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ABSTRACT

Vision–Language–Action (VLA) models leverage pretrained Vision–Language
Models (VLMs) as backbones to map images and instructions to actions, demon-
strating remarkable potential for generalizable robotic manipulation. To improve
performance, many methods have been proposed to incorporate additional obser-
vation cues (e.g., depth maps, point clouds) and auxiliary modules (e.g., object
detectors, encoders), enabling more precise and reliable task execution. Although
effective, these approaches often require extensive data collection and additional
training or fine-tuning, limiting their flexibility and scalability. Inspired by the find-
ing that Feed-Forward Network (FFN) in language models can act as “key-value
memory”, we propose Uncertainty-aware Observation Reinjection (UAOR), an
effective training-free and plug-and-play module for VLA models. Specifically,
when the current language model layer exhibits high uncertainty, measured by
Action Entropy, it reinjects the observation information into the next layer’s Feed-
Forward Network (FFN) in a blending manner. This mechanism helps VLA models
look more clearly on the observation during inference, enabling more confident and
faithful action generation. Comprehensive simulation and real-world experiments
show that our method consistently improves the performance of heterogeneous
VLA models across various tasks and embodiments while incurring minimal com-
putational overhead. Notably, UAOR eliminates the need for extra observation cues
or modules, making it a versatile and practical plug-in for existing VLA pipelines.

1 INTRODUCTION

Recent advancements in Vision–Language Models (VLMs) (Liu et al., 2024; Karamcheti et al.,
2024; Beyer et al., 2024; Bai et al., 2025) have delivered remarkable capabilities in multimodal
understanding and generalization. Building on these foundations, Vision–Language–Action (VLA)
models (Kim et al., 2025b; Black et al., 2024; Kim et al., 2025a; Li et al., 2025b) fine-tuned on
large-scale robotic datasets integrate visual observations with language instructions to synthesize
low-level control actions, exhibiting strong task execution and robust generalization across diverse
robotic manipulation scenarios. Despite these strengths, persistent data-collection bottlenecks and
considerable training budgets remain key barriers to scaling and deploying VLA models in practice.

To achieve performance gains, many efforts (Zheng et al., 2024; Bhat et al., 2025; Lin et al., 2025;
Dai et al., 2025) have explored interventions at the input level, such as augmenting observations with
additional observation priors. TraceVLA (Zheng et al., 2024) introduces visual trace prompting
and fine-tunes on 150K robot manipulation trajectories with visual traces. SpatialVLA (Qu et al.,
2025) utilizes Ego3D Position Encoding to inject 3D information into the input observations of the
visual-language-action model. While effective, such methods often rely on additional observation
priors (e.g., visual traces, depth maps), auxiliary modules (e.g., depth/point-cloud encoders) and
extensive fine-tuning, rendering them resource-intensive and poorly scalable to larger backbones and
datasets. This naturally raises the question: Is it possible to boost VLA models in a training-free
manner, without requiring supplementary observation cues or auxiliary modules?

To answer this, we begin by recognizing that VLA models inherit strong visual perception and
scene understanding from their VLM backbones, which are often underutilized in current designs.
Our key intuition is that after ingesting the observation, the model tends to progressively “forget”
during forward inference. In other words, observation information, comprising visual input and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Transformer Layer

0.00

0.20

0.40

0.60

0.80

1.00

U
nc

er
ta

in
ty

Uncertainty
= 0.75

Last 16 Layers

(a) LIBERO-Spatial

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Transformer Layer

0.00

0.20

0.40

0.60

0.80

1.00

U
nc

er
ta

in
ty

Uncertainty
= 0.80

Last 16 Layers

(b) LIBERO-Object

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Transformer Layer

0.00

0.20

0.40

0.60

0.80

1.00

U
nc

er
ta

in
ty

Uncertainty
= 0.75

Last 16 Layers

(c) LIBERO-Goal

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Transformer Layer

0.00

0.20

0.40

0.60

0.80

1.00

U
nc

er
ta

in
ty

Uncertainty
= 0.80

Last 16 Layers

(d) LIBERO-Long

Figure 1: Layer-wise uncertainty of OpenVLA-OFT across four LIBERO task suites. The dashed red
line denotes the chosen uncertainty threshold γ, while the green segment highlights the last 16 layers.
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Figure 2: Layer-wise cross-attention from action tokens to observation, language, and action tokens
in OpenVLA-OFT across four LIBERO task suites.

proprioceptive state (if available) in our setup, fades as network depth increases, akin to human
working-memory decay (Ballard et al., 1995; Horowitz & Wolfe, 1998). This decay may lead to
increased uncertainty: Figure 1 reveals an observable rise and sustained high level of uncertainty in
the early layers (layers 2-8), a pattern that highly correlates with unfaithful actions (Valle et al., 2025).
Consistently, Figure 2 shows that in this uncertainty-rising phase the attention from action tokens to
observation tokens drops sharply and then remains at a very low level, indicating that the model rarely
consults the observation when predicting actions, and empirically supporting our intuition. Therefore,
a natural idea is to reinforce observation information when model exhibits high uncertainty. Inspired
by findings that FFNs can act as key-value memory (Geva et al., 2021; Jie et al., 2024; Zou et al.,
2024), we adopt the FFN mechanism to extract key features from observation inputs and reinject
them into hidden representations, helping the model maintain clear observation throughout inference.

Building on these insights, we propose a lightweight and effective training-free module, Uncertainty-
aware Observation Reinjection (UAOR), for VLA models. It computes layer-wise uncertainty via
Action Entropy, and reinjects observation features into the FFN of the subsequent layer when the
uncertainty exceeds a threshold. This blending mechanism reinforces observation information in
high-uncertainty regions. Extensive experiments in both simulation and real-world environments
show that UAOR consistently improves heterogeneous models across diverse manipulation tasks and
embodiments, without retraining or architectural changes. Real-world robotic experiments further
validate its practicality and effectiveness. In summary, our main contributions are as follows:

• We introduce Action Entropy, a tailored metric to quantify layer-wise uncertainty in VLA models.
It reveals a mild rise in uncertainty during the early stages of inference, which we attribute to the
model’s gradual forgetting of observation information.

• We present UAOR, a training-free and plug-and-play module that treats FFN layers as “key-value
memory” and reinjects observation features into them when model exhibits high uncertainty,
reinforcing the model’s attention to observation throughout the inference process.

• We provide rigorous theoretical analysis showing that UAOR enhances the mutual information
between hidden states and observation, reduces information bottleneck loss, and lowers expected
conditional entropy to mitigate action uncertainty.

• Comprehensive experiments in multiple simulation and real-world environments show that UAOR
yields consistent performance gains across various VLA models without relying on extra observa-
tion cues or auxiliary modules, while incurring negligible inference overhead.

2 RELATED WORK

Vision-Language-Action Models. Vision–Language–Action (VLA) models integrate multimodal
understanding with action execution, paving the way for more capable robotic systems. A prominent
line of works (Brohan et al., 2022; Kim et al., 2025b; Li et al., 2024a; Black et al., 2024) fine-tune
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pretrained VLMs on large-scale robot data. RT-2X (Zitkovich et al., 2023) trains a 55B model on
the Open X Embodiment (OXE) dataset (Vuong et al., 2023), while OpenVLA (Kim et al., 2025b)
fine-tunes a 7B model based on Prismatic (Karamcheti et al., 2024), and π0 adapts PaliGemma (Beyer
et al., 2024) with a flow matching action head. Another line of works (Ye et al., 2025; Bu et al., 2025;
Chen et al., 2025) utilize web-scale videos; e.g., UniVLA (Bu et al., 2025) distills latent actions from
internet videos, and EC-Flow (Chen et al., 2025) predicts embodiment-centric flow from unlabeled
videos. Recent dual-system architectures (Han et al., 2024; Bu et al., 2024; Bjorck et al., 2025; Cui
et al., 2025) separate high-level reasoning (System 2) from low-level control (System 1), showing
promise for scalable, general-purpose robotic intelligence.

Uncertainty in Language Models. Uncertainty in language models typically reflects the ambiguity
and reliability of the predictive distribution. A key indicator is Entropy (Ling et al., 2024), where
higher values imply lower confidence and potential distribution shift. Farquhar et al. (2024) propose
entropy-based uncertainty estimators for LLMs to detect confabulations. Dropout Decoding (Fang
et al., 2024) applies uncertainty-guided token dropout principle to input visual tokens for reliability
and quality. Recent study of reinforcement learning for LLMs (Wang et al., 2025b) indicates that a
minority of high-entropy tokens drives most of the reasoning gains. In the VLA community, there is
also a growing focus on uncertainty. Valle et al. (2025) propose Token-Based Entropy (TB-E) as one
of the uncertainty metrics for VLA models. Karli et al. (2025) leverages token-level uncertainty to
enable uncertainty-aware human intervention during robotic manipulation. In our design, we quantify
the uncertainty through action entropy and employ it to evaluate how well the task is executed.

Visual Augmentation for Manipulation. Visual augmentation has emerged as a promising strategy
to strengthen perception and enhance reliability in robotic control. TraceVLA (Zheng et al., 2024)
proposes visual trace prompting to enhance spatial-temporal awareness for generalist robotic policies.
PointVLA (Li et al., 2025a) and 3D-CAVLA (Bhat et al., 2025) integrate point clouds and depth
maps to improve spatial reasoning capability, respectively. Evo-0(Lin et al., 2025) implicitly injects
3D geometry priors from VGGT (Wang et al., 2025a) into VLA models. AimBot (Dai et al., 2025)
overlays shooting lines and scope reticles onto multi-view RGB images to offer auxiliary visual
guidance. Compared with these methods, our approach augments observations via the model’s
inherent FFN layers, without introducing additional visual cues or auxiliary modules.

3 METHODOLOGY

3.1 PRELIMINARY: REFORMULATION OF FFN

A typical Feed-Forward Network (FFN) in transformer-based models comprises two fully connected
layers with an activation in between. Suppose the input hidden states of FFN are h ∈ RN×d, where
N is the sequence length and d is the hidden dimension, the FFN can be formulated as:

FFN(h) = ϕ(hW1)W2, (1)

where ϕ is activation function like ReLU or SiLU, W1 ∈ Rd×D and W2 ∈ RD×d are the weight
matrices of the two FC layers, in usual D = 4d. Note that W1 and W2 can be rewritten as:

W1 = (k1,k2, ...,kD),W2 = (v1,v2, ...,vD)⊤, (2)

where ki ∈ Rd and vi ∈ Rd denote entries of key and value, respectively. Then, the FFN can be
reformulated as

FFN(h) =

D∑
i=1

ϕ(⟨h,ki⟩) · vi. (3)

Therefore, the FFN can be viewed as performing a token-wise key-value lookup mechanism, where
each token’s hidden state of h serves as the query to calculate its similarity with keys, and gathering
values based on the similarity. This formulation closely resembles a key-value memory storing factual
knowledge, as suggested in prior work (Geva et al., 2021; Jie et al., 2024; Zou et al., 2024).

3.2 PROBLEM FORMULATION

Vision–Language–Action (VLA) models are designed to jointly process observations and language
instructions for the purpose of generating appropriate actions for robots. Formally, given the ob-
servation ot at time t and language instruction l, a model π predicts a temporal action sequence
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Figure 3: Overall framework of UAOR. We compute action entropy at layer ℓ to estimate uncertainty.
If it exceeds a threshold γ, we reinject observation features, including visual and proprioceptive
features (if available), into the next layer’s FFN via a key-value retrieval mechanism, where the input
hidden states serve as queries and the observation features act as key-value memory.

(at,at+1, ...,at+H−1) (i.e., action chunk size H) for task execution:

π : (ot, l)→ (at,at+1, ...,at+H−1). (4)

In some VLA models (Black et al., 2024; Kim et al., 2025a), the observation ot includes visual input
ov
t and proprioceptive state op

t , concatenated as ot = [ov
t ;o

p
t ]. In other models, the observation

considers only the visual modality, i.e., ot = ov
t . While in general at can represent diverse control

schemes and end-effector types, we adopt a simplified setup in this work where actions are defined as
7-DoF vectors corresponding to the gripper’s end-effector pose:

at = [∆x,∆y,∆z,∆ϕ,∆θ,∆ψ, g], (5)

where ∆x,∆y,∆z are the relative position of the end effector, ∆ϕ,∆θ,∆ψ denote the rotation
changes, and g ∈ {0, 1} indicates the gripper’s open/close state.

3.3 UNCERTAINTY-AWARE OBSERVATION REINJECTION

Uncertainty measured by Action Entropy. Recognizing the central role of entropy as a widely
adopted measure of uncertainty, we introduce Action Entropy, a VLA-specific metric that quantifies
uncertainty via the entropy of action-related output distributions. Note that current VLA models
typically follow two architectures: single-system and dual-system. For single-system models (e.g.,
OpenVLA-OFT (Kim et al., 2025a)), actions are derived directly from hidden states, either as discrete
tokens (256-bin discretization using rare vocabulary tokens) or continuous vectors (via MLP or
diffusion heads). We compute entropy directly over the action tokens. For dual-system models
(e.g., CogACT (Li et al., 2024a)), System 1 generates actions conditioned on System 2 outputs. We
therefore compute entropy over these condition tokens, which guide action generation. Based on this
setup, we define layer-wise action entropy at each time step as:

H(ℓ)
t,n = −

∑K
i=1 p

(ℓ)
t,n,i log p

(ℓ)
t,n,i

logK
, (6)

where p(ℓ)
t,n = {p(ℓ)t,n,i}Ki=1 denotes the categorical probability distribution over top-K candidate tokens

for the n-th action or condition token, obtained by projecting the FFN outputs at layer ℓ through the
language modeling head (LM Head) and normalizing with softmax, which is a standard practice in
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Algorithm 1 Uncertainty-aware Observation Reinjection (UAOR) for VLA Models

Require: VLA model π, observation ot, language instruction l
Output: Action tokens yt at time step t

1: At time step t:
2: for ℓ = 1 to L− 1 do ▷ L: total layers
3: Compute Uncertainty at Layer ℓ:
4: 1. Compute action entropyH(ℓ)

t,n using FFN output h̃(ℓ)
t at Layer ℓ ▷ Eq. 6

5: 2. Compute uncertainty: u(ℓ)t ← 1
Na

∑Na

n=1H
(ℓ)
t,n ▷ Eq. 7

6: if u(ℓ)t > γ then
7: Perform Reinjection at Layer ℓ+ 1:
8: 1. Retrieve observation features using h

(ℓ+1)
t : INJ

(ℓ+1)
t (ot | h(ℓ+1)

t ) ▷ Eq. 9
9: 2. Blend with original FFN output: FFN(ℓ+1)(h

(ℓ+1)
t ,ot) ▷ Eq. 8

10: end if
11: end for
12: Decode with π(ot, l) to obtain yt

the "Logit Lens" paradigm (nostalgebraist, 2020; Belrose et al., 2023), For discrete actions, we set
K = 256 to match the number of action bins, since the model tends to assign higher probability
mass to these 256 action tokens. For continuous actions, we likewise fix K = 256 for definitional
convenience and cross-setting consistency. Based on this formulation, we define the uncertainty of
each layer as the average action entropy over all action tokens or condition tokens:

u
(ℓ)
t =

1

Na

Na∑
n=1

H(ℓ)
t,n, (7)

whereNa is the number of selected tokens (see Appendix B.2 for model-specific settings). Eq. 7 shows
higher action entropy indicates greater uncertainty. This formulation enables tracking uncertainty
dynamics across layers. Figure 1 visualizes these trends for OpenVLA-OFT across four task suites.
We observe a slight increase in uncertainty during the early layers of inference.

Observation Reinjection with FFN. As previously discussed, early layers often exhibit high un-
certainty. To mitigate this, we introduce Uncertainty-Aware Observation Reinjection (UAOR),
illustrated in Figure 3. Specifically, during the forward pass, we compute the uncertainty u(ℓ)t based
on the action entropy at the current layer ℓ. If this uncertainty exceeds a chosen threshold γ, it
indicates that the model requires clearer observation guidance. Since the forward pass for layer ℓ
is completed, we perform reinjection at the subsequent layer (ℓ + 1) to avoid the computational
and memory overhead associated with backtracking. Concretely, we treat the encoded observation
features as a key-value memory. We use the hidden states entering the FFN at layer ℓ+ 1, denoted
as h(ℓ+1)

t , as queries to attend over this memory. The retrieved features are then blended with the
original output of the FFN at layer ℓ+ 1. The formulated process is defined as:

FFN(ℓ+1)(h
(ℓ+1)
t ,ot) = αINJ

(ℓ+1)
t (ot | h(ℓ+1)

t ) + (1− α) FFN(ℓ+1)(h
(ℓ+1)
t ), (8)

where α ∈ [0, 1] is the blending ratio. The retrieved observation features INJ
(ℓ+1)
t are computed using

h
(ℓ+1)
t as the queries:

INJ
(ℓ+1)
t (ot | h(ℓ+1)

t ) =

No∑
i=1

ϕ(⟨h(ℓ+1)
t ,ot,i⟩) · ot,i, (9)

where ot = (ot,1, ...,ot,No) serves as the key-value memory. This design allows the model to
dynamically "re-attend" to the observation in the next layer when confusion arises, without needing
to halt or backtrack the inference. The complete algorithmic flow is detailed in Algorithm 1.

3.4 THEORETICAL ANALYSIS: WHY UAOR WORKS

To understand the effectiveness of UAOR, we provide a theoretical analysis grounded in the following
four theorems:
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Notation. At time step t and layer ℓ+ 1, let h̃(ℓ+1)
t be the vanilla FFN output, ĥ(ℓ+1)

t the output after
applying UAOR (Eq. 8), and INJ

(ℓ+1)
t the reinjected observation features (Eq. 9). Let ot denote the

observation, yt the action tokens, and xt the full input (observation + language).
Theorem 3.1 (Observation information gain). If reinjection is non-degenerate and mixing is near-
invertible, then UAOR increases the mutual information between the hidden state and observation:

I
(
ĥ
(ℓ+1)
t ;ot

)
≥ I

(
h̃
(ℓ+1)
t ;ot

)
, (10)

with strict inequality if INJ
(ℓ+1)
t adds observation-dependent variability.

Theorem 3.2 (Action uncertainty reduction). Assuming a deterministic backbone and stochastic
policy head, the conditional entropy over actions is reduced if Theorem 3.1 holds:

H
(
yt | ĥ(ℓ+1)

t

)
≤ H

(
yt | h̃(ℓ+1)

t

)
. (11)

Theorem 3.3 (Information Bottleneck optimization). Let L(r) = I(r;xt) − βI(r;yt) be the
Information Bottleneck (IB) objective. Then UAOR optimizes IB when:

L(ĥ(ℓ+1)
t ) ≤ L(h̃(ℓ+1)

t ) if ∆I
(ℓ+1)
t,y ≥ 1

β
∆I

(ℓ+1)
t,x , (12)

where ∆I
(ℓ+1)
t,y ≜ I(ĥ

(ℓ+1)
t ;yt)− I(h̃(ℓ+1)

t ;yt), ∆I
(ℓ+1)
t,x ≜ I(ĥ

(ℓ+1)
t ;xt)− I(h̃(ℓ+1)

t ;xt).
Theorem 3.4 (Benefit of uncertainty-triggered reinjection). If the entropy-based layer uncertainty
u
(ℓ)
t correlates positively with H(yt | h̃(ℓ+1)

t ), then conditioning reinjection on u(ℓ)t > γ increases
the expected relevance of injected information:

E
[
I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

) ∣∣u(ℓ)t > γ
]
≥ E

[
I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

)]
. (13)

Theoretical Integration. Proofs are provided in Appendix A. These four theorems form a unified log-
ical framework explaining why UAOR works: Theorem 3.1 establishes the mechanism, guaranteeing
that reinjection restores observation information. Theorem 3.2 links this to the effect, proving that this
information gain mathematically precipitates a reduction in action uncertainty. Theorem 3.3 justifies
the objective via the Information Bottleneck principle, ensuring that the reinjection contributes valid
predictive cues rather than mere noise or redundancy. Finally, Theorem 3.4 validates our control
strategy, confirming that entropy-based triggering maximizes the expected relevance of the injected
information compared to indiscriminate injection. Together, they theoretically ground UAOR as a
method that optimizes model confidence through targeted and efficient information restoration.

4 EXPERIMENTS

4.1 SIMULATION EXPERIMENTS

Simulation Benchmarks and Baselines. We conduct evaluations on three widely-used simula-
tion benchmarks in robot learning: LIBERO (Liu et al., 2023), SIMPLER (Li et al., 2025d), and
CALVIN (Mees et al., 2022). For these benchmarks, we select several representative VLA models as
our baseline: OpenVLA-OFT (7B) (Kim et al., 2025a) and π0 (3B) (Black et al., 2024) for LIBERO,
CogACT (7B) (Li et al., 2024a) for SIMPLER, and LLaVA-VLA (0.5B) for CALVIN. These base-
lines differ in both architecture and scale—OpenVLA-OFT and LLaVA-VLA are single-system
models, while π0 and CogACT follow dual-system design; model sizes range from 0.5B to 7B
parameters. This setup enables a comprehensive assessment of UAOR’s impact across heterogeneous
VLA models, tasks, and embodiments. The main experiments are conducted using three different
random seeds to ensure reliability. More implementation details are presented in Appendix B.

Experimental Results on LIBERO. Based on OpenVLA-OFT, UAOR delivers consistent gains
across all four suites and achieves a remarkable average success rate of 98.0%, as shown in Table 1.
Notably, this performance is comparable to the recent 3D-CAVLA (Bhat et al., 2025) (98.1%), yet
UAOR eliminates the need for auxiliary depth inputs, CoT reasoning, and fine-tuning, demonstrating
superior efficiency. Validating generality, UAOR also consistently boosts the cutting-edge dual-
system policy π0 (Black et al., 2024) by +1.5 points on average. The pronounced gains on LIBERO-
Long across both architectures (+2.0) suggest that selectively reinforcing observation information

6
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Table 1: Performance comparison on the LIBERO benchmark. “†” indicates our reproduced results.

Method Spatial Object Goal Long Average
Octo (fine-tuned) (Ghosh et al., 2024) (RSS’23) 78.9 85.7 84.6 51.1 75.1
OpenVLA (Kim et al., 2025b) (CoRL’24) 84.7 88.4 79.2 53.7 76.5
TraceVLA (Zheng et al., 2024) (ICLR’25) 84.6 85.2 75.1 54.1 74.8
SpatialVLA (Qu et al., 2025) (RSS’25) 88.2 89.9 78.6 55.5 78.1
π0 + FAST (Pertsch et al., 2025) (RSS’25) 96.4 96.8 88.6 60.2 85.5
UniVLA (Bu et al., 2025) (RSS’25) 96.5 96.8 95.6 92.0 95.2
CogVLA (Li et al., 2025c) (NeurIPS’25) 98.6 98.8 96.6 95.4 97.4
3D-CAVLA (Bhat et al., 2025) (arXiv’25) 98.2 99.8 98.2 96.1 98.1

OpenVLA-OFT† (Kim et al., 2025a) (RSS’25) 98.2±0.4 98.2±0.2 97.6±0.4 94.2±0.2 97.1±0.1
w/ UAOR (Ours) 99.0±0.2 98.4±0.4 98.2±0.4 96.2±0.0 98.0±0.2
∆ +0.8 +0.2 +0.6 +2.0 +0.9

π0† (Black et al., 2024) (RSS’25) 96.3±0.6 96.7±0.7 92.9±1.2 80.5±1.2 91.7±0.5
w/ UAOR (Ours) 97.3±0.2 98.5±0.2 94.3±0.2 82.5±0.5 93.2±0.1
∆ +1.0 +1.8 +1.4 +2.0 +1.5

Table 2: Performance comparison on the SIMPLER benchmark. “†” indicates our reproduced results.

Method Pick Move Open/Close Open AverageCoke Can Near Drawer and Place
RT-1 (Brohan et al., 2022) (arXiv’23) 85.7 44.2 73.0 6.5 52.4
RT-1-X (Vuong et al., 2023) (CoRL’23) 56.7 31.7 59.7 21.3 42.4
RT-2-X (Vuong et al., 2023) (CoRL’23) 78.7 77.9 25.0 3.7 46.3
Octo-base (Ghosh et al., 2024) (RSS’23) 17.0 4.2 22.7 0.0 11.0
OpenVLA (Kim et al., 2025b) (CoRL’24) 18.0 56.3 63.0 0.0 34.3

CogACT† (Li et al., 2024a) (arXiv’25) 92.3±0.3 83.7±0.6 72.7±0.2 43.5±1.0 73.1±0.7
w/ UAOR (Ours) 95.0±0.3 87.1±0.3 73.6±0.4 47.2±0.4 75.7±0.5
∆ +2.7 +3.4 +0.9 +3.7 +2.6

Table 3: Performance comparison on the CALVIN benchmark. “†” indicates our reproduced results.

Method Success Rate (%) Avg. Len1/5 2/5 3/5 4/5 5/5
RoboFlamingo (Li et al., 2024b) (ICLR’24) 82.4 61.9 46.6 33.1 23.5 2.47
GR-1 (Wu et al., 2024) (ICLR’24) 85.4 71.2 59.6 49.7 40.1 3.06
Vidman Wen et al. (2024) (NIPS’24) 91.5 76.4 68.2 59.2 46.7 3.42
OpenVLA (Kim et al., 2025b) (CoRL’24) 91.3 77.8 62.0 52.1 43.5 3.27
VLAS (Zhao et al., 2025a) (ICLR’25) 87.2 64.2 40.9 28.1 19.6 2.40

LLaVA-VLA† (Zhao et al., 2025b) (arXiv’25) 94.4±0.2 82.0±0.8 70.8±0.3 59.4±0.6 48.2±0.4 3.55±0.05
w/ UAOR (Ours) 95.5±0.3 84.6±0.6 72.3±0.5 60.7±0.2 49.1±0.0 3.67±0.03
∆ +1.1 +2.6 +1.5 +1.3 +0.9 +0.12

effectively mitigates the “forgetting” of perceptual cues and reduces error accumulation during
complex sequential reasoning.

Experimental Results on SIMPLER. Table 2 shows that UAOR raises the average success rate of
CogACT by +2.6 points (73.1→ 75.7; ∼3.6% relative). The improvements are most evident on Pick
coke can (+2.7), Open top drawer and place apple (both +3.7) and Move near (+3.4), with a smaller
gain on Open/Close drawer (+0.9). These tasks demand precise localization and placement under
visual clutter, and the results suggest that uncertainty-aware observation reinjection improves scene
grounding and decision reliability without extra priors or retraining, validating the utility of UAOR
as a training-free plug-in module .

Experimental Results on CALVIN. As demonstrated in Table 3, with LLaVA-VLA on the ABC→D
split (Fig. 3), UAOR improves success on every track and increases the average consecutive com-
pletion length by +0.12 (3.55→ 3.67; ∼3.4% relative). The consistent gains across progressively
longer task chains indicate better maintenance of observation fidelity leading to reduced uncertainty
in downstream action prediction. Together with LIBERO and SIMPLER, these results substantiate
that UAOR provides reliable, training-free improvements across heterogeneous VLA architectures,
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ZED 2i

Franka 
Research 3

Real Robot Setup Basic Setting3D Mouse

Figure 4: Real-World Setup and Results.

Table 4: Ablation Study on Injection Mechanism, Feature Extraction and Trigger Policy on LIBERO.

Method / Variant Feature Trigger Success Rate (%)
Extraction Policy Spatial Object Goal Long Avg.

OpenVLA-OFT (Base) - - 98.2 98.2 97.6 94.2 97.1

Mean-Residual Mean Pooling All Layers 0.0 0.0 0.0 0.0 0.0
Mean-Residual Mean Pooling Random 98.0 98.4 96.8 94.4 96.9
Mean-Residual Mean Pooling Entropy-based 0.0 0.0 0.0 0.0 0.0
Mean-Blending Mean Pooling All Layers 98.0 96.8 95.8 94.4 96.3
Mean-Blending Mean Pooling Random 98.4 97.8 97.8 94.8 97.2
Mean-Blending Mean Pooling Entropy-based 98.0 97.8 97.6 93.8 96.8
UAOR (All Layers) Attentive Retrieval All Layers 97.8 97.6 96.2 95.2 96.7
UAOR (Random) Attentive Retrieval Random 97.8 97.6 96.4 93.6 96.4
UAOR (Ours) Attentive Retrieval Entropy-based 99.0 98.4 98.2 96.2 98.0

tasks, and embodiments. We also provide additional experimental results in Appendix C, including
multi-seed evaluations and qualitative visualizations to further show the effectiveness of UAOR.

4.2 REAL-WORLD EXPERIMENTS

Real-World Setup. We perform real-robot experiments to validate the effectiveness of UAOR in the
real world. Our real-robot setup includes a Franka Research 3 robot arm equipped with a parallel-jaw
gripper, a static ZED 2i camera, and a 3D mouse (Figure 4). In total, we evaluate on four tasks: 1)
Close the upper drawer, 2) Put the redbull on the plate, 3) Put the lion on the top shelf, and 4) Stand
the coke can up. These tasks range from simple short-horizon placement to complex long-horizon
multi-stage manipulation. We fine-tune both OpenVLA-OFT and CogACT on each task using 40
expert trajectories and evaluate each task with 10 test rollouts (see Appendix B.3 for more details).

Results. Figure 4 reports the real-world evaluation results on both OpenVLA-OFT and CogACT. For
OpenVLA-OFT, we observe consistent performance improvements across three of the four tasks,
with the average success rate increasing from 40.0% to 50.0% (+25.0% relative). The largest gain
appears on the most challenging task, Stand the coke can up (+66.7% relative). Crucially, UAOR
demonstrates strong generalizability when applied to CogACT. It achieves improvements across all
four tasks, boosting the average success rate from 57.5% to 70.0% (+21.7% relative). Notably, in
the Put the redbull on the plate task, UAOR increases the success rate by an absolute 20%. These
combined results validate the effectiveness of UAOR in enhancing manipulation robustness and
generating faithful actions across different model architectures in real-world scenarios.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies on the LIBERO benchmark based on OpenVLA-OFT to
investigate the effectiveness of our design choices.

Ablation on Core Designs. Table 4 presents a factorial ablation on injection mechanisms, feature
extraction, and trigger policies. We define Mean-Residual as directly adding mean-pooled observation
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Figure 5: Impact of uncertainty threshold γ and blending factor α across four LIBERO task suites.

features to the FFN’s output hidden states and Mean-Blending as α-blending. Trigger policies include
All Layers, Random (matching the injection rate of Entropy-based), and Entropy-based (uncertainty
threshold). More details are in Appendix B.4. Results reveal three insights: (1) Injection Mechanism:
Direct addition causes catastrophic collapse (0.0%) due to severe feature shifts, whereas α-blending
ensures stability. Mean-Residual (Random) survives (96.9%) only because its sparsity allows model
recovery in subsequent layers. (2) Feature Extraction: Even with stable blending, Mean Pooling
(96.3%–97.2%) struggles to surpass the strong baseline (97.1%). This is because averaging assigns
equal weight to all observation tokens, failing to distinguish relevant cues. In contrast, UAOR’s
Attentive Retrieval succeeds by effectively extracting fine-grained context relevant to the current
hidden state. (3) Trigger Policy: For UAOR, indiscriminate injection (All Layers/Random) acts as
noise, degrading performance (96.7%/96.4%). Only entropy-based triggering yields improvements
(98.0%). Additionally, we have also performed an ablation study in Appendix C.1 to empirically verify
the necessity and efficiency of injecting into the next layer’s FFN compared to other architectural
alternatives. Collectively, these findings validate the effectiveness of the core designs of UAOR.

Table 5: Comparison of uncertainty met-
rics on the LIBERO benchmark.

Metric Train? Average

OpenVLA-OFT - 97.1
Feature Entropy No 96.9
Learned Head Yes 97.7
Action Entropy No 98.0

Rationale for Action Entropy. To validate our metric
design, we compare UAOR against variants using Fea-
ture Entropy (hidden state distribution) and a supervised
Learned Head (linear probe). As shown in Table 5, Fea-
ture Entropy proves ineffective (96.9%), as it captures
representation richness rather than decision uncertainty,
often spiking only in the final layers (see Appendix C.2).
While the Learned Head performs well (97.7%), UAOR
achieves superior performance (98.0%) while being en-
tirely training-free. Additionally, layer-wise probing experiments (Appendix C.2) confirm that
intermediate layers already contain significant action semantics (e.g., 78.5% accuracy at Layer 12),
validating the use of the frozen LM head as a reliable “rough decoder” for uncertainty estimation.

Table 6: Reinjection information abla-
tion on LIBERO within OpenVLA-OFT.

# Vision Proprio Instruction Average

1 ✗ ✗ ✗ 97.1
2 ✓ ✗ ✗ 97.1
3 ✗ ✓ ✗ 96.4
4 ✗ ✗ ✓ 96.9
5 ✓ ✓ ✗ 98.0
6 ✓ ✗ ✓ 96.4
7 ✗ ✓ ✓ 97.0
8 ✓ ✓ ✓ 96.7

Why Select Observation to Reinject? Table 6 presents
an ablation on the type of information reinjected into FFN
layers. Results show that reinjecting observation informa-
tion (i.e., visual and proprioceptive features) yields the
most consistent performance improvements. In contrast,
reinjecting instruction features—either alone or in com-
bination—leads to no improvement or even performance
drops. This suggests that visual and proprioceptive fea-
tures play a critical role in guiding robot behavior, while
also revealing a potential limitation of current VLA mod-
els—their insufficient instruction-following capability and
tendency to overfit to static language inputs.

The Impact of γ and α. Figure 5 illustrates the effect of varying the uncertainty threshold γ and the
blending factor α on the performance of OpenVLA-OFT with UAOR. Figures 5a and 5b show the
marginal effects when fixing one hyperparameter to its optimal value. To further investigate their
interaction, we present a joint sensitivity analysis on LIBERO-Long in Figure 5c. As demonstrated
by the 3D surface plot, the performance follows a convex trend, indicating that γ and α must be
balanced to achieve optimal results. Specifically, we observe two failure modes at the extremes: (1)
Over-correction: A small γ (frequent injection) coupled with a large α (strong mixing) degrades
performance, likely by disrupting critical internal representations. (2) Under-correction: A large γ
(rare injection) coupled with a small α (weak mixing) fails to provide sufficient observation guidance.

9
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The distinct peak in Figure 5c confirms our selected parameters lie within the optimal region. In
practice, we use an efficient heuristic strategy detailed in Appendix B.2 to determine these values.

4.4 MORE ANALYSIS

(a) Language-guided  Weighting

(b) Proprio-guided  Weighting

Figure 6: Visualization of our token-
level weighting for visual inputs.

Do We Need Token-level Weighting for Visual In-
puts? In UAOR, visual tokens are injected with uni-
form weights. Inspired by findings that attending to
task-relevant regions enhances manipulation (Song et al.,
2025), we investigate whether token-level weighting im-
proves performance. We design two training-free heuristic
weighting schemes that assign each visual token a rel-
evance score based on its similarity to either language
instruction tokens (fl) or proprioceptive state tokens (fp):

w(m) = N
(m)
v · softmax

(
1
Nq

∑Nq

i=1 f
(m)
v f⊤q,i

)
, where

fq ∈ {fl, fp} denotes the query features. Figure 6 visual-
izes the resulting weights: while language-based weight-
ing focuses on task-relevant objects (Figure 6a), proprio-
based weighting exhibits diffuse and semantically am-
biguous patterns (Figure 6b), likely due to the lack of
explicit alignment between proprioceptive and visual fea-
ture spaces. We evaluate these variants on LIBERO with
OpenVLA-OFT. As shown in Table 7, neither weighting
scheme outperforms the original uniform strategy. Notably, proprio-guided weighting even degrades
performance slightly compared to the baseline.

Table 7: Impact of token-level visual
weighting based on OpenVLA-OFT.

Method Average

OpenVLA-OFT 97.1
w/ UAOR (Uniform, Default) 98.0
w/ UAOR (Language-guided) 97.3
w/ UAOR (Proprio-guided) 96.9

We hypothesize two reasons: 1) Both heuristic schemes
lack precise alignment supervision. This is particularly
severe for proprioceptive states (e.g., joint angles), which
lack intrinsic spatial correspondence with visual tokens,
resulting in uninformative weights; 2) VLA models are
trained under uniform token weighting and may inherently
learn to attend to salient regions, making external heuristic
weighting disruptive. In summary, uniform reinjection
provides the most robust performance

Table 8: Comparison of inference
overhead between OpenVLA-OFT and
OpenVLA-OFT w/ UAOR. Throughput
refers to the number of generated actions
per second, and Latency indicates the in-
ference time per time step.

Method Throughput ↑ Latency ↓
OpenVLA-OFT 49.7 Hz 0.161 s

w/ UAOR 47.3 Hz 0.169 s

Complexity Analysis. Although UAOR proves highly
effective, an important consideration is its computational
cost. We provide a theoretical complexity analysis in Ap-
pendix D and evaluate actual runtime overhead through
empirical experiments. Specifically, we run 500 rollouts
on the LIBERO-Long benchmark using OpenVLA-OFT.
As shown in Table 8, applying UAOR results in only a
slight throughput drop from 49.7 Hz to 47.3 Hz, and a
marginal latency increase from 0.161s to 0.169s. These
results indicate that UAOR introduces negligible compu-
tational overhead in practice.

5 CONCLUSION

We present UAOR, a lightweight, training-free module designed to boost VLA models. By introducing
action entropy as a measure of inference-time uncertainty, UAOR dynamically reinjects observation
information into the next-layer FFN when uncertainty is high. This mechanism allows the model to
refocus on relevant observation features, leading to more confident and reliable action generation.
We provide theoretical analysis demonstrating its efficiency, and validate its effectiveness across a
wide range of VLA models, tasks, and embodiments in both simulation and real-world experiments.
Without requiring additional observation cues, modules or training, UAOR consistently achieves
performance gains with negligible computational overhead, making it a versatile and practical
plug-and-play module for existing VLA models.
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A PROOFS FOR THEORETICAL ANALYSIS: WHY UAOR WORKS

In this section, we provide rigorous proofs for the four theorems stated in Section 3.4, grounded in
the Information Bottleneck (IB) theory. We show that UAOR increases the Mutual Information (MI)
between hidden states and the observation memory, thereby reducing the conditional entropy given
the hidden states, and further improving the Information Bottleneck (IB) objective.

Preliminaries. At time step t and layer ℓ+1, let h̃(ℓ+1)
t be the vanilla FFN output, ĥ(ℓ+1)

t the output
after applying UAOR (Eq. 8), and INJ

(ℓ+1)
t the retrieved observation information (Eq. 9). Let ot be

the observation memory, yt the action tokens, and xt the full input (observation + language). We
write T (ℓ+1)

t ≜
(
h̃
(ℓ+1)
t , INJ

(ℓ+1)
t

)
and ĥ

(ℓ+1)
t = g

(
T

(ℓ+1)
t

)
for the UAOR fusion function induced

by Eq. 8. We assume:

• (A1) Non-degenerate reinjection: I
(

INJ
(ℓ+1)
t ;ot | h̃(ℓ+1)

t

)
> 0 on a set of non-zero measure.

• (A2) Near-invertible mixing: g admits an approximate left inverse ψ with E∥ψ(ĥ(ℓ+1)
t ) −

T
(ℓ+1)
t ∥22 ≤ ε, implying a strong-DPI type bound (Raginsky, 2016; Polyanskiy & Wu, 2016; Guo

et al., 2005)

I
(
ĥ
(ℓ+1)
t ;Z

)
≥ I

(
T

(ℓ+1)
t ;Z

)
−κ(ℓ+1)

t (ε), I
(
ĥ
(ℓ+1)
t ;yt

)
≥ I

(
T

(ℓ+1)
t ;yt

)
−η(ℓ+1)

t (ε), (14)

for any Z jointly distributed with T (ℓ+1)
t , with κ(ℓ+1)

t , η
(ℓ+1)
t →0 as ε→0 (e.g., Fano/Gaussian

bounds).

• (A3) Target generation: yt is generated from xt through the policy head; conditioned on xt,
the rest of the network is deterministic (standard in IB-style analyses (Tishby et al., 2000; Alemi
et al., 2017)).

Lemma A.1 (Layerwise MI decay in the vanilla stack). For ℓ ≥ 1, I
(
h̃
(ℓ+1)
t ;ot

)
≤ I

(
h̃
(ℓ)
t ;ot

)
.

Proof. Each layer computes h̃
(ℓ+1)
t = f (ℓ+1)

(
h̃
(ℓ)
t

)
with no direct access to ot, so ot→ h̃

(ℓ)
t →

h̃
(ℓ+1)
t is a Markov chain. According to the Data Processing Inequality (DPI) (Cover et al., 1991),
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if A → B → C forms a Markov chain, then: I(A;C) ≤ I(A;B). Thus we can get I
(
h̃
(ℓ+1)
t ;ot

)
≤

I
(
h̃
(ℓ)
t ;ot

)
.

Proof of Theorem 3.1 (Observation information gain). At layer ℓ+1 and time t, augment by
T

(ℓ+1)
t =

(
h̃
(ℓ+1)
t , INJ

(ℓ+1)
t

)
. By the chain rule,

I
(
T

(ℓ+1)
t ;ot

)
= I

(
h̃
(ℓ+1)
t ;ot

)
+ I

(
INJ

(ℓ+1)
t ;ot | h̃(ℓ+1)

t

)
≥ I

(
h̃
(ℓ+1)
t ;ot

)
, (15)

with strictness under (A1). Since ĥ
(ℓ+1)
t = g

(
T

(ℓ+1)
t

)
, (A2) yields

I
(
ĥ
(ℓ+1)
t ;ot

)
≥ I

(
T

(ℓ+1)
t ;ot

)
−κ(ℓ+1)

t (ε) ≥ I
(
h̃
(ℓ+1)
t ;ot

)
+I

(
INJ

(ℓ+1)
t ;ot | h̃(ℓ+1)

t

)
−κ(ℓ+1)

t (ε).

Letting ε → 0 proves I
(
ĥ
(ℓ+1)
t ;ot

)
≥ I

(
h̃
(ℓ+1)
t ;ot

)
, with strict inequality when I

(
INJ

(ℓ+1)
t ;ot |

h̃
(ℓ+1)
t

)
> 0.

Proof of Theorem 3.2 (Action uncertainty reduction). Consider the definition of conditional entropy
H(yt | r) = H(yt)− I(yt; r) (Cover et al., 1991), we have

H
(
yt | ĥ(ℓ+1)

t

)
−H

(
yt | h̃(ℓ+1)

t

)
= −

(
I
(
yt; ĥ

(ℓ+1)
t

)
− I

(
yt; h̃

(ℓ+1)
t

))
.

By near-invertible mixing (A2) and Eq. 14 with T (ℓ+1)
t = (h̃

(ℓ+1)
t , INJ

(ℓ+1)
t ),

I
(
yt; ĥ

(ℓ+1)
t

)
≥ I

(
yt;T

(ℓ+1)
t

)
− η(ℓ+1)

t (ε).

Applying the chain rule, we get

I
(
yt;T

(ℓ+1)
t

)
= I

(
yt; h̃

(ℓ+1)
t

)
+ I

(
yt; INJ

(ℓ+1)
t | h̃(ℓ+1)

t

)
.

Combining the two displays yields

H
(
yt | ĥ(ℓ+1)

t

)
≤ H

(
yt | h̃(ℓ+1)

t

)
− I

(
yt; INJ

(ℓ+1)
t | h̃(ℓ+1)

t

)
+ η

(ℓ+1)
t (ε).

Letting ε → 0 proves H(yt | ĥ
(ℓ+1)
t ) ≤ H(yt | h̃

(ℓ+1)
t ), with strict inequality whenever

I(yt; INJ
(ℓ+1)
t | h̃(ℓ+1)

t ) > 0.

Proof of Theorem 3.3 (Information Bottleneck improvement). The Information Bottleneck (IB)
objective (Tishby et al., 2000; Alemi et al., 2017) for a representation r is

L(r) = I
(
r;xt

)
− β I

(
r;yt

)
.

In particular,

L
(
h̃
(ℓ+1)
t

)
= I

(
h̃
(ℓ+1)
t ;xt

)
− β I

(
h̃
(ℓ+1)
t ;yt

)
, L

(
ĥ
(ℓ+1)
t

)
= I

(
ĥ
(ℓ+1)
t ;xt

)
− β I

(
ĥ
(ℓ+1)
t ;yt

)
.

Let

∆I
(ℓ+1)
t,x ≜ I

(
ĥ
(ℓ+1)
t ;xt

)
− I

(
h̃
(ℓ+1)
t ;xt

)
, ∆I

(ℓ+1)
t,y ≜ I

(
ĥ
(ℓ+1)
t ;yt

)
− I

(
h̃
(ℓ+1)
t ;yt

)
.

Then
L
(
ĥ
(ℓ+1)
t

)
− L

(
h̃
(ℓ+1)
t

)
= ∆I

(ℓ+1)
t,x − β∆I(ℓ+1)

t,y .

Using equation 14 and the chain rule,

∆I
(ℓ+1)
t,x ≤ I

(
T

(ℓ+1)
t ;xt

)
− I

(
h̃
(ℓ+1)
t ;xt

)
+ κ

(ℓ+1)
t (ε) = I

(
INJ

(ℓ+1)
t ;xt | h̃(ℓ+1)

t

)
+ κ

(ℓ+1)
t (ε),

∆I
(ℓ+1)
t,y ≥ I

(
T

(ℓ+1)
t ;yt

)
− I

(
h̃
(ℓ+1)
t ;yt

)
− η(ℓ+1)

t (ε) = I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

)
− η(ℓ+1)

t (ε).

Therefore a sufficient condition for L
(
ĥ
(ℓ+1)
t

)
≤ L

(
h̃
(ℓ+1)
t

)
is

β∆I
(ℓ+1)
t,y ≥ ∆I

(ℓ+1)
t,x ⇒ ∆I

(ℓ+1)
t,y ≥ 1

β
∆I

(ℓ+1)
t,x ,
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up to vanishing κ(ℓ+1)
t (ε), η

(ℓ+1)
t (ε) as ε→ 0, which is exactly the criterion stated in Theorem 3.3.

Let
Iℓ+1,min

t,y|h̃ ≤ I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

)
, Iℓ+1,max

t,x|h̃ ≥ I
(

INJ
(ℓ+1)
t ;xt | h̃(ℓ+1)

t

)
,

be any empirical/theoretical lower and upper bounds, respectively. Then the above inequalities imply

∆I
(ℓ+1)
t,y ≥ Iℓ+1,min

t,y|h̃ − η(ℓ+1)
t (ε), ∆I

(ℓ+1)
t,x ≤ Iℓ+1,max

t,x|h̃ + κ
(ℓ+1)
t (ε).

Hence a sufficient choice of β ensuring L
(
ĥ
(ℓ+1)
t

)
≤ L

(
h̃
(ℓ+1)
t

)
is

β ≥
Iℓ+1,max

t,x|h̃ + κ
(ℓ+1)
t (ε)

Iℓ+1,min

t,y|h̃ − η(ℓ+1)
t (ε)

provided Iℓ+1,min

t,y|h̃ > η
(ℓ+1)
t (ε). (16)

When ε is sufficiently small (so that κ(ℓ+1)
t (ε), η

(ℓ+1)
t (ε) → 0), the sufficient condition Eq. 16

simplifies to

β ≥
Iℓ+1,max

t,x|h̃

Iℓ+1,min

t,y|h̃

provided Iℓ+1,min

t,y|h̃ > 0.

This condition provides a lower bound for β to ensure that reinjecting observation information at layer
ℓ+ 1 reduces the IB objective for VLA models. Satisfying this criterion allows UAOR to effectively
optimize the trade-off between compressing task-irrelevant input and retaining observation-relevant
information critical for accurate action generation.

Proof of Theorem 3.4 (Benefit of uncertainty-triggered reinjection). Let u(ℓ)t be the entropy-based
layer uncertainty; assume it is positively linked to H

(
yt | h̃(ℓ+1)

t

)
. Define the predictive relevance of

the injection at layer ℓ+1:

R
(ℓ+1)
t ≜ I

(
INJ

(ℓ+1)
t ;yt

∣∣∣ h̃(ℓ+1)
t

)
≥ 0.

Empirically, higher predictive uncertainty correlates with greater expected gains from additional
information or computation. Thus, we assume there exists a non-decreasing measurable φ such that

E
[
R

(ℓ+1)
t

∣∣∣u(ℓ)t = u
]
= φ(u), φ′(u) ≥ 0.

Then
E
[
R

(ℓ+1)
t

∣∣∣u(ℓ)t > γ
]
= E

[
φ(u)

∣∣u > γ
]
≥ E[φ(u)] = E

[
R

(ℓ+1)
t

]
,

i.e.,

E
[
I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

) ∣∣∣u(ℓ)t > γ
]
≥ E

[
I
(

INJ
(ℓ+1)
t ;yt | h̃(ℓ+1)

t

) ]
.

Finally, by the bound proved in Theorem 3.2,

H
(
yt | ĥ(ℓ+1)

t

)
≤ H

(
yt | h̃(ℓ+1)

t

)
− R

(ℓ+1)
t ,

so triggering on u(ℓ)t > γ yields a larger expected reduction of H
(
yt | ĥ(ℓ+1)

t

)
per reinjection

call.

Summary. (A) Layerwise forgetting in standard transformer stacks leads to diminishing observation
relevance across depth (Lemma A.1). (B) UAOR recovers observation dependence at layer ℓ+1,
provably increasing I(ĥ(ℓ+1)

t ;ot) over the vanilla baseline (Theorem 3.1), which in turn reduces
conditional entropy H(yt | ĥ(ℓ+1)

t ) (Theorem 3.2). (C) When the relevance gain ∆Iy exceeds the
scaled compression cost 1

β∆Ix, UAOR lowers the IB objective, improving the overall informa-
tion–efficiency tradeoff (Theorem 3.3). (D) Entropy-based triggering selectively activates reinjection
in high-uncertainty regions, thereby increasing the expected predictive value of injected content and
enhancing per-call entropy reduction (Theorem 3.4).
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B MORE IMPLEMENTATION DETAILS

B.1 SIMULATION BENCHMARKS

LIBERO (Liu et al., 2023) is a language-conditioned manipulation benchmark that factorizes
variation along four axes and evaluates policies under controlled shifts of geometry, object identity,
goal intent, and temporal horizon. The benchmark provides 4 suites—Spatial, Object, Goal, and
Long—each containing 10 tasks with 50 human-teleoperated demonstrations per task, yielding a
consistent protocol for training and evaluation. These suites focus on distinct reasoning capabilities:

• LIBERO Spatial holds objects and goals fixed while perturbing placements and poses, stressing
relational language parsing (e.g., left/right, front/behind) and viewpoint robustness.

• LIBERO-Object fixes scene layout but varies categories/attributes (type, shape, color), probing
category-level generalization and attribute-aware grounding.

• LIBERO-Goal keeps geometry and objects constant while changing the intended outcome, testing
fine-grained instruction disambiguation and goal-consistent action selection.

• LIBERO-Long composes multiple atomic skills into extended procedures across diverse scenes,
assessing sequential planning, error recovery, and long-horizon credit assignment.

SIMPLER (Li et al., 2025d) is a simulated evaluation suite designed to mirror real-world manipu-
lation with two complementary settings. Visual Matching (VM) aligns the simulated scene with its
real counterpart (assets, layout, camera), enabling faithful assessment of policies in near-deployment
conditions. Variant Aggregations (VA) perturbs the VM setup—varying background, lighting, dis-
tractors, and table textures—to stress-test robustness and out-of-distribution generalization. For the
Google robot, both VM and VA include four canonical tasks: 1) Pick coke can; 2) Move near; and 3)
Open/Close drawer, and 4) Open top drawer and place apple. For the WidowX robot, SIMPLER
provides the VM setting with four tasks: 1) Put spoon on towel, 2) Put carrot on plate, 3) Stack green
block on yellow block, and 4) Put eggplant in yellow basket. Evaluation is reported as success rate
over standardized rollouts for fair comparison across methods.

CALVIN (Mees et al., 2022) is a long-horizon manipulation benchmark built on top of the PyBul-
let (Coumans & Bai, 2016) simulator and involves a Franka Panda Robot arm that manipulates
the scene. It comprises 34 tasks across four environments (A, B, C, and D) and over six hours of
teleoperated play data per environment, captured from static and wrist-mounted RGB-D cameras
together with tactile signals and proprioception. We adopt the classic and challenging CALVIN
ABC→D evaluation protocol, where each model is assessed over 500 rollouts. We report both the
overall success rate and the average number of successfully completed sub-tasks (i.e., average length).

B.2 BASELINES AND SETUP

In this section, we delve into the architectural details of the selected baselines and provide additional
information on the experimental setup used throughout our evaluation.

OpenVLA-OFT (Kim et al., 2025a) is a high-performance VLA model derived from OpenVLA (Kim
et al., 2025b). It incorporates parallel decoding with action chunking, continuous action representation,
and an L1 regression objective, leading to substantial improvements in both task performance and
inference speed. In our experiments, we use the OpenVLA-OFT variant trained with multimodal
inputs consisting of two images (a third-person image and a wrist camera image), the robot’s
proprioceptive state, and a language instruction. Specifically, the visual and proprioceptive features
are concatenated to form the observation features, which are then injected into the Feed-Forward
Network (FFN) layers of the language model following our UAOR mechanism. And we compute
the action entropy based on all action tokens within the action chunk. We use the hidden states
corresponding to the last Na = 8 × 7 = 56 (action chunk size H = 8, action dimension Da = 7)
tokens (i.e., positions [−57 : −1]) before the final stop token (“</s>”) to measure the uncertainty.

π0 (Black et al., 2024) employs a flow matching-based architecture built upon the PaliGemma VLM
(3B). It processes multimodal inputs (images and language instructions) through the VLM backbone
to generate context embeddings (specifically, the Key-Value cache), which then condition a separate
action expert for continuous action generation. In our experiments, we inject the visual features
into the Feed-Forward Network (FFN) layers of the PaliGemma backbone. Since the flow matching
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Table 9: UAOR hyperparameters on simulation and real-world benchmarks

Benchmark Base Model Task / Suite γ α

LIBERO

OpenVLA-OFT

Spatial 0.75 0.05
Object 0.80 0.05
Goal 0.75 0.05
Long 0.80 0.05

π0

Spatial 0.20 0.05
Object 0.20 0.05
Goal 0.20 0.05
Long 0.20 0.05

SIMPLER CogACT

Pick coke can 0.80 0.05
Move near 0.80 0.05
Open/Close drawer 0.80 0.05
Open top drawer and place apple 0.70 0.05

CALVIN LLaVA-VLA ABC→D 0.85 0.06

Real-World

OpenVLA-OFT

Close upper drawer 0.75 0.05
Put the redbull on the plate 0.80 0.05
Put the lion on the top shelf 0.80 0.05
Stand the coke can up 0.80 0.05

CogACT

Close upper drawer 0.80 0.05
Put the redbull on the plate 0.80 0.05
Put the lion on the top shelf 0.80 0.05
Stand the coke can up 0.80 0.05

head operates in continuous space and does not output discrete action probabilities, we compute the
entropy based on the last token of the VLM’s prefix processing (i.e., position [−1]). This metric
reflects the backbone’s semantic uncertainty regarding the current observation and instruction context
before the denoising phase. Consequently, we set Na = 1 in Eq. 7 for this architecture.

CogACT (Li et al., 2024a) adopts a componentized dual-system architecture that decouples perception
and control. It uses the Prismatic VLM (7B) to extract a cognition token, which conditions a diffusion-
based action expert for generating precise actions. CogACT demonstrates state-of-the-art results on
the SIMPLER benchmark. In our implementation, since CogACT does not utilize proprioceptive
input (i.e., robot joint states), we treat only the visual observation (third-person image) as the
modality for observation reinjection. Additionally, we compute the action entropy solely based on
the generated cognition token (i.e., positions [−1]), which serves as the intermediate representation
linking perception and action. Therefore, Na = 1 in Eq. 7 for this setup.

LLaVA-VLA (Zhao et al., 2025b) is built on the widely adopted vision-language model LLaVA (Liu
et al., 2024), exhibiting stable performance across both simulated and real-world environments. The
lightweight variant LLaVA-VLA-0.5b achieves performance comparable to its 7B counterpart based
on LLaVA, while incurring significantly lower computational overhead. It incorporates two images
(static image and gripper image) and proprioception as input, which we combine as the supplemental
observation cues. While LLaVA-VLA adopts action chunking, unlike OpenVLA-OFT, it does not
employ parallel decoding and thus generates only one action token per step. Therefore we utilize the
last token (i.e., positions [−1], Na = 1) to compute action entropy and uncertainty.

For other baseline methods compared in the main text, we list them for reference and encourage
readers to refer to the original papers for further details.

Hyperparameter Selection Strategy. We adopt a heuristic strategy to determine the hyperparameters
γ (uncertainty threshold) and α (blending factor). We begin by analyzing the uncertainty curves
(see Figure 1) to obtain a coarse estimate, initially setting γ = 0.80 for all task suites in LIBERO.
Under this preliminary setting, we search for the optimal α and find that α = 0.05 yields the best
performance across all four LIBERO task suites. Fixing α, we then refine γ for each individual
task by performing a local search around the initial estimate. This progressive narrowing of the
search space significantly reduces the tuning overhead while ensuring strong empirical results. We
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Table 10: OpenVLA-OFT hyperparameters for real-world fine-tuning.

Hyperparameter Value
# GPUs 8 x NVIDIA 4090 (24GB VRAM)
learning rate (LR) 5e-4
total batch size 8 (1 per GPU)
# train steps 150K
input images 1 third-person camera image
input image size 224 x 224 px
use observation history no (use single-step inputs)
LoRA rank 32
action chunk size 8 steps (predict 8, execute all 8 open-loop at test time)
use proprio (robot state) yes
use FiLM no

Table 11: CogACT hyperparameters for real-world fine-tuning.

Hyperparameter Value
# GPUs 8 x NVIDIA A100 (80GB VRAM)
learning rate (LR) 2e-5
total batch size 8 (1 per GPU)
input images 1 third-person camera image
input image size 224 x 224 px
VLM backbone Prism-DinoSigLIP-224px
action model type DiT-B (Diffusion Transformer Base)
diffusion steps 8 (repeated steps)
image augmentation True
action chunk size 16 steps (predict 16, execute all 16 open-loop at test time)

use the strategy to determine the final hyperparameter settings for both simulation and real-world
experiments, as summarized in Table 9.

B.3 REAL-WORLD SETUP

Figure 4 illustrates our real-robot setting. The platform comprises a 7-DoF Franka Research 3 robot
arm with a parallel-jaw gripper and a ZED 2i stereo camera mounted on a tripod. We collect expert
trajectories with a 3D mouse to enable fine-grained and precise manipulation. The four tasks we
designed are detailed as follows:

• Close the upper drawer. The robot is required to approach the cabinet, locate the upper drawer,
and execute a pushing motion to close it fully.

• Put the redbull on the plate. The robot needs to identify the Red Bull can, grasp it securely, and
place it on the designated plate area with proper orientation.

• Put the lion on the top shelf. The robot should pick up the toy lion from the workspace and
accurately place it onto the top shelf.

• Stand the coke can up. The robot must perform a complex sequence of actions to pick up a
horizontally lying cup, reorient it upright, and place it stably on its base.

We fine-tune both OpenVLA-OFT and CogACT on each task using 40 expert trajectories collected
with a 3D mouse. The training hyperparameters for OpenVLA-OFT and CogACT are detailed in
Table 10 and Table 11, respectively.

B.4 ABLATION ON CORE DESIGNS

In this section, we provide more details about the ablation study on the core designs of UAOR:

Mean-Residual: Directly adds the mean-pooled observation features to the hidden state (h′ =
h+ omean, where h is the original FFN’s output hidden states and omean denotes the mean-pooled
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Table 12: Ablation on Injection Timing and Location on LIBERO based on OpenVLA-OFT.

Injection Timing Injection Module Success Rate (%) Latency Overhead
Spatial Object Goal Long Avg.

- Baseline (No Injection) 98.2 98.2 97.6 94.2 97.1 0.161s -

Current Layer (ℓ) Self-Attention (SA) 98.2 98.0 97.8 95.8 97.5 0.195s +21.1%
Current Layer (ℓ) Feed-Forward (FFN) 98.6 98.2 98.0 95.8 97.7 0.182s +13.0%
Next Layer (ℓ+ 1) Self-Attention (SA) 98.4 98.0 97.8 94.8 97.3 0.170s +5.6%
Next Layer (ℓ+ 1) Feed-Forward (UAOR) 99.0 98.4 98.2 96.2 98.0 0.169s +5.0%

observation features) . Represents a naive residual connection. Since the observation tokens and
hidden states differ in sequence length, element-wise addition (standard ResNet) is impossible.
Therefore, we aggregate observation features via Mean Pooling for the residual baselines.

Mean-Blending: Blends the mean-pooled observation features using α (h′ = (1− α)h+ αomean).
Represents a "softer" residual.

UAOR: Blends the key observation features relevant to current hidden states via an FFN-like key-
value retrieval.

Trigger Policies: All Layers injects observation features at every layer of the LLM backbone.
Random selects a subset of layers uniformly at random for each inference step. To ensure a fair
comparison, the number of selected layers matches the average number of layers triggered by the
Entropy-based policy (e.g., approximately 30% for LIBERO-Spatial, Object, and Goal, and 20%
for LIBERO-Long). Entropy-based dynamically triggers injection only at specific layers where
the uncertainty measured by action entropy exceeds the threshold γ, targeting moments of high
uncertainty.

C MORE EXPERIMENTAL RESULTS

C.1 ABLATION ON INJECTION TIMING AND LOCATION

To validate the rationale behind our specific design choices—namely, the “one-layer delay” strategy
and the selection of the Feed-Forward Network (FFN) as the injection site—we conduct a detailed
ablation study comparing different injection timings and module locations on the LIBERO benchmark
based on OpenVLA-OFT. The results are summarized in Table 12.

(1) Why “One-Layer Delay”? (Efficiency & Effectiveness). We compare injecting into the Current
Layer (ℓ) versus our proposed Next Layer (ℓ+ 1) strategy.

• Effectiveness: As shown in Table 12, injecting into the Current FFN (97.7%) and Next FFN
(98.0%) yields comparable performance. This is because the underlying operation is mathemat-
ically identical (using the FFN’s input to retrieve observation features and blending them with
the original output). The slight edge for Next Layer may stem from using more processed hidden
states as the queries.

• Efficiency: Despite similar success rates, the Current Layer strategies incur significantly higher
computational overhead. Injecting into the current FFN requires fetching the cached FFN input
from memory to perform retrieval, introducing Memory I/O overhead and pipeline stalls (0.182s,
+13.0%). Injecting into the current Self-Attention (SA) is even costlier (0.195s, +21.1%) as
modifying the SA output necessitates a re-computation of the subsequent FFN block. In contrast,
our Next Layer design allows for a seamless “look-ahead” injection without backtracking or
re-computation, achieving the optimal efficiency (0.169s, +5.0%).

(2) Why FFN over Self-Attention? Comparing Next Layer FFN (98.0%) with Next Layer SA
(97.3%) confirms that the FFN is the superior injection site. We hypothesize the reasons as follows:
FFNs structurally function as Key-Value Memories (Geva et al., 2021; Jie et al., 2024), making
them the natural component for retrieving and storing external information (observation). In contrast,
Self-Attention focuses on token-to-token contextualization; injecting external features there may
dilute the attention distribution, leading to slightly inferior performance.
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C.2 DETAILED ANALYSIS OF UNCERTAINTY METRICS
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Figure 7: Layer-wise probing results
on LIBERO-Long based on OpenVLA-
OFT.

Layer-wise Probing Verification. To validate that inter-
mediate hidden states contain meaningful action informa-
tion, we fine-tune linear lm heads (for discrete actions,
the lm head is also the action head) at intermediate lay-
ers within the OpenVLA-OFT backbone on the LIBERO-
Long suite. As shown in Figure 7, the success rate rises
significantly in early-to-mid layers (e.g., reaching 78.5%
by Layer 12), confirming that intermediate hidden states
already contain significant action-relevant information.
This validates our design of using the frozen LM head
as a "rough decoder": since the features are semantically
aligned with the action space, the resulting entropy serves
as a reliable proxy for the model’s current uncertainty.

2 4 6 8 101214161820222426283032
Layer

0.00

0.20

0.40

0.60

0.80

1.00

Fe
at

ur
e 

En
tr

op
y

Figure 8: Layer-wise feature entropy on
LIBERO-Long.

Feature Entropy vs. Action Entropy. We analyzed
the layer-wise trend of Feature Entropy (entropy of the
softmax-normalized hidden state vector) on LIBERO-
Long based on OpenVLA-OFT. As illustrated in Figure 8,
Feature Entropy remains negligible (≈ 0) in middle layers
and spikes drastically only in the final layers. This trend
contradicts the expected behavior of decision uncertainty
(which should decrease). Instead, it reflects feature acti-
vation richness. Consequently, Feature Entropy fails to
trigger reinjection when the model is actually confused,
rendering it ineffective compared to our Action Entropy.

C.3 VISUALIZATIONS OF SIMULATION AND REAL-WORLD RESULTS

We present additional qualitative results in both simulation and real-world settings to showcase
the effectiveness of UAOR. All experiments are conducted within the OpenVLA-OFT framework.
As illustrated in Figure 9 and Figure 10, the model successfully completes diverse multi-stage
manipulation tasks under varying object configurations and instruction formulations. Benefiting from
the uncertainty-aware reinjection mechanism, UAOR helps the model maintain focused attention on
key observations during inference, enhancing scene understanding and decision confidence. These
visualizations highlight the practicality and adaptability of our method in robotic manipulation.

D THEORETICAL COMPLEXITY ANALYSIS

For simplicity, we only consider the computational overhead of the Multi-Head Self-Attention
(MHSA) and Feed-Forward Network (FFN) blocks in a language model backbone. Let L, N ,
and D denote the number of transformer layers, the length of the token sequence, and the hidden
dimension, respectively. Following prior works (Jie et al., 2024; Yang et al., 2025), the floating-point
operations (FLOPs) for MHSA and FFN in one layer are approximately 8ND2+4N2D and 16ND2,
respectively. Thus, the total FLOPs of the language model backbone are:

FLOPsLM ≈ L ·
[
(8ND2 + 4N2D) + 16ND2

]
= L · (24ND2 + 4N2D). (17)

The additional computational overhead introduced by UAOR consists of two parts: (1) the projection
cost to compute action entropy, and (2) the reinjection cost when uncertainty exceeds the threshold.

Projection Cost. To compute the action entropy, we project the hidden states of action-related tokens
into the vocabulary space using the pre-trained LM head. Let Na denote the number of action-related
tokens per step and Dv the vocabulary size. Since we perform this projection at every layer except
the last (where we don’t need to reinject at the next layer as it is just the last year), the additional
FLOPs are:

FLOPsPROJ = (L− 1) · 2NaDDv. (18)

Reinjection Cost. When triggered, UAOR acts as an additional FFN-like module comprising a
retrieval operation. It involves two linear transformations (Query-Key and Attention-Value) with
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shared weights. Let No be the number of observation tokens. The cost for a single reinjection is
FLOPsSINGLE_INJ ≈ 4NNoD. Assuming the reinjection is triggered in Lγ layers (where uncertainty
u > γ), the total reinjection cost is:

FLOPsINJ = Lγ · 4NNoD. (19)

Total Overhead Ratio. We quantify the additional computational burden using the ratio rcost:

rcost =
FLOPsPROJ + FLOPsINJ

FLOPsLM
≈ (L− 1) · 2NaDDv

L · (24ND2 + 4N2D)︸ ︷︷ ︸
Projection term

+
Lγ · 4NNoD

L · (24ND2 + 4N2D)︸ ︷︷ ︸
Reinjection term

. (20)

Note that we approximate the denominator by dominating term 24ND2 (since D ≫ N ) for clarity.
Simplifying the terms yields:

rcost ≈
NaDv

12ND
+
Lγ

L
· No

6D
. (21)

Case Study. We analyze the overhead for two representative VLA models, OpenVLA-OFT (Kim
et al., 2025a) and CogACT (Li et al., 2024a), using the Llama-2-7B backbone (D = 4096, Dv =
32000).

• OpenVLA-OFT: With sequence length N ≈ 600 and action tokens Na = 56, the projection
overhead is ≈ 56×32000

12×600×4096 ≈ 6.0%. On LIBERO-Long, the statistical trigger rate is Lγ

L ≈ 20%.
With observation tokens No = 513, the reinjection overhead is 0.2× 513

6×4096 ≈ 0.4%. The total
overhead is roughly 6.4%.

• CogACT: With N ≈ 300 and Na = 1 (predicting one condition token per step), the projection
overhead drops significantly to ≈ 1×32000

12×300×4096 ≈ 0.2%. Assuming a similar trigger rate, the total
overhead remains negligible at < 1%.

This analysis confirms that UAOR is computationally efficient, particularly for those VLA models
who generate one action-related token per step, and introduces minimal latency compared to the
heavy backbone computation.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use large language models (LLMs), such as ChatGPT, to assist with writing
refinement, grammar correction, formatting, and preliminary literature search during manuscript
preparation.
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LIBERO-Goal: open the middle drawer of the cabinet

LIBERO-Goal: put the wine bottle on the rack

LIBERO-Long: put both the alphabet soup and the tomato sauce in the basket

LIBERO-Long: put the yellow and white mug in the microwave and close it

LIBERO-Object: pick up the alphabet soup and place it in the basket

LIBERO-Object: pick up the orange juice and place it in the basket

LIBERO-Spatial: pick up the black bowl from table center and place it on the plate

LIBERO-Spatial: pick up the black bowl on the wooden cabinet and place it on the plate

Figure 9: Manipulation Visualizations in the LIBERO Simulation Environment. We present
the execution processes of OpenVLA-OFT with UAOR across LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, and LIBERO-Long, demonstrating its strong performance under diverse instructions
and a wide range of tasks. Each row shows a temporally ordered sequence from left to right.
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Instruction: Close the upper drawer

Instruction: Stand the coke can up

Instruction: Put the redbull on the plate

Instruction: Put the lion on the top shelf

Figure 10: Manipulation Visualizations in the Real-World Environment. We present the execution
processes of OpenVLA-OFT with UAOR across four real-world tasks, demonstrating its strong
effectiveness and practicality in real-world scenarios. Each pair of rows shows a temporally ordered
sequence from left to right.
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