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ABSTRACT

For enhancing the rapid discovery and delivery of antibody-based drugs, antibody
attribute optimization is essential for the real-world application of therapeutic an-
tibody sequence design. Using a generative machine learning model for anti-
body design is a promising direction for such tasks. However, existing methods
struggle in balancing error accumulation, scalability, and targeted attribute opti-
mization. In this work, we propose gradient-guided discrete walk-jump sampling
(gg-dWJS), a novel discrete sequence generation method for antibody attribute
optimization. Leveraging gradient guidance in the noisy manifold, we sample
from the smoothed data manifold by applying discretized Markov chain Monte
Carlo (MCMC) using a denoising model with the gradient-guidance from a dis-
criminative model. This is followed by jumping to the discrete data manifold
using a conditional one-step denoising. Through evaluation on both discrete im-
age and antibody sequence generation tasks, we show that our method generates
high-quality samples that are well-optimized for specific tasks.

1 INTRODUCTION

Therapeutic antibody optimization is vital for the rapid discovery and delivery of antibody-based
drugs in the context of their efficacy, safety, and manufacturability. These optimized drugs find
diverse practical applications, from molecular imaging of cancer (Wu, 2014) to immunotherapy of
cancer and viral diseases (Hudson & Souriau, 2003; Lu et al., 2020). Antibody optimization is
challenging: the protein sequence has an enormous state space with high-entropy variable regions.
Besides, experimental validation is both time-consuming and expensive. Generally, the antibody
engineering process begins with in vitro experiments to determine aspects of interest such as hu-
manization, specificity (Makowski et al., 2022), efficacy, and pharmacokinetic properties, followed
by mutation to the antibody samples for improved properties.

Ab initio antibody sequence generation is a fascinating direction for generating novel antibody se-
quences given prior samples. Using a generative model, these methods attempt to generate antibody
sequences that are antibody-like and similar to prior data. We can roughly divide these models into
two groups: autoregressive models (Wang et al., 2022; Jain et al., 2022) and denoising models Luo
et al. (2022); Gruver et al. (2023). Albeit compelling, both come with their drawbacks. On one hand,
autoregressive models suffer from error accumulation and even scalability in the case of reward dis-
tribution fitting. (e.g., Jain et al. (2022)). On the other hand, denoising models require intricate noise
scheduling, making the real discovery task difficult.

To combat the inefficiency of the autoregressive and denoising models, discrete walk-jump sampling
(dWJS) (Frey et al., 2024) recently proposed sampling antibody sequences by walking on noisy
manifolds, followed by denoising jumping to the discrete data manifold. While dWJS benefits from
sampling from noisy manifolds for discrete sequence generation, its only objective is to sample from
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Figure 1: Gradient-guided discrete walk-jump sampling process. We begin the sampling process by
smoothing some discrete seed. Next, we conduct the gradient-guided walk process by combining
denoising gradient with the discriminator gradient. Finally, we perform gradient-guided jump to
return to the discrete data manifold. Here, purple tint represents higher data density and larger circle
represents higher data distribution.

the data distribution, leading to sequences that are not necessarily optimized for a chosen attribute.
However, in a real-world antibody optimization setting, we are interested in sequences that are not
only antibody-like but also attribute-optimized.

A simple but effective way of optimizing properties in a generative model is to train a discrimina-
tive model and use its gradient to guide the sampling process towards a high-fitness region. While
this approach is simpler in continuous settings, enabling direct optimization in structural space, it
still requires consideration of the amino acid sequence for actual synthesis, necessitating inverse-
folding (Dauparas et al., 2022) of structures. However, the optimized structure does not guarantee
a realizable sequence, and even if the sequence exists, there is no assurance of inverse-folding it,
motivating the need for direct optimization in sequence space. In a discrete setting such as anti-
body sequence generation, gradient guidance is difficult. The sampling step in dWJS, thankfully,
takes place in the smoothed data manifold, which lets these discriminative models provide gradient
guidance.

In this work, we present gradient-guided discrete walk-jump sampling (gg-dWJS), a novel approach
for ab initio sequence generation for antibody attribute optimization, building on (Frey et al., 2024).
To improve the likelihood of a sequence attribute, gg-dWJS learns a denoising and discriminative
model on the noisy data manifold and then walks on the noisy data manifold using discretized
Langevin MCMC with gradient guidance. Finally, using the same model, our method performs
one-step conditional denoising to jump back to the true data manifold. We evaluate our method
on image and antibody sequence generation tasks, showing that our method generates high-quality
samples with optimized attributes.

2 PRELIMINARY

2.1 NEURAL EMPIRICAL BAYES (NEB)

By combining kernel density estimation and empirical Bayes, NEB (Saremi & Hyvärinen, 2019)
provides a denoising method to recover X for a smoothed random variable Y = X + N (0, σ2Id)
such that X ⇀ Y using the gradient log density of Y . Formally, to retrieve Y ⇁ X , given Y=y, we
can get the least square estimator of X = x̂ according to Robbins (1992); Miyasawa et al. (1961)–

x̂ = y + σ2∇logp(y) (1)
Where ∇logp(y) is known as the score function (Hyvärinen & Dayan, 2005).

2.2 DISCRETE WALK-JUMP SAMPLING (DWJS)

Building on the NEB, dWJS learns the score function on the noisy data manifold parameterized as
gϕ : Rd → Rd. Hence, equation 1 now looks like the following:

x̂ = y + σ2gϕ(y) (2)
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We can learn the parameter ϕ by performing stochastic gradient descent on the following loss func-
tion.

L(ϕ) = Ex∼p(x),y∼p(y|x)||x− x̂ϕ(y)||2 (3)

To sample discrete under this formulation, we perform Langevin MCMC using gϕ on the noisy data
manifold, returning to the true data manifold using equation 2.

3 GRADIENT-GUIDED DISCRETE WALK-JUMP SAMPLING

gg-dWJS augments dWJS by learning a discriminator model P (C|Y ) (Step A) on the noisy data Y
given the true data X and its label C. Next, we train the score model gϕ on the noisy data Y (Step B).
Later, we utilize the discriminator’s gradient to guide the Langevin MCMC walk (Step C). Finally,
we jump from the noisy data manifold to the true discrete data manifold using the gradient guidance
(Step D).

3.1 STEP A: LEARNING A NOISY DISCRIMINATOR MODEL

Given the true data X and its label C, we smooth X by adding gaussian noise, obtaining Y =
X + N (0, σ2Id). Next, we learn the discriminator model logP (C|Y ) by parameterizing it with
fθ(Y ). Note that C can be both categorical and continuous. In our work, we parameterize fϕ(y) to
return logits over the labels given y. So, fθ(y, c) refers to logit for a given label c.

3.2 STEP B: LEARNING A NOISY SCORE MODEL

Similar to step B, we learn the score model on the noisy data Y , parameterizing it with gϕ. We learn
the model by minimizing the loss L from equation 3.

3.3 STEP C: GRADIENT GUIDED WALK

We start by sampling random discrete data y0 ∼ Ud. Next, we perform discretized Langevin MCMC
(Sachs et al., 2017) on y with gradient guidance from fθ(y) for K steps. Formally, we use

gϕ(yk) +∇Y fθ(yk, c)

to perform MCMC given yk and label c at the kth step. Intuitively, one can see this as performing a
gradient accent on the label c’s probability with respect to the input yk to find the local maxima while
walking towards the smoothed data density with gϕ(yk). We summarize the process in algorithm 1.

3.4 STEP D: GRADIENT GUIDED JUMP

After the K steps of walking, we jump from the noisy data manifold to the clear discrete data using
the gradient guidance and score model given smoothed data yk and label c. From NEB, given a
smoothed input y, we can jump back to x̂ using the equation 1. Without loss of generality, we can
extend that, for a conditional variable c and y ∼ p(y|c),

x̂ = y + σ2∇ylogp(y|c)
= y + σ2∇ylogp(c|y) + σ2∇ylogp(y)− σ2∇ylogp(c)

= y + σ2∇ylogp(c|y) + σ2∇ylogp(y)

≈ y + σ2∇yfθ(y, c) + σ2gϕ(y)

Therefore, according to the above demonstration, we perform a one-step denoising to return to the
true discrete data manifold using fθ and gϕ from steps A & B.

4 EXPERIMENT ON DISCRETE IMAGE GENERATION (|X | ≈ 10236)

To validate our method, we compare it against dWJS for the binarized static MNIST image gener-
ation task (Salakhutdinov & Murray, 2008; Larochelle & Bengio, 2008). The high-dimensionality
of this task (28 × 28 × 2) makes it an attractive one to validate our approach. For this task, two
questions interest us.
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Algorithm 1 gradient-guided discrete walk-jump sampling
Input:
c: targetted label
δ: step size
u: inverse mass
γ: friction
K: number of steps taken
gϕ ≈ ∇logp(y): learnt score function
fθ ≈ logp(c|y): learnt discriminator model
y0 ∼ N (0, σ2Id) + Ud(0, 1)
v0 ← 0
for k = 0, . . . ,K − 1; // gradient-guided walk
do

yk+1 ← yk + σ
2 vk

sk+1 ← gϕ(yk+1) ; // score of yk+1

dk+1 ← ∇fθ(yk+1, c) ; // discriminator gradient guidance
gk+1 ← sk+1 + dk+1

vk+1 ← vk + uδ
2 gk+1

ϵ ∼ N (0, Id)

vk+1 ← e−γδvk+1 +
uδ
2 gk+1 +

√
u(1− e−2γδ)ϵ

yk+1 ← yk+1 +
δ
2vk+1

x̂K ← yK + σ2gϕ(yK) + σ2∇fθ(yK , c) ; // gradient-guided jump

• Does gradient guidance enable more realistic generation than denoising walk?

• Can gg-dWJS generate conditionally, i.e., can we generate binarized MNIST images with
label 0?

In figure 2, we show the results of our experiment. On the left, we compare the samples generated by
dWJS, gg-dWJS without denoising walk, and gg-dWJS. The samples show that gg-dWJS produces
the most realistic and diverse samples, which is further affirmed by the lowest Fréchet inception
distance (FID) (Heusel et al., 2017) in table 1. Besides, we experiment with performing the walk
step using only gradient-guidance, but we find that it cannot generate high-quality samples. On the
right, we show the samples of labels 0, 3, and 8 produced by gg-dWJS. They showcase the method’s
ability to conditionally generate samples. We report the details related to this experiment in appendix
B.

Table 1: Experiment results for binarized static MNIST image generation. Here, we calculate FID
on the test data. Note that by binarizing MNIST images, we lose important pixel information,
contributing to the high FID.

Method FID ↓
dWJS 54.62

dWJS w/o denoising walk w/ gradient guidance 89.42
gg-dWJS 51.88

Figure 2: Comparison of binarized MNIST samples generated by different dWJS methods. Left:
from top to bottom: dWJS, gg-dWJS w/o denoising gradient, gg-dWJS. Right: from top to bottom:
gg-dWJS generated samples with label 0, 3, and 8.
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5 EXPERIMENT ON ANTIBODY SEQUENCE OPTIMIZATION (|X | ≈ 10393)

Figure 3: Visualization of generated heavy and light chain sequences using gg-dWJS optimized for
instability index. We use IgFold (Ruffolo et al., 2023) for sequence folding and Mol* viewer (Sehnal
et al., 2021) for visualization.

Now, we turn our attention to antibody sequence generation. Following Frey et al. (2024); Gruver
et al. (2023), we represent antibody sequences as x = (x1, . . . , xd) where xi ∈ 1, . . . , 21 refers
to the 20 amino acid (AA) type, augmented by the gap token ’-’. We use the ∼1.3M sequences
provided by Frey et al. (2024). These sequences are from observed antibody space (OAS) database,
aligned according to the AHo number scheme (Honegger & PluÈckthun, 2001) using the ANARCI
package (Dunbar & Deane, 2016). The gapped heavy and light chain lengths are respectively 149
and 148, making the total dimension (149 + 148) × 21. For the optimization task, we experiment
on two simple single-objective tasks: the percentage of beta sheets and the protein instability index
(Guruprasad et al., 1990). For each task, we train a smoothed predictor on the antibody sequences
and use its gradient guidance to optimize the single objective.

Table 2: Experiment results for antibody sequence generation for single-task optimization task. The
results show that gg-dWJS-generated sequences are better optimized and of higher quality.

Method DCS ↑ Instability index ↓ % Beta sheets ↑
dWJS 0.49 ± 0.30 34.14 ± 6.38 0.170 ± 0.02

gg-dWJS w/ Beta sheet discriminator 0.55 ± 0.28 35.93 ± 6.26 0.173 ± 0.02
gg-dWJS w/ Instability discriminator 0.56 ± 0.27 31.32 ± 5.21 0.170 ± 0.018

We report the results of our experiments in table 2. Specifically, we report the distributional confor-
mity score (DCS), percentage of beta sheets, and instability index for samples generated by dWJS
and gg-dWJS with the two discriminators.1 The result shows that not only does gg-dWJS gener-
ate antibody sequences that are better optimized for their respective objectives, but it also produces
sequences of higher quality overall. Details of this experiment are in appendix C

6 CONCLUSION

To speed up the discovery and delivery of antibody-based drugs, it is important to optimize the thera-
peutic antibody sequence, considering factors such as efficacy, safety, and manufacturability. While
there are established language models for protein sequence generation using language modeling, us-
ing them for antibody sequences is difficult because of high-quality data scarcity and high-entropy
variable regions in the sequence. Thus, denoising models can be a promising alternative for model-
ing such discrete modality through learning the denoising gradient in continuous space. One such
method is dWJS, which uses smoothed data to learn the denoising gradient and NEB to jump back
to the discrete data manifold. One drawback of this method is that it cannot produce samples that
optimize specific antibody attributes, which is important for real-world antibody discovery. Our pro-
posed method gg-dWJS learns a discriminative model on the smoothed data and uses the gradient
information to augment its denoising walk towards the local maxima given some attributes. Finally,
using a conditional jump using the same model, it returns to the clean data manifold. Thus, our
method requires no additional score model training for different optimization tasks.

1Because of the unavailability of the open-source implementation of DCS by Frey et al. (2024), we imple-
ment the metric following the provided algorithm, which produces the same result for dWJS (0.49) reported by
the authors.
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modern web app for 3d visualization and analysis of large biomolecular structures. Nucleic acids
research, 49(W1):W431–W437, 2021. 5

Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Generative language modeling for antibody
design. bioRxiv, pp. 2021–12, 2021. 11

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020. 10

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS. 10

8

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS


Published at the GEM workshop, ICLR 2024

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=BYWWwSY2G5s. 10

Natasa Tagasovska, Nathan C. Frey, Andreas Loukas, Isidro Hotzel, Julien Lafrance-Vanasse,
Ryan Lewis Kelly, Yan Wu, Arvind Rajpal, Richard Bonneau, Kyunghyun Cho, Stephen Ra,
and Vladimir Gligorijevic. A pareto-optimal compositional energy-based model for sampling
and optimization of protein sequences. In NeurIPS 2022 AI for Science: Progress and Promises,
2022. URL https://openreview.net/forum?id=U2rNXaTTXPQ. 11

Danqing Wang, YE Fei, and Hao Zhou. On pre-training language model for antibody. In The
Eleventh International Conference on Learning Representations, 2022. 1

Anna M Wu. Engineered antibodies for molecular imaging of cancer. Methods, 65(1):139–147,
2014. 1

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu. Reluplex made more practical: Leaky
relu. In 2020 IEEE Symposium on Computers and communications (ISCC), pp. 1–7. IEEE, 2020.
11

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Confer-
ence on Machine Learning, pp. 26412–26428. PMLR, 2022. 10

9

https://openreview.net/forum?id=BYWWwSY2G5s
https://openreview.net/forum?id=U2rNXaTTXPQ


Published at the GEM workshop, ICLR 2024

Supplementary material for

Antibody sequence optimization with
gradient-guided discrete walk-jump sampling

Zarif Ikram, Dianbo Liu, M Saifur Rahman

ACRONYMS

AA amino acid. 5

DAG directed acyclic graph. 10

DCS distributional conformity score. 5, 12

dWJS discrete walk-jump sampling. 1–5

EBM energy based model. 10

FID Fréchet inception distance. 4

GFlowNets Generative Flow Networks. 10

gg-dWJS gradient-guided discrete walk-jump sampling. 1–5

GRAVY grand average of hydropathicity. 12

KDE kernel density estimation. 12

MCMC Markov chain Monte Carlo. 1–3

NEB Neural empirical Bayes. 2, 3, 5, 10

OAS observed antibody space. 5

A RELATED WORK

A.1 DISCRETE GENERATIVE MODELS

A large class of discrete generative models consist of autoregressive models (i.e., language models).
Among many others, Austin et al. (2021) learns the posterior alphabet distribution over the prior
generated data by learning the bidirectional context in a language model. Recent works such as
Generative Flow Networks (GFlowNets) (Bengio et al., 2023; 2021) model the flow as a DAG,
and learn to sample directly proportional to a given reward function. Zhang et al. (2022) uses this
idea to train and sample from an energy based model (EBM) (LeCun et al., 2006) using contrastive
divergence (Carreira-Perpinan & Hinton, 2005). Besides, Grathwohl et al. (2021) improves the
sampling process by leveraging local gradients using a Gibbs sampler (George & McCulloch, 1993;
Gelfand, 2000).

Another way to generate data is through denoising models (Ho et al., 2020; Song & Ermon, 2020;
Song et al., 2021). These models learn the gradient log density of the data and generate continuous
data from the perturbed data distribution. Thus, they are faster and more efficient than autore-
gressive models. Of course, one cannot simply apply the denoising gradient to the discrete data
distribution because the gradients are not defined there. Many promising works attempt to remedy
this by proposing different techniques. Chen et al. (2023) simply transforms the discrete data into
analogue bits, learns the denoising gradient, and applies thresholding to return the categorical data.
Sun et al. (2023) applies denoising via a continuous-time Markov chain to the categorical data using
a stochastic jump process. Frey et al. (2024) leverages the gradient information in the smoothed data
manifold and jumps to the true data manifold using NEB.
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A.2 PROTEIN SEQUENCE OPTIMIZATION

With the advancement of language models, many recent works (Madani et al., 2020; Nijkamp et al.,
2023; Ferruz et al., 2022) propose language models pre-trained on protein data to generate protein
sequences, often for tasks such as structure prediction (Lin et al., 2023). These protein language
models have also been adopted for antibody generation tasks, both unguided (Shuai et al., 2021)
and guided (Gligorijević et al., 2021; Ferruz & Höcker, 2022; Tagasovska et al., 2022). A key
problem with language modeling of antibodies is that they struggle to capture the data distribution
of the antibody sequences given a limited amount of high-quality data and high-entropy variable
regions of the antibody sequences. As such, recent works such as Luo et al. (2022); Gruver et al.
(2023); Peng et al. (2023) leverage the continuous space of antibody structures to generate antibody
structures using diffusion. In this work, we focus on the problem of generating targeted antibody
sequences.

B ADDITIONAL DETAILS ON THE STATIC MNIST EXPERIMENT

We train the noisy score and discriminator model on the binarized static MNIST dataset.2 For score
model architecture, we use a U-Net architecture (Ronneberger et al., 2015) that takes the smoothed
one-hot representation of the discrete images and returns the score of the same shape. Finally, we
train a CNN architecture 3 on smoothed data and their corresponding labels for the discriminator
model.

Figure 4: Randomly chosen 400 static MNIST test-set samples.

C ADDITIONAL DETAILS ON THE ANTIBODY SEQUENCE OPTIMIZATION
EXPERIMENT

C.1 SCORE MODEL

We follow Frey et al. (2024) for the score model implementation available at
https://github.com/Genentech/walk-jump. We use a 35-layer Bytenet (Kalch-
brenner et al., 2016) architecture with a hidden layer of 128. To train the model from scratch,
we utilize a batch size of 64 and the AdamW optimizer (Loshchilov & Hutter, 2019) in PyTorch
(Paszke et al., 2019) with early stopping. The training parameters include a learning rate of 10−4

and a weight decay of 0.01. We conducted the training using four NVidia A100 GPUs. The training
process takes approximately 10 hours. For training the score model, we use σ = 1.

C.2 DISCRIMINATOR MODELS

We train the discriminator model on two sequence-related properties: the percentage of beta sheets
and the protein instability index. We label the training sequences using BioPython (Cock et al.,
2009). For the architecture of the smoothed predictor, we adopt a 3-layer 1D-CNN followed by a
3-layer MLP integrated into the existing ByteNet architecture, incorporating leakyReLU (Xu et al.,
2020) activations between the layers. Finally, we follow the same training parameters as the score
model training.

2Collected from Kaggle
3Based on the PyTorch example, adapted for discrete data.
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C.3 EVALUATION METRICS

The fraction of beta-pleated sheets provides insights into the structural characteristics of antibody
sequences, influencing their stability and functionality. The protein stability index is a test proposed
by Guruprasad et al. (1990). A protein sequence has a short half-life if its stability index is above
40. In the context of therapeutic antibody generation, stability is, thus, a very important metric,
as it is linked with manufacturability. The recently proposed DCS measures sample quality using
a sample-to-distribution metric, as opposed to previous sample recovery metrics (Jin et al., 2021).
We implement DCS following Frey et al. (2024), using two sequence based properties: molecular
weight and grand average of hydropathicity (GRAVY) (Kyte & Doolittle, 1982). We used the kernel
density estimation (KDE) implementation by Scikit-learn (Pedregosa et al., 2011) to approximate
the joint distribution using a Gaussian kernel with a bandwidth of 0.15.

D DISCUSSION

Why does discriminator gradient guidance produces higher quality samples? We speculate that the
guidance assists the denoising walk by reducing the discrete space. Besides, by working alongside
the denoising score, it reinforces the step taken with respect to a specific label, thereby improving the
fidelity of the data generated. There are many works such as Dhariwal & Nichol (2021); Kawar et al.
(2022) that report the same phenomenon. We leave the experimental validation of this underlying
effect for a future work.

E FUTURE WORK

An exciting direction of our current work is to generate antibody sequences targeting specific anti-
gens by estimating their binding affinities. Besides, in a real-world setting, we are more interested in
multi-objective optimization than the single-objective optimization presented in this work. Thus, us-
ing our method in a multi-objective optimization setting by combining different discriminator can be
an interesting direction. Besides, we did not explore hyperparameter tuning such as σ and gradient
guidance strength in this work. We leave these for the future iteration of this work.
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