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ABSTRACT

Accurate time prediction of patients’ critical events is crucial in urgent scenar-
ios where timely decision-making is important. Though many studies have pro-
posed automatic prediction methods using Electronic Health Records (EHR), their
coarse-grained time resolutions limit their practical usage in urgent environments
such as the emergency department (ED) and intensive care unit (ICU). Therefore,
in this study, we propose an hourly prediction method based on self-supervised
predictive coding and multi-modal fusion for two critical tasks: mortality and va-
sopressor need prediction. Through extensive experiments, we prove significant
performance gains from both multi-modal fusion and self-supervised predictive
regularization, most notably in far-future prediction, which becomes especially
important in practice. Our uni-modal/bi-modal/bi-modal self-supervision scored
0.846/0.877/0.897 (0.824/0.855/0.886) and 0.817/0.820/0.858 (0.807/0.81/0.855)
with mortality (far-future mortality) and with vasopressor need (far-future vaso-
pressor need) prediction data in AUROC, respectively.

1 INTRODUCTION

In the emergency department (ED) and intensive care unit (ICU), accurate time prediction of clini-
cally critical events is crucial to make timely interventions for acutely deteriorating patients. More-
over, the early prediction of critical events enables precise prioritization and preparation for high-risk
patients by an efficient resource allocation Wang & Lan (2022); Wu et al. (2017). As a result, many
studies have reported their early prediction systems using Electronic Health Records (EHR) Wang
& Lan (2022); Wu et al. (2017); Sung et al. (2021).

Reported studies, however, make predictions in coarse-grained time resolution: 1) predicting va-
sopressor need within 24/48 hour Wanyan et al. (2021); Choi et al. (2022) and within 6-10 hours
Suresh et al. (2017) and 2) predicting mortality within 24/48 hours Wanyan et al. (2021) and 3)
within the whole hospitalization period Wang & Lan (2022); Choi et al. (2019). However, predic-
tion over a coarse-grained time resolution can be impractical where timely decision-making and
rapid intervention are crucial. In this study, therefore, we aim to 1) make an hourly prediction over
the future 12 hours and 2) enhance the far-future (early) prediction by adding static features to the
EHR time-series data Wu et al. (2017).

Several studies suggest utilizing multi-modal EHR data in coarse-grained time resolution, such as
Wang et al. Wang & Lan (2022), which predicts future mortality with physiological index, treatment
records, and hospitalization records, or Suresh et al. Suresh et al. (2017), which predicts interven-
tion needs with demographic data, vital signs/lab tests, and clinical notes. However, the benefit of
additional modalities was uncertain, since these studies report the performance of the multi-modal
model without comparing it to the performance of the individual (uni-modal) model.
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Our main contributions are as follows; 1) we propose a novel fine-grained time deterioration pre-
diction method for two representative critical events in ED and ICU, i.e., mortality and vasopressor
need; 2) we show our future encoding method with additional normalization is important in our self-
supervised predictive regularization for fine-grained deterioration prediction (Fig.2); 3) through an
extensive experiment, we show that both multi-modal fusion and our self-supervised predictive reg-
ularization improves the predictive performance, especially the far-future (early) prediction, which
is crucial but more challenging than near-future prediction Wu et al. (2017); Danilatou et al. (2022).

Figure 1: (a) Overview of proposed 1) uni-modal, 2) bi-modal, 3) self-supervised methods. All
methods include predictions (supervised learning). t refers to the time when the prediction is made.
(b) Fusion structure with Lf indicating where the fusion starts.

2 METHODS

Fig. 1 illustrates the overall scheme of our network. In this paper, we propose a novel deterioration
prediction model for a fine-grained time resolution. To this end, we gradually add features with the
best performance in the following order; 1) we select a uni-modal model to learn EHR numeric data;
2) we compare bi-modal (numeric + text data) fusion strategies; 3) we compare various joint self-
supervised learning (SSL) strategies; and 4) we compare various encoding methods for the future
EHR numeric data to perform joint SSL. For each study, we select the best-performing one and fix
it for the remaining studies to assess the efficacy of the added component, e.g., additional modality
or SSL loss (Fig. 3). We conduct every study for both mortality and vasopressor need prediction
data. At the end of the last study, therefore, we propose our deterioration prediction model for
a fine-grained time resolution with the accumulated components. For a fair comparison, we fix
all Transformer-based models to equally have 8 transformer layers, 4 multi-heads, and 256 feature
dimensions (Fig. 1-(b)).

2.1 ELECTRONIC HEALTH RECORD DATA

To simulate an urgent hospital environment, we used the MIMIC-ED and MIMIC-IV (Medical In-
formation Mart for Intensive Care in Emergency Department and IV) datasets Johnson et al.; 2020).
Since both datasets share the same patients, we merged chief complaints from MIMIC-ED (text
data) and a total of 18 different time-series features from MIMIC-IV (numeric data), i.e., vital signs,
lab-test results, and demographic features (age and gender). Vital-sign includes heart rate, respira-
tion rate, and 4 other items. Lab-test result include Hematocrit, Platelet, and 8 more items Sung et al.
(2021). More detailed information about the selected features and their importance for our predic-
tion tasks are summarized in Appendix section A.1 and A.2. We labeled the occurrence of mortality
and vasopressor usage in binary. The sampling frequency for the time-series data is 1 hour, and we
applied carry-forward imputation (most recent value of the past) for missing features. For vital-sign
and lab-test features, we applied min-max normalization using the minimum and maximum values
from the entire training dataset. The input time length varies from 3 to 24 hours to 1) challenge the
prediction for patients shortly after admission and 2) simulate varying ED environments Henriksen

2



Published as a conference paper at ICLR 2023

et al. (2014). We used zero-padding to fix the input data length as 24 hours and only considered
patients who had ICU stays of 15 to 1440 hours.

Table 1: Data statistics with patient numbers for mortality prediction and vasopressor need predic-
tion tasks.

Tasks Mortality Vasopressor
Data Split Train / Test Train / Test

Positive Subjects 2544 / 262 5827 / 606
Negative Subjects 24492 / 2836 21941 / 2580

To select the best-performing model for the four studies (Table 2), we used the averaged validation
area under the receiver operating characteristic (AUROC) from 5-fold cross-validation (CV). To
assess the efficacy of the additional component, i.e. text data and SSL, we compared the averaged
test AUROC from the 5-fold CV of the best-performing uni-modal, bi-modal, and the model trained
with SSL (Fig. 3).

2.2 UNI-MODAL MODEL FOR EHR NUMERIC DATA

We explored four different models: GRU-D Che et al. (2018), LSTM, Transformer Vaswani et al.
(2017), and Graph Transformer Choi et al. (2019); Lee et al. (2022). All four models map time-
series numeric data (vital-signs, lab tests, demographics) x≤t ∈ R18×Ti , (Ti = 24 in our study)
into a context vector ct ∈ R256, which is then mapped to 12 probabilities for our 12-hour fine-
grained time prediction. For mapping, we use 12 distinct 2-layer Multilayer perceptron (MLP) with
batch normalization and ReLU non-linearities between the 2 linear layers, followed by a sigmoid
function. Both GRU-D and LSTM receive the raw input x≤t, whereas both Transformer and Graph
Transformer receive the encoded input z≤t, which is x≤t encoded by the 2-layer MLP with Layer
Normalization (LN) and ReLU activation, to output the context vector ct (CLS token vector) (Fig.
1-(a)).

2.3 BI-MODAL FUSION STRATEGY FOR EHR TEXT DATA

Alike the best-performing uni-modal model (Table 2), we use the vanilla Transformer with BERT
tokenization Devlin et al. (2016) for EHR text data. We fuse the outcomes of the Lf -th layer of the
text and numeric Transformers (Fig. 1-(b)); we refer the early and mid fusion to the fusions that
occur after the 0-th (before Transformer) and 4-th layer of the Transformers of text and numeric data
(Fig. 1-(b)). Note that we rigorously explore the early and mid fusion due to the poor performance
of the late fusion (fusion after 9-th layer) during our preliminary experiment. Moreover, we experi-
mented with three different types of fusion methods: 1) Multimodal Bottleneck Transformer (MBT)
Nagrani et al. (2021), 2) Multimodal-Transformer (MT) Nagrani et al. (2021), 3) Bi-Cross Modal
Attention Transformer (BCMAT) Tsai et al. (2019). MBT, MT, and BCMAT respectively utilize
the fusion bottleneck (FSN) tokens Nagrani et al. (2021), concatenation, and attention fusion after
the Lf -th layer. Specifically, MBT creates and lets two Transformers share four new FSN tokens
after the Lf -th layer of the text and numeric Transformers. MT concatenates the outcomes of the
Lf -th layer of both Transformers. BCMAT uses two parallel attention fusions; after Lf -th layer, one
Transformer uses its outcome as both the key and value and the outcome of the other Transformer
as the query, and vice versa for the other fusion.

Figure 2: Three different methods to encode the future numeric data (xt+k) for self-supervision. (b) is the
default method used in Section 2.4 and illustrated in Fig 1-a.
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2.4 SELF-SUPERVISED REGULARIZATION

For time-series data, Oord et al. Oord et al. (2018) introduced Contrastive Predictive Coding (CPC)
which self-supervises networks to encourage capturing global information, i.e. ‘slow feature’, using
Noise Contrastive Estimation (NCE). Moreover, Wanyan et al. Wanyan et al. (2021) and Zang et
al. Zang & Wang (2021) proposed to regularize networks by adding a SSL loss to the supervision
loss. Motivated by these studies, we regularize our bi-modal network using CPC whose loss can be
described as Eq. 1:

LNCE = −log
exp(zTt+kWkct)∑
j exp(z

T
j Wkct)

(1)

Lcosine = −
zTt+kWkct

∥zt+k∥2 · ∥Wkct∥2
(2)

Ll2 = ∥zt+k −Wkct∥2 (3)

However, since we add supervision loss to SSL loss (NCE), we assume the model will not converge
to a trivial solution (model collapse) even if the SSL loss does not contain negative pairs. Therefore,
we also implement cosine (Eq. 2) and L2 loss (Eq. 3) alongside NCE. In the equations above, ct
refers to the context vector (Fig. 1-(a)) from the bi-modal fusion Transformer. We use linear trans-
formation Wkct for SSL prediction where different Wk is used for different time step k. In this study,
we use 12 distinct Wk to concurrently predict 12 encoded future numeric zt+1, zt+2, ... , zt+12.
Note that, the encoder for the past numeric x≤t encodes 12 distinct future numeric x>t to z>t as
well. Since we maximize the mutual information (MI) between linearly transformed context vectors
and 12 distinct z>t, which share the same encoder, the encoder is encouraged to learn the informa-
tion shared across all time points; we assume this ‘slow feature’ encourages far-future prediction.
For L2 loss of MTearly (mortality prediction), we explore additional LN to normalize ct, because
L2 loss from unnormalized ct is large in its value compared to supervision loss (MBTearly does not
need additional LN since its context vector is already normalized).

2.5 ENCODING FUTURE NUMERIC DATA FOR SELF-SUPERVISION

The original CPC paper proposes to maximize MI between context vector ct and encoded future
numeric zt+k (Fig. 2-(b)) instead of using raw future numeric xt+k (Fig. 2-(a)). The aim of the
original CPC paper is to avoid modeling the high dimensional distribution of the raw data xt+k.
Since our raw data xt+k has lower dimensions than the encoded data zt+k. Therefore, we hypoth-
esized that modeling the raw future numeric may outperform modeling the encoded future numeric
(Fig. 2-(a)). Lastly, we also experimented Fig. 2-(c) which encourages similarity between the con-
text vectors of the past and the future assuming that using the time-aggregated context vector for
SSL may outperform the others. We compare the performance of these three SSL structures (Fig. 2)
in Sec. 3.2.

3 RESULTS AND DISCUSSION

In this section, we analyze the performances of different 1) models to learn EHR numeric data, 2)
strategies to fuse the encoded EHR text data and numeric data, 3) self-supervision loss, and 4) how
to use the future EHR numeric data for self-supervision. We conduct these four studies to predict
mortality and vasopressor need independently and illustrate the result in Table 2.

3.1 TRANSFORMER WORKS BETTER THAN OTHER ALTERNATIVES FOR LEARNING EHR
NUMERIC DATA

As shown in Table 2, the vanilla Transformer outperforms all other alternatives to predict mortal-
ity and vasopressor need in a fine-grained time course. Note that the vanilla Transformer excels
over the Graph Transformer suggesting that learning temporal relationships is more important than
learning inter-feature relationships. All four models show gradual degradation in performance when
predicting further in the future, which reflects the difficulty in far-future prediction.
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Table 2: Validation AUROC of 1) uni-modal, 2) bi-modal, 3) self-supervision loss, and 4) different
future numeric encoding methods for self-supervision. The range a∼a+1 indicates future prediction’s
hourly range. Best performing option in average AUROC (bold) is selected and applied to the remaining studies
to assess the efficacy of an additional feature. ∗ indicates additional normalization (Sec. 2.4). RFN,EFN,
and FC refer to the different future numeric data encoding methods for SSL (Fig. 2).

Mortality Prediction (AUROC)
Models 0∼1 1∼2 2∼3 3∼4 4∼5 5∼6 6∼7 7∼8 8∼9 9∼10 10∼11 11∼12 Avg.
GRU-D 0.897 0.867 0.852 0.838 0.831 0.822 0.812 0.798 0.788 0.801 0.786 0.78 0.823
LSTM 0.918 0.886 0.868 0.86 0.852 0.84 0.841 0.834 0.827 0.819 0.817 0.809 0.848

Transformer 0.921 0.892 0.877 0.865 0.856 0.846 0.84 0.837 0.827 0.823 0.823 0.821 0.852
Graph Transformer 0.903 0.885 0.875 0.865 0.858 0.847 0.842 0.839 0.832 0.822 0.823 0.819 0.851

MBTearly 0.91 0.887 0.881 0.876 0.872 0.865 0.859 0.86 0.858 0.854 0.851 0.857 0.869
MBTmid 0.911 0.888 0.882 0.875 0.873 0.863 0.858 0.861 0.854 0.858 0.857 0.857 0.87
MTearlyMTearlyMTearly 0.913 0.897 0.888 0.88 0.873 0.865 0.863 0.86 0.854 0.856 0.852 0.848 0.871
MTmid 0.918 0.896 0.885 0.876 0.871 0.862 0.858 0.854 0.846 0.846 0.843 0.839 0.866

BCMATearly 0.916 0.9 0.89 0.873 0.868 0.863 0.853 0.855 0.844 0.84 0.84 0.838 0.865
BCMATmid 0.903 0.888 0.876 0.869 0.864 0.854 0.847 0.848 0.841 0.842 0.845 0.842 0.86

MTearlyNCEEFN 0.9 0.885 0.875 0.867 0.868 0.853 0.848 0.851 0.844 0.837 0.836 0.822 0.857
MTearlyCosineEFN 0.91 0.902 0.89 0.872 0.884 0.876 0.84 0.86 0.865 0.875 0.855 0.839 0.872

MTearlyL2EFN 0.696 0.562 0.75 0.709 0.687 0.722 0.736 0.574 0.647 0.667 0.676 0.696 0.677
MTearly∗L2EFNMTearly∗L2EFNMTearly∗L2EFN 0.926 0.907 0.898 0.885 0.89 0.883 0.871 0.879 0.877 0.876 0.88 0.871 0.887
MTearly∗L2RFNMTearly∗L2RFNMTearly∗L2RFN 0.902 0.904 0.895 0.887 0.895 0.892 0.886 0.885 0.883 0.875 0.891 0.878 0.889
MTearly∗L2FC 0.921 0.894 0.885 0.874 0.868 0.858 0.854 0.849 0.847 0.841 0.836 0.829 0.863

Vasopressor Need Prediction (AUROC)
GRU-D 0.819 0.815 0.813 0.813 0.811 0.805 0.801 0.8 0.797 0.794 0.795 0.789 0.804
LSTM 0.814 0.81 0.808 0.806 0.802 0.8 0.795 0.794 0.791 0.79 0.785 0.782 0.798

Transformer 0.818 0.817 0.815 0.813 0.81 0.808 0.802 0.802 0.798 0.797 0.793 0.791 0.805
Graph Transformer 0.808 0.808 0.804 0.803 0.8 0.799 0.793 0.79 0.789 0.787 0.784 0.782 0.796

MBTearlyMBTearlyMBTearly 0.826 0.824 0.82 0.817 0.815 0.811 0.806 0.805 0.802 0.799 0.797 0.794 0.81
MBTmid 0.821 0.819 0.816 0.815 0.812 0.809 0.805 0.804 0.799 0.798 0.794 0.792 0.807
MTearly 0.814 0.817 0.815 0.814 0.809 0.808 0.804 0.802 0.798 0.798 0.795 0.793 0.806
MTmid 0.819 0.82 0.818 0.816 0.813 0.81 0.805 0.804 0.799 0.796 0.793 0.791 0.807

BCMATearly 0.811 0.813 0.815 0.806 0.814 0.81 0.796 0.808 0.788 0.796 0.802 0.791 0.804
BCMATmid 0.819 0.817 0.814 0.811 0.809 0.807 0.802 0.801 0.797 0.796 0.793 0.791 0.805

MBTearlyNCEEFN 0.807 0.806 0.808 0.804 0.807 0.803 0.803 0.798 0.793 0.797 0.792 0.797 0.8
MBTearlyCosineEFN 0.812 0.808 0.811 0.808 0.811 0.809 0.807 0.801 0.798 0.802 0.796 0.793 0.805

MBTearlyL2EFNMBTearlyL2EFNMBTearlyL2EFN 0.871 0.845 0.851 0.856 0.841 0.857 0.844 0.867 0.852 0.836 0.842 0.843 0.851
MBTearlyL2RFN 0.834 0.827 0.834 0.828 0.827 0.833 0.83 0.838 0.838 0.823 0.819 0.827 0.829
MBTearlyL2FC 0.819 0.815 0.816 0.814 0.81 0.808 0.802 0.802 0.797 0.796 0.793 0.791 0.805

For fusing EHR text data to EHR numeric, early fusion outperforms other strategies. Particularly,
feature concatenation (MT) benefits mortality prediction the most, whereas MBT improves the va-
sopressor need task the most.

3.2 SELF-SUPERVISED PREDICTIVE REGULARIZATION USING L2 LOSS WITH NORMALIZED
CONTEXT VECTOR IS CRUCIAL

As shown in Table 2, SSL regularization using L2 loss with normalized context vector ct by LN per-
forms the best for both prediction tasks. Note that the performance gap between MTearlyL2EFN

and MTearly∗L2EFN indicates the importance of context vector normalization. Note that the L2
loss yields comparatively larger values than the other auxiliary losses, i.e., cosine and NCE. As a
result, incorporating an additional normalization process balance the auxiliary L2 loss with super-
vised loss, thus improving the model performance. Moreover, SSL with encoded future data (Fig.
2-(b)), which is introduced in the original CPC paper does not always outperform other alternatives,
which we partly connect with the low dimensionality of raw future numeric in Sec. 2.5.
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Figure 3: Average test AUROC of mortality (left) and vasopressor need (right) prediction using the best-
performing model from each study. * and ** indicates the best performing model from Sec. 2.4 and Sec. 2.5,
respectively. Average AUROC are 0.8463, 0.877, 0.8925, 0.8971 for mortality task and 0.8166, 0.8203, 0.858
for vasopressor task (from top to bottom in the legend box).

3.3 BOTH BI-MODAL FUSION AND SELF-SUPERVISED PREDICTIVE REGULARIZATION
IMPROVES MORTALITY AND VASOPRESSOR NEED PREDICTION

After selecting the best option using validation AUROC for 1) a unimodal network, 2) bimodal
fusion strategy, and 3) SSL method respectively, we used the test AUROC to compare their per-
formances. As shown in Fig. 3, both EHR text supplementation and SSL regularization improve
the predictive performance of both tasks, i.e., mortality prediction and vasopressor need prediction.
Specifically, adding EHR text data to EHR numeric by bi-modal fusion improves overall/far-future
(11-12h) prediction of the uni-modal model (baseline) by 0.031/0.031 in mortality prediction and
by 0.004/0.003 in vasopressor need prediction. Additional SSL loss further improves overall/far-
future prediction of the bi-modal model by 0.020/0.031 in mortality prediction and by 0.038/0.045
in vasopressor need prediction. Note that for the baseline unimodal method, mortality predictive
performance degrades much as prediction time gets further in the future, unlike vasopressor need
prediction. Though both bimodal fusion and SSL regularization improve the overall predictive per-
formance for mortality prediction, they yield more improvement as prediction time gets further in
the future. However, for vasopressor need prediction, the performance gap between near-future
prediction and far-future prediction is small, and self-supervision helps overall prediction accuracy
much more than text data supplementation.

4 CONCLUSION

This paper proposes a novel hourly deterioration prediction model for urgent patients in the ED/ICU.
With extensive experiments, we show that both multi-modal fusion and self-supervised predictive
regularization effectively improve the performance of mortality and vasopressor need prediction in a
fine-grained time resolution; in mortality prediction, both multi-modal fusion and SSL regularization
specifically improve the far-future prediction. For vasopressor need prediction, SSL improves not
only the far-future prediction but also the overall prediction. In addition, we show the importance
of context vector normalization for L2 loss in SSL predictive coding regularization. We believe our
method will advance timely intervention and effective resource allocation in the ED/ICU with the
improved and thus more trustworthy prediction of patient’s critical events.
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A APPENDIX

A.1 SELECTED FEATURES

Our selected six vital-sign data includes heart rate, respiration rate, blood pressure (diastolic and
systolic), temperature, and pulse oximetry. The selected 10 lab-tests include Hematocrit, Platelet,
WBC, Bilirubin, pH, HCO3, Creatinine, Lactate, Potassium, and Sodium Sung et al. (2021).

A.2 FEATURE IMPORTANCE

For more detailed information about each numeric feature’s influence on the prediction decision,
we further calculated the contribution of vital-signs and lab-test on mortality and vasopressor use
prediction.

Figure 4: Contribution of vital signal and lab-test features for mortality and vasopressor use prediction with
Uni-modal Transformer. We used the Integrated Gradients and averaged 12 future predictions.

A.3 MODEL COMPLEXITY

Table 3: Number of parameters on each model. ∗ indicates any of the three different loss types of
NCE,Cosine, or L2

Models Number of Parameters (M)
GRU-D 1.03
LSTM 0.41

Transformer 6.06
Graph Transformer 7.16

MBTearly 19.74
MBTmid 19.74
MTearly 13.74
MTmid 16.64

BCMATearly 17.64
BCMATmid 18.68
MTearly∗EFN 14.53
MTearly∗RFN 14.53
MTearly∗FC 13.74

MBTearly∗EFN 21.31
MBTearly∗RFN 21.31
MBTearly∗FC 19.74
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