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Abstract

Recent years have witnessed the widespread use of artificial intelligence (AI)1

algorithms and machine learning (ML) models. Despite their tremendous success,2

a number of vital problems like ML model brittleness, their fairness, and the lack3

of interpretability warrant the need for the active developments in explainable4

artificial intelligence (XAI) and formal ML model verification. The two major5

lines of work in XAI include feature selection methods, e.g. Anchors, and feature6

attribution techniques, e.g. LIME and SHAP. Despite their promise, most of the7

existing feature selection and attribution approaches are susceptible to a range of8

critical issues, including explanation unsoundness and out-of-distribution sampling.9

A recent formal approach to XAI (FXAI) although serving as an alternative to the10

above and free of these issues suffers from a few other limitations. For instance and11

besides the scalability limitation, the formal approach is unable to tackle the feature12

attribution problem. Additionally, a formal explanation despite being formally13

sound is typically quite large, which hampers its applicability in practical settings.14

Motivated by the above, this paper proposes a way to apply the apparatus of formal15

XAI to the case of feature attribution based on formal explanation enumeration.16

Formal feature attribution (FFA) is argued to be advantageous over the existing17

methods, both formal and non-formal. Given the practical complexity of the18

problem, the paper then proposes an efficient technique for approximating exact19

FFA. Finally, it offers experimental evidence of the effectiveness of the proposed20

approximate FFA in comparison to the existing feature attribution algorithms not21

only in terms of feature importance and but also in terms of their relative order.22

1 Introduction23

Thanks to the unprecedented fast growth and the tremendous success, Artificial Intelligence (AI)24

and Machine Learning (ML) have become a universally acclaimed standard in automated decision25

making causing a major disruption in computing and the use of technology in general [1, 29, 35, 47].26

An ever growing range of practical applications of AI and ML, on the one hand, and a number of27

critical issues observed in modern AI systems (e.g. decision bias [3] and brittleness [64]), on the28

other hand, gave rise to the quickly advancing area of theory and practice of Explainable AI (XAI).29

Numerous methods exist to explain decisions made by what is called black-box ML models [46, 48].30

Here, model-agnostic approaches based on random sampling prevail [46], with the most popular31

being feature selection [56] and feature attribution [40, 56] approaches. Despite their promise, model-32

agnostic approaches are susceptible to a range of critical issues, like unsoundness of explanations [21,33

24] and out-of-distribution sampling [34, 62], which exacerbates the problem of trust in AI.34

An alternative to model-agnostic explainers is represented by the methods building on the success of35

formal reasoning applied to the logical representations of ML models [42, 61]. Aiming to address36

the limitations of model-agnostic approaches, formal XAI (FXAI) methods themselves suffer from37

a few downsides, including the lack of scalability and the requirement to build a complete logical38
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T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1: Example boosted tree model [12] trained on the well-known adult classification dataset.
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(b) SHAP

X1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

X2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(c) AXp’s X1 and X2

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(d) FFA

Figure 2: Examples of feature attribution reported by LIME and SHAP, as well as both AXp’s (no
more AXp’s exist) followed by FFA for the instance v shown in Example 1.

representation of the ML model. Formal explanations also tend to be larger than their model-agnostic39

counterparts because they do not reason about (unknown) data distribution [65]. Finally and most40

importantly, FXAI methods have not been applied so far to answer feature attribution questions.41

Motivated by the above, we define a novel formal approach to feature attribution, which builds on the42

success of existing FXAI methods [42]. By exhaustively enumerating all formal explanations, we can43

give a crisp definition of formal feature attribution (FFA) as the proportion of explanations in which44

a given feature occurs. We argue that formal feature attribution is hard for the second level of the45

polynomial hierarchy. Although it can be challenging to compute exact FFA in practice, we show that46

existing anytime formal explanation enumeration methods can be applied to efficiently approximate47

FFA. Our experimental results demonstrate the effectiveness of the proposed approach in practice48

and its advantage over SHAP and LIME given publicly available tabular and image datasets, as well49

as on a real application of XAI in the domain of Software Engineering [45, 52].50

2 Background51

This section briefly overviews the status quo in XAI and background knowledge the paper builds on.52

2.1 Classification Problems53

Classification problems consider a set of classes K = {1, 2, . . . , k}1, and a set of features F =54

{1, . . . ,m}. The value of each feature i ∈ F is taken from a domain Di, which can be categorical55

or ordinal, i.e. integer, real-valued or Boolean. Therefore, the complete feature space is defined as56

F ≜
∏m

i=1 Di. A concrete point in feature space is represented by v = (v1, . . . , vm) ∈ F, where57

each component vi ∈ Di is a constant taken by feature i ∈ F . An instance or example is denoted58

by a specific point v ∈ F in feature space and its corresponding class c ∈ K, i.e. a pair (v, c)59

represents an instance. Additionally, the notation x = (x1, . . . , xm) denotes an arbitrary point in60

feature space, where each component xi is a variable taking values from its corresponding domain Di61

and representing feature i ∈ F . A classifier defines a non-constant classification function κ : F→K.62

Many ways exist to learn classifiers κ given training data, i.e. a collection of labeled instances (v, c),63

including decision trees [23] and their ensembles [11, 12], decision lists [57], neural networks [35],64

etc. Hereinafter, this paper considers boosted tree (BT) models trained with the use of XGBoost [12].65

Example 1. Figure 1 shows a BT model trained for a simplified version of the adult dataset [33]. For66

a data instance v = {Education = Bachelors, Status = Separated, Occupation = Sales, Relation-67

1Any set of classes {c1, . . . , ck} can always be mapped into the set of the corresponding indices {1, . . . , k}.
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ship = Not-in-family, Sex = Male, Hours/w ≤ 40}, the model predicts <50k because the sum of the68

weights in the 3 trees for this instance equals −0.4073 = (−0.1089− 0.2404− 0.0580) < 0.69

2.2 ML Model Interpretability and Post-Hoc Explanations70

Interpretability is generally accepted to be a subjective concept, without a formal definition [39].71

One way to measure interpretability is in terms of the succinctness of information provided by an72

ML model to justify a given prediction. Recent years have witnessed an upsurge in the interest in73

devising and applying interpretable models in safety-critical applications [48, 58]. An alternative to74

interpretable models is post-hoc explanation of black-box models, which this paper focuses on.75

Numerous methods to compute explanations have been proposed recently [46, 48]. The lion’s share76

of these comprise what is called model-agnostic approaches to explainability [40, 55, 56] of heuristic77

nature that resort to extensive sampling in the vicinity of an instance being explained in order to78

“estimate” the behavior of the classifier in this local vicinity of the instance. In this regard, they rely79

on estimating input data distribution by building on the information about the training data [34].80

Depending on the form of explanations model-agnostic approaches offer, they are conventionally81

classified as feature selection or feature attribution approaches briefly discussed below.82

Feature Selection. A feature selection approach identifies subsets of features that are deemed83

sufficient for a given prediction c = κ(v). As mentioned above, the majority of feature selection84

approaches are model-agnostic with one prominent example being Anchors [56]. As such, the85

sufficiency of the selected set of features for a given prediction is determined statistically based86

on extensive sampling around the instance of interest, by assessing a few measures like fidelity,87

precision, among others. As a result, feature selection explanations given as a set of features ω ⊆ F88

should be interpreted as the conjunction
∧

i∈ω (xi = vi) deemed responsible for prediction c = κ(v),89

v ∈ F, c ∈ K. Due to the statistical nature of these explainers, they are known to suffer from various90

explanation quality issues [24, 34, 63]. An additional line of work on formal explainability [25, 61]91

also tackles feature selection while offering guarantees of soundness; these are discussed below.92

Feature Attribution. A different view on post-hoc explanations is provided by feature attribution93

approaches, e.g. LIME [55] and SHAP [40]. Based on random sampling in the neighborhood of the94

target instance, these approaches attribute responsibility to all model’s features by assigning a numeric95

value wi ∈ R of importance to each feature i ∈ F . Given these importance values, the features can96

then be ranked from most important to least important. As a result, a feature attribution explanation97

is conventionally provided as a linear form
∑

i∈F wi · xi, which can be also seen as approximating98

the original black-box explainer κ in the local neighborhood of instance v ∈ F. Among other feature99

attribution approaches, SHAP [5, 6, 40] is often claimed to stand out as it aims at approximating100

Shapley values, a powerful concept originating from cooperative games in game theory [60].101

Formal Explainability. In this work, we build on formal explainability proposed in earlier work [8,102

13, 25, 42, 61]. where explanations are equated with abductive explanations (AXp’s). Abductive103

explanations are subset-minimal sets of features formally proved to suffice to explain an ML prediction104

given a formal representation of the classifier of interest. Concretely, given an instance v ∈ F and a105

prediction c = κ(v), an AXp is a subset-minimal set of features X ⊆ F , such that106

∀(x ∈ F).
∧

i∈X
(xi = vi)→(κ(x) = c) (1)

Abductive explanations are guaranteed to be subset-minimal sets of features proved to satisfy (1). As107

other feature selection explanations, they answer why a certain prediction was made. An alternate way108

to explain a model’s behavior is to seek an answer why not another prediction was made, or, in other109

words, how to change the prediction. Explanations answering why not questions are referred to as110

contrastive explanations (CXp’s) [26, 42, 46]. As in prior work, we define a CXp as a subset-minimal111

set of features that, if allowed to change their values, are necessary to change the prediction of the112

model. Formally, a CXp for prediction c = κ(v) is a subset-minimal set of features Y ⊆ F , such that113

∃(x ∈ F).
∧

i ̸∈Y
(xi = vi) ∧ (κ(x) ̸= c) (2)

Finally, recent work has shown that AXp’s and CXp’s for a given instance v ∈ F are related through114

the minimal hitting set duality [26, 54]. The duality implies that each AXp for a prediction c = κ(v)115
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is a minimal hitting set2 (MHS) of the set of all CXp’s for that prediction, and the other way around:116

each CXp is an MHS of the set of all AXp’s. The explanation enumeration algorithm [26] applied in117

this paper heavily relies on this duality relation and is inspired by the MARCO algorithm originating118

from the area of over-constrained systems [36, 37, 53]. A growing body of recent work on formal119

explanations is represented (but not limited) by [2, 4, 7, 9, 10, 14, 18, 20, 27, 41–44, 65].120

Example 2. In the context of Example 1, feature attribution computed by LIME and SHAP as well121

as all 2 AXp’s are shown in Figure 2. AXp X1 indicates that specifying Education = Bachelors122

and Hours/w ≤ 40 guarantees that any compatible instance is classified as < 50k independent123

of the values of other features, e.g. Status and Relationship, since the maximal sum of weights is124

0.0770− 0.0200− 0.0580 = −0.0010 < 0 as long as the feature values above are used. Observe125

that another AXp X2 for v is {Education, Status}. Since both of the two AXp’s for v consist of two126

features, it is difficult to judge which one is better without a formal feature importance assessment.127

3 Why Formal Feature Attribution?128

On the one hand, abductive explanations serve as a viable alternative to non-formal feature selection129

approaches because they (i) guarantee subset-minimality of the selected sets of features and (ii) are130

computed via formal reasoning over the behavior of the corresponding ML model. Having said131

that, they suffer from a few issues. First, observe that deciding the validity of (1) requires a formal132

reasoner to take into account the complete feature space F, assuming that the features are independent133

and uniformly distributed [65]. In other words, the reasoner has to check all the combinations of134

feature values, including those that never appear in practice. This makes AXp’s being unnecessarily135

conservative (long), i.e. they may be hard for a human decision maker to interpret. Second, AXp’s136

are not aimed at providing feature attribution. The abundance of various AXp’s for a single data137

instance [25], e.g. see Example 2, exacerbates this issue as it becomes unclear for a user which of the138

AXp’s to use to make an informed decision in a particular situation.139

On the other hand, non-formal feature attribution in general is known to be susceptible to out-of-140

distribution sampling [34, 62] while SHAP is shown to fail to effectively approximate Shapley141

values [21]. Moreover and quite surprisingly, [21] argued that even the use of exact Shapley values is142

inadequate as a measure of feature importance. Our results below confirm that both LIME and SHAP143

often fail to grasp the real feature attribution in a number of practical scenarios.144

To address the above limitations, we propose the concept of formal feature attribution (FFA) as145

defined next. Let us denote the set of all formal abductive explanations for a prediction c = κ(v)146

by Aκ(v, c). Then formal feature attribution of a feature i ∈ F can be defined as the proportion of147

abductive explanations where it occurs. More formally,148

Definition 1: (FFA). The formal feature attribution ffaκ(i, (v, c)) of a feature i ∈ F to an instance149

(v, c) for machine learning model κ is150

ffaκ(i, (v, c)) =
|{X | X ∈ Aκ(v, c), i ∈ X )|

|Aκ(v, c)|
(3)

Formal feature attribution has some nice properties. First, it has a strict and formal definition, i.e. we151

can, assuming we are able to compute the complete set of AXp’s for an instance, exactly define it for152

all features i ∈ F . Second, it is fairly easy to explain to a user of the classification system, even if153

they are non-expert. Namely, it is the percentage of (formal abductive) explanations that make use of154

a particular feature i. Third, as we shall see later, even though we may not be able to compute all155

AXp’s exhaustively, we can still get good approximations fast.156

Example 3. Recall Example 2. As there are 2 AXp’s for instance v, the prediction can be attributed157

to the 3 features with non-zero FFA shown in Figure 2d. Also, observe how both LIME and SHAP158

(see Figure 2a and Figure 2b) assign non-zero attribution to the feature Relationship, which is in fact159

irrelevant for the prediction, but overlook the highest importance of feature Education.160

One criticism of the above definition is that it does not take into account the length of explanations161

where the feature arises. Arguably if a feature arises in many AXp’s of size 2, it should be considered162

2Given a set of sets S, a hitting set of S is a set H such that ∀S ∈ S, S ∪H ̸= ∅, i.e. H “hits” every set in S.
A hitting set H for S is minimal if none of its strict subsets is also a hitting set.
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more important than a feature which arises in the same number of AXp’s but where each is of size 10.163

An alternate definition, which tries to take this into account, is the weighted formal feature attribution164

(WFFA), i.e. the average proportion of AXp’s that include feature i ∈ F . Formally,165

Definition 2: (WFFA). The weighted formal feature attribution wffaκ(i, (v, c)) of a feature i ∈ F to166

an instance (v, c) for machine learning model κ is167

wffaκ(i, (v, c)) =

∑
X∈Aκ(v,c),i∈X |X |−1

|Aκ(v, c)|
(4)

Note that these attribution values are not on the same scale although they are convertible:168

∑
i∈F

ffaκ(i, (v, c)) =

∑
X∈Aκ(v,c)

|X |
|Aκ(v, c)|

×
∑
i∈F

wffaκ(i, (v, c)).

FFA can be related to the problem of feature relevancy [22], where a feature is said to be relevant if it169

belongs to at least one AXp. Indeed, feature i ∈ F is relevant for prediction c = κ(v) if and only if170

ffaκ(i, (v, c)) > 0. As a result, the following claim can be made.171

Proposition 1. Given a feature i ∈ F and a prediction c = κ(v), deciding whether ffaκ(i, (v, c)) >172

ω, ω ∈ (0, 1], is at least as hard as deciding whether feature i is relevant for the prediction.173

The above result indicates that computing exact FFA values may be expensive in practice. For174

example and in light of [22], one can conclude that the decision version of the problem is ΣP
2-hard in175

the case of DNF classifiers.176

Similarly and using the relation between FFA and feature relevancy above, we can note that the177

decision version of the problem is in ΣP
2 as long as deciding the validity of (1) is in NP, which in178

general is the case (unless the problem is simpler, e.g. for decision trees [28]). Namely, the following179

result is a simple consequence of the membership result for the feature relevance problem [22].180

Proposition 2. Deciding whether ffaκ(i, (v, c)) > ω, ω ∈ (0, 1], is in ΣP
2 if deciding (1) is in NP.181

4 Approximating Formal Feature Attribution182

As the previous section argues and as our experimental results confirm, it may be challenging in183

practice to compute exact FFA values due to the general complexity of the problem. Although some184

ML models admit efficient formal encodings and reasoning procedures, effective principal methods185

for FFA approximation seem necessary. This section proposes one such method.186

Normally, formal explanation enumeration is done by exploiting the MHS duality between AXp’s and187

CXp’s and the use of MARCO-like [37] algorithms aiming at efficient exploration of minimal hitting188

sets of either AXp’s or CXp’s [26, 36, 37, 53]. Depending on the target type of formal explanation,189

MARCO exhaustively enumerates all such explanations one by one, each time extracting a candidate190

minimal hitting set and checking if it is a desired explanation. If it is then it is recorded and blocked191

such that this candidate is never repeated again. Otherwise, a dual explanation is extracted from192

the subset of features complementary to the candidate [25], gets recorded and blocked so that it is193

hit by each future candidate. The procedure proceeds until no more hitting sets of the set of dual194

explanations can be extracted, which signifies that all target explanations are enumerated. Observe195

that while doing so, MARCO also enumerates all the dual explanations as a kind of “side effect”.196

One of the properties of MARCO used in our approximation approach is that it is an anytime197

algorithm, i.e. we can run it for as long as we need to get a sufficient number of explanations. This198

means we can stop it by using a timeout or upon collecting a certain number of explanations.199

The main insight of FFA approximation is as follows. Recall that to compute FFA, we are interested200

in AXp enumeration. Although intuitively this suggests the use of MARCO targeting AXp’s, for the201

sake of fast and high-quality FFA approximation, we propose to target CXp enumeration with AXp’s202

as dual explanations computed “unintentionally”. The reason for this is twofold: (i) we need to get a203

good FFA approximation as fast as we can and (ii) according to our practical observations, MARCO204

needs to amass a large number of dual explanations before it can start producing target explanations.205

This is because the hitting set enumerator is initially “blind” and knows nothing about the features206
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Algorithm 1 MARCO-like Anytime Explanation Enumeration
1: procedure XPENUM(κ, v, c)
2: (A,C)← (∅, ∅) ▷ Sets of AXp’s and CXp’s to collect.
3: while true do
4: Y ← MINIMALHS(A,C) ▷ Get a new MHS of A subject to C.
5: if Y = ⊥ then break ▷ Stop if none is computed.
6: if ∃(x ∈ F).

∧
i ̸∈Y(xi = vi) ∧ (κ(x) ̸= c) then ▷ Check CXp condition (2) for Y .

7: C← C ∪ {Y} ▷ Y appears to be a CXp.
8: else ▷ There must be a missing AXp X ⊆ F \ Y .
9: X ← EXTRACTAXP(F \ Y, κ,v, c) ▷ Get AXp X by iteratively checking (1) [25].

10: A← A ∪ {X} ▷ Collect new AXp X .
return A, C

it should pay attention to — it uncovers this information gradually by collecting dual explanations207

to hit. This way a large number of dual explanations can quickly be enumerated during this initial208

phase of grasping the search space, essentially “for free”. Our experimental results demonstrate the209

effectiveness of this strategy in terms of monotone convergence of approximate FFA to the exact FFA210

with the increase of the time limit. A high-level view of the version of MARCO used in our approach211

targeting CXp enumeration and amassing AXp’s as dual explanations is shown in Algorithm 1.212

5 Experimental Evidence213

This section assesses the formal feature attribution for gradient boosted trees (BT) [12] on multiple214

widely used images and tabular datasets, and compares FFA with LIME and SHAP. In addition, it215

also demonstrates the use of FFA in a real-world scenario of Just-in-Time (JIT) defect prediction,216

which assists teams in prioritizing their limited resources on high-risk commits or pull requests [52].217

Setup and Prototype Implementation. All experiments were performed on an Intel Xeon 8260218

CPU running Ubuntu 20.04.2 LTS, with the memory limit of 8 GByte. A prototype of the approach219

implementing Algorithm 1 and thus producing FFA was developed as a set of Python scripts and220

builds on [27]. As the FFA and WFFA values turn out to be almost identical (subject to normalization)221

in our experiments, here we report only FFA. WFFA results can be found in supplementary material.222

Datasets and Machine Learning Models. The well-known MNIST dataset [15, 50] of hand-223

written digits 0–9 is considered, with two concrete binary classification tasks created: 1 vs. 3 and224

1 vs. 7. We also consider PneumoniaMNIST [67], a binary classification dataset to distinguish225

X-ray images of pneumonia from normal cases. To demonstrate extraction of exact FFA values for226

the above datasets, we also examine their downscaled versions, i.e. reduced from 28 × 28 × 1 to227

10× 10× 1. We also consider 11 tabular datasets often applied in the area of ML explainability and228

fairness [3, 16, 17, 19, 49, 59]. All the considered datasets are randomly split into 80% training and229

and 20% test data. For images, 15 test instances are randomly selected in each test set for explanation230

while all tabular test instances are explained. For all datasets, gradient boosted trees (BTs) are trained231

by XGBoost [12], where each BT consists of 25 trees of depth 3 per class.3 Finally, we show the use232

of FFA on 2 JIT defect prediction datasets [52], with 500 instances per dataset chosen for analysis.233

5.1 Formal Feature Attribution234

In this section, we restrict ourselves to examples where we can compute the exact FFA values for235

explanations by computing all AXp’s. To compare with LIME and SHAP, we take their solutions,236

replace negative attributions by the positive counterpart (in a sense taking the absolute value) and then237

normalize the values into [0, 1]. We then compare these approaches with the computed FFA values,238

which are also in [0, 1]. The error is measured as Manhattan distance, i.e. the sum of absolute differ-239

ences across all features. We also compare feature rankings according to the competitors (again using240

absolute values for LIME and SHAP) using Kendall’s Tau [31] and rank-biased overlap (RBO) [66]241

3Test accuracy for MNIST digits is 0.99, while it is 0.83 for PneumoniaMNIST. This holds both for the 28 ×
28 and 10 × 10 versions of the datasets. The average accuracy across the 11 selected tabular datasets is 0.80.
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(a) FFA
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(c) SHAP

Figure 3: Explanations for an instance of Compas v = {#Priors = 3,Score_factor =
1,Age_Above_FourtyFive = 0,Age_Below_TwentyFive = 1,African_American = 1,Asian =
0,Hispanic = 0,Native_American = 0,Other = 0,Female = 0,Misdemeanor = 1} predicted as
Two_yr_Recidivism = true.

Table 1: LIME and SHAP versus FFA on tabular data.
Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism

(|F|) (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.48 2.25 5.13 1.53 3.28 4.48 4.56 1.39 2.39 2.72 4.73
SHAP 4.47 2.01 4.49 1.40 2.67 3.71 4.14 1.44 2.28 3.00 4.76

Kendall’s Tau
LIME 0.07 0.11 0.22 -0.11 -0.11 0.17 0.04 -0.36 -0.22 0.17 0.05
SHAP 0.03 0.12 0.27 -0.10 -0.10 0.17 0.20 -0.39 -0.21 0.07 0.12

RBO
LIME 0.54 0.66 0.49 0.63 0.55 0.56 0.41 0.59 0.66 0.68 0.39
SHAP 0.49 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.63 0.44

metrics.4 Kendall’s Tau and RBO are measured on a scale [−1, 1] and [0, 1], respectively. A higher242

value in both metrics indicates better agreement or closeness between a ranking and FFA.243

Tabular Data. Figure 3 exemplifies a comparison of FFA, LIME and SHAP on an instance of the244

Compas dataset [3]. While FFA and LIME agree on the most important feature, “Asian”, SHAP gives245

it very little weight. Neither LIME nor SHAP agree with FFA, though there is clearly some similarity.246

Table 1 details the comparison conducted on 11 tabular datasets, including adult, compas, and247

recidivism datasets commonly used in XAI. For each dataset, we calculate the metric for each248

individual instance and then average the outcomes to obtain the final result for that dataset. As can be249

observed, the errors of LIME’s feature attribution across these datasets span from 1.39 to 5.13. SHAP250

demonstrates similar errors within a range [1.40, 4.76]. LIME and SHAP also exhibit comparable251

performance in relation to the two ranking comparison metrics. The values of Kendall’s Tau for252

LIME (resp. SHAP) are between −0.36 and 0.22 (resp. −0.39 and 0.27). Regarding the RBO values,253

LIME exhibits values between 0.39 and 0.68, whereas SHAP demonstrates values ranging from 0.44254

to 0.67. Overall, as Table 1 indicates, both LIME and SHAP fail to get close enough to FFA.255

10× 10 Digits. We now compare the results on 10× 10 downscaled MNIST digits and Pneumo-256

niaMNIST images, where it is feasible to compute all AXp’s. Table 2 compares LIME’s, SHAP’s257

feature attribution and approximate FFA. Here, we run AXp enumeration for a number of seconds,258

which is denoted as FFA∗, ∗ ∈ R+. The runtime required for each image by LIME and SHAP is259

less than one second. The results show that the errors of our approximation are small, even after 10260

seconds it beats both LIME and SHAP, and decreases as we generate more AXp’s. The results for the261

orderings show again that after 10 seconds, FFA∗ ordering gets closer to the exact FFA than both262

LIME and SHAP. Observe how LIME is particularly far away from the exact FFA ordering.263

Summary. These results make us confident that we can get useful approximations to the exact FFA264

without exhaustively computing all AXp’s while feature attribution determined by LIME and SHAP is265

quite erroneous and fails to provide a human-decision maker with useful insights, despite being fast.266

4Kendall’s Tau is a correlation coefficient assessing the ordinal association between two ranked lists, offering
a measure of similarity in the order of values; on the other hand, RBO is a metric that measures the similarity
between two ranked lists, taking into account both the order and the depth of the overlap.
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Table 2: Comparison on 10× 10 Images of FFA versus LIME, SHAP and FFA approximations.
Dataset LIME SHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1200

(|F| = 100) Error
10×10-mnist-1vs3 11.50 10.07 5.74 5.33 4.97 4.62 3.37 2.67
10×10-mnist-1vs7 12.64 8.28 4.16 3.58 2.94 2.50 1.42 1.01

10×10-pneumoniamnist 17.32 17.90 5.37 4.32 3.78 3.39 2.22 1.64

Kendall’s Tau
10×10-mnist-1vs3 -0.15 0.48 0.49 0.57 0.62 0.65 0.74 0.80
10×10-mnist-1vs7 -0.33 0.47 0.52 0.63 0.70 0.77 0.85 0.89

10×10-pneumoniamnist -0.02 0.24 0.58 0.71 0.79 0.80 0.89 0.92

RBO
10×10-mnist-1vs3 0.20 0.50 0.61 0.65 0.69 0.74 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.73 0.77 0.81 0.86 0.90 0.90

10×10-pneumoniamnist 0.21 0.37 0.61 0.70 0.73 0.77 0.83 0.87

(a) LIME (b) SHAP (c) FFA10 (d) FFA30 (e) FFA120 (f) FFA600 (g) FFA1.2k (h) FFA3.6k (i) FFA7.2k

Figure 4: 28 × 28 MNIST 1 vs. 3. The prediction is digit 3. The plasma gradient is used ranging
from deep purple for the least important features to vibrant yellow for the most important features.

Table 3: Comparison on 28 × 28 Images of FFA7200 versus LIME, SHAP and FFA approximations.
Dataset LIME SHAP FFA10 FFA30 FFA120 FFA600 FFA1200 FFA3600

(|F| = 784) Error
28×28-mnist-1vs3 49.66 22.77 9.44 7.61 6.81 4.51 3.13 2.69
28×28-mnist-1vs7 55.10 24.92 11.78 9.58 6.94 4.51 3.30 2.18

28×28-pneumoniamnist 62.94 31.55 8.17 7.81 5.69 4.89 3.77 3.10

Kendall’s Tau
28×28-mnist-1vs3 -0.80 0.42 0.44 0.62 0.69 0.80 0.86 0.87
28×28-mnist-1vs7 -0.79 0.34 0.40 0.56 0.72 0.82 0.87 0.92

28×28-pneumoniamnist -0.66 0.24 0.34 0.50 0.67 0.76 0.80 0.87

RBO
28×28-mnist-1vs3 0.03 0.40 0.43 0.50 0.61 0.78 0.83 0.88
28×28-mnist-1vs7 0.03 0.34 0.40 0.45 0.58 0.76 0.83 0.93

28×28-pneumoniamnist 0.03 0.23 0.31 0.35 0.42 0.59 0.66 0.83

5.2 Approximating Formal Feature Attribution267

Since the problem of formal feature attribution “lives” in ΣP
2, it is not surprising that computing FFA268

may be challenging in practice. Table 2 suggests that our approach gets good FFA approximations269

even if we only collect AXp’s for a short time. Here we compare the fidelity of our approach versus270

the approximate FFA computed after 2 hours (7200s). Figure 4, 5, and 6 depict feature attributions271

generated by LIME, SHAP and FFA∗ for the three selected 28× 28 images. The comparison between272

LIME, SHAP, and the approximate FFA computation is detailed in Table 3. The LIME and SHAP273

processing time for each image is less than one second. The average findings detailed in Table 3 are274

consistent with those shown in Table 2. Namely, FFA approximation yields better errors, Kendall’s275

Tau and RBO values, outperforming both LIME, and SHAP after 10 seconds. Furthermore, the276

results demonstrate that after 10 seconds our approach places feature attributions closer to FFA7200277

compared to both LIME and SHAP hinting on the features that are truly relevant for the prediction.278

5.3 Application in Just-in-Time Defect Prediction279

Just-in-Time (JIT) defect prediction [30, 32, 38, 51] has been recently proposed to predict if a commit280

will introduce software defects in the future, enabling development teams to prioritize their limited281

Software Quality Assurance resources on the most risky commits/pull requests. The approach of JIT282
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(a) LIME (b) SHAP (c) FFA10 (d) FFA30 (e) FFA120 (f) FFA600 (g) FFA1.2k (h) FFA3.6k (i) FFA7.2k

Figure 5: 28 × 28 MNIST 1 vs. 7. The prediction is digit 7.

(a) LIME (b) SHAP (c) FFA10 (d) FFA30 (e) FFA120 (f) FFA600 (g) FFA1.2k (h) FFA3.6k (i) FFA7.2k

Figure 6: 28 × 28 PneumoniaMNIST. The prediction is normal.

Table 4: Just-in-Time Defect Prediction comparison of FFA versus LIME and SHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error Kendall’s Tau RBO Error Kendall’s Tau RBO
LIME 4.84 0.05 0.55 5.63 -0.08 0.45
SHAP 5.08 0.00 0.53 5.22 -0.13 0.44

defect prediction has often been considered a black-box, lacking explainability for practitioners. To283

tackle this challenge, our proposed approach to generating FFA can be employed, as model-agnostic284

approaches cannot guarantee to provide accurate feature attribution (see above). We use logistic285

regression models of [52] based on large-scale open-source Openstack and Qt datasets provided286

by [45] commonly used for JIT defect prediction [52]. Monotonicity of logistic regression enables us287

to enumerate explanations using the approach of [44] and so to extract exact FFA for each instance288

within a second. Table 4 details the comparison of FFA, LIME and SHAP in terms of the three289

considered metrics. As with the outcomes presented in Table 1, Table 2, and Table 3, neither LIME290

nor SHAP align with formal feature attribution, though there are some similarities between them.291

6 Limitations292

Despite the rigorous guarantees provided by formal feature attribution and high-quality of the result293

explanations, the following limitations can be identified. First, our approach relies on formal reasoning294

and thus requires an ML model of interest to admit a representation in some fragments of first-order295

logic, and the corresponding reasoner to deal with it [42]. Second, the problem complexity impedes296

immediate and widespread use of FFA and signifies the need to develop effective methods of FFA297

approximation. Finally, though our experimental evidence suggests that FFA approximations quickly298

converge to the exact values of FFA, whether or not this holds in general remains an open question.299

7 Conclusions300

Most approaches to XAI are heuristic methods that are susceptible to unsoundness and out-of-301

distribution sampling. Formal approaches to XAI have so far concentrated on the problem of feature302

selection, detecting which features are important for justifying a classification decision, and not on303

feature attribution, where we can understand the weight of a feature in making such a decision. In304

this paper we define the first formal approach to feature attribution (FFA) we are aware of, using the305

proportion of abductive explanations in which a feature occurs to weight its importance. We show306

that we can compute FFA exactly for many classification problems, and when we cannot we can307

compute effective approximations. Existing heuristic approaches to feature attribution do not agree308

with FFA. Sometimes they markedly differ, for example, assigning no weight to a feature that appears309

in (a large number of) explanations, or assigning (large) non-zero weight to a feature that is irrelevant310

for the prediction. Overall, the paper argues that if we agree that FFA is a correct measure of feature311

attribution then we need to investigate methods that compute good FFA approximations quickly.312
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