

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UAOR: UNCERTAINTY-AWARE OBSERVATION REINJECTION FOR VISION-LANGUAGE-ACTION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

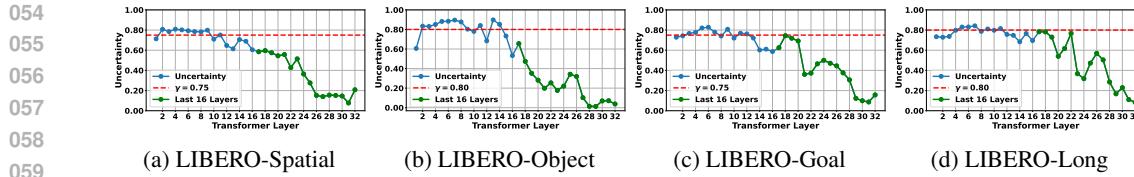
Vision–Language–Action (VLA) models leverage pretrained Vision–Language Models (VLMs) as backbones to map images and instructions to actions, demonstrating remarkable potential for generalizable robotic manipulation. To improve performance, many methods have been proposed to incorporate additional observation cues (e.g., depth maps, point clouds) and auxiliary modules (e.g., object detectors, encoders), enabling more precise and reliable task execution. Although effective, these approaches often require extensive data collection and additional training or fine-tuning, limiting their flexibility and scalability. Inspired by the finding that Feed-Forward Network (FFN) in language models can act as “key-value memory”, we propose **Uncertainty-aware Observation Rejection (UAOR)**, an effective training-free and plug-and-play module for VLA models. Specifically, when the current language model layer exhibits high uncertainty, measured by **Action Entropy**, it reinjects the observation information into the next layer’s Feed-Forward Network (FFN) in a blending manner. This mechanism helps VLA models look more clearly on the observation during inference, enabling more confident and faithful action generation. Comprehensive simulation and real-world experiments show that our method consistently improves the performance of heterogeneous VLA models across various tasks and embodiments while incurring minimal computational overhead. Notably, UAOR eliminates the need for extra observation cues or modules, making it a versatile and practical plug-in for existing VLA pipelines.

1 INTRODUCTION

Recent advancements in Vision–Language Models (VLMs) (Liu et al., 2024; Karamcheti et al., 2024; Beyer et al., 2024; Bai et al., 2025) have delivered remarkable capabilities in multimodal understanding and generalization. Building on these foundations, Vision–Language–Action (VLA) models (Kim et al., 2025b; Black et al., 2024; Kim et al., 2025a; Li et al., 2025b) fine-tuned on large-scale robotic datasets integrate visual observations with language instructions to synthesize low-level control actions, exhibiting strong task execution and robust generalization across diverse robotic manipulation scenarios. Despite these strengths, persistent data-collection bottlenecks and considerable training budgets remain key barriers to scaling and deploying VLA models in practice.

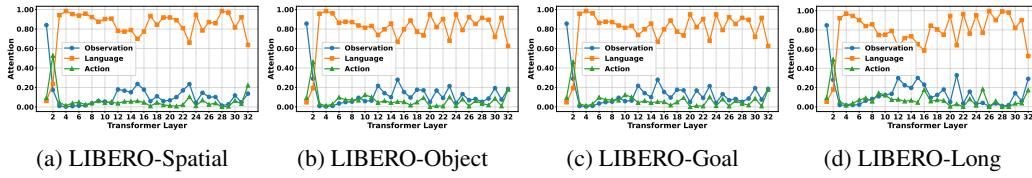
To achieve performance gains, many efforts (Zheng et al., 2024; Bhat et al., 2025; Lin et al., 2025; Dai et al., 2025) have explored interventions at the input level, such as augmenting observations with additional observation priors. TraceVLA (Zheng et al., 2024) introduces visual trace prompting and fine-tunes on 150K robot manipulation trajectories with visual traces. SpatialVLA (Qu et al., 2025) utilizes Ego3D Position Encoding to inject 3D information into the input observations of the visual-language-action model. While effective, such methods often rely on additional observation priors (e.g., visual traces, depth maps), auxiliary modules (e.g., depth/point-cloud encoders) and extensive fine-tuning, rendering them resource-intensive and poorly scalable to larger backbones and datasets. This naturally raises the question: *Is it possible to boost VLA models in a training-free manner, without requiring supplementary observation cues or auxiliary modules?*

To answer this, we begin by recognizing that VLA models inherit strong visual perception and scene understanding from their VLM backbones, which are often underutilized in current designs. Our key intuition is that after ingesting the observation, the model tends to progressively “forget” during forward inference. In other words, observation information, comprising visual input and



060
061
062

Figure 1: Layer-wise uncertainty of OpenVLA-OFT across four LIBERO task suites. The dashed red
line denotes the chosen uncertainty threshold γ , while the green segment highlights the last 16 layers.



068
069
070
071

Figure 2: Layer-wise cross-attention from action tokens to observation, language, and action tokens in OpenVLA-OFT across four LIBERO task suites.

072
073
074
075
076
077
078
079
080
081
082

proprioceptive state (if available) in our setup, fades as network depth increases, akin to human working-memory decay (Ballard et al., 1995; Horowitz & Wolfe, 1998). This decay may lead to increased uncertainty: Figure 1 reveals an observable rise and sustained high level of uncertainty in the early layers (layers 2-8), a pattern that highly correlates with unfaithful actions (Valle et al., 2025). Consistently, Figure 2 shows that in this uncertainty-rising phase the attention from action tokens to observation tokens drops sharply and then remains at a very low level, indicating that the model rarely consults the observation when predicting actions, and empirically supporting our intuition. Therefore, a natural idea is to reinforce observation information when model exhibits high uncertainty. Inspired by findings that FFNs can act as key-value memory (Geva et al., 2021; Jie et al., 2024; Zou et al., 2024), we adopt the FFN mechanism to extract key features from observation inputs and reinject them into hidden representations, helping the model maintain clear observation throughout inference.

083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Building on these insights, we propose a lightweight and effective training-free module, **Uncertainty-aware Observation Reinjection (UAOR)**, for VLA models. It computes layer-wise uncertainty via **Action Entropy**, and reinjects observation features into the FFN of the subsequent layer when the uncertainty exceeds a threshold. This blending mechanism reinforces observation information in high-uncertainty regions. Extensive experiments in both simulation and real-world environments show that UAOR consistently improves heterogeneous models across diverse manipulation tasks and embodiments, without retraining or architectural changes. Real-world robotic experiments further validate its practicality and effectiveness. In summary, our main contributions are as follows:

- We introduce **Action Entropy**, a tailored metric to quantify layer-wise uncertainty in VLA models. It reveals a mild rise in uncertainty during the early stages of inference, which we attribute to the model’s gradual forgetting of observation information.
- We present **UAOR**, a training-free and plug-and-play module that treats FFN layers as “key-value memory” and reinjects observation features into them when model exhibits high uncertainty, reinforcing the model’s attention to observation throughout the inference process.
- We provide rigorous theoretical analysis showing that UAOR enhances the mutual information between hidden states and observation, reduces information bottleneck loss, and lowers expected conditional entropy to mitigate action uncertainty.
- Comprehensive experiments in multiple simulation and real-world environments show that UAOR yields consistent performance gains across various VLA models without relying on extra observation cues or auxiliary modules, while incurring negligible inference overhead.

2 RELATED WORK

Vision-Language-Action Models. Vision–Language–Action (VLA) models integrate multimodal understanding with action execution, paving the way for more capable robotic systems. A prominent line of works (Brohan et al., 2022; Kim et al., 2025b; Li et al., 2024a; Black et al., 2024) fine-tune

108 pretrained VLMs on large-scale robot data. RT-2X (Zitkovich et al., 2023) trains a 55B model on
 109 the Open X Embodiment (OXE) dataset (Vuong et al., 2023), while OpenVLA (Kim et al., 2025b)
 110 fine-tunes a 7B model based on Prismatic (Karamchetti et al., 2024), and π_0 adapts PaliGemma (Beyer
 111 et al., 2024) with a flow matching action head. Another line of works (Ye et al., 2025; Bu et al., 2025;
 112 Chen et al., 2025) utilize web-scale videos; e.g., UniVLA (Bu et al., 2025) distills latent actions from
 113 internet videos, and EC-Flow (Chen et al., 2025) predicts embodiment-centric flow from unlabeled
 114 videos. Recent dual-system architectures (Han et al., 2024; Bu et al., 2024; Bjorck et al., 2025; Cui
 115 et al., 2025) separate high-level reasoning (System 2) from low-level control (System 1), showing
 116 promise for scalable, general-purpose robotic intelligence.

117 **Uncertainty in Language Models.** Uncertainty in language models typically reflects the ambiguity
 118 and reliability of the predictive distribution. A key indicator is **Entropy** (Ling et al., 2024), where
 119 higher values imply lower confidence and potential distribution shift. Farquhar et al. (2024) propose
 120 entropy-based uncertainty estimators for LLMs to detect confabulations. Dropout Decoding (Fang
 121 et al., 2024) applies uncertainty-guided token dropout principle to input visual tokens for reliability
 122 and quality. Recent study of reinforcement learning for LLMs (Wang et al., 2025b) indicates that a
 123 minority of high-entropy tokens drives most of the reasoning gains. In the VLA community, there is
 124 also a growing focus on uncertainty. Valle et al. (2025) propose Token-Based Entropy (TB-E) as one
 125 of the uncertainty metrics for VLA models. Karli et al. (2025) leverages token-level uncertainty to
 126 enable uncertainty-aware human intervention during robotic manipulation. In our design, we quantify
 127 the uncertainty through action entropy and employ it to evaluate how well the task is executed.

128 **Visual Augmentation for Manipulation.** Visual augmentation has emerged as a promising strategy
 129 to strengthen perception and enhance reliability in robotic control. TraceVLA (Zheng et al., 2024)
 130 proposes visual trace prompting to enhance spatial-temporal awareness for generalist robotic policies.
 131 PointVLA (Li et al., 2025a) and 3D-CAVLA (Bhat et al., 2025) integrate point clouds and depth
 132 maps to improve spatial reasoning capability, respectively. Evo-0(Lin et al., 2025) implicitly injects
 133 3D geometry priors from VGGT (Wang et al., 2025a) into VLA models. AimBot (Dai et al., 2025)
 134 overlays shooting lines and scope reticles onto multi-view RGB images to offer auxiliary visual
 135 guidance. Compared with these methods, our approach augments observations via the model’s
 136 inherent FFN layers, without introducing additional visual cues or auxiliary modules.

137 3 METHODOLOGY

139 3.1 PRELIMINARY: REFORMULATION OF FFN

141 A typical Feed-Forward Network (FFN) in transformer-based models comprises two fully connected
 142 layers with an activation in between. Suppose the input hidden states of FFN are $\mathbf{h} \in \mathbb{R}^{N \times d}$, where
 143 N is the sequence length and d is the hidden dimension, the FFN can be formulated as:

$$144 \text{FFN}(\mathbf{h}) = \phi(\mathbf{h} \mathbf{W}_1) \mathbf{W}_2, \quad (1)$$

145 where ϕ is activation function like ReLU or SiLU, $\mathbf{W}_1 \in \mathbb{R}^{d \times D}$ and $\mathbf{W}_2 \in \mathbb{R}^{D \times d}$ are the weight
 146 matrices of the two FC layers, in usual $D = 4d$. Note that \mathbf{W}_1 and \mathbf{W}_2 can be rewritten as:

$$147 \mathbf{W}_1 = (\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_D), \mathbf{W}_2 = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D)^\top, \quad (2)$$

149 where $\mathbf{k}_i \in \mathbb{R}^d$ and $\mathbf{v}_i \in \mathbb{R}^d$ denote entries of key and value, respectively. Then, the FFN can be
 150 reformulated as

$$151 \text{FFN}(\mathbf{h}) = \sum_{i=1}^D \phi(\langle \mathbf{h}, \mathbf{k}_i \rangle) \cdot \mathbf{v}_i. \quad (3)$$

153 Therefore, the FFN can be viewed as performing a token-wise key-value lookup mechanism, where
 154 each token’s hidden state of \mathbf{h} serves as the query to calculate its similarity with keys, and gathering
 155 values based on the similarity. This formulation closely resembles a key-value memory storing factual
 156 knowledge, as suggested in prior work (Geva et al., 2021; Jie et al., 2024; Zou et al., 2024).

158 3.2 PROBLEM FORMULATION

160 Vision–Language–Action (VLA) models are designed to jointly process observations and language
 161 instructions for the purpose of generating appropriate actions for robots. Formally, given the ob-
 servation \mathbf{o}_t at time t and language instruction \mathbf{l} , a model π predicts a temporal action sequence

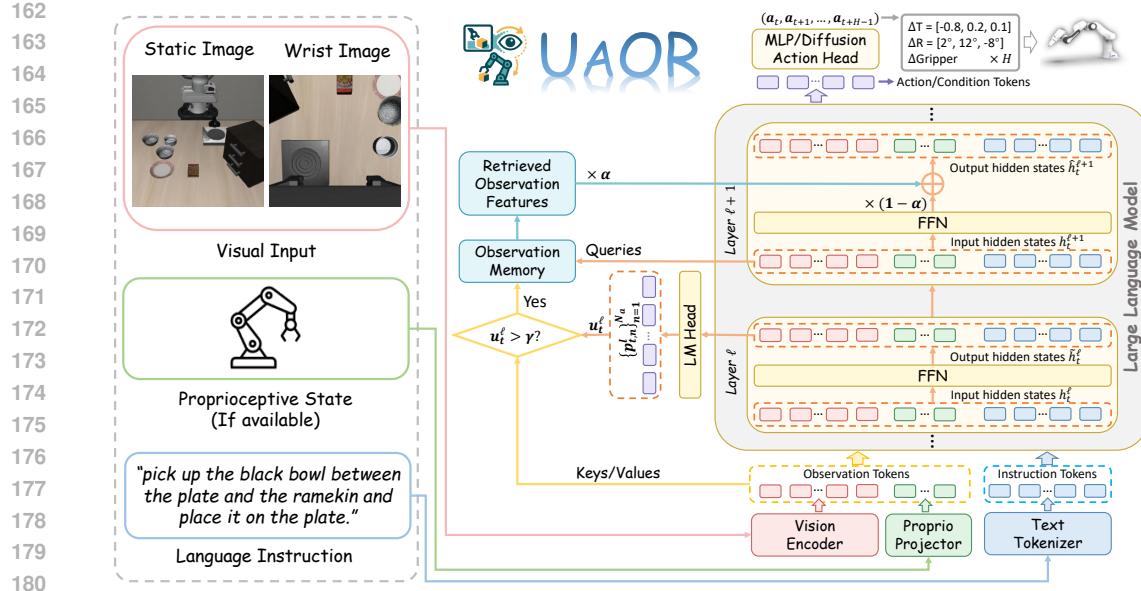


Figure 3: **Overall framework of UAOR.** We compute action entropy at layer ℓ to estimate uncertainty. If it exceeds a threshold γ , we reinject observation features, including visual and proprioceptive features (if available), into the next layer’s FFN via a key-value retrieval mechanism, where the input hidden states serve as queries and the observation features act as key-value memory.

($a_t, a_{t+1}, \dots, a_{t+H-1}$) (i.e., action chunk size H) for task execution:

$$\pi : (o_t, l) \rightarrow (a_t, a_{t+1}, \dots, a_{t+H-1}). \quad (4)$$

In some VLA models (Black et al., 2024; Kim et al., 2025a), the observation o_t includes visual input o_t^v and proprioceptive state o_t^p , concatenated as $o_t = [o_t^v; o_t^p]$. In other models, the observation considers only the visual modality, i.e., $o_t = o_t^v$. While in general a_t can represent diverse control schemes and end-effector types, we adopt a simplified setup in this work where actions are defined as 7-DoF vectors corresponding to the gripper’s end-effector pose:

$$a_t = [\Delta x, \Delta y, \Delta z, \Delta \phi, \Delta \theta, \Delta \psi, g], \quad (5)$$

where $\Delta x, \Delta y, \Delta z$ are the relative position of the end effector, $\Delta \phi, \Delta \theta, \Delta \psi$ denote the rotation changes, and $g \in \{0, 1\}$ indicates the gripper’s open/close state.

3.3 UNCERTAINTY-AWARE OBSERVATION REINJECTION

Uncertainty measured by Action Entropy. Recognizing the central role of entropy as a widely adopted measure of uncertainty, we introduce **Action Entropy**, a VLA-specific metric that quantifies uncertainty via the entropy of action-related output distributions. Note that current VLA models typically follow two architectures: single-system and dual-system. For single-system models (e.g., OpenVLA-OFT (Kim et al., 2025a)), actions are derived directly from hidden states, either as discrete tokens (256-bin discretization using rare vocabulary tokens) or continuous vectors (via MLP or diffusion heads). We compute entropy directly over the action tokens. For dual-system models (e.g., CogACT (Li et al., 2024a)), System 1 generates actions conditioned on System 2 outputs. We therefore compute entropy over these condition tokens, which guide action generation. Based on this setup, we define layer-wise action entropy at each time step as:

$$\mathcal{H}_{t,n}^{(\ell)} = - \frac{\sum_{i=1}^K p_{t,n,i}^{(\ell)} \log p_{t,n,i}^{(\ell)}}{\log K}, \quad (6)$$

where $p_{t,n}^{(\ell)} = \{p_{t,n,i}^{(\ell)}\}_{i=1}^K$ denotes the categorical probability distribution over top- K candidate tokens for the n -th action or condition token, obtained by projecting the FFN outputs at layer ℓ through the language modeling head (LM Head) and normalizing with softmax, which is a standard practice in

216 **Algorithm 1** Uncertainty-aware Observation Reinjection (**UAOR**) for VLA Models

217 **Require:** VLA model π , observation \mathbf{o}_t , language instruction \mathbf{l}

218 **Output:** Action tokens \mathbf{y}_t at time step t

219 1: **At time step t :**

220 2: **for** $\ell = 1$ to $L - 1$ **do** ▷ L : total layers

221 3: **Compute Uncertainty at Layer ℓ :**

222 4: 1. Compute action entropy $\mathcal{H}_{t,n}^{(\ell)}$ using FFN output $\tilde{\mathbf{h}}_t^{(\ell)}$ at Layer ℓ ▷ Eq. 6

223 5: 2. Compute uncertainty: $u_t^{(\ell)} \leftarrow \frac{1}{N_a} \sum_{n=1}^{N_a} \mathcal{H}_{t,n}^{(\ell)}$ ▷ Eq. 7

224 6: **if** $u_t^{(\ell)} > \gamma$ **then**

225 7: **Perform Reinjection at Layer $\ell + 1$:**

226 8: 1. Retrieve observation features using $\mathbf{h}_t^{(\ell+1)}: \text{INJ}_t^{(\ell+1)}(\mathbf{o}_t \mid \mathbf{h}_t^{(\ell+1)})$ ▷ Eq. 9

227 9: 2. Blend with original FFN output: $\text{FFN}^{(\ell+1)}(\mathbf{h}_t^{(\ell+1)}, \mathbf{o}_t)$ ▷ Eq. 8

228 10: **end if**

229 11: **end for**

230 12: Decode with $\pi(\mathbf{o}_t, \mathbf{l})$ to obtain \mathbf{y}_t

233
234 the "Logit Lens" paradigm (nostalgebraist, 2020; Belrose et al., 2023). For discrete actions, we set
235 $K = 256$ to match the number of action bins, since the model tends to assign higher probability
236 mass to these 256 action tokens. For continuous actions, we likewise fix $K = 256$ for definitional
237 convenience and cross-setting consistency. Based on this formulation, we define the uncertainty of
238 each layer as the average action entropy over all action tokens or condition tokens:

239
240
$$u_t^{(\ell)} = \frac{1}{N_a} \sum_{n=1}^{N_a} \mathcal{H}_{t,n}^{(\ell)}, \quad (7)$$

241

242 where N_a is the number of selected tokens (see Appendix B.2 for model-specific settings). Eq. 7 shows
243 higher action entropy indicates greater uncertainty. This formulation enables tracking uncertainty
244 dynamics across layers. Figure 1 visualizes these trends for OpenVLA-OFT across four task suites.
245 We observe a slight increase in uncertainty during the early layers of inference.

246 **Observation Reinjection with FFN.** As previously discussed, early layers often exhibit high un-
247 certainty. To mitigate this, we introduce **Uncertainty-Aware Observation Reinjection (**UAOR**)**,
248 illustrated in Figure 3. Specifically, during the forward pass, we compute the uncertainty $u_t^{(\ell)}$ based
249 on the action entropy at the current layer ℓ . If this uncertainty exceeds a chosen threshold γ , it
250 indicates that the model requires clearer observation guidance. Since the forward pass for layer ℓ
251 is completed, we perform reinjection at the **subsequent** layer ($\ell + 1$) to avoid the computational
252 and memory overhead associated with backtracking. Concretely, we treat the encoded observation
253 features as a key-value memory. We use the hidden states entering the FFN at layer $\ell + 1$, denoted
254 as $\mathbf{h}_t^{(\ell+1)}$, as queries to attend over this memory. The retrieved features are then blended with the
255 original output of the FFN at layer $\ell + 1$. The formulated process is defined as:

256
$$\text{FFN}^{(\ell+1)}(\mathbf{h}_t^{(\ell+1)}, \mathbf{o}_t) = \alpha \text{INJ}_t^{(\ell+1)}(\mathbf{o}_t \mid \mathbf{h}_t^{(\ell+1)}) + (1 - \alpha) \text{FFN}^{(\ell+1)}(\mathbf{h}_t^{(\ell+1)}), \quad (8)$$

257

258 where $\alpha \in [0, 1]$ is the blending ratio. The retrieved observation features $\text{INJ}_t^{(\ell+1)}$ are computed using
259 $\mathbf{h}_t^{(\ell+1)}$ as the queries:

260
261
$$\text{INJ}_t^{(\ell+1)}(\mathbf{o}_t \mid \mathbf{h}_t^{(\ell+1)}) = \sum_{i=1}^{N_o} \phi(\langle \mathbf{h}_t^{(\ell+1)}, \mathbf{o}_{t,i} \rangle) \cdot \mathbf{o}_{t,i}, \quad (9)$$

262

263 where $\mathbf{o}_t = (\mathbf{o}_{t,1}, \dots, \mathbf{o}_{t,N_o})$ serves as the key-value memory. This design allows the model to
264 dynamically "re-attend" to the observation in the next layer when confusion arises, without needing
265 to halt or backtrack the inference. The complete algorithmic flow is detailed in Algorithm 1.

266
267 3.4 THEORETICAL ANALYSIS: WHY UAOR WORKS

268 To understand the effectiveness of UAOR, we provide a theoretical analysis grounded in the following
269 four theorems:

270 *Notation.* At time step t and layer $\ell + 1$, let $\tilde{\mathbf{h}}_t^{(\ell+1)}$ be the vanilla FFN output, $\hat{\mathbf{h}}_t^{(\ell+1)}$ the output after
 271 applying UAOR (Eq. 8), and $\text{INJ}_t^{(\ell+1)}$ the reinjected observation features (Eq. 9). Let \mathbf{o}_t denote the
 272 observation, \mathbf{y}_t the action tokens, and \mathbf{x}_t the full input (observation + language).

273 **Theorem 3.1** (Observation information gain). *If reinjection is non-degenerate and mixing is near-
 274 invertible, then UAOR increases the mutual information between the hidden state and observation:*

$$276 \quad I\left(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t\right) \geq I\left(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t\right), \quad (10)$$

278 with strict inequality if $\text{INJ}_t^{(\ell+1)}$ adds observation-dependent variability.

279 **Theorem 3.2** (Action uncertainty reduction). *Assuming a deterministic backbone and stochastic
 280 policy head, the conditional entropy over actions is reduced if Theorem 3.1 holds:*

$$282 \quad H\left(\mathbf{y}_t \mid \hat{\mathbf{h}}_t^{(\ell+1)}\right) \leq H\left(\mathbf{y}_t \mid \tilde{\mathbf{h}}_t^{(\ell+1)}\right). \quad (11)$$

283 **Theorem 3.3** (Information Bottleneck optimization). *Let $\mathcal{L}(r) = I(r; \mathbf{x}_t) - \beta I(r; \mathbf{y}_t)$ be the
 284 Information Bottleneck (IB) objective. Then UAOR optimizes IB when:*

$$286 \quad \mathcal{L}(\hat{\mathbf{h}}_t^{(\ell+1)}) \leq \mathcal{L}(\tilde{\mathbf{h}}_t^{(\ell+1)}) \quad \text{if} \quad \Delta I_{t,y}^{(\ell+1)} \geq \frac{1}{\beta} \Delta I_{t,x}^{(\ell+1)}, \quad (12)$$

288 where $\Delta I_{t,y}^{(\ell+1)} \triangleq I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t)$, $\Delta I_{t,x}^{(\ell+1)} \triangleq I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t)$.

289 **Theorem 3.4** (Benefit of uncertainty-triggered reinjection). *If the entropy-based layer uncertainty
 290 $u_t^{(\ell)}$ correlates positively with $H(\mathbf{y}_t \mid \tilde{\mathbf{h}}_t^{(\ell+1)})$, then conditioning reinjection on $u_t^{(\ell)} > \gamma$ increases
 291 the expected relevance of injected information:*

$$293 \quad \mathbb{E}\left[I\left(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t \mid \tilde{\mathbf{h}}_t^{(\ell+1)}\right) \mid u_t^{(\ell)} > \gamma\right] \geq \mathbb{E}\left[I\left(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t \mid \tilde{\mathbf{h}}_t^{(\ell+1)}\right)\right]. \quad (13)$$

295 **Theoretical Integration.** Proofs are provided in Appendix A. These four theorems form a **unified logical framework** explaining why UAOR works: Theorem 3.1 establishes the *mechanism*, guaranteeing
 296 that reinjection restores observation information. Theorem 3.2 links this to the *effect*, proving that this
 297 information gain mathematically precipitates a reduction in action uncertainty. Theorem 3.3 justifies
 298 the *objective* via the Information Bottleneck principle, ensuring that the reinjection contributes valid
 299 predictive cues rather than mere noise or redundancy. Finally, Theorem 3.4 validates our *control
 300 strategy*, confirming that entropy-based triggering maximizes the expected relevance of the injected
 301 information compared to indiscriminate injection. Together, they theoretically ground UAOR as a
 302 method that optimizes model confidence through targeted and efficient information restoration.

4 EXPERIMENTS

4.1 SIMULATION EXPERIMENTS

308 **Simulation Benchmarks and Baselines.** We conduct evaluations on three widely-used simulation
 309 benchmarks in robot learning: LIBERO (Liu et al., 2023), SIMPLER (Li et al., 2025d), and
 310 CALVIN (Mees et al., 2022). For these benchmarks, we select several representative VLA models as
 311 our baseline: OpenVLA-OFT (7B) (Kim et al., 2025a) and π_0 (3B) (Black et al., 2024) for LIBERO,
 312 CogACT (7B) (Li et al., 2024a) for SIMPLER, and LLaVA-VLA (0.5B) for CALVIN. These base-
 313 lines differ in both architecture and scale—OpenVLA-OFT and LLaVA-VLA are single-system
 314 models, while π_0 and CogACT follow dual-system design; model sizes range from 0.5B to 7B
 315 parameters. This setup enables a comprehensive assessment of UAOR’s impact across heterogeneous
 316 VLA models, tasks, and embodiments. **The main experiments are conducted using three different
 317 random seeds to ensure reliability.** More implementation details are presented in Appendix B.

318 **Experimental Results on LIBERO.** Based on OpenVLA-OFT, UAOR delivers consistent gains
 319 across all four suites and achieves a remarkable average success rate of **98.0%**, as shown in Table 1.
 320 Notably, this performance is comparable to the recent 3D-CAVLA (Bhat et al., 2025) (**98.1%**), yet
 321 UAOR eliminates the need for auxiliary depth inputs, CoT reasoning, and fine-tuning, demonstrating
 322 superior efficiency. Validating generality, UAOR also consistently boosts the cutting-edge dual-
 323 system policy π_0 (Black et al., 2024) by **+1.5** points on average. The pronounced gains on **LIBERO-
 324 Long** across both architectures (**+2.0**) suggest that selectively reinforcing observation information

324 Table 1: Performance comparison on the LIBERO benchmark. “†” indicates our reproduced results.
325

Method	Spatial	Object	Goal	Long	Average
Octo (fine-tuned) (Ghosh et al., 2024) (<i>RSS’23</i>)	78.9	85.7	84.6	51.1	75.1
OpenVLA (Kim et al., 2025b) (<i>CoRL’24</i>)	84.7	88.4	79.2	53.7	76.5
TraceVLA (Zheng et al., 2024) (<i>ICLR’25</i>)	84.6	85.2	75.1	54.1	74.8
SpatialVLA (Qu et al., 2025) (<i>RSS’25</i>)	88.2	89.9	78.6	55.5	78.1
π_0 + FAST (Pertsch et al., 2025) (<i>RSS’25</i>)	96.4	96.8	88.6	60.2	85.5
UniVLA (Bu et al., 2025) (<i>RSS’25</i>)	96.5	96.8	95.6	92.0	95.2
CogVLA (Li et al., 2025c) (<i>NeurIPS’25</i>)	98.6	98.8	96.6	95.4	97.4
3D-CAVLA (Bhat et al., 2025) (<i>arXiv’25</i>)	98.2	99.8	98.2	96.1	98.1
OpenVLA-OFT† (Kim et al., 2025a) (<i>RSS’25</i>)	98.2 \pm 0.4	98.2 \pm 0.2	97.6 \pm 0.4	94.2 \pm 0.2	97.1 \pm 0.1
w/ UAOR (<i>Ours</i>)	99.0 \pm 0.2	98.4 \pm 0.4	98.2 \pm 0.4	96.2 \pm 0.0	98.0 \pm 0.2
Δ	+0.8	+0.2	+0.6	+2.0	+0.9
π_0 † (Black et al., 2024) (<i>RSS’25</i>)	96.3 \pm 0.6	96.7 \pm 0.7	92.9 \pm 1.2	80.5 \pm 1.2	91.7 \pm 0.5
w/ UAOR (<i>Ours</i>)	97.3 \pm 0.2	98.5 \pm 0.2	94.3 \pm 0.2	82.5 \pm 0.5	93.2 \pm 0.1
Δ	+1.0	+1.8	+1.4	+2.0	+1.5

340 Table 2: Performance comparison on the SIMPLER benchmark. “†” indicates our reproduced results.
341

Method	Pick Coke Can	Move Near	Open/Close Drawer	Open and Place	Average
RT-1 (Brohan et al., 2022) (<i>arXiv’23</i>)	85.7	44.2	73.0	6.5	52.4
RT-1-X (Vuong et al., 2023) (<i>CoRL’23</i>)	56.7	31.7	59.7	21.3	42.4
RT-2-X (Vuong et al., 2023) (<i>CoRL’23</i>)	78.7	77.9	25.0	3.7	46.3
Octo-base (Ghosh et al., 2024) (<i>RSS’23</i>)	17.0	4.2	22.7	0.0	11.0
OpenVLA (Kim et al., 2025b) (<i>CoRL’24</i>)	18.0	56.3	63.0	0.0	34.3
CogACT† (Li et al., 2024a) (<i>arXiv’25</i>)	92.3 \pm 0.3	83.7 \pm 0.6	72.7 \pm 0.2	43.5 \pm 1.0	73.1 \pm 0.7
w/ UAOR (<i>Ours</i>)	95.0 \pm 0.3	87.1 \pm 0.3	73.6 \pm 0.4	47.2 \pm 0.4	75.7 \pm 0.5
Δ	+2.7	+3.4	+0.9	+3.7	+2.6

352 Table 3: Performance comparison on the CALVIN benchmark. “†” indicates our reproduced results.
353

Method	Success Rate (%)					Avg. Len
	1/5	2/5	3/5	4/5	5/5	
RoboFlamingo (Li et al., 2024b) (<i>ICLR’24</i>)	82.4	61.9	46.6	33.1	23.5	2.47
GR-1 (Wu et al., 2024) (<i>ICLR’24</i>)	85.4	71.2	59.6	49.7	40.1	3.06
Vidman Wen et al. (2024) (<i>NIPS’24</i>)	91.5	76.4	68.2	59.2	46.7	3.42
OpenVLA (Kim et al., 2025b) (<i>CoRL’24</i>)	91.3	77.8	62.0	52.1	43.5	3.27
VLAS (Zhao et al., 2025a) (<i>ICLR’25</i>)	87.2	64.2	40.9	28.1	19.6	2.40
LLaVA-VLA† (Zhao et al., 2025b) (<i>arXiv’25</i>)	94.4 \pm 0.2	82.0 \pm 0.8	70.8 \pm 0.3	59.4 \pm 0.6	48.2 \pm 0.4	3.55 \pm 0.05
w/ UAOR (<i>Ours</i>)	95.5 \pm 0.3	84.6 \pm 0.6	72.3 \pm 0.5	60.7 \pm 0.2	49.1 \pm 0.0	3.67 \pm 0.03
Δ	+1.1	+2.6	+1.5	+1.3	+0.9	+0.12

363 effectively mitigates the “forgetting” of perceptual cues and reduces error accumulation during
364 complex sequential reasoning.
365366 **Experimental Results on SIMPLER.** Table 2 shows that UAOR raises the average success rate of
367 CogACT by **+2.6** points (73.1 \rightarrow 75.7; $\sim 3.6\%$ relative). The improvements are most evident on *Pick*
368 *coke can* (**+2.7**), *Open top drawer and place apple* (both **+3.7**) and *Move near* (**+3.4**), with a smaller
369 gain on *Open/Close drawer* (**+0.9**). These tasks demand precise localization and placement under
370 visual clutter, and the results suggest that uncertainty-aware observation reinjection improves scene
371 grounding and decision reliability *without* extra priors or retraining, validating the utility of UAOR
372 as a training-free plug-in module .373 **Experimental Results on CALVIN.** As demonstrated in Table 3, with LLaVA-VLA on the ABC→D
374 split (Fig. 3), UAOR improves success on every track and increases the average consecutive com-
375 pletion length by **+0.12** (3.55 \rightarrow 3.67; $\sim 3.4\%$ relative). The consistent gains across progressively
376 longer task chains indicate better maintenance of observation fidelity leading to reduced uncertainty
377 in downstream action prediction. Together with LIBERO and SIMPLER, these results substantiate
378 that UAOR provides reliable, training-free improvements across heterogeneous VLA architectures,

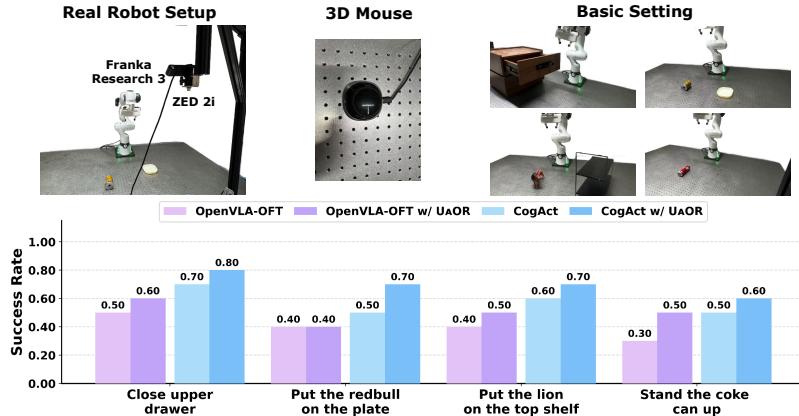


Figure 4: Real-World Setup and Results.

Table 4: Ablation Study on Injection Mechanism, Feature Extraction and Trigger Policy on LIBERO.

Method / Variant	Feature Extraction	Trigger Policy	Success Rate (%)				
			Spatial	Object	Goal	Long	Avg.
OpenVLA-OFT (Base)	-	-	98.2	98.2	97.6	94.2	97.1
Mean-Residual	Mean Pooling	All Layers	0.0	0.0	0.0	0.0	0.0
Mean-Residual	Mean Pooling	Random	98.0	98.4	96.8	94.4	96.9
Mean-Residual	Mean Pooling	Entropy-based	0.0	0.0	0.0	0.0	0.0
Mean-Blending	Mean Pooling	All Layers	98.0	96.8	95.8	94.4	96.3
Mean-Blending	Mean Pooling	Random	98.4	97.8	97.8	94.8	97.2
Mean-Blending	Mean Pooling	Entropy-based	98.0	97.8	97.6	93.8	96.8
UAOR (All Layers)	Attentive Retrieval	All Layers	97.8	97.6	96.2	95.2	96.7
UAOR (Random)	Attentive Retrieval	Random	97.8	97.6	96.4	93.6	96.4
UAOR (Ours)	Attentive Retrieval	Entropy-based	99.0	98.4	98.2	96.2	98.0

tasks, and embodiments. We also provide additional experimental results in Appendix C, including multi-seed evaluations and qualitative visualizations to further show the effectiveness of UAOR.

4.2 REAL-WORLD EXPERIMENTS

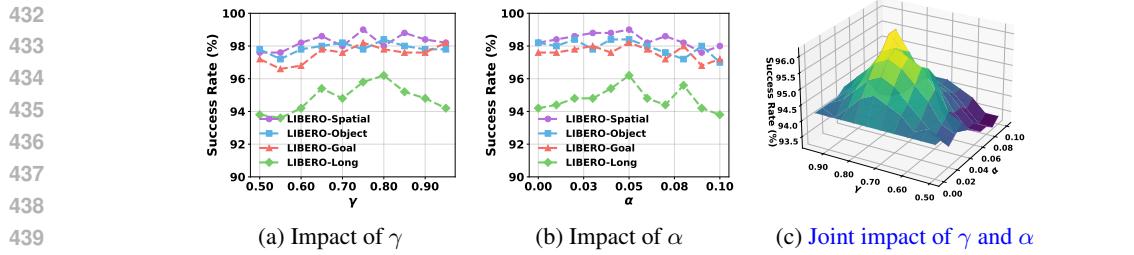
Real-World Setup. We perform real-robot experiments to validate the effectiveness of UAOR in the real world. Our real-robot setup includes a Franka Research 3 robot arm equipped with a parallel-jaw gripper, a static ZED 2i camera, and a 3D mouse (Figure 4). In total, we evaluate on four tasks: 1) *Close the upper drawer*, 2) *Put the redbull on the plate*, 3) *Put the lion on the top shelf*, and 4) *Stand the coke can up*. These tasks range from simple short-horizon placement to complex long-horizon multi-stage manipulation. We fine-tune both OpenVLA-OFT and CogACT on each task using 40 expert trajectories and evaluate each task with 10 test rollouts (see Appendix B.3 for more details).

Results. Figure 4 reports the real-world evaluation results on both OpenVLA-OFT and CogACT. For **OpenVLA-OFT**, we observe consistent performance improvements across three of the four tasks, with the average success rate increasing from 40.0% to 50.0% (**+25.0%** relative). The largest gain appears on the most challenging task, *Stand the coke can up* (**+66.7%** relative). **Crucially, UAOR** demonstrates strong generalizability when applied to **CogACT**. It achieves improvements across *all* four tasks, boosting the average success rate from 57.5% to 70.0% (**+21.7%** relative). Notably, in the *Put the redbull on the plate* task, UAOR increases the success rate by an absolute **20%**. These combined results validate the effectiveness of UAOR in enhancing manipulation robustness and generating faithful actions across different model architectures in real-world scenarios.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies on the LIBERO benchmark based on OpenVLA-OFT to investigate the effectiveness of our design choices.

Ablation on Core Designs. Table 4 presents a factorial ablation on injection mechanisms, feature extraction, and trigger policies. We define *Mean-Residual* as directly adding mean-pooled observation

Figure 5: Impact of uncertainty threshold γ and blending factor α across four LIBERO task suites.

features to the FFN’s output hidden states and *Mean-Blending* as α -blending. Trigger policies include *All Layers*, *Random* (matching the injection rate of Entropy-based), and *Entropy-based* (uncertainty threshold). More details are in Appendix B.4. Results reveal three insights: (1) **Injection Mechanism**: Direct addition causes catastrophic collapse (0.0%) due to severe feature shifts, whereas α -blending ensures stability. *Mean-Residual* (*Random*) survives (96.9%) only because its sparsity allows model recovery in subsequent layers. (2) **Feature Extraction**: Even with stable blending, Mean Pooling (96.3%–97.2%) struggles to surpass the strong baseline (97.1%). This is because averaging assigns equal weight to all observation tokens, failing to distinguish relevant cues. In contrast, UAOR’s Attentive Retrieval succeeds by effectively extracting fine-grained context relevant to the current hidden state. (3) **Trigger Policy**: For UAOR, indiscriminate injection (*All Layers/Random*) acts as noise, degrading performance (96.7%/96.4%). Only entropy-based triggering yields improvements (98.0%). Additionally, we have also performed an ablation study in Appendix C.1 to empirically verify the necessity and efficiency of injecting into the next layer’s FFN compared to other architectural alternatives. Collectively, these findings validate the effectiveness of the core designs of UAOR.

Rationale for Action Entropy. To validate our metric design, we compare UAOR against variants using *Feature Entropy* (hidden state distribution) and a supervised *Learned Head* (linear probe). As shown in Table 5, *Feature Entropy* proves ineffective (96.9%), as it captures representation richness rather than decision uncertainty, often spiking only in the final layers (see Appendix C.2). While the *Learned Head* performs well (97.7%), UAOR achieves superior performance (98.0%) while being entirely training-free. Additionally, layer-wise probing experiments (Appendix C.2) confirm that intermediate layers already contain significant action semantics (e.g., 78.5% accuracy at Layer 12), validating the use of the frozen LM head as a reliable “rough decoder” for uncertainty estimation.

Why Select Observation to Reinject? Table 6 presents an ablation on the type of information reinjected into FFN layers. Results show that reinjecting observation information (i.e., visual and proprioceptive features) yields the most consistent performance improvements. In contrast, reinjecting instruction features—either alone or in combination—leads to no improvement or even performance drops. This suggests that visual and proprioceptive features play a critical role in guiding robot behavior, while also revealing a potential limitation of current VLA models—their insufficient instruction-following capability and tendency to overfit to static language inputs.

The Impact of γ and α . Figure 5 illustrates the effect of varying the uncertainty threshold γ and the blending factor α on the performance of OpenVLA-OFT with UAOR. Figures 5a and 5b show the marginal effects when fixing one hyperparameter to its optimal value. To further investigate their interaction, we present a joint sensitivity analysis on LIBERO-Long in Figure 5c. As demonstrated by the 3D surface plot, the performance follows a convex trend, indicating that γ and α must be balanced to achieve optimal results. Specifically, we observe two failure modes at the extremes: (1) **Over-correction**: A small γ (frequent injection) coupled with a large α (strong mixing) degrades performance, likely by disrupting critical internal representations. (2) **Under-correction**: A large γ (rare injection) coupled with a small α (weak mixing) fails to provide sufficient observation guidance.

Table 5: Comparison of uncertainty metrics on the LIBERO benchmark.

Metric	Train?	Average
OpenVLA-OFT	-	97.1
Feature Entropy	No	96.9
Learned Head	Yes	97.7
Action Entropy	No	98.0

Table 6: Reinjection information ablation on LIBERO within OpenVLA-OFT.

#	Vision	Proprio	Instruction	Average
1	✗	✗	✗	97.1
2	✓	✗	✗	97.1
3	✗	✓	✗	96.4
4	✗	✗	✓	96.9
5	✓	✓	✗	98.0
6	✓	✗	✓	96.4
7	✗	✓	✓	97.0
8	✓	✓	✓	96.7

486 The distinct peak in Figure 5c confirms our selected parameters lie within the optimal region. In
 487 practice, we use an efficient heuristic strategy detailed in Appendix B.2 to determine these values.
 488

489 4.4 MORE ANALYSIS

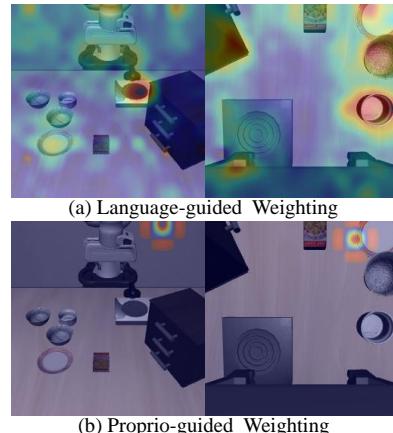
490
 491 **Do We Need Token-level Weighting for Visual Inputs?** In UAOR, visual tokens are injected with
 492 uniform weights. Inspired by findings that attending to
 493 task-relevant regions enhances manipulation (Song et al.,
 494 2025), we investigate whether *token-level weighting* im-
 495 proves performance. We design two training-free heuristic
 496 weighting schemes that assign each visual token a rel-
 497 evance score based on its similarity to either language
 498 instruction tokens (f_l) or proprioceptive state tokens (f_p):
 499 $w^{(m)} = N_v^{(m)} \cdot \text{softmax} \left(\frac{1}{N_q} \sum_{i=1}^{N_q} f_v^{(m)} f_{q,i}^\top \right)$, where
 500 $f_q \in \{f_l, f_p\}$ denotes the query features. Figure 6 visual-
 501 izes the resulting weights: while language-based weight-
 502 ing focuses on task-relevant objects (Figure 6a), proprio-
 503 based weighting exhibits diffuse and semantically am-
 504 biguous patterns (Figure 6b), likely due to the lack of
 505 explicit alignment between proprioceptive and visual fea-
 506 ture spaces. We evaluate these variants on LIBERO with
 507 OpenVLA-OFT. As shown in Table 7, neither weighting
 508 scheme outperforms the original uniform strategy. Notably,
 509 proprio-guided weighting even degrades performance slightly compared to the baseline.

510 We hypothesize two reasons: 1) Both heuristic schemes
 511 lack precise alignment supervision. This is particularly
 512 severe for proprioceptive states (e.g., joint angles), which
 513 lack intrinsic spatial correspondence with visual tokens,
 514 resulting in uninformative weights; 2) VLA models are
 515 trained under uniform token weighting and may inherently
 516 learn to attend to salient regions, making external heuristic
 517 weighting disruptive. In summary, uniform reinjection
 518 provides the most robust performance

519 **Complexity Analysis.** Although UAOR proves highly
 520 effective, an important consideration is its computational
 521 cost. We provide a theoretical complexity analysis in Ap-
 522 pendix D and evaluate actual runtime overhead through
 523 empirical experiments. Specifically, we run 500 rollouts
 524 on the LIBERO-Long benchmark using OpenVLA-OFT.
 525 As shown in Table 8, applying UAOR results in only a
 526 slight throughput drop from 49.7 Hz to 47.3 Hz, and a
 527 marginal latency increase from 0.161s to 0.169s. These
 528 results indicate that UAOR introduces negligible compu-
 529 tational overhead in practice.

530 5 CONCLUSION

531 We present UAOR, a lightweight, training-free module designed to boost VLA models. By introducing
 532 action entropy as a measure of inference-time uncertainty, UAOR dynamically reinjects observation
 533 information into the next-layer FFN when uncertainty is high. This mechanism allows the model to
 534 refocus on relevant observation features, leading to more confident and reliable action generation.
 535 We provide theoretical analysis demonstrating its efficiency, and validate its effectiveness across a
 536 wide range of VLA models, tasks, and embodiments in both simulation and real-world experiments.
 537 Without requiring additional observation cues, modules or training, UAOR consistently achieves
 538 performance gains with negligible computational overhead, making it a versatile and practical
 539 plug-and-play module for existing VLA models.



500 Figure 6: Visualization of our token-
 501 level weighting for visual inputs.

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

530 531 532 533 534 535 536 537 538 539 Table 7: Impact of token-level visual
 530 531 532 533 534 535 536 537 538 539 weighting based on OpenVLA-OFT.

Method	Average
OpenVLA-OFT	97.1
w/ UAOR (Uniform, Default)	98.0
w/ UAOR (Language-guided)	97.3
w/ UAOR (Proprio-guided)	96.9

530 531 532 533 534 535 536 537 538 539 Table 8: Comparison of inference
 530 531 532 533 534 535 536 537 538 539 overhead between OpenVLA-OFT and
 530 531 532 533 534 535 536 537 538 539 OpenVLA-OFT w/ UAOR. *Throughput*
 530 531 532 533 534 535 536 537 538 539 refers to the number of generated actions
 530 531 532 533 534 535 536 537 538 539 per second, and *Latency* indicates the in-
 530 531 532 533 534 535 536 537 538 539 ference time per time step.

Method	Throughput ↑	Latency ↓
OpenVLA-OFT	49.7 Hz	0.161 s
w/ UAOR	47.3 Hz	0.169 s

540
541 ETHICS STATEMENT542
543 This work aims to contribute to the advancement of Embodied Intelligence. While our research may
544 have various potential societal implications, none of which we feel must be specifically highlighted
here.545
546 REPRODUCIBILITY STATEMENT
547548 We have submitted the relevant code in the supplementary materials. The details of the experimental
549 benchmarks, the baselines, and the simulation and real-world setup can all be found in Section 4.1,
550 Section 4.2, and Appendix B.551
552 REFERENCES
553554 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
555 bottleneck. In *ICLR*, 2017.556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
557 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
558 2025.559 Dana H Ballard, Mary M Hayhoe, and Jeff B Pelz. Memory representations in natural tasks. *Journal*
560 *of cognitive neuroscience*, 7(1):66–80, 1995.561 Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
562 Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens.
563 *arXiv preprint arXiv:2303.08112*, 2023.564 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
565 Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
566 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.567 Vineet Bhat, Yu-Hsiang Lan, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. 3d
568 cavla: Leveraging depth and 3d context to generalize vision language action models for unseen
569 tasks. *arXiv preprint arXiv:2505.05800*, 2025.570 Johan Bjorck, Fernando Castañeda, Nikita Cherniakov, Xingye Da, Runyu Ding, Yu Fang, Dieter
571 Fox, Fengyuan Hu, Spencer Huang, Joel Jang, et al. Gr00t n1: An open foundation model for
572 generalist humanoid robots. *CoRR*, 2025.573 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
574 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
575 Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James
576 Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-language-
577 action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.578 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
579 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
580 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.581 Qingwen Bu, Hongyang Li, Li Chen, Jisong Cai, Jia Zeng, Heming Cui, Maoqing Yao, and Yu Qiao.
582 Towards synergistic, generalized, and efficient dual-system for robotic manipulation. *arXiv preprint*
583 *arXiv:2410.08001*, 2024.584 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, and
585 Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. *arXiv preprint*
586 *arXiv:2505.06111*, 2025.587 Yixiang Chen, Peiyan Li, Yan Huang, Jiabing Yang, Kehan Chen, and Liang Wang. Ec-flow: Enabling
588 versatile robotic manipulation from action-unlabeled videos via embodiment-centric flow. *arXiv*
589 *preprint arXiv:2507.06224*, 2025.

594 Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
 595 and machine learning, 2016.

596

597 Thomas M Cover, Joy A Thomas, et al. Entropy, relative entropy and mutual information. *Elements*
 598 of information theory

599, 2(1):12–13, 1991.

600 Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
 601 Wanqi Zhou, Yang Liu, Bofang Jia, et al. Openhelix: A short survey, empirical analysis, and
 602 open-source dual-system vla model for robotic manipulation. *arXiv preprint arXiv:2505.03912*,
 603 2025.

604 Yinpei Dai, Jayjun Lee, Yichi Zhang, Ziqiao Ma, Jed Yang, Amir Zadeh, Chuan Li, Nima Fazeli, and
 605 Joyce Chai. Aimbot: A simple auxiliary visual cue to enhance spatial awareness of visuomotor
 606 policies. *arXiv preprint arXiv:2508.08113*, 2025.

607 Yixiong Fang, Ziran Yang, Zhaorun Chen, Zhuokai Zhao, and Jiawei Zhou. From uncertainty to trust:
 608 Enhancing reliability in vision-language models with uncertainty-guided dropout decoding. *arXiv*
 609 *preprint arXiv:2412.06474*, 2024.

610 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
 611 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

612 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 613 key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 614 *Language Processing*, pp. 5484–5495, 2021.

615 Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
 616 Tobias Kreiman, Charles Xu, Jianlan Luo, et al. Octo: An open-source generalist robot policy. In
 617 *Robotics: Science and Systems*, 2024.

618 Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and minimum mean-square
 619 error in gaussian channels. *IEEE Transactions on Information Theory*, 51(4):1261–1282, 2005.

620 ByungOk Han, Jaehong Kim, and Jinhyeok Jang. A dual process vla: Efficient robotic manipulation
 621 leveraging vlm. *arXiv preprint arXiv:2410.15549*, 2024.

622 Todd S Horowitz and Jeremy M Wolfe. Visual search has no memory. *Nature*, 394(6693):575–577,
 623 1998.

624 Shibo Jie, Yehui Tang, Ning Ding, Zhi-Hong Deng, Kai Han, and Yunhe Wang. Memory-space
 625 visual prompting for efficient vision-language fine-tuning. In *International Conference on Machine*
 626 *Learning*, pp. 22062–22074. PMLR, 2024.

627 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 628 Sadigh. Prismatic vlm: Investigating the design space of visually-conditioned language models.
 629 In *Forty-first International Conference on Machine Learning*, 2024.

630 Ulas Berk Karli, Tetsu Kurumisawa, and Tesca Fitzgerald. Ask before you act: Token-level uncertainty
 631 for intervention in vision-language-action models. In *Second Workshop on Out-of-Distribution*
 632 *Generalization in Robotics at RSS 2025*, 2025.

633 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 634 speed and success. *arXiv preprint arXiv:2502.19645*, 2025a.

635 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 636 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 637 vision-language-action model. In *Conference on Robot Learning*, pp. 2679–2713. PMLR, 2025b.

638 Chengmeng Li, Junjie Wen, Yan Peng, Yixin Peng, Feifei Feng, and Yichen Zhu. Pointvla: Injecting
 639 the 3d world into vision-language-action models. *arXiv preprint arXiv:2503.07511*, 2025a.

640 Peiyan Li, Yixiang Chen, Hongtao Wu, Xiao Ma, Xiangnan Wu, Yan Huang, Liang Wang, Tao Kong,
 641 and Tieniu Tan. Bridgevla: Input-output alignment for efficient 3d manipulation learning with
 642 vision-language models. *arXiv preprint arXiv:2506.07961*, 2025b.

648 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 649 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 650 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024a.
 651

652 Wei Li, Renshan Zhang, Rui Shao, Jie He, and Liqiang Nie. Cogvla: Cognition-aligned
 653 vision-language-action model via instruction-driven routing & sparsification. *arXiv preprint*
 654 *arXiv:2508.21046*, 2025c.

655 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
 656 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
 657 imitators. In *The Twelfth International Conference on Learning Representations*, 2024b.

658 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Oier Mees, Karl Pertsch, Homer Rich Walke, Chuyuan Fu, Ishikaa
 659 Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
 660 simulation. In *Conference on Robot Learning*, pp. 3705–3728. PMLR, 2025d.

661

662 Tao Lin, Gen Li, Yilei Zhong, Yanwen Zou, and Bo Zhao. Evo-0: Vision-language-action model
 663 with implicit spatial understanding. *arXiv preprint arXiv:2507.00416*, 2025.

664 Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao
 665 Osaki, Katsushi Matsuda, Jie Ji, et al. Uncertainty quantification for in-context learning of large
 666 language models. In *Proceedings of the 2024 Conference of the North American Chapter of the
 667 Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 668 Papers)*, pp. 3357–3370, 2024.

669

670 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 671 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 672 Processing Systems*, 36:44776–44791, 2023.

673 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 674 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 675 pp. 26296–26306, 2024.

676 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 677 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 678 and Automation Letters*, 7(3):7327–7334, 2022.

679

680 nostalgebraist. Interpreting GPT: the logit lens. [https://www.lesswrong.com/posts/
 681 AckRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens](https://www.lesswrong.com/posts/AckRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens), August 2020. Accessed: 2025-02-22.

683 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 684 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 685 models. *arXiv preprint arXiv:2501.09747*, 2025.

686 Yury Polyanskiy and Yihong Wu. Strong data-processing inequalities for channels and bayesian
 687 networks. *arXiv:1508.06015*, 2016.

688

689 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu,
 690 Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-language-
 691 action model. *arXiv preprint arXiv:2501.15830*, 2025.

692 Maxim Raginsky. Strong data processing inequalities and ϕ -sobolev inequalities for discrete channels.
 693 *IEEE Transactions on Information Theory*, 62(6):3355–3389, 2016.

694

695 Wenxuan Song, Ziyang Zhou, Han Zhao, Jiayi Chen, Pengxiang Ding, Haodong Yan, Yuxin Huang,
 696 Feilong Tang, Donglin Wang, and Haoang Li. Reconvla: Reconstructive vision-language-action
 697 model as effective robot perceiver. *arXiv preprint arXiv:2508.10333*, 2025.

698 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv
 699 preprint physics/0004057*, 2000.

700

701 Pablo Valle, Chengjie Lu, Shaukat Ali, and Aitor Arrieta. Evaluating uncertainty and quality of visual
 language action-enabled robots. *arXiv preprint arXiv:2507.17049*, 2025.

702 Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi, Charles
 703 Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning datasets and
 704 rt-x models. In *Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition@*
 705 *CoRL2023*, 2023.

706 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 707 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 708 *and Pattern Recognition Conference*, pp. 5294–5306, 2025a.

709 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 710 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 711 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025b.

712 Youpeng Wen, Junfan Lin, Yi Zhu, Jianhua Han, Hang Xu, Shen Zhao, and Xiaodan Liang. Vid-
 713 man: Exploiting implicit dynamics from video diffusion model for effective robot manipulation.
 714 *Advances in Neural Information Processing Systems*, 37:41051–41075, 2024.

715 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 716 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 717 manipulation. In *ICLR*, 2024.

718 Jiabing Yang, Chenhang Cui, Yiyang Zhou, Yixiang Chen, Peng Xia, Ying Wei, Tao Yu, Yan Huang,
 719 and Liang Wang. Ikod: Mitigating visual attention degradation in large vision-language models.
 720 *arXiv preprint arXiv:2508.03469*, 2025.

721 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
 722 Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In *The*
 723 *Thirteenth International Conference on Learning Representations*, 2025.

724 Wei Zhao, Pengxiang Ding, Zhang Min, Zhefei Gong, Shuanghao Bai, Han Zhao, and Donglin Wang.
 725 Vlas: Vision-language-action model with speech instructions for customized robot manipulation.
 726 In *The Thirteenth International Conference on Learning Representations*, 2025a.

727 Wei Zhao, Gongsheng Li, Zhefei Gong, Pengxiang Ding, Han Zhao, and Donglin Wang. Unveiling
 728 the potential of vision-language-action models with open-ended multimodal instructions. *arXiv*
 729 *preprint arXiv:2505.11214*, 2025b.

730 Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
 731 Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
 732 awareness for generalist robotic policies. *arXiv preprint arXiv:2412.10345*, 2024.

733 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 734 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 735 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

736 Xin Zou, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Kening Zheng, Sirui Huang, Junkai Chen, Peijie
 737 Jiang, Jia Liu, Chang Tang, et al. Look twice before you answer: Memory-space visual retracing for
 738 hallucination mitigation in multimodal large language models. *arXiv preprint arXiv:2410.03577*,
 739 2024.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX	
757		
758	A Proofs for Theoretical Analysis: Why UAOR Works	15
759		
760	B More Implementation Details	18
761	B.1 Simulation Benchmarks	18
762	B.2 Baselines and Setup	18
763	B.3 Real-World Setup	20
764	B.4 Ablation on Core Designs	20
765		
766	C More Experimental Results	21
767	C.1 Ablation on Injection Timing and Location	21
768	C.2 Detailed Analysis of Uncertainty Metrics	22
769	C.3 Visualizations of Simulation and Real-World Results	22
770		
771	D Theoretical Complexity Analysis	22
772		
773	E The Use of Large Language Models (LLMs)	23
774		

780 A PROOFS FOR THEORETICAL ANALYSIS: WHY UAOR WORKS

781 In this section, we provide rigorous proofs for the four theorems stated in Section 3.4, grounded in
782 the Information Bottleneck (IB) theory. We show that UAOR increases the Mutual Information (MI)
783 between hidden states and the observation memory, thereby reducing the conditional entropy given
784 the hidden states, and further improving the Information Bottleneck (IB) objective.

785 **Preliminaries.** At time step t and layer $\ell+1$, let $\tilde{\mathbf{h}}_t^{(\ell+1)}$ be the vanilla FFN output, $\hat{\mathbf{h}}_t^{(\ell+1)}$ the output
786 after applying UAOR (Eq. 8), and $\text{INJ}_t^{(\ell+1)}$ the retrieved observation information (Eq. 9). Let \mathbf{o}_t be
787 the observation memory, \mathbf{y}_t the action tokens, and \mathbf{x}_t the full input (observation + language). We
788 write $T_t^{(\ell+1)} \triangleq (\tilde{\mathbf{h}}_t^{(\ell+1)}, \text{INJ}_t^{(\ell+1)})$ and $\hat{\mathbf{h}}_t^{(\ell+1)} = g(T_t^{(\ell+1)})$ for the UAOR fusion function induced
789 by Eq. 8. We assume:

- 790 • (A1) **Non-degenerate reinjection:** $I(\text{INJ}_t^{(\ell+1)}; \mathbf{o}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) > 0$ on a set of non-zero measure.
- 791 • (A2) **Near-invertible mixing:** g admits an approximate left inverse ψ with $\mathbb{E}\|\psi(\hat{\mathbf{h}}_t^{(\ell+1)}) -$
792 $T_t^{(\ell+1)}\|_2^2 \leq \varepsilon$, implying a strong-DPI type bound (Raginsky, 2016; Polyanskiy & Wu, 2016; Guo
793 et al., 2005)

$$794 I(\hat{\mathbf{h}}_t^{(\ell+1)}; Z) \geq I(T_t^{(\ell+1)}; Z) - \kappa_t^{(\ell+1)}(\varepsilon), \quad I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t) \geq I(T_t^{(\ell+1)}; \mathbf{y}_t) - \eta_t^{(\ell+1)}(\varepsilon), \quad (14)$$

795 for any Z jointly distributed with $T_t^{(\ell+1)}$, with $\kappa_t^{(\ell+1)}, \eta_t^{(\ell+1)} \rightarrow 0$ as $\varepsilon \rightarrow 0$ (e.g., Fano/Gaussian
796 bounds).

- 797 • (A3) **Target generation:** \mathbf{y}_t is generated from \mathbf{x}_t through the policy head; conditioned on \mathbf{x}_t ,
798 the rest of the network is deterministic (standard in IB-style analyses (Tishby et al., 2000; Alemi
799 et al., 2017)).

800 **Lemma A.1** (Layerwise MI decay in the vanilla stack). *For $\ell \geq 1$, $I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) \leq I(\tilde{\mathbf{h}}_t^{(\ell)}; \mathbf{o}_t)$.*

801 *Proof.* Each layer computes $\tilde{\mathbf{h}}_t^{(\ell+1)} = f^{(\ell+1)}(\tilde{\mathbf{h}}_t^{(\ell)})$ with no direct access to \mathbf{o}_t , so $\mathbf{o}_t \rightarrow \tilde{\mathbf{h}}_t^{(\ell)} \rightarrow$
802 $\tilde{\mathbf{h}}_t^{(\ell+1)}$ is a Markov chain. According to the **Data Processing Inequality (DPI)** (Cover et al., 1991),

810 if $A \rightarrow B \rightarrow C$ forms a Markov chain, then: $I(A; C) \leq I(A; B)$. Thus we can get $I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) \leq$
 811 $I(\tilde{\mathbf{h}}_t^{(\ell)}; \mathbf{o}_t)$. \square
 812

813
 814 **Proof of Theorem 3.1** (Observation information gain). At layer $\ell+1$ and time t , augment by
 815 $T_t^{(\ell+1)} = (\tilde{\mathbf{h}}_t^{(\ell+1)}, \text{INJ}_t^{(\ell+1)})$. By the chain rule,

$$816 \quad 817 \quad I(T_t^{(\ell+1)}; \mathbf{o}_t) = I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) + I(\text{INJ}_t^{(\ell+1)}; \mathbf{o}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) \geq I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t), \quad (15)$$

818 with strictness under (A1). Since $\hat{\mathbf{h}}_t^{(\ell+1)} = g(T_t^{(\ell+1)})$, (A2) yields
 819

$$820 \quad 821 \quad I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) \geq I(T_t^{(\ell+1)}; \mathbf{o}_t) - \kappa_t^{(\ell+1)}(\varepsilon) \geq I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) + I(\text{INJ}_t^{(\ell+1)}; \mathbf{o}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) - \kappa_t^{(\ell+1)}(\varepsilon).$$

822 Letting $\varepsilon \rightarrow 0$ proves $I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t) \geq I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t)$, with strict inequality when $I(\text{INJ}_t^{(\ell+1)}; \mathbf{o}_t |$
 823 $\tilde{\mathbf{h}}_t^{(\ell+1)}) > 0$. \square
 824

825 **Proof of Theorem 3.2** (Action uncertainty reduction). Consider the definition of conditional entropy
 826 $H(\mathbf{y}_t | r) = H(\mathbf{y}_t) - I(\mathbf{y}_t; r)$ (Cover et al., 1991), we have

$$827 \quad 828 \quad H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)}) - H(\mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) = -\left(I(\mathbf{y}_t; \hat{\mathbf{h}}_t^{(\ell+1)}) - I(\mathbf{y}_t; \tilde{\mathbf{h}}_t^{(\ell+1)})\right).$$

830 By near-invertible mixing (A2) and Eq. 14 with $T_t^{(\ell+1)} = (\tilde{\mathbf{h}}_t^{(\ell+1)}, \text{INJ}_t^{(\ell+1)})$,

$$831 \quad 832 \quad I(\mathbf{y}_t; \hat{\mathbf{h}}_t^{(\ell+1)}) \geq I(\mathbf{y}_t; T_t^{(\ell+1)}) - \eta_t^{(\ell+1)}(\varepsilon).$$

833 Applying the chain rule, we get

$$834 \quad 835 \quad I(\mathbf{y}_t; T_t^{(\ell+1)}) = I(\mathbf{y}_t; \tilde{\mathbf{h}}_t^{(\ell+1)}) + I(\mathbf{y}_t; \text{INJ}_t^{(\ell+1)} | \tilde{\mathbf{h}}_t^{(\ell+1)}).$$

836 Combining the two displays yields

$$837 \quad 838 \quad H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)}) \leq H(\mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) - I(\mathbf{y}_t; \text{INJ}_t^{(\ell+1)} | \tilde{\mathbf{h}}_t^{(\ell+1)}) + \eta_t^{(\ell+1)}(\varepsilon).$$

840 Letting $\varepsilon \rightarrow 0$ proves $H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)}) \leq H(\mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)})$, with strict inequality whenever
 841 $I(\mathbf{y}_t; \text{INJ}_t^{(\ell+1)} | \tilde{\mathbf{h}}_t^{(\ell+1)}) > 0$. \square
 842

843 **Proof of Theorem 3.3** (Information Bottleneck improvement). The Information Bottleneck (IB)
 844 objective (Tishby et al., 2000; Alemi et al., 2017) for a representation r is

$$845 \quad 846 \quad \mathcal{L}(r) = I(r; \mathbf{x}_t) - \beta I(r; \mathbf{y}_t).$$

847 In particular,

$$848 \quad 849 \quad \mathcal{L}(\tilde{\mathbf{h}}_t^{(\ell+1)}) = I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t) - \beta I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t), \quad \mathcal{L}(\hat{\mathbf{h}}_t^{(\ell+1)}) = I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t) - \beta I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t).$$

850 Let

$$851 \quad 852 \quad \Delta I_{t,x}^{(\ell+1)} \triangleq I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t), \quad \Delta I_{t,y}^{(\ell+1)} \triangleq I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t).$$

853 Then

$$854 \quad 855 \quad \mathcal{L}(\hat{\mathbf{h}}_t^{(\ell+1)}) - \mathcal{L}(\tilde{\mathbf{h}}_t^{(\ell+1)}) = \Delta I_{t,x}^{(\ell+1)} - \beta \Delta I_{t,y}^{(\ell+1)}.$$

856 Using equation 14 and the chain rule,

$$857 \quad 858 \quad \Delta I_{t,x}^{(\ell+1)} \leq I(T_t^{(\ell+1)}; \mathbf{x}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{x}_t) + \kappa_t^{(\ell+1)}(\varepsilon) = I(\text{INJ}_t^{(\ell+1)}; \mathbf{x}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) + \kappa_t^{(\ell+1)}(\varepsilon),$$

$$859 \quad 860 \quad \Delta I_{t,y}^{(\ell+1)} \geq I(T_t^{(\ell+1)}; \mathbf{y}_t) - I(\tilde{\mathbf{h}}_t^{(\ell+1)}; \mathbf{y}_t) - \eta_t^{(\ell+1)}(\varepsilon) = I(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) - \eta_t^{(\ell+1)}(\varepsilon).$$

861 Therefore a sufficient condition for $\mathcal{L}(\hat{\mathbf{h}}_t^{(\ell+1)}) \leq \mathcal{L}(\tilde{\mathbf{h}}_t^{(\ell+1)})$ is

$$863 \quad \beta \Delta I_{t,y}^{(\ell+1)} \geq \Delta I_{t,x}^{(\ell+1)} \Rightarrow \Delta I_{t,y}^{(\ell+1)} \geq \frac{1}{\beta} \Delta I_{t,x}^{(\ell+1)},$$

up to vanishing $\kappa_t^{(\ell+1)}(\varepsilon), \eta_t^{(\ell+1)}(\varepsilon)$ as $\varepsilon \rightarrow 0$, which is exactly the criterion stated in Theorem 3.3. Let

$$I_{t,y|\tilde{h}}^{\ell+1,\min} \leq I(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}), \quad I_{t,x|\tilde{h}}^{\ell+1,\max} \geq I(\text{INJ}_t^{(\ell+1)}; \mathbf{x}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}),$$

be any empirical/theoretical lower and upper bounds, respectively. Then the above inequalities imply

$$\Delta I_{t,y}^{(\ell+1)} \geq I_{t,y|\tilde{h}}^{\ell+1,\min} - \eta_t^{(\ell+1)}(\varepsilon), \quad \Delta I_{t,x}^{(\ell+1)} \leq I_{t,x|\tilde{h}}^{\ell+1,\max} + \kappa_t^{(\ell+1)}(\varepsilon).$$

Hence a sufficient choice of β ensuring $\mathcal{L}(\hat{\mathbf{h}}_t^{(\ell+1)}) \leq \mathcal{L}(\tilde{\mathbf{h}}_t^{(\ell+1)})$ is

$$\beta \geq \frac{I_{t,x|\tilde{h}}^{\ell+1,\max} + \kappa_t^{(\ell+1)}(\varepsilon)}{I_{t,y|\tilde{h}}^{\ell+1,\min} - \eta_t^{(\ell+1)}(\varepsilon)} \quad \text{provided} \quad I_{t,y|\tilde{h}}^{\ell+1,\min} > \eta_t^{(\ell+1)}(\varepsilon). \quad (16)$$

When ε is sufficiently small (so that $\kappa_t^{(\ell+1)}(\varepsilon), \eta_t^{(\ell+1)}(\varepsilon) \rightarrow 0$), the sufficient condition Eq. 16 simplifies to

$$\beta \geq \frac{I_{t,x|\tilde{h}}^{\ell+1,\max}}{I_{t,y|\tilde{h}}^{\ell+1,\min}} \quad \text{provided} \quad I_{t,y|\tilde{h}}^{\ell+1,\min} > 0.$$

This condition provides a lower bound for β to ensure that reinjecting observation information at layer $\ell+1$ reduces the IB objective for VLA models. Satisfying this criterion allows UAOR to effectively optimize the trade-off between compressing task-irrelevant input and retaining observation-relevant information critical for accurate action generation. \square

Proof of Theorem 3.4 (Benefit of uncertainty-triggered reinjection). Let $u_t^{(\ell)}$ be the entropy-based layer uncertainty; assume it is positively linked to $H(\mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)})$. Define the *predictive relevance* of the injection at layer $\ell+1$:

$$R_t^{(\ell+1)} \triangleq I(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) \geq 0.$$

Empirically, higher predictive uncertainty correlates with greater expected gains from additional information or computation. Thus, we assume there exists a non-decreasing measurable φ such that

$$\mathbb{E}[R_t^{(\ell+1)} | u_t^{(\ell)} = u] = \varphi(u), \quad \varphi'(u) \geq 0.$$

Then

$$\mathbb{E}[R_t^{(\ell+1)} | u_t^{(\ell)} > \gamma] = \mathbb{E}[\varphi(u) | u > \gamma] \geq \mathbb{E}[\varphi(u)] = \mathbb{E}[R_t^{(\ell+1)}],$$

i.e.,

$$\mathbb{E}[I(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) | u_t^{(\ell)} > \gamma] \geq \mathbb{E}[I(\text{INJ}_t^{(\ell+1)}; \mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)})].$$

Finally, by the bound proved in Theorem 3.2,

$$H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)}) \leq H(\mathbf{y}_t | \tilde{\mathbf{h}}_t^{(\ell+1)}) - R_t^{(\ell+1)},$$

so triggering on $u_t^{(\ell)} > \gamma$ yields a larger *expected* reduction of $H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)})$ per reinjection call. \square

Summary. (A) *Layerwise forgetting* in standard transformer stacks leads to diminishing observation relevance across depth (Lemma A.1). (B) UAOR *recovers* observation dependence at layer $\ell+1$, provably increasing $I(\hat{\mathbf{h}}_t^{(\ell+1)}; \mathbf{o}_t)$ over the vanilla baseline (Theorem 3.1), which in turn *reduces* conditional entropy $H(\mathbf{y}_t | \hat{\mathbf{h}}_t^{(\ell+1)})$ (Theorem 3.2). (C) When the relevance gain ΔI_y exceeds the scaled compression cost $\frac{1}{\beta} \Delta I_x$, UAOR *lowers* the IB objective, improving the overall information-efficiency tradeoff (Theorem 3.3). (D) Entropy-based triggering *selectively activates* reinjection in high-uncertainty regions, thereby increasing the expected predictive value of injected content and enhancing per-call entropy reduction (Theorem 3.4).

918 **B MORE IMPLEMENTATION DETAILS**
919920 **B.1 SIMULATION BENCHMARKS**
921922 **LIBERO** (Liu et al., 2023) is a language-conditioned manipulation benchmark that factorizes
923 variation along four axes and evaluates policies under controlled shifts of *geometry*, *object identity*,
924 *goal intent*, and *temporal horizon*. The benchmark provides 4 suites—**Spatial**, **Object**, **Goal**, and
925 **Long**—each containing 10 tasks with 50 human-teleoperated demonstrations per task, yielding a
926 consistent protocol for training and evaluation. These suites focus on distinct reasoning capabilities:
927928

- **LIBERO Spatial** holds objects and goals fixed while perturbing placements and poses, stressing
929 relational language parsing (e.g., left/right, front/behind) and viewpoint robustness.
- **LIBERO-Object** fixes scene layout but varies categories/attributes (type, shape, color), probing
930 category-level generalization and attribute-aware grounding.
- **LIBERO-Goal** keeps geometry and objects constant while changing the intended outcome, testing
932 fine-grained instruction disambiguation and goal-consistent action selection.
- **LIBERO-Long** composes multiple atomic skills into extended procedures across diverse scenes,
934 assessing sequential planning, error recovery, and long-horizon credit assignment.

935936 **SIMPLER** (Li et al., 2025d) is a simulated evaluation suite designed to mirror real-world manipu-
937 lation with two complementary settings. *Visual Matching* (VM) aligns the simulated scene with its
938 real counterpart (assets, layout, camera), enabling faithful assessment of policies in near-deployment
939 conditions. *Variant Aggregations* (VA) perturbs the VM setup—varying background, lighting, dis-
940 tractors, and table textures—to stress-test robustness and out-of-distribution generalization. For the
941 **Google robot**, both VM and VA include four canonical tasks: 1) *Pick coke can*; 2) *Move near*; and 3)
942 *Open/Close drawer*, and 4) *Open top drawer and place apple*. For the **WidowX robot**, SIMPLER
943 provides the VM setting with four tasks: 1) Put spoon on towel, 2) Put carrot on plate, 3) Stack green
944 block on yellow block, and 4) Put eggplant in yellow basket. Evaluation is reported as success rate
945 over standardized rollouts for fair comparison across methods.946 **CALVIN** (Mees et al., 2022) is a long-horizon manipulation benchmark built on top of the PyBul-
947 let (Coulmans & Bai, 2016) simulator and involves a Franka Panda Robot arm that manipulates
948 the scene. It comprises 34 tasks across four environments (A, B, C, and D) and over six hours of
949 teleoperated play data per environment, captured from static and wrist-mounted RGB-D cameras
950 together with tactile signals and proprioception. We adopt the classic and challenging CALVIN
951 ABC→D evaluation protocol, where each model is assessed over 500 rollouts. We report both the
952 overall success rate and the average number of successfully completed sub-tasks (i.e., average length).953 **B.2 BASELINES AND SETUP**
954955 In this section, we delve into the architectural details of the selected baselines and provide additional
956 information on the experimental setup used throughout our evaluation.957 **OpenVLA-OFT** (Kim et al., 2025a) is a high-performance VLA model derived from OpenVLA (Kim
958 et al., 2025b). It incorporates parallel decoding with action chunking, continuous action representation,
959 and an L1 regression objective, leading to substantial improvements in both task performance and
960 inference speed. In our experiments, we use the OpenVLA-OFT variant trained with multimodal
961 inputs consisting of two images (a third-person image and a wrist camera image), the robot’s
962 proprioceptive state, and a language instruction. Specifically, the visual and proprioceptive features
963 are concatenated to form the observation features, which are then injected into the Feed-Forward
964 Network (FFN) layers of the language model following our UAOR mechanism. And we compute
965 the action entropy based on all action tokens within the action chunk. We use the hidden states
966 corresponding to the last $N_a = 8 \times 7 = 56$ (action chunk size $H = 8$, action dimension $D_a = 7$)
967 tokens (i.e., positions $[-57 : -1]$) before the final stop token (“</s>”) to measure the uncertainty.968 π_0 (Black et al., 2024) employs a flow matching-based architecture built upon the PaliGemma VLM
969 (3B). It processes multimodal inputs (images and language instructions) through the VLM backbone
970 to generate context embeddings (specifically, the Key-Value cache), which then condition a separate
971 action expert for continuous action generation. In our experiments, we inject the visual features
972 into the Feed-Forward Network (FFN) layers of the PaliGemma backbone. Since the flow matching

972
973
974 Table 9: UAOR hyperparameters on simulation and real-world benchmarks
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

Benchmark	Base Model	Task / Suite	γ	α
LIBERO	OpenVLA-OFT	Spatial	0.75	0.05
		Object	0.80	0.05
		Goal	0.75	0.05
		Long	0.80	0.05
π_0		Spatial	0.20	0.05
		Object	0.20	0.05
		Goal	0.20	0.05
		Long	0.20	0.05
SIMPLER	CogACT	Pick coke can	0.80	0.05
		Move near	0.80	0.05
		Open/Close drawer	0.80	0.05
		Open top drawer and place apple	0.70	0.05
CALVIN	LLaVA-VLA	ABC→D	0.85	0.06
Real-World	OpenVLA-OFT	Close upper drawer	0.75	0.05
		Put the redbull on the plate	0.80	0.05
		Put the lion on the top shelf	0.80	0.05
		Stand the coke can up	0.80	0.05
Real-World	CogACT	Close upper drawer	0.80	0.05
		Put the redbull on the plate	0.80	0.05
		Put the lion on the top shelf	0.80	0.05
		Stand the coke can up	0.80	0.05

996
997
998 head operates in continuous space and does not output discrete action probabilities, we compute the
999 entropy based on the *last token* of the VLM’s prefix processing (i.e., position $[-1]$). This metric
1000 reflects the backbone’s semantic uncertainty regarding the current observation and instruction context
1001 before the denoising phase. Consequently, we set $N_a = 1$ in Eq. 7 for this architecture.

1002 **CogACT** (Li et al., 2024a) adopts a componentized dual-system architecture that decouples perception
1003 and control. It uses the Prismatic VLM (7B) to extract a cognition token, which conditions a diffusion-
1004 based action expert for generating precise actions. CogACT demonstrates state-of-the-art results on
1005 the SIMPLER benchmark. In our implementation, since CogACT does not utilize proprioceptive
1006 input (i.e., robot joint states), we treat only the visual observation (third-person image) as the
1007 modality for observation reinjection. Additionally, we compute the action entropy solely based on
1008 the generated cognition token (i.e., positions $[-1]$), which serves as the intermediate representation
1009 linking perception and action. Therefore, $N_a = 1$ in Eq. 7 for this setup.

1010 **LLaVA-VLA** (Zhao et al., 2025b) is built on the widely adopted vision-language model LLaVA (Liu
1011 et al., 2024), exhibiting stable performance across both simulated and real-world environments. The
1012 lightweight variant LLaVA-VLA-0.5b achieves performance comparable to its 7B counterpart based
1013 on LLaVA, while incurring significantly lower computational overhead. It incorporates two images
1014 (static image and gripper image) and proprioception as input, which we combine as the supplemental
1015 observation cues. While LLaVA-VLA adopts action chunking, unlike OpenVLA-OFT, it does not
1016 employ parallel decoding and thus generates only one action token per step. Therefore we utilize the
1017 last token (i.e., positions $[-1]$, $N_a = 1$) to compute action entropy and uncertainty.

1018 For other baseline methods compared in the main text, we list them for reference and encourage
1019 readers to refer to the original papers for further details.

1020 **Hyperparameter Selection Strategy.** We adopt a heuristic strategy to determine the hyperparameters
1021 γ (uncertainty threshold) and α (blending factor). We begin by analyzing the uncertainty curves
1022 (see Figure 1) to obtain a coarse estimate, initially setting $\gamma = 0.80$ for all task suites in LIBERO.
1023 Under this preliminary setting, we search for the optimal α and find that $\alpha = 0.05$ yields the best
1024 performance across all four LIBERO task suites. Fixing α , we then refine γ for each individual
1025 task by performing a local search around the initial estimate. This progressive narrowing of the
search space significantly reduces the tuning overhead while ensuring strong empirical results. We

Table 10: OpenVLA-OFT hyperparameters for real-world fine-tuning.

Hyperparameter	Value
# GPUs	8 x NVIDIA 4090 (24GB VRAM)
learning rate (LR)	5e-4
total batch size	8 (1 per GPU)
# train steps	150K
input images	1 third-person camera image
input image size	224 x 224 px
use observation history	no (use single-step inputs)
LoRA rank	32
action chunk size	8 steps (predict 8, execute all 8 open-loop at test time)
use proprio (robot state)	yes
use FiLM	no

Table 11: CogACT hyperparameters for real-world fine-tuning.

Hyperparameter	Value
# GPUs	8 x NVIDIA A100 (80GB VRAM)
learning rate (LR)	2e-5
total batch size	8 (1 per GPU)
input images	1 third-person camera image
input image size	224 x 224 px
VLM backbone	Prism-DinoSigLIP-224px
action model type	DiT-B (Diffusion Transformer Base)
diffusion steps	8 (repeated steps)
image augmentation	True
action chunk size	16 steps (predict 16, execute all 16 open-loop at test time)

use the strategy to determine the final hyperparameter settings for both simulation and real-world experiments, as summarized in Table 9.

B.3 REAL-WORLD SETUP

Figure 4 illustrates our real-robot setting. The platform comprises a 7-DoF Franka Research 3 robot arm with a parallel-jaw gripper and a ZED 2i stereo camera mounted on a tripod. We collect expert trajectories with a 3D mouse to enable fine-grained and precise manipulation. The four tasks we designed are detailed as follows:

- **Close the upper drawer.** The robot is required to approach the cabinet, locate the upper drawer, and execute a pushing motion to close it fully.
- **Put the redbull on the plate.** The robot needs to identify the Red Bull can, grasp it securely, and place it on the designated plate area with proper orientation.
- **Put the lion on the top shelf.** The robot should pick up the toy lion from the workspace and accurately place it onto the top shelf.
- **Stand the coke can up.** The robot must perform a complex sequence of actions to pick up a horizontally lying cup, reorient it upright, and place it stably on its base.

We fine-tune both OpenVLA-OFT and CogACT on each task using 40 expert trajectories collected with a 3D mouse. The training hyperparameters for OpenVLA-OFT and CogACT are detailed in Table 10 and Table 11, respectively.

B.4 ABLATION ON CORE DESIGNS

In this section, we provide more details about the ablation study on the core designs of UAOR:

Mean-Residual: Directly adds the mean-pooled observation features to the hidden state ($h' = h + o_{mean}$, where h is the original FFN’s output hidden states and o_{mean} denotes the mean-pooled

Table 12: Ablation on Injection Timing and Location on LIBERO based on OpenVLA-OFT.

Injection Timing	Injection Module	Success Rate (%)					Latency	Overhead
		Spatial	Object	Goal	Long	Avg.		
-	Baseline (No Injection)	98.2	98.2	97.6	94.2	97.1	0.161s	-
Current Layer (ℓ)	Self-Attention (SA)	98.2	98.0	97.8	95.8	97.5	0.195s	+21.1%
Current Layer (ℓ)	Feed-Forward (FFN)	98.6	98.2	98.0	95.8	97.7	0.182s	+13.0%
Next Layer ($\ell + 1$)	Self-Attention (SA)	98.4	98.0	97.8	94.8	97.3	0.170s	+5.6%
Next Layer ($\ell + 1$)	Feed-Forward (UAOR)	99.0	98.4	98.2	96.2	98.0	0.169s	+5.0%

observation features). Represents a naive residual connection. Since the observation tokens and hidden states differ in sequence length, element-wise addition (standard ResNet) is impossible. Therefore, we aggregate observation features via **Mean Pooling** for the residual baselines.

Mean-Blending: Blends the mean-pooled observation features using α ($h' = (1 - \alpha)h + \alpha o_{mean}$). Represents a "softer" residual.

UAOR: Blends the key observation features relevant to current hidden states via an FFN-like key-value retrieval.

Trigger Policies: All Layers injects observation features at every layer of the LLM backbone. **Random** selects a subset of layers uniformly at random for each inference step. To ensure a fair comparison, the number of selected layers matches the average number of layers triggered by the Entropy-based policy (e.g., approximately 30% for LIBERO-Spatial, Object, and Goal, and 20% for LIBERO-Long). **Entropy-based** dynamically triggers injection only at specific layers where the uncertainty measured by action entropy exceeds the threshold γ , targeting moments of high uncertainty.

C MORE EXPERIMENTAL RESULTS

C.1 ABLATION ON INJECTION TIMING AND LOCATION

To validate the rationale behind our specific design choices—namely, the “one-layer delay” strategy and the selection of the Feed-Forward Network (FFN) as the injection site—we conduct a detailed ablation study comparing different injection timings and module locations on the LIBERO benchmark based on OpenVLA-OFT. The results are summarized in Table 12.

(1) Why “One-Layer Delay”? (Efficiency & Effectiveness). We compare injecting into the *Current Layer* (ℓ) versus our proposed *Next Layer* ($\ell + 1$) strategy.

- **Effectiveness:** As shown in Table 12, injecting into the *Current FFN* (97.7%) and *Next FFN* (98.0%) yields comparable performance. This is because the underlying operation is mathematically identical (using the FFN’s input to retrieve observation features and blending them with the original output). The slight edge for *Next Layer* may stem from using more processed hidden states as the queries.
- **Efficiency:** Despite similar success rates, the *Current Layer* strategies incur significantly higher computational overhead. Injecting into the current FFN requires fetching the cached FFN input from memory to perform retrieval, introducing **Memory I/O overhead** and pipeline stalls (0.182s, +13.0%). Injecting into the current Self-Attention (SA) is even costlier (0.195s, +21.1%) as modifying the SA output necessitates a **re-computation** of the subsequent FFN block. In contrast, our *Next Layer* design allows for a seamless “look-ahead” injection without backtracking or re-computation, achieving the optimal efficiency (0.169s, +5.0%).

(2) Why FFN over Self-Attention? Comparing *Next Layer FFN* (98.0%) with *Next Layer SA* (97.3%) confirms that the FFN is the superior injection site. We hypothesize the reasons as follows: FFNs structurally function as **Key-Value Memories** (Geva et al., 2021; Jie et al., 2024), making them the natural component for retrieving and storing external information (observation). In contrast, Self-Attention focuses on token-to-token contextualization; injecting external features there may dilute the attention distribution, leading to slightly inferior performance.

1134
1135

C.2 DETAILED ANALYSIS OF UNCERTAINTY METRICS

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

Layer-wise Probing Verification. To validate that intermediate hidden states contain meaningful action information, we fine-tune linear lm heads (for discrete actions, the lm head is also the action head) at intermediate layers within the OpenVLA-OFT backbone on the LIBERO-Long suite. As shown in Figure 7, the success rate rises significantly in early-to-mid layers (e.g., reaching 78.5% by Layer 12), confirming that intermediate hidden states already contain significant action-relevant information. This validates our design of using the frozen LM head as a "rough decoder": since the features are semantically aligned with the action space, the resulting entropy serves as a reliable proxy for the model’s current uncertainty.

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

Feature Entropy vs. Action Entropy. We analyzed the layer-wise trend of Feature Entropy (entropy of the softmax-normalized hidden state vector) on LIBERO-Long based on OpenVLA-OFT. As illustrated in Figure 8, Feature Entropy remains negligible (≈ 0) in middle layers and spikes drastically only in the final layers. This trend contradicts the expected behavior of decision uncertainty (which should decrease). Instead, it reflects feature activation richness. Consequently, Feature Entropy fails to trigger reinjection when the model is actually confused, rendering it ineffective compared to our Action Entropy.

1159
1160

C.3 VISUALIZATIONS OF SIMULATION AND REAL-WORLD RESULTS

1161
1162
1163
1164
1165
1166
1167
1168

We present additional qualitative results in both simulation and real-world settings to showcase the effectiveness of UAOR. All experiments are conducted within the OpenVLA-OFT framework. As illustrated in Figure 9 and Figure 10, the model successfully completes diverse multi-stage manipulation tasks under varying object configurations and instruction formulations. Benefiting from the uncertainty-aware reinjection mechanism, UAOR helps the model maintain focused attention on key observations during inference, enhancing scene understanding and decision confidence. These visualizations highlight the practicality and adaptability of our method in robotic manipulation.

1169
1170

D THEORETICAL COMPLEXITY ANALYSIS

1171
1172
1173
1174
1175
1176

For simplicity, we only consider the computational overhead of the Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN) blocks in a language model backbone. Let L , N , and D denote the number of transformer layers, the length of the token sequence, and the hidden dimension, respectively. Following prior works (Jie et al., 2024; Yang et al., 2025), the floating-point operations (FLOPs) for MHSA and FFN in one layer are approximately $8ND^2 + 4N^2D$ and $16ND^2$, respectively. Thus, the total FLOPs of the language model backbone are:

$$\text{FLOPs}_{\text{LM}} \approx L \cdot [(8ND^2 + 4N^2D) + 16ND^2] = L \cdot (24ND^2 + 4N^2D). \quad (17)$$

1177
1178
1179
1180
1181
1182
1183
1184

The additional computational overhead introduced by UAOR consists of two parts: (1) the **projection cost** to compute action entropy, and (2) the **reinjection cost** when uncertainty exceeds the threshold. **Projection Cost.** To compute the action entropy, we project the hidden states of action-related tokens into the vocabulary space using the pre-trained LM head. Let N_a denote the number of action-related tokens per step and D_v the vocabulary size. Since we perform this projection at every layer except the last (where we don’t need to reinject at the next layer as it is just the last year), the additional FLOPs are:

1185
1186
1187

$$\text{FLOPs}_{\text{PROJ}} = (L - 1) \cdot 2N_a D D_v. \quad (18)$$

Reinjection Cost. When triggered, UAOR acts as an additional FFN-like module comprising a retrieval operation. It involves two linear transformations (Query-Key and Attention-Value) with

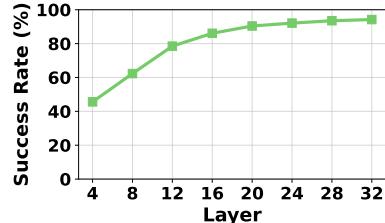


Figure 7: Layer-wise probing results on LIBERO-Long based on OpenVLA-OFT.

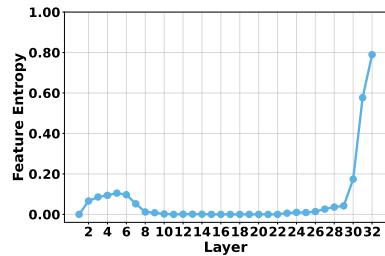


Figure 8: Layer-wise feature entropy on LIBERO-Long.

shared weights. Let N_o be the number of observation tokens. The cost for a single reinjection is $\text{FLOPs}_{\text{SINGLE_INJ}} \approx 4NN_oD$. Assuming the reinjection is triggered in L_γ layers (where uncertainty $u > \gamma$), the total reinjection cost is:

$$\text{FLOPs}_{\text{INJ}} = L_\gamma \cdot 4NN_oD. \quad (19)$$

Total Overhead Ratio. We quantify the additional computational burden using the ratio r_{cost} :

$$r_{\text{cost}} = \frac{\text{FLOPs}_{\text{PROJ}} + \text{FLOPs}_{\text{INJ}}}{\text{FLOPs}_{\text{LM}}} \approx \underbrace{\frac{(L-1) \cdot 2N_a D D_v}{L \cdot (24ND^2 + 4N^2D)}}_{\text{Projection term}} + \underbrace{\frac{L_\gamma \cdot 4NN_oD}{L \cdot (24ND^2 + 4N^2D)}}_{\text{Reinjection term}}. \quad (20)$$

Note that we approximate the denominator by dominating term $24ND^2$ (since $D \gg N$) for clarity. Simplifying the terms yields:

$$r_{\text{cost}} \approx \frac{N_a D_v}{12ND} + \frac{L_\gamma}{L} \cdot \frac{N_o}{6D}. \quad (21)$$

Case Study. We analyze the overhead for two representative VLA models, OpenVLA-OFT (Kim et al., 2025a) and CogACT (Li et al., 2024a), using the Llama-2-7B backbone ($D = 4096$, $D_v = 32000$).

- **OpenVLA-OFT:** With sequence length $N \approx 600$ and action tokens $N_a = 56$, the projection overhead is $\approx \frac{56 \times 32000}{12 \times 600 \times 4096} \approx 6.0\%$. On LIBERO-Long, the statistical trigger rate is $\frac{L_\gamma}{L} \approx 20\%$. With observation tokens $N_o = 513$, the reinjection overhead is $0.2 \times \frac{513}{6 \times 4096} \approx 0.4\%$. The total overhead is roughly **6.4%**.
- **CogACT:** With $N \approx 300$ and $N_a = 1$ (predicting one condition token per step), the projection overhead drops significantly to $\approx \frac{1 \times 32000}{12 \times 300 \times 4096} \approx 0.2\%$. Assuming a similar trigger rate, the total overhead remains negligible at $< 1\%$.

This analysis confirms that UAOR is computationally efficient, particularly for those VLA models who generate one action-related token per step, and introduces minimal latency compared to the heavy backbone computation.

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

In this paper, we use large language models (LLMs), such as ChatGPT, to assist with writing refinement, grammar correction, formatting, and preliminary literature search during manuscript preparation.

1242
1243
1244
1245
1246
1247

1287
1288 **Figure 9: Manipulation Visualizations in the LIBERO Simulation Environment.** We present
1289 the execution processes of OpenVLA-OFT with UAOR across LIBERO-Spatial, LIBERO-Object,
1290 LIBERO-Goal, and LIBERO-Long, demonstrating its strong performance under diverse instructions
1291 and a wide range of tasks. Each row shows a temporally ordered sequence from left to right.
1292
1293
1294
1295

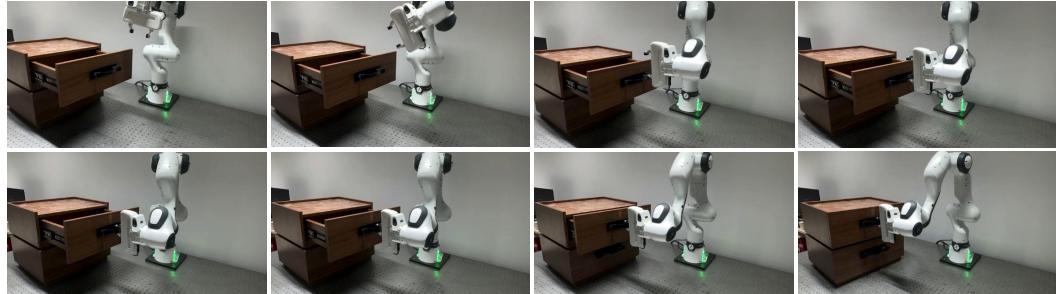
1296

1297

1298

1299

1300



1301

1302

1303

1304

1305

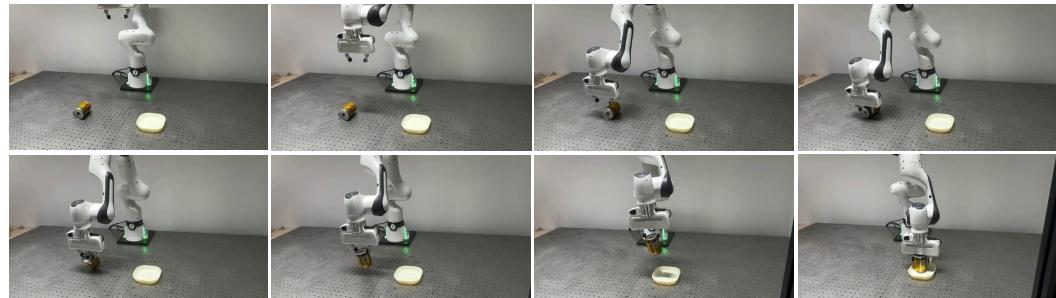
1306

1307

1308

1309

1310

Instruction: Put the redbull on the plate

1311

1312

1313

1314

1315

1316

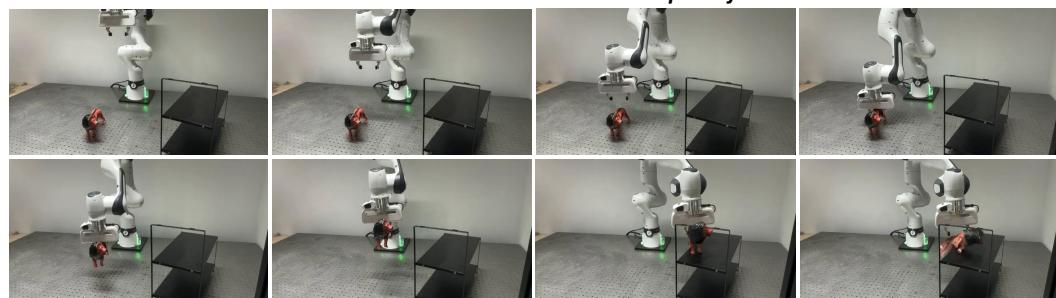
1317

1318

1319

1320

1321

Instruction: Put the lion on the top shelf

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

Instruction: Stand the coke can up

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

Figure 10: Manipulation Visualizations in the Real-World Environment. We present the execution processes of OpenVLA-OFT with UAOR across four real-world tasks, demonstrating its strong effectiveness and practicality in real-world scenarios. Each pair of rows shows a temporally ordered sequence from left to right.

1344

1345

1346

1347

1348

1349