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ABSTRACT

Computer generated holography (CGH) aims to generate phase plates that create
an intensity pattern at a certain distance behind the holography plate when illumi-
nated. Since only the intensity and not the phase of the wave is of interest, this is
an ill-defined inverse problem. Usually these problems are tackled by iterative op-
timization algorithms which are part of the convex optimization framework. These
algorithms essentially minimize a loss using a forward model. Even though many
of the tackled inverse problems are non-convex, these algorithms reach acceptable
solutions by finding a local minimum. The ability of Deep Neural Networks to es-
timate a large range of functions has made a different approach to these problems
possible. Instead of an iterative optimization algorithm that converges to a (sub-
)optimal solution, the inverse problem can be solved by training a neural network
to directly estimate the inverse operator. However simple convolutional neural
networks tend to overfit when learning the inverse operator and do not generalize
well outside the training distribution. Therefore this paper introduces a hybrid ap-
proach that can be interpreted as an unrolled Gerchberg-Saxton algorithm, which
we term Learned Residual Gerchberg-Saxton (LRGS) network. We train this net-
work for the generation of multi-focus computer generated holograms, and beat
state-of-the-art existing methods.

1 INTRODUCTION

Computer generated holography is the practice of calculating the phase distribution for a phase
mask (the hologram), to generate an amplitude distribution behind the phase plate via free space
propagation. The phase changes can be created by a change of the wave speed inside the phase
plate medium. Because the phase-front of a wave is subject to various constrints, it is generally not
possible to perfectly create a hologram plate that leads to the desired intensity in the image plane.
In fact the problem of hologram creation was found to be a non-convex ill-posed inverse problem
(Bauschke et al., 2002) and is strongly related to the problem of phase retrieval in physics (Fienup,
1982).

If one allows imperfect target amplitudes it is possible to create a single hologram plate f(x) that
leads to multiple images at different distances from the hologram. This is displayed in figure 1.
Because the forward propagation is deterministic, one needs to find a balance between image quality
and number of target amplitudes. The calculation of this hologram plate is harder than the calculation
of the hologram plate for a single image, since in this case the information for all images has to be
encoded in a single hologram plate. Applications for holograms and multi-focus holograms can
amongst others be found in optical tweezers (Vizsnyiczai et al., 2014), 3D-displays (Slinger et al.,
2005) and ultrasound imaging (Hertzberg & Navon, 2011).

Usually the hologram plates are generated by iterative optimization algorithms that try to solve a
minimization problem. Because of the non-convexity of the problem, these methods do not find
a global minimum. Here we present a deep neural network that is able to generate multi-focus
hologram plates and compare the results with state-of-the-art methods for the generation of these
multi-focus holograms.
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Figure 1: Schematic depiction of a hologram plate in front of a wave emitter (a) and four amplitude
measurements (b, c, d, e). The hologram plate has been created to display four numbers out of the
MNIST-dataset, each 10mm apart from each other.

2 THEORY

Let f = f(x, y) denote the complex field in the wave emitter plane and gi(x, y) the complex field
in the image plane at distance zi from the emitter. The wave emitter plane is the plane where the
hologram plate is put in front of a planar wave, also called hologram plane. Given a fixed amplitude
of the wave emitter u(x, y) and the desired amplitudes in the N image planes gi,target(x, y), i =
1, ..., N , the problem of computer generated holography is to find a complex field that satisfies the
amplitude constraints in the hologram plane |f | = u as well as the amplitude constraints in the
image planes |gi| = gi,target for i = 1, ..., N . The propagation from the source plane to the image
planes can be described by a linear operator A,

gi(x, y) = Aif(x, y), (1)

where Ai corresponds to the propagation of the field in the hologram plane f to the i-th image plane
located at zi. Directly enforcing the emitter amplitude constraint, we define the field in the emitter
plane as f(x, y) = u(x, y) exp (iφ(x, y)), where φ denotes the phase to be encoded in the hologram
plate. As there is generally no solution to this problem, one usually resorts to a relaxed version given
as the unconstrained optimization problem

min
φ

∑
i

‖|Ai(ueiφ(x,y))| − gi,target(x, y)‖2. (2)

We implemented the propagation operator using the angular spectrum method Liu & Waag (1997).
To calculate the propagated field at a distance z from a given f(~x) = |f(~x)| ei∆φ(~x) with the phase
∆φ(~x), first the Fourier transform f̃(~k) = Ff(~x) is calculated. The propagated field is then cal-
culated by multiplying with a forward propagator K(~k, z) and reversing the Fourier transform as
shown in equation 3.

A = F−1K(~k, z)F (3)

A−1 = F−1K(~k,−z)F (4)

The propagator K(~k, z) is defined as K(~k, z) = expikz
√

1−λ2(k2x+k2y), where λ is the wavelength
of the propagating wave and ~k is the wave vector, with |~k| = 2π

λ . Ignoring evanescent waves, that
arise when (k2

x + k2
y) > 1

λ2 , we can use K(~k,−z) as the inverse operator of K(~k, z).

Among the most popular methods for finding a solution for equation 2 is the traditional Gerchberg-
Saxton algorithm (Gerchberg & Saxton, 1972). The algorithm finds an approximate solution of the
feasibility problem by iterating the following steps:
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1. Propagate the field in the wave emitter plane f to the image plane: g = Af

2. Substitute the amplitude of the field in the image plane g with the target amplitude gtarget,
while keeping the phase: g̃ = |gtarget| g|g|

3. Propagate the field in the image plane g̃ back to the source plane f̃ = A−1g̃

4. Substitute the amplitude of the field in the source plane f̃ with the source amplitude uwhile
keeping the phase: f = |u| f̃|f̃ |

The original Gerchberg-Saxton algorithm can be generalized to multiple focus planes. To do this
in step 1 one propagates the source plane field into every image plane, set the amplitudes to the
corresponding targets in step 2 and finally propagates all fields back to the source in step 3. Before
setting the amplitude to the source amplitude in step 4, one sums over all backwards propagated
contributions from the different image planes.

3 PREVIOUS WORK

There have been some improvements on the GB algorithm since its establishment. It was shown,
that the GB algorithm essentially is equivalent to a nonconvex variant of the projection onto convex
sets (POCS) algorithm (Levi & Stark, 1984). Some of these projection methods work better for
certain problems in phase retrieval. These methods use relaxed projections onto the set of images
that are possible to create with a constraint in the hologram space and those images that fulfill the
amplitude constraint in the image space. In the case of CGH the first constraint is the shape of the
source and the second constraint is the target amplitude of the resulting waves.

Recently the problem of generatwthree-dimensional phase-only holograms for light waves has been
tackled by directly minimizing a loss functional in the form of equation 2 Zhang et al. (2017). Instead
of an alternating projections scheme,this functional is minimized with a quasi-Newton L-BFGS (Liu
& Nocedal, 1989) solver. This so-called non-convex optimization for volumetric computer generated
holography (NOVO-CGH) approach allows for the optimization of the hologram with respect to a
customizable error metric defined by the corresponding loss functional. With the right choice of loss
functional the method outperforms existing projection-based methods like the Gerchberg-Saxton
algorithm.

In this paper we use a neural network, that directly inverts the forward operator, by unrolling the
Gerchberg-Saxton algorithm and adding learned layers. Neural networks have previously been ex-
plored for the creation of holograms with only one focus plane by Horisaki et al. (2018) with a
network that does not use unrolling or knowledge about the forward operator but still manages
to create results of reasonable quality. For inverse problems in general, several machine learning
approaches have been proven to work, including methods similar to ours, that work by unrolling
iterative algorithms and training parameters inside those algorithms, see Schuler et al. (2016), Adler
& Öktem (2017), Hammernik et al. (2018), Adler & Öktem (2018). One of the main benefits of
using neural networks to create hologram plates is the speed advantage one gains with a relatively
shallow implementation once they are trained, when compared to iterative optimization schemes
(Eybposh et al., 2020).

4 METHODS

Our approach to solving the problem of multi-focused hologram creation is to train a neural network
that is in structure similar to the Gerchberg-Saxton algorithm and other projection methods, but
contains trainable convolutional layers inside of this iterative algorithm. The network is displayed
in figure 2. The network consists of a sequence of blocks that each resemble one single Gerchberg-
Saxton iteration, but with include learned convolutional layers. A block takes the result of the
previous block, propagates it to the image space with the forward operator A and feeds the resulting
images together with the target amplitude ggoal into a block consisting of convolutions. Since the
physical wave can be described using a complex valued field, we represent the field using two
channels, one corresponding to the real part and the other to the imaginary part of the field. The
convolutional block Cforward consists of 5 convolutions with rectified linear unit (relu) activation
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(a) Network Structure

(b) Forward convolutional block (c) Backward convolutional block

Figure 2: a) Network structure for the unrolled residual Gerchberg-Saxton network. The network
starts with an arbitrary phase plate f0 (usually zeros). This initial hologram is put through N blocks
that are in structure similar to a Gerchberg-Saxton iteration. Each block propagates the field fn−1 to
the image space with the forward operator A. The propagated wave fields is concatenated with the
goal amplitudes ggoal and fed to a block consisting of trainable convolutions Cforward. The result is
propagated to the hologram plane with the inverse operator A−1 and again fed to a block consisting
of convolutions. Finally the result is projected onto the hologram constraint and summed with the
result of the last layer. b) Structure of the block applied to the image space input. The block consists
of 5 convolutions with 10, 30, 30 and 40 kernels. The last convolution has 2 ∗ p output layers, where
p is the number of different focus planes. The output of the convolution is double the number of
focus planes, since we need a complex field for each focus plane. Each convolution is preceded
by a batch normalization layer and followed by a relu activation function. The last layer does not
use the relu activation function, since the output is a complex number which must be allowed to
be negative c) The structure of the backward convolutional block is almost identically to that of the
forward block. The only difference is, that the block has a single output. This output is the phase of
the hologram plate.

functions and batch normalization layers in front of every block. The last block does not have a
relu activation function, since the output of the block must be allowed to be negative. The output
is converted to p complex images, where p is the number of focus planes. These complex images
are propagated into hologram space again with the inverse operator A−1 and fed to another block

4



Under review as a conference paper at ICLR 2021

of convolutions, Cbackward. This block is similar in structure to the first block, but the last layer
has only a single kernel, since the output of this layer is used as a phase for the hologram plate.
This phase is fitted to the source constraint by multiplying it with the amplitude of the source. The
old hologram fn−1 is added to this new output to form the new hologram fn which is fed to the
next block. This is repeated N times. This structure resembles the Gerchberg-Saxton algorithm and
other projection algorithms for phase retrieval, apart from the fact, that the network contains learned
parameters and the algorithm stops exactly at N iterations of the iterative algorithm.

4.1 TRAINING

The network was trained with images from the MNIST dataset (LeCun et al., 1998) containing hand
written digits, randomly shuffled and stacked in blocks of k images. For evaluation the fashion
MNIST dataset (Xiao et al., 2017), containing various clothing items, was also used, but no network
was trained on these images. For all experiments we consider acoustic waves propagating in water,
which have recently become a promising application of CGH Melde et al. (2016). We assume a
hologram and image size of 50mm × 50mm, with 60 × 60 trainable pixels in the hologram. The
frequency of the wave was chosen to be f = 1Mhz with a speed of sound of cw = 1.484ms . The
constraint in the source plane was set to a circular amplitude with a radius of 25mm. These values
are consistent for ultrasonic waves generated by a circular transducer and can be recreated in the lab.
We note however, that this method can also be applied to standard holograms generated with light
waves by choosing different values for the wave speed and frequency.

4.2 LOSSES

Since the loss function heavily determines the results of the network multiple loss functions were
tried. The first loss function was the standard mean squared error between the resulting amplitudes
|AfN | and the target amplitudes ggoal.

Lmse =
1

N

N∑
i

(|AfN |i − ggoal,i)2 (5)

However, this creates the predicament that the network is forced to generate images of a certain
amplitude, while not every amplitude is always realizable due to the deterministic wave propagation
and the total energy input of the wave emitter. For a better measure of the hologram image quality the
mean squared error was normalized by the maximum, seen in equation 6, and the relaxed standard
deviation of the images, seen in equation 7.

Lnmse =
1

N

N∑
i

(
|AfN |i

max(|AfN |)
− ggoal,i
max(ggoal)

)2

(6)

Lstdmse =
1

N

N∑
i

(
|AfN |i

std(|AfN |)
− ggoal,i
std(ggoal)

)2

(7)

These two losses where used to train two LRGS networks in an almost self supervised learning setup.
The training works by giving the network target amplitudes, which in turn creates a phase plate, from
which one of the above loss functions is calculated. This works, because the complete network,
including the forward and backward wave propagation operator A and A−1, is backpropagatable.

5 RESULTS

We compared the learned residual Gerchberg-Saxton network with the standard Gerchberg-Saxton
algorithm for 3D hologram generation, the NOVO-CGH algorithm and a simple first order gradient
descent minimization of the l2-loss functional, which we call L2-Grad in the following section. The
iterative optimization schemes where run for 1000 iterations. The two LRGS networks each had a
depth of N = 10 and where trained to generate four output amplitude images from the digit mnist
dataset in a distance of 20, 30, 40 and 50 mm behind the hologram plate. The networks only trained
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on this dataset, but manage to generalize to other datasets. The first network was trained using the
normalized mean squared error loss function Lnmse given by equation 6 and the second network
was trained using the mean squared error normalized by the standard deviation Lstdmse, given by
equation 7. Both networks where trained using the Adam optimizer (Kingma & Ba, 2014).
To compare the image quality the structural similarity index measure (ssim) was also calculated
and compared. The LRGS networks were able to outperform both the standard Gerchberg-Saxton
algorithm as well as the NOVO-CGH and the L2-Grad algorithm. The results of 100 test images
from the mnist digit dataset can be seen in figure 3 a) b) and c).

(a) Lnmse for mnist digits (b) Lnmse for fashion images

(c) Lstdmse for mnist digits (d) Lstdmse for fashion images

(e) ssim for mnist digits (f) ssim for fashion images

Figure 3: Different losses for 100 test images from the MNIST digit dataset and the fashion MNIST
dataset, on which the network was not trained before. The top row contains the losses for the MNIST
digit dataset and the bottom row the losses for the fashion MNIST images on which the network was
not trained. For the Lnmse and the Lstdmse smaller values are better, while for the ssim higher
values are better.
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(a) Mnist digits (b) Fashion mnist images

Figure 4: One example output from the five different algorithms for two test datasets. From top
to bottom the rows contain: 1) The goal amplitude, 2) Images generated by the Gerchberg-Saxton
algorithm, 3) Images generated by the L2-Grad algorithm, 4) Images generated by the NOVO-CGH
algorithm, 5) Images generated by the Lstdmse LRGS network and 6) Images generated by the
Lnmse LRGS network

Example amplitude images are displayed in figure 4a. The images are all distorted, illustrating the
hard nature of the problem. In fact the NOVO-CGH algorithm failed to converge 4 times out of 100
test images. The outliers are not shown in the plots.

Even though the networks were only trained on MNIST digits they are able to generalize to images
that come from a different input distribution. We tested the networks with images from the fashion
MNIST dataset, that have the same dimensions as the digit MNIST images but show silhouettes of
everyday clothing items. The resulting losses can be seen in figure 3 d), e) and f). The networks
manage to outperform the other algorithms for the fashion MNIST images. Example outputs can
be seen in figure 4b. It should be noted, that the images generated with the network had ten times
higher maximum amplitudes than those generated with the NOVO-CGH algorithm and the L2-Grad
algorithm, even when trained on standardized loss functions. It seems the gradient descent like
algorithms generate hologram plates, that disperse a lot of energy, while Gerchberg-Saxton like
methods focus more.

5.1 DEPENDENCE ON NETWORK DEPTH

To check, if the network depth makes a difference we trained 4 more networks with the same loss
functions as the big networks above. Those networks had 1, 6 and 10 blocks. It can be seen in figure
5, that the loss decreases with increasing network depth. In general more learned Gerchberg-Saxton
layers should only increase the performance of the network, because a bigger network can always
generate the same results as a smaller network by relying on residual connections.
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(a) Normalized mean squared error Lnmse

for different network depths.
(b) Standard deviation mean squared error
Lstdmse for different network depths.

Figure 5: Boxplots for the two different losses used in network training. Panel a) displays the
normalized mean squared error Lnmse for the digit MNIST dataset and the fashion MNIST dataset
for network depths of 1, 6 and10. Panel b) visualizes the standardized mean squared error Lstdmse
for the same network depths. The networks where each trained on the specific loss that is given in
the plots. It can be seen, that the loss decreases for higher network depths.

5.2 EXECUTION SPEED

One of the main advantages of neural networks is the time it takes for them to generate a hologram
plate once they have been trained. While iterative algorithms need to iterate until they converge, a
learned network only needs one pass to generate a hologram plate. To illustrate this major difference
we measured the time the algorithms took to generate images. The results can be seen in table 1. All
results where obtained on the same machine containing a Geforce GTX 1080 graphics card and a
Intel(R) Core(TM) i7-5820K CPU with a main clock frequency of 3.3 Ghz. The iterative algorithms
were run for a maximum of 500 iterations.

Table 1: Execution times for the different hologram creation algorithms for the creation of a single
hologram plate.

LRGS-1 LRGS-6 LRGS-10 GS NOVO-CGH L2-Grad
0.028s 0.114s 0.181s 5.159s 32.067s 8.047s

With a faster implementation of the iterative schemes it might be possible to reduce the runtime of
these algorithms, however the networks structure has the benefit of having a fixed execution time
for every plate generated. Since the structure of the LRGS network is similar to the iterative GS
algorithm, it should outperform the other iterative schemes almost all the time, unless they converge
in less than N iterations.

6 CONCLUSION

We introduced a network structure that can be viewed as an unrolled Gerchberg-Saxton algorithm,
which we termed the Learned Residual Gerchberg-Saxton (LRGS) network. This network was able
to outperform state-of-the-art hologram generation methods in visual quality and speed. Further-
more, we demonstrated that the network is capable of producing images outside of the training
distribution. We hypothesize that this is due to its structure and the implementation of the propa-
gation operator A into the network structure, thus implementing physical prior knowledge into the
architecture. We argue that this approach is superior to iterative optimization algorithms in com-
puter generated holography. The LRGS network, once learned, also generates new holograms more
quickly than iterative methods.
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