL ≤ 1
βK ≤

1
β(k+1) , we have

E
[∥∥∥ζr,ji

∥∥∥2] ≤ (1 + 1

k

)
E
[∥∥∥ζr,j−1

i

∥∥∥2]+ (1 + k)E
[∥∥∥ζr,ji − ζr,j−1

i

∥∥∥2]
≤
(
1 +

2

k

)
E
[∥∥∥ζr,j−1

i

∥∥∥2]+ (k + 1)L2η4β4σ2
l

≤ e2E
[∥∥∥ζr,0i

∥∥∥2]+ 4k2L2η4β4σ2
l

where the last inequality is by unrolling the recursive bound and using
(
1 + 2

k

)k ≤ e2. By Lemma
1 , it holds that for k ≥ 2,

E
[∥∥∥xr,k

i − xr
∥∥∥2] ≤ 2E


∥∥∥∥∥∥
k−1∑
j=0

ζr,ji

∥∥∥∥∥∥
2
+ 2kη2β2σ2

l

≤ 2k

k−1∑
j=0

E
[∥∥∥ζr,ki

∥∥∥2]+ 2kη2β2σ2
l

≤ 2e2k2E
[∥∥∥ζr,0i

∥∥∥2]+ 2kη2β2σ2
l

(
1 + 4k3L2η2β2

)
This is also valid for k = 0, 1. Summing up over i and k finishes the proof.

Lemma 7. If 288e(ηKL)2
(
(1− β)2 + e(βγLR)2

)
≤ 1, then it holds for r ≥ 0 that

R−1∑
r=0

Ξr ≤
1

72eK2L2

R−2∑
r=−1

(
Er + E

[
∥∇f (xr)∥2

])
+ 2η2β2eRG0

Proof. Note that ζr,0i = −η ((1− β)gr + β∇fi (xr)),

1

N

N∑
i=1

∥∥∥ζr,0i

∥∥∥2 ≤ 2η2

(
(1− β)2 ∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi (xr)∥2
)

Using Young’s inequality, we have for any q > 0 that

E
[
∥∇fi (xr)∥2

]
≤ (1 + q)E

[∥∥∇fi (xr−1
)∥∥2]+ (1 + q−1

)
L2E

[∥∥xr − xr−1
∥∥2]

≤ (1 + q)E
[∥∥∇fi (xr−1

)∥∥2]+ 2
(
1 + q−1

)
γ2L2

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

≤ (1 + q)rE
[∥∥∇fi (x0

)∥∥2]+ 2

q
γ2L2

r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2) (1 + q)r−j

Take q = 1
r and we have

E
[
∥∇fi (xr)∥2

]
≤ eE

[∥∥∇fi (x0
)∥∥2]+ 2e(r + 1)γ2L2

r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2) (10)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Note that this inequality is valid for r = 0. Therefore, using equation 10, we have

R−1∑
r=0

Ξr ≤
R−1∑
r=0

2η2E

[
(1− β)2 ∥gr∥2 + β2 1

N

N∑
i=1

∥∇fi (xr)∥2
]

≤
R−1∑
r=0

2η2

(
2(1− β)2

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])+ β2 1

N

N∑
i=1

E
[
∥∇fi (xr)∥2

])

≤
R−1∑
r=0

4η2(1− β)2
(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

+ 2η2β2
R−1∑
r=0

 e

N

N∑
i=1

E
[∥∥∇fi (x0

)∥∥2]+ 2e(r + 1)(γL)2
r−1∑
j=0

(
Ej + E

[∥∥∇f (xj
)∥∥2])

≤4η2(1− β)2
R−1∑
r=0

(
Er−1 + E

[∥∥∇f (xr−1
)∥∥2])

+ 2η2β2

(
eRG0 + 2e(γLR)2

R−2∑
r=0

(
Er + E

[
∥∇f (xr)∥2

]))

Rearranging the equation and applying the upper bound of η completes the proof.

Theorem 2 (Convergence for non-convex functions). Under Assumptions 1-2 , if we take g0 = 0,

β = min

{
,

√
SKL∆

σ2
l R

}
for any constant c ∈ (0, 1], γ = min

{
1

24L
,
β

6L

}
,

ηKL ≲ min

{
1,

1

βγLR
,

(
L∆

G0β3R

)1/2

,
1

(βN)1/2
,

1

(β3NK)
1/4

}

then FedMuon converges as

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲

L∆

R
+

√
L∆

R

(
σ2
l

SK
+ (1− σ)2d

)
.

Here G0 := 1
N

∑N
i=1

∥∥∇fi (x0
)∥∥2.

Proof. Combining Lemma 3 and 5, we have

Er ≤
(
1− 8β

9

)
Er−1 + 4

(γL)2

β
E
[∥∥∇f (xr−1

)∥∥2]+ 4β2σ2
l

SK
+ 8β2(1− σ)2d

+ 4βL2
(
2eK2Ξr +Kη2β2σ2

l

(
1 + 2K3L2η2β2

)
and

E0 ≤ (1− β)E−1 +
4β2σ2

l

SK
+ 8β(1− σ)2d+ 4βL2

(
2eK2Ξ0 +Kη2β2σ2

l

(
1 + 2K3L2η2β2

))
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Summing over r from 0 to R− 1 and applying Lemma 7,

R−1∑
r=0

Er ≤
(
1− 8β

9

) R−2∑
r=−1

Er + 4
(γL)2

β

R−2∑
r=0

E
[
∥∇f (xr)∥2

]
+ 4

β2σ2
l

SK
R+ 8β(1− σ)2dR

+ 4βL2

(
2eK2

R−1∑
r=0

Ξr +RKη2β2σ2
l

(
1 + 2K3L2η2β2

))

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
(
4
(γL)2

β
+

β

9

) R−2∑
r=−1

E
[
∥∇f (xr)∥2

]
+ 16β3(eηKL)2RG0

+
4β2σ2

l

SK
R+ 8β(1− σ)2dR+ 4β3(ηKL)2

(
1

K
+ 2(ηKLβ)2

)
σ2
l R

≤
(
1− 7β

9

) R−2∑
r=−1

Er +
2β

9

R−2∑
r=−1

E
[
∥∇f (xr)∥2

]
+ 16β3(eηKL)2RG0 +

8β2σ2
l

SK
R+ 8β(1− σ)2dR

Here in the last inequality we apply

4β(ηKL)2
(

1

K
+ 2(ηKLβ)2

)
≤ 2

NK
and γL ≤ β

6
.

Therefore,

R−1∑
r=0

Er ≤
9

7β
E−1 +

2

7
E

[
R−2∑
r=−1

∥∇f (xr)∥2
]
+

144

7
(eβηKL)2G0R+

36βσ2
l

7SK
R+

72

7
(1− σ)2dR.

Combine this inequality with Lemma 3 and we get

1

γ
E
[
f (xr)− f

(
x0
)]
≤ −1

7

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
+

39

56β
E−1+

78

7
(eβηKL)2G0R+

39βσ2
l

14SK
R+

72

7
(1−σ)2dR.

Finally, noticing that g0 = 0 implies E−1 ≤ 2L
(
f
(
x0
)
− f∗) = 2L∆, we obtain

1

R

R−1∑
r=0

E
[
∥∇f (xr)∥2

]
≲

L∆

γLR
+
E−1

βR
+ (βηKL)2G0 +

βσ2
l

SK
+ β(1− σ)2d.

≲
L∆

R
+

L∆

βR
+

βσ2
l

SK
+ (βηKL)2G0 + β(1− σ)2d

≲
L∆

R
+

√
L∆

R

(
σ2
l

SK

)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: A detailed summary of 100 and Tiny ImageNet: number of classes, image size, and dataset
splits.

Dataset #Classes Image Size Train Val Test Total Train / class

CIFAR-100 100 3× 32× 32 50,000 — 10,000 60,000 500
Tiny ImageNet 200 3× 64× 64 100,000 10,000 10,000 120,000 500

Notes. (1) CIFAR-10/100 provide no official validation split; a subset of the training set is commonly
reserved as dev/val.
(2) CIFAR-100 contains 100 fine-grained classes; 20 coarse superclasses are also defined for hierarchical
labeling.
(3) Tiny ImageNet is a subset of ImageNet synsets: per class 500 train, 50 val, and 50 test images (test
labels are not publicly released).
(4) All three datasets are single-label classification with RGB images resized to fixed resolutions.

B APPENDIX B: EXPERIMENTAL SETUP

B.1 SETTING FOR RESNET-18

We evaluate our methods on two widely-used benchmark datasets in federated learning: CIFAR-100
and Tiny ImageNet.

• CIFAR-100 (Krizhevsky et al., 2009): Contains 100 classes with 600 color images per class at
a resolution of 32× 32. It is a standard benchmark for evaluating federated image classification
methods.

• Tiny ImageNet: A subset of ImageNet with 200 classes and 500 images per class, providing a
more challenging and high-resolution classification task.

B.2 FEDERATED LEARNING CONFIGURATION

We simulate a cross-device federated learning environment using the following settings:

Table 9: Hyperparameter configuration of ResNet-18 and Vit-Tiny (CIFAR100) across different
algorithms.

Method Local Optimizer Local LR α β1 β2 Weight Decay

FedAvg (Local SGD) SGD 0.1 — — — 0.001
FedProx SGD 0.1 — — — 0.001
FedDyn SGD 0.1 — — — 0.001
Mime SGD 0.1 — — — 0.001
FedAdam SGD 0.1 — 0.9 0.98 0.001
SCAFFOLD SGD 0.1 — — — 0.001
FedCM SGD 0.1 0.9 — — 0.001
FedLADA AdamW 3e-4 0.9 0.9 0.999 0.01
Local AdamW AdamW 3e-4 — 0.9 0.999 0.01
Local Muon Muon 3e-2 — 0.98 — 0.01
FedMuon Muon 3e-2 0.5 0.98 — 0.01

Note: The paper specifies that “FedMuon and Local Muon use local LR = 1e-3, α = 0.5, β = 0.98”, we use

α = 0.5 and β = 0.98 for all tasks throughout the paper; this combination of hyperparameters is highly robust
and stable.; however, α = 0.5 only applies to FedMuon as a global-local alignment coefficient and not to

Local Muon, which is indicated by “—”.In the training task from scratch, the learning rate of Muon is usually
100 times higher than that of AdamW

• Number of clients: 100
• Client participation rate: 10% per round
• Communication rounds: 300
• Local update steps: 50 iterations

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter configuration of ViT-Base, Swin-Base, RoBERTa-base fine-tuning across
different algorithms.

Method Local Optimizer Local LR α β1 β2 Weight Decay

FedAvg (Local SGD) SGD 0.1 — — — 0.001
FedProx SGD 0.1 0.01 — — 0.001
FedDyn SGD 0.1 0.01 — — 0.001
Mime SGD 0.1 — — — 0.001
FedAdam SGD 0.1 — 0.9 0.98 0.001
SCAFFOLD SGD 0.1 — — — 0.001
FedCM SGD 0.1 0.9 — — 0.001
FedLADA AdamW 1e-4 0.9 0.9 0.999 0.01
Local AdamW AdamW 1e-4 — 0.9 0.999 0.01
Local Muon Muon 1e-3 — 0.98 — 0.01
FedMuon Muon 1e-3 0.5 0.98 — 0.01

Note: The paper specifies that “FedMuon and Local Muon use local LR = 1e-3, α = 0.5, β = 0.98”; however,
α = 0.5 only applies to FedMuon as the global–local alignment coefficient and not to Local Muon, which is
indicated by “—”. In fine-tuning tasks, the learning rate of Muon is typically set to be 10× that of AdamW.

• Batch size: 50

We perform grid search to tune the learning rates for each algorithm:

• FedAvg, SCAFFOLD, FedCM, and FedAdam use a local learning rate of 0.1.
• FedLADA, Local AdamW, use a local learning rate of 3e-4.
• FedMuon and Local Muon use a local learning rate of 3e-2,α = 0.5, β = 0.98

B.3 MODEL ARCHITECTURE

We adopt ResNet-18 as the backbone model. To better adapt it to CIFAR-100, we modify its archi-
tecture following standard practices (He et al., 2016):

• Replace the original 7× 7 convolution with a 3× 3 kernel.
• Remove the initial downsampling layers (stride-2 convolution and max pooling).

We also compare Batch Normalization (BN) and Group Normalization (GN) in ResNet-18.
Empirically, BN outperforms GN on CIFAR-100, so we adopt the BN-based version, denoted as
ResNet-18-BN, throughout our experiments.

B.4 SETTING FOR VIT-TINY

We construct a lightweight Vision Transformer model, ViT-Tiny, specifically tailored for federated
learning on the CIFAR-100 dataset. The design is based on the standard ViT architecture (Doso-
vitskiy et al., 2020), with modifications to accommodate the small input size and limited data per
client.

• Input resolution: 32× 32

• Patch size: 4× 4, resulting in 64 tokens per image
• Embedding dimension: 192
• Number of Transformer layers: 6
• Number of attention heads: 3
• Normalization: LayerNorm (applied before attention and MLP blocks)
• Classification head: Linear projection to 100 classes (CIFAR-100)
• Activation: GELU

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Initialization: Xavier/Glorot for linear layers; sinusoidal positional encoding

To regularize training, we apply dropout (0.1) to both attention and MLP layers. All models are
trained from scratch without pretraining.

Federated Learning Configuration. We adopt the same federated learning setup as used in our
ResNet experiments for a fair comparison:

• Number of clients: 100
• Client participation rate: 10%
• Communication rounds: 300
• Local update steps: 50 iterations per round
• Local batch size: 50

Learning Rate Schedule. We perform grid search to identify optimal learning rates for each al-
gorithm:

• FedAvg, SCAFFOLD, FedCM, and FedAdam: local learning rate of 0.1
• ,FedLADA, Local AdamW: local learning rate of 3e-4
• FedMuon and Local Muon: local learning rate of 3e-2, ,α = 0.5, β = 0.98

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM, FedAdam: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Optimizer. We use Adam or AdamW as the local optimizer depending on the method. All opti-
mizers use β1 = 0.9, β2 = 0.999, and weight decay of 0.01 when applicable.

Remarks. Due to the smaller capacity of ViT-Tiny and limited data per client, we find that careful
normalization (e.g., LayerNorm placement) and early learning rate warmup are beneficial. For future
work, more advanced token-mixing techniques or hybrid CNN-ViT backbones may further improve
performance in federated settings.

B.5 SWIN TRANSFORMER FINE-TUNING SETTINGS

To demonstrate the effectiveness of our method on large-scale vision models, we conduct fine-tuning
experiments using Swin Transformer-Tiny and ViT-Base on Tiny ImageNet and CIFAR-100.
For both models, we initialize from official ImageNet-22K pre-trained weights (Liu et al., 2021;
Dosovitskiy et al., 2020) to ensure consistency across methods.

Model Architecture: Swin-Tiny. Swin-Tiny adopts a hierarchical Transformer structure that
gradually reduces the spatial resolution while increasing the feature dimensions, mimicking a CNN-
like pyramid:

• Stage depth: [2, 2, 6, 2]
• Number of attention heads: [3, 6, 12, 24]
• Embedding dimensions: 96, 192, 384, 768 across stages
• Patch size: 4× 4

• Window size: 7
• MLP ratio: 4
• Normalization: LayerNorm
• Positional encoding: Relative positional bias

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Regularization: DropPath (with decay rate linearly scaled to depth)

We fine-tune all layers during federated training.

Data Preprocessing. To align with the input resolution required by Swin and ViT, we resize im-
ages from both datasets to 224 × 224 using bilinear interpolation. Standard data augmentation
techniques such as random cropping, horizontal flipping, and RandAugment are applied locally at
the client side.

Federated Learning Configuration. To simulate a realistic cross-device setting, we configure:

• Number of clients: 100

• Client participation rate: 5% per communication round

• Communication rounds: 100

• Local update steps: 50 iterations

• Batch size: 16

Learning Rate Configuration. We apply grid search to find optimal learning rates and use cosine
learning rate decay with no warmup unless otherwise stated:

• FedAvg, SCAFFOLD, FedCM: local LR = 0.1

• FedLADA, Local AdamW: local LR = 1e-4

• FedMuon and Local Muon: local LR = 1e-3

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Optimization. Local optimizers are Adam or AdamW depending on the algorithm, with parame-
ters β1 = 0.9, β2 = 0.999, and weight decay of 0.01. Cosine decay is applied to local learning rates
over the 50 local steps per round. No learning rate warmup is used unless otherwise specified.

Remarks. We find that Swin Transformer benefits from hierarchical attention and DropPath when
training with limited local data. Our method shows stable convergence and avoids loss spikes of-
ten seen in large-scale federated fine-tuning. All models are implemented using the HuggingFace
Transformers and Timm libraries.

B.6 ROBERTA-BASE FINE-TUNING SETTINGS

We fine-tune the RoBERTa-Base model using LoRA (Low-Rank Adaptation) on a subset of the
GLUE benchmark. The LoRA adaptation is applied to the query and value projection matrices of
the self-attention modules. The following table summarizes the hyperparameter settings used across
tasks.

Explanation. We use a uniform batch size of 32 and sequence length of 128 across all tasks. LoRA
is configured with a rank of 16 and scaling factor α = 32. The optimizer is AdamW with a weight
decay of 0.01 and dropout set to 0.1. No layer freezing is used; all LoRA-injected weights are
trained, while the base RoBERTa backbone remains frozen.

B.7 ADDITIONAL FEDERATED TRAINING CONFIGURATION OF LLM

To evaluate our algorithm under a smaller-scale federation, we further conduct experiments with a
reduced number of clients and adjusted participation parameters.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Summary of GLUE datasets: task type, number of classes, and dataset sizes.

Dataset Task Type #Classes Train Size Test Size

MNLI Natural Language Inference (entailment) 3 392,702 9,815
SST-2 Sentiment Classification (binary) 2 67,349 1,821
MRPC Paraphrase Detection (binary) 2 3,668 1,725
CoLA Linguistic Acceptability (binary) 2 8,551 1,043
QNLI Question-Answer NLI (binary) 2 104,743 5,463
QQP Duplicate Question Detection (binary) 2 363,846 390,965
RTE Recognizing Textual Entailment (binary) 2 2,490 3,000

Table 12: Hyperparameter configuration for RoBERTa-Base with LoRA across GLUE tasks. LoRA is applied
with r = 16 to both query and value projections. All tasks use AdamW as the optimizer.

Method Setting GLUE Tasks

MNLI SST-2 MRPC CoLA QNLI QQP RTE

RoBERTa-Base
+ LoRA

Batch size 16 16 16 16 16 16 16
Max seq. length 128 128 128 128 128 128 128
LoRA ranks (rq = rv) 16 16 16 16 16 16 16
LoRA scaling α 32 32 32 32 32 32 32
Dropout 0.1

Federated Setup. We simulate a federated learning environment with the following configuration:

• Number of clients: 4 or 20
• Client participation rate:100% or 20% (i.e., 4 clients per round)
• Communication rounds: 100
• Local update steps: 50
• Local batch size: 16

Learning Rate Schedule. We apply grid search for local and global learning rates and use cosine
learning rate decay across local updates:

• FedAvg, SCAFFOLD, FedCM: local LR = 0.1

• FedLADA, Local AdamW: local LR = 1e-4

• Local Muon, FedMuon: local LR = 1e-3

Weight Decay. To ensure fair comparison under different regularization settings, we assign:

• FedAvg, SCAFFOLD, FedCM: weight decay = 0.001

• Local Muon, FedLADA, Local AdamW, FedMuon: weight decay = 0.01

Other Settings. AdamW optimizers use β1 = 0.9, β2 = 0.999. Learning rates follow cosine
decay without warmup.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Per-round communication cost of different momentum aggregation strategies. Here |x|
denotes the number of model parameters (in floats), and CommCost is per-round communication
cost, Compute-Cost is per-round computation time. (ViT-Tiny, R = 300, Dir-0.1, K = 50)

Method / Strategy Communication CommCost Compute-Cost (s) Acc(%) Comm@23%Acc (MB)

FedAvg |x| 22.8 MB 4.56 s 27.14 4190 MB
FedProx |x| 22.8 MB 4.58 s 26.84 5244 MB
FedDyn |x| 22.8 MB 4.75 s 27.66 4788 MB
Mime 2|x| 45.6 MB 5.26 s 27.76 9804 MB
FedAdam |x| 28.50 MB 4.57 s 28.50 4651 MB
SCAFFOLD 2|x| 45.6 MB 5.22 s 27.31 8390 MB
FedCM |x| 22.8 MB 4.68 s 23.18 6156 MB
FedLADA 2|x| 45.6 MB 5.02 s 31.50 4879 MB
Local AdamW |x| 22.8 MB 4.89 s 37.86 1482 MB
Local Muon |x| 22.8 MB 5.14 s 40.53 2394 MB
FedMuon |x|+ |M |SVD 23.9 MB 5.25 s 48.18 550 MB
|M |SVD ≈ 0.05|M | since we only keep the top 5% singular values/vectors, thus the additional momentum

communication is about 5% of the baseline model communication.

Table 14: Per-round communication and computation cost of different methods on QQP us-
ing RoBERTa-Base with LoRA. Here |x| denotes the number of model parameters (in floats),
CommCost is per-round communication cost (MB), and Compute-Cost is per-round computation
time (s). (QQP, RoBERTa-Base, R = 100, Dir-0.5, 20 clients, 20% participation, batch size 16,
K = 50)

Method / Strategy CommCost (MB) Compute-Cost (s) ACC(%))
FedAvg 7.1 MB 8.56 s 81.75
FedProx 7.1 MB 8.62 s 81.15
FedDyn 7.1 MB 8.89 s 81.35
Mime 14.2 MB 11.25 s 80.26
FedAdam 7.1 MB 8.76 s 82.22
SCAFFOLD 14.2 MB 11.56 s 80.26
FedCM 7.1 MB 8.98 s 81.22
FedLADA 14.2 MB 9.58 s 81.56
Local AdamW 7.1 MB 9.26 s 81.51
Local Muon 7.1 MB 9.73 s 83.06
FedMuon (ours) 7.45 MB 9.91 s 84.65

C APPENDIX C: EXPERIMENTAL APPENDIX

C.1 COMMUNICATION AND COMPUTATION COST ANALYSIS

As shown in Table 14, we evaluate various federated learning and local optimization strategies on
the QQP dataset using RoBERTa-Base with LoRA for parameter-efficient fine-tuning. Most first-
order methods (FedAvg, FedProx, FedDyn, FedAdam, FedCM, Local AdamW, Local Muon) require
around 7.1 MB of communication per round, while methods that maintain additional control vari-
ables or gradient information (Mime, SCAFFOLD, FedLADA) incur a higher communication cost
of 14.2 MB. In contrast, FedMuon increases the per-round communication cost only slightly to 7.45
MB while achieving a notable improvement in model performance.

Regarding computation cost, the per-round training time of these methods ranges from 8 to 11 sec-
onds. FedAvg and FedProx take approximately 8.6 seconds, while FedAdam, FedDyn, and FedCM
exhibit slightly higher computation times. Mime and SCAFFOLD require additional computation
for maintaining control variates, resulting in 11.25 s and 11.56 s per round, respectively. Local Muon
and FedMuon require 9.73 s and 9.91 s per round, slightly higher than FedAvg but still within a rea-
sonable range. Most importantly, FedMuon achieves the highest accuracy of 84.65%, outperforming
common baselines such as FedAvg (81.75%), FedAdam (82.22%), and the locally optimized Local

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Test accuracy, training loss of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300
communication rounds under Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6) ResNet-18 (Dir-0.1) ViT-Tiny (Dir-0.6) ViT-Tiny (Dir-0.1)
Test Acc Loss Test Acc Loss Test Acc Loss Test Acc Loss

FedAvg 64.08 0.376 60.25 0.767 32.36 2.350 27.14 2.867
FedProx 63.12 0.458 59.66 0.812 31.51 2.425 26.84 2.875
FedDyn 66.12 0.352 63.01 0.615 33.25 2.125 27.66 2.723
Mime 67.34 0.312 63.37 0.604 34.12 2.101 27.76 2.702
FedAdam 67.23 0.332 63.61 0.512 34.32 1.965 28.50 2.425
SCAFFOLD 65.01 0.365 62.56 0.658 32.17 2.295 27.31 2.752
FedCM 70.42 0.282 66.73 0.639 26.33 2.681 23.18 3.038
FedLADA 65.07 0.671 57.78 0.498 38.33 2.121 31.50 2.678
Local AdamW 62.84 0.363 58.97 0.794 40.47 1.026 37.86 1.954
Local Muon 71.66 0.395 66.71 1.504 46.69 0.201 40.53 1.432
FedMuon 74.12 0.001 73.05 0.246 50.22 0.162 48.18 0.556

Muon (83.06%). Overall, FedMuon provides an improved efficiency–performance trade-off by sig-
nificantly enhancing accuracy while keeping communication overhead nearly unchanged.

C.2 MORE BASELINE EXPERIMENT COMPARISONS

To substantiate our method’s advantages under non-i.i.d. conditions, we extend the comparison to
additional federated baselines such as FedProx, FedDyn, and FedAdam, Mime. The comprehensive
results are presented in Table 15.

Training on CIFAR-100 with ResNet-18. Table 15 and Figure 7 present the test accuracy and
training loss on CIFAR-100 using ResNet-18. FedMuon achieves the best performance under both
Dir-0.6 and Dir-0.1 settings, reaching a top accuracy of 74.12% and 73.05%, respectively. It also
attains the lowest training loss (0.001 and 0.246), demonstrating faster and more stable convergence.
Compared to other adaptive baselines such as Local AdamW, FedMuon shows superior general-
ization under data heterogeneity, confirming its effectiveness in CNNs.

Training on CIFAR-100 with ViT-Tiny. Table 15 and Figure 7 show FedMuon achieves the
best performance across both heterogeneity levels, with 50.22% (Dir-0.6) and 48.18% (Dir-0.1),
and the lowest training loss (0.162 and 0.556), confirming its efficient convergence. Compared to
Local AdamW, it provides consistent improvements in both accuracy and stability. Moreover,
other adaptive baselines such as FedLADA perform significantly worse under high heterogeneity,
highlighting the effectiveness of global update correction and decoupled weight decay. These
results validate that FedMuon is particularly effective for federated vision Transformers under
non-i.i.d. conditions. The small dataset CIFAR100 is difficult to support the performance of ViT,
resulting in lower accuracy. Therefore, we continued to test on the pretrained model.

C.3 MORE BASELINE EXPERIMENT ON IID DATA

As shown in Table 16, on CIFAR-100, our proposed FedMuon consistently achieves the best test ac-
curacy across both ResNet-18 and ViT-Tiny under IID and non-IID (Dir-0.6 and Dir-0.1) settings.
For ResNet-18, FedMuon reaches 74.32 accuracy in the IID case, outperforming strong baselines
such as Mime and FedAdam by approximately 6.4 and 6.2 percentage points, respectively. Even
under highly heterogeneous data (Dir-0.1), FedMuon still achieves 73.05, significantly higher than
FedCM (66.73) and FedAdam (63.61). A similar trend is observed for ViT-Tiny: FedMuon achieves
50.56 accuracy in the IID setting, nearly 10 percentage points higher than Local AdamW; and in the
Dir-0.1 scenario, it maintains a strong performance of 48.18, outperforming all baselines by a large
margin.

It is also noteworthy that Local Muon performs particularly well under IID conditions. For ex-
ample, it achieves 72.04 with ResNet-18 and 47.69 with ViT-Tiny, indicating that Local Muon

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 16: Test accuracy of each method on CIFAR-100 using ResNet-18 and ViT-Tiny over 300 communica-
tion rounds under IID, Dir-0.6 and Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 ViT-Tiny

IID Dir-0.6 Dir-0.1 IID Dir-0.6 Dir-0.1

FedAvg 65.74 64.08 60.25 32.45 32.36 27.14
FedProx 65.52 63.12 59.66 32.25 31.51 26.84
SCAFFOLD 65.67 65.01 62.56 32.67 32.17 27.31
FedDyn 66.58 66.12 63.01 33.66 33.25 27.66
Mime 67.89 67.34 63.37 34.52 34.12 27.76
FedCM 70.57 70.42 66.73 27.88 26.33 23.18
FedLADA 66.23 65.07 57.78 38.56 38.33 31.50
FedAdam 68.12 67.23 63.61 34.83 34.32 28.50
Local AdamW 64.60 62.84 58.97 40.78 40.47 37.86
Local Muon 72.04 71.66 66.71 47.69 46.69 40.53
FedMuon 74.32 74.12 73.05 50.56 50.22 48.18

converges rapidly and achieves strong performance when the data distribution across clients is ho-
mogeneous. However, when the data becomes non-IID—especially under Dir-0.1—the performance
of Local Muon drops significantly (e.g., from 72.04 to 66.71 on ResNet-18, and from 47.69 to
40.53 on ViT-Tiny), revealing a severe client drift issue. In contrast, our FedMuon not only pre-
serves the fast convergence and strong performance in the IID setting, but also effectively mitigates
client drift under non-IID conditions. As a result, FedMuon consistently achieves the best per-
formance across all data distributions and model architectures, demonstrating its robustness and
stability in federated learning.

C.4 MORE EXPERIMENT ON FINE-TUNING RESULTS ON LLMS.

Fine-tuning Results on LLMs. Table 18 summarizes results on the GLUE benchmark using
RoBERTa-Base with LoRA, 20 clients, 20% participation, batch size 16, K = 50, rank=16.
FedMuon achieves the highest accuracy of GLUE outperforming strong baselines such as FedAvg
and Local Muon.

Table 18 reports the performance of various federated optimization methods on the GLUE bench-
mark using RoBERTa-Base with LoRA under a more challenging heterogeneous setting: a Dirichlet-
0.5 partition and only 20% client participation. This scenario introduces substantially higher data
imbalance and inconsistency across clients, making communication and optimization significantly
more difficult. Despite this increased heterogeneity, our proposed FedMuon consistently achieves
the best accuracy across almost all tasks.

Compared with classical methods such as FedAvg and SCAFFOLD, FedMuon shows clear im-
provements, especially on more sensitive tasks like CoLA, RTE, QQP, and MNLI. For example,
FedMuon achieves 56.78 on CoLA and 66.58 on RTE, outperforming the next-best method by 1.24
and 1.65 points respectively. Even when compared to stronger baselines such as FedLADA and
Local AdamW, our method maintains a noticeable margin. On MNLI, FedMuon reaches 85.21,
compared to 84.63 from Local Muon and only 82.44 from FedLADA. Overall, FedMuon ob-
tains the highest average accuracy (80.74), demonstrating its robustness under severe heterogeneity.

It is particularly worth noting that Local Muon again performs strongly, achieving the second-best
results on most tasks. This highlights the effectiveness of the Muon optimizer itself in improving
local training stability. However, similar to previous observations under non-IID image benchmarks,
Local Muon lacks a mechanism to correct client drift, which becomes increasingly problematic
when client updates diverge under heterogeneous data. As a result, although Local Muon obtains
competitive accuracy, it is consistently surpassed by FedMuon.

By contrast, our FedMuon integrates the advantages of Muon optimization with a federated correc-
tion mechanism that effectively mitigates client drift. This enables the algorithm to maintain stable
global convergence even with highly imbalanced data and limited participation. The strong results
across all GLUE tasks under Dir-0.5 clearly demonstrate that FedMuon remains robust, scalable,
and superior in more challenging real-world federated learning scenarios.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 17: Test accuracy using RoBERTa-Base with LoRA across GLUE tasks over 100 communication rounds
(Dirichlet-0.8, 4 clients, 100% participation, batch size 16, K = 50).

Method (Dir-0.8) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 57.32±0.22 62.71±0.35 93.32±0.08 84.13±0.15 87.02±0.19 90.19±0.12 84.18±0.21

SCAFFOLD 58.14±0.25 63.62±0.28 93.54±0.09 84.62±0.17 87.56±0.22 90.26±0.11 84.26±0.20

FedCM 58.14±0.27 66.14±0.31 93.61±0.07 84.56±0.18 87.11±0.16 90.08±0.13 84.32±0.23

FedLADA 59.10±0.21 74.14±0.29 93.66±0.10 84.86±0.16 87.42±0.18 90.18±0.14 84.46±0.19

Local AdamW 59.33±0.23 74.04±0.27 93.55±0.11 84.68±0.15 87.16±0.20 90.11±0.12 84.54±0.18

Local Muon 60.16±0.20 71.48±0.34 93.34±0.09 85.11±0.13 87.45±0.21 90.97±0.15 84.59±0.17

FedMuon (ours) 63.04±0.19 77.12±0.30 94.12±0.08 85.73±0.14 88.23±0.17 91.43±0.10 85.05±0.16

Table 18: Test accuracy (%) using RoBERTa-Base with LoRA across GLUE tasks over 100 communication
rounds under Dirichlet-0.5 partition. (20 clients, 20% participation, batch size 16, K = 50)

Method (Dir-0.5) CoLA RTE SST-2 QQP MRPC QNLI MNLI

FedAvg 51.00±0.26 51.99±0.24 93.04±0.16 81.75±0.11 88.24±0.18 89.36±0.15 81.72±0.25

FedProx 53.11±0.14 53.25±0.21 92.26±0.18 81.15±0.11 87.36±0.12 88.12±0.14 81.41±0.21

FedDyn 53.21±0.28 52.22±0.30 92.36±0.21 81.35±0.21 87.89±0.11 89.12±0.21 82.18±0.21

Mime 52.15±0.17 51.62±0.21 92.21±0.28 80.26±0.18 88.04±0.12 89.11±0.21 82.51±0.20

FedAdam 53.21±0.28 52.52±0.31 92.36±0.25 82.22±0.28 88.12±0.34 88.01±0.23 82.66±0.22

SCAFFOLD 52.15±0.17 50.65±0.20 93.28±0.28 80.26±0.18 88.35±0.12 89.32±0.24 82.11±0.20

FedCM 53.21±0.28 52.22±0.30 92.56±0.25 81.22±0.28 88.56±0.13 89.02±0.23 82.12±0.27

FedLADA 54.66±0.17 57.02±0.08 93.88±0.16 81.56±0.20 89.01±0.28 89.86±0.29 82.44±0.17

Local AdamW 55.38±0.12 59.57±0.25 93.81±0.19 81.51±0.05 88.73±0.23 89.55±0.15 82.86±0.26

Local Muon 55.54±0.05 64.93±0.17 93.58±0.27 83.06±0.11 88.95±0.13 90.52±0.27 84.63±0.10

FedMuon(ours) 56.78±0.11 66.58±0.29 93.54±0.25 84.65±0.16 88.21±0.07 90.24±0.13 85.21±0.18

C.5 MORE PRE-TRAINING EXPERIMENTS ON VIT MODEL.

To further investigate the scalability of our method on modern Transformer-based architectures,
we conduct federated pre-training experiments on the CIFAR-100 dataset using a family of ViT
models, including ViT-Tiny, ViT-Small, ViT-Base, and ViT-Large. Specifically, we adopt ViT
backbones as the global model and perform federated optimization under a highly heterogeneous
Dir-0.1 partition with 100 clients, 10% client participation per round, batch size 50, and K = 50
local update steps. This setting mimics a realistic scenario in which data are strongly non-IID across
devices and only a small fraction of clients can participate in each communication round, making it
particularly challenging for large-capacity models that are more sensitive to optimization instability
and client drift.

The results in Table 19 show that, across all four ViT variants, our proposed FedMuon consis-
tently achieves the highest accuracy, significantly outperforming both classical federated optimiza-
tion methods (FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM, FedLADA, FedAdam) and
strong local training baselines (Local AdamW, Local Muon). As the model size increases from
ViT-Tiny to ViT-Large, the performance gains of FedMuon also become more pronounced, demon-
strating that our algorithm can effectively leverage the additional capacity of larger ViT models even
under severe data heterogeneity. These results confirm that FedMuon is well suited for federated
pre-training of ViT-style architectures on CIFAR-100, providing stable and efficient optimization
across a wide range of model scales.

Table 19 reports the test accuracy on CIFAR-100 under a highly heterogeneous Dir-0.1 partition
using four ViT architectures of increasing capacity: ViT-Tiny, ViT-Small, ViT-Base, and ViT-
Large. We consider a challenging federated setting with 100 clients, 10% participation per round,
batch size 50, and K = 50 local steps. Overall, the results clearly demonstrate that our proposed
FedMuon consistently outperforms all baselines across all model scales, and that it is particularly
effective at exploiting larger model capacity under non-IID data.

Classical optimization methods such as FedAvg, FedProx, SCAFFOLD, FedDyn, Mime, FedCM,
FedLADA, and FedAdam exhibit only moderate gains as the ViT model becomes larger. For exam-
ple, FedAvg improves from 27.14 on ViT-Tiny to 33.56 on ViT-Large, and FedDyn from 27.66 to
35.34. Even though these methods benefit from increased model capacity, their performance is still

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 19: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50).

Method ViT-Tiny ViT-Small ViT-Base ViT-Large

FedAvg 27.14 29.52 31.15 33.56
FedProx 26.84 28.63 31.05 33.25
SCAFFOLD 27.31 30.24 32.85 34.58
FedDyn 27.66 31.23 33.11 35.34
Mime 27.76 31.12 33.01 35.43
FedCM 23.18 25.15 27.88 29.01
FedLADA 31.50 33.15 33.15 33.15
FedAdam 28.50 33.15 33.15 33.15
Local AdamW 37.86 37.86 37.86 37.86
Local Muon 40.53 42.34 45.26 46.54
FedMuon 48.18 50.52 53.63 56.24

Table 20: Test accuracy of each method on CIFAR-100 using ViT-Tiny, ViT-Small, ViT-Base and ViT-Large
over 300 communication rounds under Dir-0.1 (100 clients, 10% participation, batch size 50, K = 50), and
train loss of each method on OpenWebText data using GPT-2 Small, GPT-2 Medium, GPT-2 Large and
GPT-2 XL over 300 communication rounds (20 clients, 20% participation, batch size 16, K = 100).

Method CIFAR-100 (Test Acc, %) OpenWebText (Train Loss)

ViT-Tiny ViT-Small ViT-Base ViT-Large GPT-2 S GPT-2 M GPT-2 L GPT-2 XL

FedAvg 27.14 29.52 31.15 33.56 4.25 4.12 4.01 3.91
FedProx 26.84 28.63 31.05 33.25 4.33 4.21 4.15 4.05
FedDyn 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
Mime 27.66 31.23 33.11 35.34 4.10 4.02 3.89 3.78
FedAdam 28.50 33.15 33.15 33.15 4.02 3.95 3.82 3.75
SCAFFOLD 27.31 30.24 32.85 34.58 4.12 4.01 3.95 3.82
FedCM 23.18 25.15 27.88 29.01 4.32 4.21 4.02 3.91
FedLADA 31.50 33.15 33.15 33.15 3.56 3.45 3.33 3.24
Local AdamW 37.86 37.86 37.86 37.86 3.44 3.35 3.27 3.15
Local Muon 40.53 42.34 45.26 46.54 3.33 3.21 3.09 2.98
FedMuon(ours) 48.18 50.52 53.63 56.24 3.12 2.98 2.85 2.74

severely limited by client drift and the strong non-IID nature of the Dir-0.1 partition. Local train-
ing baselines, such as Local AdamW, achieve higher accuracy than most federated methods (e.g.,
37.86 across all model sizes), but they do not effectively leverage larger architectures in this setting,
indicating that naive local optimization quickly saturates under heterogeneous data.

In contrast, Local Muon significantly boosts performance for all ViT variants (e.g., from 37.86
with Local AdamW to 40.53 on ViT-Tiny and up to 46.54 on ViT-Large), showing that the Muon
optimizer itself provides stronger local training dynamics and better utilization of the transformer
capacity. However, Local Muon still suffers from client drift, and its gains plateau as data hetero-
geneity persists.

Our federated variant, FedMuon, further amplifies these benefits by coupling the Muon optimizer
with an appropriate global aggregation and drift-mitigation mechanism. As a result, FedMuon
achieves the best performance at every model scale, from 48.18 on ViT-Tiny to 56.24 on ViT-Large.
The gap between FedMuon and the strongest baselines widens as the model becomes larger (e.g.,
over 10 points improvement compared to FedDyn on ViT-Large), indicating that FedMuon not only
stabilizes optimization under non-IID data, but also scales more effectively with model capacity.
These results demonstrate that our method is particularly suitable for federated training of large
vision transformers in realistic, highly heterogeneous environments.

C.6 EFFECTIVENESS OF MUON AND OUR CORRECTION STRATEGY.

Table 21 summarizes the effect of replacing the local optimizer with Muon under different FL al-
gorithms. Using Local Muon already brings consistent improvements over Local SGD on both
backbones (e.g., +6.03 on ResNet-18 and +13.39 on ViT-Tiny). When combined with existing

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 21: Effect of local optimizer Muon on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
denote absolute improvement over the baseline in the previous row.

Variant ResNet-18 ViT-Tiny
Local SGD 60.25 27.14
Local Muon 66.28 (↑ 6.03) 40.53 (↑ 13.39)

SCAFFOLD 62.56 27.31
Local Muon + SCAFFOLD 68.23 (↑ 5.67) 42.26 (↑ 14.95)

FedCM 66.73 23.18
Local Muon + FedCM 68.77 (↑ 2.04) 44.23 (↑ 21.05)

FedDyn 63.01 27.66
Local Muon + FedDyn 67.15 (↑ 4.14) 43.56 (↑ 15.90)

FedProx 59.66 26.84
Local Muon + FedProx 67.25 (↑ 7.59) 43.11 (↑ 16.27)

Local SGD + m̄+∆G 67.56 33.23
Local Muon + m̄+∆G 73.05 (↑ 5.49) 48.18 (↑ 14.95)

personalized or corrective FL methods such as SCAFFOLD, FedCM, FedDyn, and FedProx, the
variants with Muon (Local Muon + Method) consistently outperform their baselines by a substantial
margin (2–8 points on ResNet-18 and 15–21 points on ViT-Tiny). Finally, after introducing our cor-
rection strategy m̄+∆G, Local Muon + m̄+∆G achieves the highest accuracy among all settings,
outperforming Local SGD + m̄+∆G by 5.49 (ResNet-18) and 14.95 (ViT-Tiny). These results val-
idate two key findings: (1) our correction strategy consistently improves different local optimizers,
and (2) compared with other matrix-based or preconditioned optimizers, FedMuon exhibits clear
and significant advantages.

C.7 EFFECT OF MUON-BASED MATRIX ORTHOGONALIZATION ACROSS FL ALGORITHMS.

Table 21 systematically examines the effect of replacing the local optimizer with Muon under a
variety of federated optimization frameworks. Across all baselines—including plain local training
(Local SGD), control-variate methods (SCAFFOLD), proximal or dynamic regularization meth-
ods (FedProx, FedDyn), aggregation-corrected methods (FedCM), and our momentum-aggregated
variant—the incorporation of Muon consistently yields substantial accuracy improvements.

In particular, Muon provides 6.03% and 13.39% absolute gains over Local SGD on ResNet-18 and
ViT-Tiny, respectively, demonstrating that Muon can significantly accelerate client-side adaptation
even without any server-side correction. Similar improvements are observed when Muon is com-
bined with stronger FL algorithms:

• SCAFFOLD + Muon gains 5.67% / 14.95%,

• FedCM + Muon gains 2.04% / 21.05%,

• FedDyn + Muon gains 4.14% / 15.90%,

• FedProx + Muon gains 7.59% / 16.27%

on ResNet-18 / ViT-Tiny, respectively.

These improvements are consistent and often large, indicating that the benefit of Muon is largely
orthogonal to the benefit of the federated optimization algorithms themselves: regardless of whether
the baseline relies on variance reduction, bias correction, or proximal regularization, Muon enables
faster local convergence, mitigates drift accumulation, and enhances cross-round stability. The effect
is most pronounced when Muon is combined with our momentum-aggregation strategy (m̄+∆G),
which achieves the highest accuracy among all variants. Overall, Table 21 shows that Muon acts as
a universal performance amplifier for federated learning, producing significant acceleration across
diverse FL methodologies and model architectures.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 22: Effect of different local optimizers on CIFAR-100 (Dir-0.1, 300 rounds). Numbers in parentheses
denote absolute improvement over the baseline in the previous row.

Variant ResNet-18 ViT-Tiny
Local SGD 60.25 27.14
Local SGD + m̄+∆G 67.56 (↑ 7.31) 33.23 (↑ 6.09)

Local AdamW 58.97 37.86
Local AdamW + m̄+∆G 66.25 (↑ 7.28) 41.26 (↑ 3.40)

Local Shampoo 59.62 37.56
Local Shampoo + m̄+∆G 66.52 (↑ 6.90) 42.25 (↑ 4.69)

Local Adafactor 58.23 36.52
Local Adafactor + m̄+∆G 65.52 (↑ 7.29) 40.11 (↑ 3.59)

Local LAMB 59.62 36.55
Local LAMB + m̄+∆G 64.35 (↑ 4.73) 38.65 (↑ 2.10)

FedLAMB 62.35 36.28

Local Muon 66.28 32.56
Local Muon + m̄+∆G 73.05 (↑ 6.77) 48.18 (↑ 15.62)

C.8 IMPACT OF ∆G AND m̄ ON OTHER OPTIMIZERS

Table 22 evaluates the effect of applying our correction mechanism, m̄+∆G, on a variety of local
optimizers. Across all optimizers—including AdamW, Shampoo, Adafactor, and LAMB—adding
our global momentum correction consistently improves performance on both ResNet-18 and ViT-
Tiny. These gains show that our correction effectively accelerates local training and alleviates client
drift regardless of the underlying preconditioner.

Notably, the improvement is substantially larger for Muon than for any other optimizer. While
AdamW, Shampoo, Adafactor, and LAMB obtain moderate gains (typically 3–7% on ResNet-18
and 2–6% on ViT-Tiny), the combination of Local Muon + m̄+∆G yields the largest boost:
+6.77% on ResNet-18 and a striking +15.62% on ViT-Tiny.

This pronounced improvement highlights a strong synergy between Muon and our correction mech-
anism. Muon’s orthogonalized updates produce well-conditioned local steps, and our global cal-
ibration further aligns these steps with the global descent direction. Together, they enhance both
optimization geometry and cross-client consistency, resulting in the fastest convergence and highest
accuracy among all tested optimizers.

Overall, the results demonstrate that while our correction mechanism consistently accelerates all
matrix-aware optimizers, Muon benefits the most, underscoring its unique suitability for federated
learning with structured parameters.

As shown in Table 22, our framework consistently improves both convolutional and transformer
backbones on CIFAR-100 under Dir-0.1 heterogeneity. Starting from standard Local SGD, incor-
porating our correction terms m̄ and ∆G yields gains of +7.31 and +6.09 absolute accuracy for
ResNet-18 and ViT-Tiny, respectively. A similar trend holds for other first-order optimizers: for
Local AdamW, the proposed framework improves accuracy by +7.28 (ResNet-18) and +3.40 (ViT-
Tiny); for Local Adafactor, by +7.29 and +3.59.

Beyond first-order methods, our framework also accelerates a range of matrix-based adaptive opti-
mizers. When applied to Local Shampoo, adding m̄ and ∆G leads to improvements of +6.90 and
+4.69 for ResNet-18 and ViT-Tiny, respectively. For Local LAMB, we observe consistent boosts
of +4.73 and +2.10, and the resulting models substantially outperform FedLAMB on ResNet-18
(64.35 vs. 62.35). The effect is most pronounced for Muon: Local Muon already performs strongly,
but our framework further lifts performance by +6.77 on ResNet-18 and a remarkable +15.62 on
ViT-Tiny, achieving the best overall accuracy among all variants. These results demonstrate that our
framework is not limited to Muon itself; it provides a generic correction and acceleration mecha-

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 23: Test accuracy, training loss on CIFAR-100 using ResNet-18 and ViT-Tiny over 300 communication
rounds under Dir-0.6 and Dir-0.1 settings (100 clients, 10% participation, batch size 50, K = 50).

Method ResNet-18 (Dir-0.6)ResNet-18 (Dir-0.1)ViT-Tiny (Dir-0.6)ViT-Tiny (Dir-0.1)
Test Acc Train Loss Test Acc Train Loss Test AccTrain LossTest AccTrain Loss

Local Muon 71.66 0.395 66.71 1.504 46.69 0.201 40.53 1.432
FedMuon(Algorithm 3) 74.12 0.001 73.05 0.246 50.22 0.162 48.18 0.556
FedMuon(Algorithm 2) 73.16 0.005 72.85 0.254 49.85 0.178 48.02 0.562

nism that benefits both classical first-order optimizers and a broad family of matrix-based adaptive
methods.

C.9 COMPARE FEDMUON (ALGORITHM 2) AND FEDMUON (ALGORITHM 3)

Table 23 reports the test accuracy and final training loss on the CIFAR-100 dataset using two back-
bone architectures, ResNet-18 and ViT-Tiny, under two non-IID data partitions generated by the
Dirichlet distribution with concentration parameters α = 0.6 and α = 0.1. The experiments are
conducted over 300 communication rounds with 100 clients, 10% client participation per round, a
local batch size of 50, and K = 50 local optimization steps.

35

	Introduction
	Related Work
	FL Problem Setup
	Challenges of Muon in FL
	The Muon Optimizer
	Challenges of Muon in FL

	Our Algorithm: FedMuon
	Mechanism I: Local–Global Alignment
	Mechanism II: Momentum Aggregation

	Theoretical Analysis
	Experiments
	Results on Convolutional Neural Networks and Transformer
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Appendix
	Appendix A: Proof of Theorem 1 and Convergence Analysis
	FedMuon Algorithm
	Assumption
	 Main Lemmas
	Basic Assumptions and Notations
	FedMuon Algorithm Analyze and Proof

	Appendix B: Experimental Setup
	Setting for ResNet-18
	Federated Learning Configuration
	Model Architecture
	Setting for ViT-Tiny
	Swin Transformer Fine-tuning Settings
	 RoBERTa-Base Fine-Tuning Settings
	Additional Federated Training Configuration of LLM

	Appendix C: Experimental Appendix
	Communication and Computation Cost Analysis
	More baseline experiment comparisons
	More baseline experiment on iid data
	More experiment on Fine-tuning Results on LLMs.
	More pre-training experiments on ViT model.
	Effectiveness of Muon and our correction strategy.
	Effect of Muon-based matrix orthogonalization across FL algorithms.
	Impact of G and on other optimizers
	Compare FedMuon (Algorithm 2) and FedMuon (Algorithm 3)

