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ABSTRACT

Machine Learning techniques have been widely adopted to predict drug-target in-
teractions, a central area of research in early drug discovery. These techniques
have shown promising results on various benchmarks although they tend to suffer
from poor generalization. This is typically related to very sparse and nonuniform
datasets available, which limits the applicability domain of machine learning tech-
niques. Moreover, widespread approaches to split datasets (into training and test
sets) treat a drug-target interaction as an independent entities, when in reality the
drug and target involved may take part in other interactions, breaking apart the
assumption of independence. We observe that this leads to overly optimistic test
results and poor generalization of out-of-distribution samples for various state-of-
the-art sequence-based machine learning models for drug-target prediction. We
show that previous approaches to reduce bias in binding datasets focus on drug
or target information only and, thus, lead to similar pitfalls. Finally, we propose
a minimum viable solution to evaluate the generalization capability of a machine
learning model based on the systematic separation of test samples with respect to
drugs and targets in the training set, thus discerning the three out-of-distribution
scenarios seen at test time: (1) drug or (2) target present in the training set, or (3)
neither.

1 INTRODUCTION

Recently developed deep learning methods to predict drug-target interactions (DTI) hold great po-
tential for drug discovery (Bagherian et al., 2021). In spite of the interest sparked both in academia
and industry towards these methods, the lack of standard pipelines or benchmarking criteria dis-
courages adoption and further developments. Particularly, as we show here, it is important to assess
deep learning models beyond usual predictive measures and increase scrutiny on what the models
are learning.

Data quantity and quality play a fundamental role in developing and applying deep learning models
successfully. In the case of DTI, multiple databases are publicly available and focus on different
characteristics of the data, such as: quality of three-dimensional structure (Binding MOAD (Smith
et al., 2019)), manual curation of annotations (PDBbind (Liu et al., 2015)), or sparsity, i.e. limiting
the number of drugs and targets (ExcapeDB (Sun et al., 2017)). Here, we perform an independent
benchmark of DTI predictors based on BindingDB (Liu et al., 2007), a database collecting inter-
actions from scientific articles and patents, which has already been used to create DTI benchmark
datasets by others (Yingkai Gao et al., 2018; Karimi et al., 2019).

Beyond the specifics of each dataset, a crucial aspect for developing and assessing a DTI predictor
is how to divide or split available data into testing and training sets, while preserving a balanced rep-
resentation of the interaction space. This has been demonstrated to be particularly challenging when
using chemical data for machine learning, given the amplitude of chemical space and the inherent
biases present in the sparse and nonuniform DTI benchmark datasets available (Sieg et al., 2019).
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Moreover, deep learning models are capable of easily fitting nuances observed in the training set,
i.e. from technical noise to random labeling (Zhang et al., 2021). Although some approaches have
been deployed for evaluating the redundancy between training and test sets of drug-based (Wallach
& Heifets, 2018), and target-based (Urban et al., 2020) models, none of these approaches is directly
applicable for DTI models. Thus, state-of-the-art DTI predictors may learn biases observed in DTI
benchmark datasets instead of chemical and physical features characterizing potential interactions.

In this work, we benchmark three recently developed DTI methods and observe competitive results
on two previously defined benchmark datasets. However, the models show relatively poor general-
ization on four Out Of Distribution (OOD) scenarios. Intuitively, a DTI deep learning model will
generalize to OOD scenarios by learning fundamental chemical and physical features that govern
the interaction between a drug and a target at the molecular level. To further understand the gen-
eralization challenge, we investigated if considering interactions as independent entities, as done
previously when splitting the training and test samples in these defined benchmark datasets, may
constitute a potential source of information leakage which, in turn, may hinder the learning and
evaluation of DTI predictors. With a baseline analysis, we show that the association of DTI in these
benchmark datasets by drug or target alone contains information and predictive power and, thus,
constitutes a case of information leakage.

To improve the assessment of DTI predictors, we propose a minimum viable solution for measuring
their generalization capability, i.e. discerning the three OOD scenarios seen at test time: (1) drug or
(2) target present in the training set, or neither (3). Our solution strengthens the assessment of DTI
predictors evaluating empirically their ability to generalize to OOD scenarios, without altering the
training set, while facilitating the identification of potential sources of bias in benchmark datasets.

To summarize, we show that considering DTI as independent entities introduces potential sampling
biases which may hinder the prediction and generalization capability of a DTI model. Correspond-
ingly, we propose a simple approach to gauge the generalization capability of a DTI model empha-
sizing the evaluation on OOD scenarios.

2 METHODS

2.1 DATASETS

All the datasets in this work are derived from BindingDB (Liu et al., 2007): a publicly accessible
and regularly updated collection of binding affinity values between proteins considered to be drug-
targets, and drug-like molecules. In particular, we adopt two benchmark datasets derived from
BindingDB, one released by Yingkai Gao et al. (2018) and the other as defined by Karimi et al.
(2019), which have been used for benchmarking recent DTI predictors (Chen et al., 2020; Born
et al., 2022). Both benchmark datasets are outlined in Table 1.

The first version, which we name BindingDBS , contains 59,136 interactions (involving 48,084 drugs
and 798 targets), distributed in training (trainS), validation (valS), test (testS) set. It was assembled
with the intent of simulating practical scenarios, i.e. “given a pair of drug and target at testing time,
the drug, the target, or both of them may have not been observed at training time” (Yingkai Gao
et al., 2018). We remove from the original sets any drug and target exceeding the length constraints
of DeepAffinity (Karimi et al., 2019) (see Section 2.2).

The second version, “BindingDBL”, contains 472,925 interactions (involving 321,950 drugs and
3,350 targets), distributed in training (trainL), validation (valL), test (testL), and 4 OOD sets, i.e. ion
Channels (testCh), nuclear Estrogen Receptors (testER), G-Protein-Coupled Receptors (testGPCR),
and Receptor Tyrosine Kinases (testRTK). This collection of datasets was released for assessing var-
ious deep learning techniques and their generalization capability, constraining four protein families
only in the respective OOD sets (Karimi et al., 2019), i.e. leaving ion Channels, nuclear Estrogen
Receptors (testER), G-Protein-Coupled Receptors, and Receptor Tyrosine Kinases out of the train-
ing set. Although none of the method in this work needs a validation set, we follow the approach
used by the authors of DeepAffinity (Karimi et al., 2019), and randomly select 10% of the samples
in the training set to split the validation set.
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Table 1: Number of unique drugs, targets, and interactions observed in the benchmark datasets, i.e.
BindingDBS and BindingDBL, as well as sparsity and ratio of Positive/Negative samples. Values
within parenthesis are the overlap with the training set, omitted when equal to 0%, bolded when
greater than 50%, and underlined in cases of data leakage.

Dataset Drugs Targets Interactions Sparsity P/N

trainS 41,708 741 48,512 0.16% 1.26
valS 4,882 (30%) 456 (90%) 5,376 0.24% 1.02
testS 4,798 (30%) 455 (90%) 5,248 0.24% 0.97
Total (unique entities) 48,084 798 59,136 0.15% 1.21

trainL 180,736 2,632 232,044 0.05% 1.30
valL 25,215 (39%) 1,778 (98%) 26,272 (4% ) 0.06% 1.33
testL 97,358 (37%) 2,370 (95%) 111,906 (4%) 0.05% 1.31
testCh 12,795 (18%) 125 (1%) 14,107 0.88% 1.02
testER 2,115 (13%) 6 3,228 25% 1.5
testGPCR 48,712 (13%) 313 57,957 0.38% 2.74
testRTK 24,608 (25%) 127 (1%) 33,189 1.06% 3.31
Total (unique entities) 321,950 3,350 472,925 0.05% 1.48

2.2 DTI PREDICTORS

In this work, we assess the predictive performance of three recent deep learning methods, together
with a machine learning baseline: DeepAffinity (Karimi et al., 2019), DeepConv-DTI (Lee et al.,
2019), TransformerCPI (Chen et al., 2020), and Random Forest (Ho, 1995). All deep learning
methods are published along with the code for training and assessing them. We do not perform
any hyperparameter optimization and aim to reproduce the methods as described in the respective
manuscripts.

DeepAffinity (Karimi et al., 2019) is the only regressor in this work, which makes comparison
to the other methods challenging. However, for completeness, we include comparison with this
method. To do this, we impose a classification threshold of 0.5 for BindingDBS (which was released
already binarized), and of 6 for BindingDBL (as done previously on BindingDBS by Yingkai Gao
et al. (2018)). DeepAffinity requires the PDB (Berman et al., 2000), Pfam (Mistry et al., 2021) and
UniRef (Suzek et al., 2015) for building the vocabulary of 72 four-mers describing the targets. Drugs
are described using an alphabet of 68 letters derived from the corresponding SMILES. Moreover,
UniRef50 (Suzek et al., 2015) and Stitch (Szklarczyk et al., 2016) are used for pre-training the
embeddings of drugs and targets, respectively. DeepAffinity accepts targets of up to 1,500 amino
acids, and SMILES of up to 100 symbols.

DeepConv-DTI (Lee et al., 2019) is the only method not relaying on external databases, nor k-
mers, nor pre-training. Although it relays on an embedding for representing protein sequences, such
embedding is trained from scratch on the training set. Drugs are represented by Morgan fingerprints
of radius 2 (Rogers & Hahn, 2010). It accepts targets of up to 2,500 amino acids.

TransformerCPI (Chen et al., 2020) is inspired from a Transformer architecture (Vaswani et al.,
2017), although the drugs are passed in input only to the decoder. Protein sequences are split into
overlapping three-mers of amino acids, and then passed to a word2vec embedding (Mikolov et al.,
2013) (pre-trained on human proteins from UniProt (The UniProt Consortium, 2017)). Each atom
of the drugs is represented via 34 chemical and physical properties calculated with RDKit (RDKit),
which are then passed to a graph.
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(a) MCC on the main Test Sets (b) MCC on the OOD Sets

Figure 1: MCC observed on (a) testS and testL, and on (b) the four OOD sets. All methods provide
good predictive performance on the test sets, and lower performance on the OOD sets.

Random Forest (Ho, 1995) is implemented using the code released along with DeepAffinity (Karimi
et al., 2019). In particular, protein sequences are represented by a vector of size 2,500 (padded with
zeros for shorter sequences), where each amino acid is encoded via a label encoder, i.e. mapped
to a number from one to twenty-five. Drugs are represented using Morgan fingerprints of radius 2
(Rogers & Hahn, 2010) calculated with RDKit (RDKit).

2.3 METRICS

We use Matthews Correlation Coefficient (MCC) to measure predictive performance. MCC sum-
marizes the confusion matrix in a single value, and is considered to be more informative than other
metrics on imbalanced datasets (Brown, 2018). Specifically, the MCC can be calculated from the
confusion matrix as follow:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

with TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False Negatives). The
MCC can assume values from -1 to 1, where the extremes indicate perfect agreement or disagree-
ment between ground truth and model predictions, and 0 indicates no relationship.

For completeness, we include Accuracy and F1 metrics for all results in this work in the AppendixA.

3 RESULTS

3.1 DTI BENCHMARK

We benchmark DeepAffinity, DeepConv-DTI, TransformerCPI, and a Random Forest on
BindingDBS and BindingDBL. To do so, we train all methods twice to obtain a model for each
benchmark dataset.

We observe good performance across the board on testS and testL, as shown in Figure 1a.
DeepConv-DTI achieves a MCC over 0.7, slightly outperforming other methods. Notably, the Ran-
dom Forest is never the worst method in this setting, and appears to be on par with the deep learning
methods.

Lower performance is observed regarding generalization, as measured on the four OOD sets, i.e.
testCh, testER, testGPCR, and testRTK (see Figure 1b). All methods achieve lower MCC values
than on testS and testL, and exceed a MCC value of 0.3 only in two cases, i.e. DeepAffinity on
testCh, and DeepConv-DTI on testRTK . DeepConv-DTI achieves the highest MCC values in most
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cases, although no method outperforms the competitors on all four OOD sets, and the Random
Forest is generally the worst by MCC value.

The results of our benchmark outline that no method outperforms all the other methods assessed,
in all benchmarking scenarios. Importantly, all methods achieve good MCC on testS and testL,
but much lower performance on OOD scenarios, pointing towards poor generalization. Regarding
DeepAffinity, we observe particularly good predictive performance on testL and testCh, although it
is challenging to compare the only regressor with the other methods.

3.2 DRUGS AND TARGETS DISTRIBUTION

To identify possible sources of overoptimistic performance on testS and testL, which may justify the
poor generalization on testCh, testER, testGPCR, and testRTK , we look deeper in the composition of
the benchmark datasets. In Section 3.2.1, we explore the overlap between training and testing sets,
first at the level of interactions and then at the level of their constitutive drugs and targets. In Section
3.2.2, we performed a baseline analysis to measure the potential information leakage because of
the overlap of drugs and targets across different interactions between training and testing sets. Our
results show that treating DTI as independent entities causes information leakage in the context of
train-test splits.

3.2.1 OVERLAPS ACROSS SETS

We find overlapping interactions in BindingDBL, a simple case of data leakage. Specifically, we
observe that 4% of the interactions in both testL and valL are present in trainL (see Table 1). We
also observe DTI with multiple labels, i.e. the same drug-target pair associated to multiple binding
observations. This case of data leakage may be due to the lack of stereochemistry in the SMILES of
BindingDBL, leading different molecules to be treated as if they were the same.

Beyond direct overlap of interactions between datasets, we also look at interactions not as indepen-
dent entities, but in terms of their constitutive drugs and targets (see Table 1). In this regard, we find
overlap of drugs and targets across all datasets with respect to their training set, including testCh,
testER, testGPCR, and testRTK .

We find that 30% of drugs and 90% of targets in testS are also in trainS , as shown in Table 1. We
find an even greater overlap between testL and trainL, i.e. 37% of drugs and 95% of targets. Similar
overlaps exist also between the validation sets and the respective training sets for both BindingDBS

and BindingDBL, as shown in Figure 2. In the case of the four OOD sets, we find that 13-25% of
the drugs in these sets, as well as one target in testCh and a second one in testRTK , are present in
trainL.

We further investigate the large overlaps of targets across training, validation, and test set seen in
BindingDBS and BindingDBL, looking at the most represented targets. In particular, we pick the top
10% targets by number of interactions in each dataset, i.e. considering the number of interactions
in each dataset individually. We observe that nearly all top targets in testS and testL are among the
top targets in the respective training and validation set, as shown in Figure 3. Thus, the overlap
of targets across training, validation, and test set seen in BindingDBS and BindingDBL is strongly
present even when looking at the top targets.

3.2.2 IDENTITY MATCHING

The overlaps of drugs and targets we observe across the benchmark datasets may represent a prob-
lematic case of information leakage, which may hinder the learning of DTI model.

We investigate this hypothesis performing a baseline analysis by extracting the average activity value
for each drug and target in the training set. Then, for each interaction in the test set, if it contains
a drug or target that is present in the training set, a drug-based prediction (p drug) and/or a target-
based prediction (p target) is provided, corresponding to their average activity in the training set.

This baseline analysis matches identities for drugs and targets across training and test sets; it per-
forms no machine learning, does not access any protein sequence or compound chemical informa-
tion, nor does it use any similarity or clustering calculation. Thus, this baseline cannot analyze
interactions involving a drug and a target when both are not present in the training set (see Table 6
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(a) Targets in BindingDBS (b) Targets in BindingDBL

Figure 2: Target overlaps in (a) BindingDBS and in (b) BindingDBL with respect to the entire
benchmark datasets. In both cases, a large portion of targets are present in training, validation, and
test set at the same time.

(a) Most represented targets in BindingDBS

(b) Most represented targets in BindingDBL

Figure 3: The overlap of targets across training, validation, and test set is strongly present even when
looking at the subset of the most represented targets in (a) BindingDBS and in (b) BindingDBL. The
overlap between training and test set is shown in magenta, and in grey when overlapping also the
validation set.
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(a) Interactions in BindingDBL
(b) MCC of identity matching baseline

Figure 4: (a) Overlaps of interactions in BindingDBL with respect to the entire benchmark dataset;
(b) baseline analysis matching identities for drugs and targets across training and test sets: for each
interaction in the test set, a drug-based prediction (p drug) and/or a target-based prediction (p target)
is provided, corresponding to their average activity in the training set.

for the number of predictions for each dataset). Given the lack of chemical and protein sequence
information in this approach, one would expect a performance close to random (MCC close to 0.0).
Nonetheless, this approach was able to produce surprisingly high MCC values on both BindingDBS

and BindingDBL, as shown in Figure 4b (see full results in Table 6).

Therefore, this analysis provides evidence of the information leakage present in the dataset due to
the non-independent nature of interactions with respect to their constitutive drugs and targets.

3.3 EVALUATION OF GENERALIZATION CAPABILITY

Motivated by the information leakage we find in BindingDBS and BindingDBL, we investigate
whether filtering the test samples according to the overlap with the training set provides a more
informative evaluation of the generalization capability of a method. Therefore, we propose to disag-
gregate OOD scenarios to improve the benchmarking of DTI predictors.

In particular, we derive 3 subsets for each test set collecting any interaction where:

1. the drug is not in the training set (D);

2. the target is not in the training set (T);

3. neither the target nor the drug is in the training set (I).

In the Sections below, we use this approach to shed additional light on the information leakage that
partially causes the overoptimistic predictive performance observed on testS and testL.

3.3.1 BINDINGDBS

The filtering approach we propose results in three subsets of testS , i.e. DS , TS , and IS (see Table 2).
For all methods, we observe good predictive performance on testS and DS , as shown in Figure 5a.
Lower performance is shown on TS and IS , meaning that filtering by target has a similar effect to
filtering by both drug and target in this dataset. The stronger relevance of filtering by target matches
the larger overlap seen across targets for DS (as show in Table 2). In part, this can be expected due
to the composition of the data (one order of magnitude fewer targets than drugs), but it also points
towards the information leakage present in testS , due to the non-independent nature of drugs and
targets within interactions.
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Table 2: Number of unique drugs, targets, and interactions observed in the modified benchmark
datasets, as well as sparsity and ratio of Positive/Negative samples. Values within parenthesis are
the overlap with the training set, omitted when equal to 0%, and bolded when greater than 50%.

Dataset Drugs Targets Interactions Sparsity P/N

DS 3,354 356 (90%) 3,623 0.3% 1.33
TS 2,210 (15%) 45 2,357 2.36% 1.03
IS 1,890 35 2,001 3.03% 1.36
Total (unique entities) 3,674 366 3,979 2.41% 1.13

trainR 195,479 2,440 265,510 0.06% 1.3
valR 28,170 (42%) 1,678 (97%) 29,501 0.06% 1.29
testR 57,250 (22%) 1,996 (85%) 69,433 0.06% 1.21
DR 35,268 1,945 (87%) 54,662 0.34% 1.14
TR 43,594 (48%) 305 36,694 0.07% 1.26
IR 21,612 254 21,923 0.4% 1.22
ICh 9,917 116 11,016 0.96% 1.13
IER 1,779 6 2,773 25.98% 1.29
IGPCR 40,606 272 46,746 0.42% 1.8
IRTK 12,254 93 21,255 1.33% 3.99
Total (unique entities) 321,891 3,268 446,234 0.04% 1.46

(a) MCC on the filtered BindingDBS

(b) MCC on BindingDBR

Figure 5: We derive 3 subsets for each benchmark dataset collecting any interaction where: (1) the
drug is not in the training set (D), the target is not in the training set (T), neither the target nor the
drug is in the training set (I). MCC observed on (a) the test set and subsets of BindingDBS , and on
(b) the sets of BindingDBR. Figure (b) shows the MCC of a Random Forest.

3.3.2 BINDINGDBL

The large overlap between trainL and testL leaves only 64 interactions in IL. Therefore, we create
a new benchnmark dataset, called BindingDBR, by resplitting the training, validation, and test set
of BindingDBL (see Table 2). To do so, we randomly select 10% of targets and 10% of drugs, and
allocate any interaction involving those to testR. We allocate 90% of any other interaction to trainR,
and the remaining 10% to valR. Thus, all samples in testR are in DR, TR, or IR.
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BindingDBR contains a similar ratio of samples as in BindingDBL, while reducing the overlap of
both drugs and targets between training and test set, and remediating the data leakage in testL (see
Figure 4a). We also filter the four OOD sets removing any interaction involving a drug or target in
trainR, i.e. ICh, IER, IGPCR, and IRTK .

We train a Random Forest on trainR and we expect analogous results for the deep learning methods
in this study. The Random Forest performs similarly well on testR and DR, and worse on TR and
IR, as shown in Figure 5b. This matches what we observe for BindingDBS in Section 3.3.1, and
provides additional evidence of the non-independence of drugs and targets within interactions.

The predictive performance on TR and IR, and to same extend those on TS and IS , resemble the
results on testCh, testER, testGPCR, and testRTK . Thus, we see our approach as an alternative
solution to evaluate OOD predictive performance, without depriving the training set of entire protein
families (as done for the four OOD sets).

4 CONCLUSION

In this work, we perform an independent benchmark of recent DTI predictors based on deep learning.
We find information leakage in previously used DTI benchmark datasets due to the non-independent
nature of drugs and targets within interactions. We examine if such information leakage is related
to overoptimistic predictive performance and relatively poor generalization observed. To support
this idea, we show the high predictive performance obtained with a baseline analysis based solely
on drugs and targets identity. To remove this source of bias and improve the assessment of DTI
predictors, we propose a novel approach for assessing DTI predictors with respect to the content
of their training set. Our novel approach results in a more comprehensive assessment of DTI pre-
dictors, discerning the OOD scenarios seen at test time, and highlighting potential source of bias
without altering the training set. For future work, we aim to consider similarity of drugs and targets,
instead of identity, to extend our minimal solution for evaluating the generalization capability of
DTI predictors.
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A APPENDIX

Figure 6: Overlaps of interactions in BindingDBS with respect to the entire benchmark dataset. The
figure shows that there is no simple case of data leakage with the training set, in net contrast with
what we observe on BindingDBL (see Figure 4a).

(a) Overlap of drugs in BindingDBR (b) Overlap of targets in BindingDBR

Figure 7: Overlaps of (a) drugs and (b) targets in BindingDBR with respect to the entire benchmark
dataset. In both cases, the overlaps with the training set is reduced with respect to BindingDBL (see
Table 1 and Figure 2b).
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Table 3: Results of DTI benchmark on the test set and subsets of BindingDBS .

Predictor Accuracy F1 MCC

testS
DeepAffinity 0.7510 0.7450 0.5197
DeepConv-DTI 0.8752 0.8749 0.7517
TransformerCPI 0.8748 0.8748 0.7496
Random Forest 0.7681 0.7669 0.5386

DS

DeepAffinity 0.6729 0.6713 0.4058
DeepConv-DTI 0.8424 0.8414 0.6893
TransformerCPI 0.8653 0.8631 0.7266
Random Forest 0.7345 0.7340 0.4823

TS

DeepAffinity 0.5286 0.4758 0.0880
DeepConv-DTI 0.7692 0.7676 0.5500
TransformerCPI 0.8014 0.8014 0.6033
Random Forest 0.6474 0.6380 0.3186

IS
DeepAffinity 0.4713 0.4380 0.0537
DeepConv-DTI 0.7556 0.7555 0.5359
TransformerCPI 0.8091 0.8066 0.6159
Random Forest 0.6127 0.6119 0.2741

Table 4: Results of DTI benchmark on the test set and OOD sets of BindingDBL.

Predictor Accuracy F1 MCC

testL
DeepAffinity 0.8317 0.8279 0.6560
DeepConv-DTI 0.8559 0.8525 0.7055
TransformerCPI 0.8259 0.8215 0.6439
Random Forest 0.8279 0.8219 0.6480

testCh

DeepAffinity 0.6468 0.6435 0.3052
DeepConv-DTI 0.5372 0.5367 0.0767
TransformerCPI 0.4961 0.4953 -0.0091
Random Forest 0.5420 0.4509 0.1858

testER

DeepAffinity 0.4899 0.4879 0.0671
DeepConv-DTI 0.5101 0.5029 0.1482
TransformerCPI 0.4988 0.4942 0.0063
Random Forest 0.3856 0.2783 0.0000

testGPCR

DeepAffinity 0.6245 0.5501 0.1060
DeepConv-DTI 0.6022 0.5615 0.1596
TransformerCPI 0.6261 0.5577 0.1240
Random Forest 0.3884 0.3860 0.0808

testRTK

DeepAffinity 0.5516 0.5304 0.2060
DeepConv-DTI 0.7150 0.6475 0.3173
TransformerCPI 0.6853 0.6051 0.2263
Random Forest 0.2397 0.2070 0.0159
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Table 5: Results of DTI benchmark on the test set, subsets, and OOD sets of BindingDBR.

Accuracy F1 MCC
testR 0.6894 0.6890 0.4023
DR 0.7040 0.7040 0.4227
TR 0.5631 0.5389 0.1883
IR 0.5729 0.5441 0.1920
ICh 0.4971 0.3952 0.1047
IER 0.3567 0.2629 0.0000
IGPCR 0.3636 0.3606 0.0520
IRTK 0.2031 0.1719 -0.0173

Table 6: Results of sequence identity baseline, and number of interactions analyzed.

Pred #preds Accuracy F1 MCC
p targetS 2,891 0.8201 0.8199 0.6500
p drugS 1,625 0.9551 0.9482 0.8964
p targetL 112,995 0.7511 0.7986 0.4883
p drugL 45,745 0.7425 0.7500 0.4860
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