
Under review as a conference paper at ICLR 2024

MODEL GUIDANCE VIA EXPLANATIONS TURNS IMAGE
CLASSIFIERS INTO SEGMENTATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Heatmaps generated on inputs of image classification networks via explainable AI
methods like Grad-CAM and LRP have been observed to resemble segmentations
of input images in many cases. Consequently, heatmaps have also been lever-
aged for achieving weakly supervised segmentation with image-level supervision.
On the other hand, losses can be imposed on differentiable heatmaps, which has
been shown to serve for (1) improving heatmaps to be more human-interpretable,
(2) regularization of networks towards better generalization, (3) training diverse
ensembles of networks, and (4) for explicitly ignoring confounding input features.
Due to the latter use case, the paradigm of imposing losses on heatmaps is often
referred to as ”Right for the right reasons”. We unify these two lines of research
by investigating semi-supervised segmentation as a novel use case for the Right
for the Right Reasons paradigm. First, we show formal parallels between differ-
entiable heatmap architectures and standard encoder-decoder architectures for im-
age segmentation. Second, we show that such differentiable heatmap architectures
yield competitive results when trained with standard segmentation losses. Third,
we show that such architectures allow for training with weak supervision in the
form of image-level labels and small numbers of pixel-level labels, outperforming
comparable encoder-decoder models. All code available upon publication.

1 INTRODUCTION

Ongoing advancements in explainable AI methodology aim to interpret model behavior and offer
human-readable explanations. In the field of computer vision, methods that explain image clas-
sification network predictions in the form of heatmaps, i.e., assign relevance to each pixel of an
input image, have gained wide popularity: Heatmaps are extensively leveraged to gauge the trust-
worthiness of classifiers, as they have been shown to detect biases and confounders in input images
(Lapuschkin et al., 2019; Anders et al., 2022).

The capacity to detect biases and confounders in input images goes naturally hand in hand with
the capacity to locate target objects of the semantic classes for which an image classifier has been
trained. This capacity has been shown for many well-known XAI methods (Selvaraju et al., 2017;
Bach et al., 2015; Nam et al., 2020; Gur et al., 2021; Achtibat et al., 2023), and has motivated ap-
proaches for leveraging heatmaps towards weakly supervised segmentation, i.e., segmentation net-
works that train on image-level labels as opposed to expensive dense, pixel-level labels. In particular,
Grad-CAM based heatmaps (Selvaraju et al., 2017) are a popular ingredient in weakly supervised
segmentation (WSSS) models (Li et al., 2018; Lee et al., 2019; Kim et al., 2021; 2022).

While the above line of research exploits heatmaps generated by trained models, an orthogonal line
of research has tapped into the potential of heatmaps as a lever to influence model training in the first
place (Weber et al., 2023), with the aim to yield models that are ”Right for the Right Reasons” (Ross
et al., 2017). To this end, imposing losses on differentiable heatmaps has been shown to allow for
aligning explanations with human interpretation (Liu & Avci, 2019; Ross et al., 2017; Rieger et al.,
2020; Shao et al., 2021; Shakya et al., 2022), enhancing model generalizability (Rao et al., 2023),
and ignoring undesired image features towards diverse ensembles (Ross et al., 2017; Teney et al.,
2022) and confounder mitigation (Schramowski et al., 2020).

In our paper, we aim to integrate these two lines of research by exploring the potential of the Right
for the Right Reasons paradigm for semi-supervised segmentation. To this end:
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• We establish formal parallels between differentiable heatmap architectures and conventional
encoder-decoder architectures commonly used for image segmentation. In particular, we show
that ”unrolling” LRP (Montavon et al., 2019) on standard image classification architectures like a
ResNet50 yields convolutional encoder-decoder architectures that resemble standard U-Nets (Ron-
neberger et al., 2015), albeit with weights tied between encoder and decoder and modified, ”skipped”
activation functions in the decoder.

• We perform a comparative evaluation of unrolled LRP and comparable U-Nets in terms of seg-
mentation accuracy on the val set of the PASCAL VOC 2012 segmentation benchmark (Everingham
et al., 2010). Our experimental results reveal for multiple standard classification backbones that dif-
ferentiable heatmap architectures, trained with combined classification- and segmentation loss, can
achieve competitive segmentation performance.

• We evaluate semi-supervised training, with pixel-level labels ranging down to one labelled image
per class, revealing that in scenarios with few pixel-wise labels, unrolled heatmap architectures
outperform comparable standard UNets for segmentation by up to 10% mIoU on PASCAL.

Relation to previous works. The work of Li et al. (2018) is closely related to ours in that, to our
knowledge, it is the sole previous work that also optimizes heatmaps towards improved segmenta-
tion performance. To this end, they optimize low-resolution Grad-CAM based heatmaps by means
of specifically designed losses, and use resulting label maps as pseudo-labels for further training
and sophisticated post-processing to increase segmentation accuracy. Instead, we optimize full-
resolution LRP heatmaps by means of a vanilla segmentation loss, and establish formal parallels of
this approach to conventional segmentation architectures rather than aiming at state of the art seg-
mentation accuracy via subsequent heuristic processing. Our results outperform Li et al. (2018) by
9% in a comparable scenario without their CRF post-processing.

The recent work of Rao et al. (2023) is closely related to ours as they optimize heatmaps towards
improved localization performance under various loss functions and heatmap-generating methods,
including IxG, which is equivalent to LRP-0 (Ancona et al., 2017) as employed in our study. How-
ever, they do not aim at a formal analysis of the respective unrolled architectures, whereas we reveal
strong formal parallels between unrolled LRP-0 and standard encoder-decoder architectures; Fur-
thermore, their work focuses on localization instead of segmentation, and their losses are specifically
designed for optimizing heatmaps whereas we employ standard segmentation loss. To this end, we
successfully unroll heatmaps for all class scores in each batch, whereas they restrict their losses to
one (randomly selected) class per batch. In a striking difference to Rao et al. (2023), we empirically
find that classifier performance does not degrade during training while segmentation performance
increases significantly. This holds for all pixel-level supervision regimes we study. To the contrary,
their empirical results suggest that increased localization performance has a strong tendency to go
hand in hand with decreased classification performance. We discuss the hypothesis that this different
behavior may be due to the concordant nature of the classification- and heatmap losses we employ.

Our derivation of unrolled heatmap architectures manifests a special case of double backpropagation
on ReLU networks, which has been formally studied before by Etmann (2019) and, in the context
of heatmap methods, by Alvi et al. (2018). However, to our knowledge, we are first to report formal
parallels of unrolled heatmap architectures to standard segmentation networks, and we showcase
their respective potential by empirical results that outperform standard segmentation baselines.

Limitations. Our work does not aim at state of the art semi-supervised segmentation: We do not
employ any post-processing on optimized heatmaps (Li et al., 2018; Wei et al., 2018; Lee et al.,
2019; Luo & Yang, 2020), nor do we leverage any orthogonal avenues towards semi-supervised seg-
mentation, like e.g. entropy minimization (Berthelot et al., 2019), consistency regularization (Pan
et al., 2022; Lai et al., 2021; Ouali et al., 2020; Sohn et al., 2020; Du et al., 2022), or contrastive
learning (Liu et al., 2022). However, thanks to our standard training objective, our unrolled archi-
tecture can be directly plugged into these orthogonal approaches.

2 UNROLLED HEATMAP ARCHITECTURES

In this Section, we present formal parallels between differentiable heatmap architectures and classi-
cal encoder-decoder architectures for image segmentation. After a brief recap of LRP-ϵ (Bach et al.,
2015), we derive the building blocks of architectures entailed by ”unrolling” LRP-0 on standard con-
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Figure 1: Unrolled LRP-0 for standard convolutional classifiers is an encoder-decoder CNN. (A)
Sketch of architectural building blocks. (B) Decoder weights are tied with corresponding encoder
layers. (C) Activation functions are skipped from encoder to decoder. (D) Up-convolutions are tied
to the respective pooling operation in the encoder. In (A) we sketch the decoder architecture induced
by an individual semantic class i; this decoder is replicated for all classes with shared weights, except
for the bottleneck 1x1 convolution, which is class-specific.

volutional image classification models, comprising ReLU nonlinearities, max pooling, and global
average pooling. The resulting architectural blueprint is sketched out in Figure 1, and forms the
basis of our subsequent quantitative analysis of segmentation performance. Last, we assess formal
properties of said unrolled architectures.

2.1 LRP BASICS

Linear layer. In the following, we denote the input vector of a linear layer l by a(l−1), its weights
matrix by w(l), and its output vector (pre-activation) by z(l). Considering a single linear filter in
isolation, the relevance LRP in its most basic form (LRP-0) assigns to an input variable ai equals
the variable’s contribution to the (scalar) output, namely Ri = aiwi. Considering a single linear
filter in an intermediate layer l + 1 of a neural network, assuming the relevance R

(l+1)
j of the

filter’s output z(l+1)
j has already been determined, LRP-0 distributes R

(l+1)
j to the filter’s inputs

a
(l)
i proportional to their respective contribution to z

(l+1)
j , namely as R(l+1)

j a
(l)
i w

(l+1)
ij /z

(l+1)
j . This

ensures preservation of total relevance across layers. Considering a general linear layer l + 1 as a
whole, input variables accumulate relevances from all linear filters they contribute to by summation.
This entails the following recursive definition by which LRP-0 assigns relevances to inputs a(l)i given
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relevances R(l+1)
j of outputs z(l+1)

j :

R
(l)
i = a

(l)
i

∑
j

w
(l+1)
ij

z
(l+1)
j + ϵ

·R(l+1)
j . (1)

The ϵ in Eq. 1 serves for numerical stability, but may also serve to mitigate noise in the relevances
in a variant of LRP termed LRP-ϵ. We focus our analysis on LRP-0, where ϵ is set to a very
small constant that serves solely for numerical stability and can be reasonably ignored for simplified
formal analyses. Eq. 1 can be phrased as a three-step algorithm: Applying LRP to any linear layer
l + 1 amounts to the following sequence of operations applied to R(l+1):

Algorithm 1 LRP through a linear layer l + 1

1: Element-wise division by z(l+1) (yielding q := R(l+1)/z(l+1))
2: Weighted summation via w(l+1) (yielding pi :=

∑
j w

(l+1)
ij qj for all i)

3: Element-wise multiplication by a(l) (yielding R
(l)
i = a

(l)
i pi ).

ReLU and pooling. LRP sets the relevance of the input of a ReLU to be equal to the relevance
of its output, i.e., relevances are propagated through ReLUs unchanged. Pooling operations can be
treated as their corresponding equivalent convolutions (where for max pooling, individual inputs
entail respective individual convolution kernels).

2.2 UNROLLED LRP ARCHITECTURES FOR CONVOLUTIONAL CLASSIFIERS

In the following, we derive the building blocks of ”unrolled LRP”. To this end, we phrase LRP
through standard CNN classifier/encoder building blocks as corresponding decoder building blocks.

Single convolution. First, we consider a single convolutional filter applied to a stack of activation
maps of depth cl at some layer l. A pixel in activation map k contributes to the respective output
map in layer l + 1 as follows: (1) To a spatial region around its own location that is of the same
size as the spatial extent of the convolutional kernel; (2) With weights solely from the k-th slice of
the convolutional kernel; (3) To position (dx,dy) relative to its own location with weight at position
(-dx,-dy) in the conv kernel (when defining the center point location of the conv kernel to be (0,0)).
Thus, the weighted combination entailed by LRP (cf. Step 2 of Alg. 1) through a single convolution
of depth cl (layer l→ l+1) amounts to the application of cl convolutions of depth 1 to the relevance
map obtained for layer l+1. These ”unrolled LRP” convolutions are formed by slices of the original
convolutional kernels, with weights flipped in all spatial dimensions.

Convolutional layer. Next we consider a full convolutional layer, with cl+1 convolutional filters
yielding cl+1 output maps. Here, a pixel in activation map k in layer l contributes to identical
spatial regions in all resulting output maps in layer l + 1, where weights stem from the k-th slices
of each convolutional kernel in the same mirrored manner as described for a single convolutional
filter above. This yields cl+1 ”unrolled LRP” convolutional kernels, where the k-th unrolled kernel
is assembled by stacking the k-th slices of all original kernels, mirrored in all spatial directions.

Altogether, the weighted combination entailed by LRP through a convolutional layer with input
depth cl and output depth cl+1 amounts to an ”unrolled LRP” convolutional layer with input depth
cl+1 and output depth cl with tied weights as sketched in Fig. 1 B.

Consecutive convolutional layers with ReLU activations. Consider a convolution with ReLU
activation followed by another convolution. As LRP passes relevances through ReLUs unaffected,
in this case, Alg. 1 is simply applied twice in a row. In the resulting sequence of six operations, step
3 and 4 can be condensed into Element-wise multiplication by

a(l)/z(l) =

{
1 z(l) > 0

0 otherwise
= H(z(l)),

where H denotes the Heaviside function. This entails unrolled LRP ”activation functions” between
convolutions that do not follow the classical paradigm of a nonlinear function applied to convolution
outputs; Instead, the unrolled activation function zeroes out unrolled convolution outputs based on
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the output value of the respective original convolution. This can be seen as the same function being
applied after original and unrolled convolution, as sketched in Figure 1 C.

Note that pooling layers can be seen as convolutions (with appropriate kernels) and thus merged
with a subsequent convolution. Consequently the above unrolled LRP ”activation functions” also
appear after the last unrolled convolution per downsampling level.

Final classifier layers. Consider the final layers of a standard classifier: The final stack of spatial
activation maps, which we term a here, are fed through global average pooling, yielding an average
pooling vector we term apv. apv is then fed through a linear output layer, yielding a vector of class
scores. LRP is performed individually per class j. To this end, LRP is initialized by setting the
relevance of the respective class score equal to its value. Thus the elements of the average pooling
vector, apvi, receive relevances Ri = avpiwij . Considering avp as input, the initial steps of LRP
on class score j thus play out as follows:

Algorithm 2 LRP on the class score of an individual class j through final standard classifier layers
1: Element-wise multiplication of apv with the class weights of class j from the last linear layer
2: Element-wise division by apv (i.e., step 1 of Alg. 1 for the average poling layer)
3: Division by the (spatial) number of pixels in a, followed by nearest-neighbor upsampling to the

spatial extent of a (i.e., step 2 of Alg. 1 for the average poling layer)
4: Element-wise multiplication with a (i.e., step 3 of Alg. 1 for the average poling layer)
5: Element-wise division by z (i.e., step 1 of Alg. 1 for the last conv layer).

Step 3 yields a stack of activation maps of spatial extent and depth equal to a. Each activation
map has a constant value, namely a weight from the output layer class weight vector divided by the
(spatial) number of pixels in a. Steps 4 and 5 zero out this constant value whereever z ≤ 0. Thus
Algorithm 2 can be condensed into a Heaviside function applied to z, followed by a 1x1 convolution,
where each of the conv kernels has one non-zero entry, namely one of the class weights. This is
sketched out in the bottleneck of the unrolled architecture in Figure 1 A. Note, classifiers without
average pooling and/or with multiple fully connected layers before the output layer can be unrolled
analogously: Average pooling is equivalent to a fully connected layer with specific weights, and
fully connected layers are equivalent to convolutions with suitable kernel size.

To consider not just one class score but the class score vector as a whole, the complete decoder
architecture is replicated for each class. The resulting decoder branches are class-specific solely
in the first 1x1 convolution with the class-specific weights of the classifier output layer. All other
weights are shared between decoder branches.

Classifier input layer. LRP through the first conv layer of a classifier is special as multiplication
with a, which is the input image in this case, does not cancel out by supsequent propagation through
another convolution. Thus the last building block of the unrolled architecture is an element-wise
multiplication with the input image, depicted as skip connection in Fig. 1 A.

2.3 LOSSES AND TRAINING

We turn three-channel heatmaps into single-channel heatmaps by summation as is standard. We
then stack together heatmaps from all decoder branches, thus forming class score vectors per pixel,
on which we employ standard pixel-wise softmax cross-entropy loss. We complement this standard
segmentation loss by standard classification loss on the class score vector in the bottleneck, namely
sigmoid cross-entropy per class score, same as during classifier training.

This combination of losses entails interesting training behavior: LRP is designed to satisfy the con-
servation property, i.e., it aims at conserving total relevance across layers Montavon et al. (2019).
Assuming the conservation property holds (and thus ignoring the bias terms for the sake of a sim-
plified argument), the total relevance of a heatmap, i.e., the sum of all pixel relevances, equals the
respective class score. For negative classes, i.e., classes not present in an image, this entails the
following: Softmax cross-entropy pushes down heatmaps of negative classes at all pixels. Due to
conservation, this necessarily also pushes down the respective class score in the bottleneck, which
is concordant with the respective classifier loss. An analogous argument holds for a single positive
class that covers the whole image: Softmax cross-entropy pushes up the respective heatmap at all
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pixels and thus, due to conservation, also the class score in the bottleneck, which is again concor-
dant with the respective classifier loss. For the case of multiple positive classes, which is the most
common case due to the abundant background class and our multi-label scenario, the segmentation
loss pushes up class-specific foreground pixels in the respective heatmap while all other pixels in
this heatmap are pushed down. Consequently, some trade-off needs to be met to not cause the re-
spective class score to decrease. We empirically find that a suitable trade-off is met, as we observe
that classification performance does not degrade during training (cf. Sec. 3).

2.4 RELATION TO PREVIOUS FORMAL ANALYSES AND STANDARD ARCHITECTURES.

Previous formal analyses. Backpropagtion through unrolled LRP-0 architectures as blueprinted
in Fig. 1A does not reach the encoder (no matter which heatmap loss is employed): Due to the
Heaviside function and its zero local derivative, global derivatives are zeroed out along all paths
to the encoder. Consequently, the derivatives of the (intermediate) output directly before the final
skip-multiplication with the input w.r.t. the network weights takes a simple form, namely a sum of
other weights’ products, where the input image determines which products are non-zero. This has
been shown before by Ancona et al. (2017) as part of their proof that LRP-0 equals inputs times
gradients (IxG) in ReLU networks.

It trivially follows from LRP-0 = IxG that the output of our unrolled architecture, pre skip-
multiplication with the input, equals the gradient of the class score w.r.t. the input. Thus our unrolled
architecture implements double backpropagation (Drucker & Le Cun, 1992). Double backpropaga-
tion has been formally analyzed in-depth by Etmann (2019), who have also derived the respective
simplified gradients for ReLU networks, and note that the backward pass is thus shortened.

Our architecture serves as easily accessible special case of what the above more general theory
entails: When trained with classification- and heatmap loss, the gradient of the classification loss
backpropagates solely through the encoder, while the gradient of the heatmap loss backpropagates
solely through the decoder. This can be leveraged for efficient training; It remains unclear whether
the property has further consequences, e.g. whether it has a systematic effect on training dynamics;
Furthermore, in practice, note that any ϵ > 0 in Eq. 1 smoothes out all Heaviside functions in the
positive regime, thus yielding non-zero heatmap loss gradient flow to the encoder during backprop.

Standard architectures. On the one hand, unrolled heatmap architectures as described above
are related to U-Net architectures Ronneberger et al. (2015), which constitute the state of the art
in semantic segmentation in a broad range of applications to date Isensee et al. (2021). A U-
Net is related in that it is an encoder-decoder convolutional architecture. It is distinct in that (1)
convolution- and pooling operations are not tied between encoder and decoder whereas ours are;
(2) it employs standard nonlinearities in the decoder whereas we employ ”tied activations”; (3) it
employs skip-concatenations of encoder activation maps to the respective decoder layer whereas we
only skip-connect activations; and (4) it employs a single decoder for all classes, whereas we employ
weight-shared branches per class.

On the other hand, unrolled heatmap architectures are closely related to weight-tied auto-encoders,
as first described by Vincent et al. (2010). In particular, Kim & Hwang (2016) have explored weight-
tied auto-encoders based on convolutional encoders. The weight-tied architecture they establish
equals ours in their tied decoder convolutions and up-sampling operators, yet is distinct in that
they employ standard nonlinearities in the decoder, and in that they do append a final, non-tied
convolutional layer. Furthermore, like U-Net, they also employ only a single decoder for all classes.

In summary, our unrolled LRP architectures are most constrained to their encoder backbone among
all previously described encoder-decoder-style convolutional segmentation architectures.

3 UNROLLED HEATMAP ARCHITECTURES FOR SEGMENTATION: RESULTS

Data and Baselines. We evaluate the performance of our unrolled architecture on the PASCAL
VOC 2012 segmentation benchmark val set. We employ a comparable U-Net, i.e., a U-Net with
identical convolutional encoder, as standard segmentation baseline. We evaluate two different clas-
sifier backbones (resnet50 and vgg16 with batch norm) in four scenarios with varying levels of pixel-
wise supervision, namely with 1, 5, 25, and all available labelled images per class. This amounts to
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Method 1.4 % (20) 6.8 % (100) 34.2 % (500) Full(1464)

Architecture: vgg16 backbone for encoder

UNet 20.38 40.50 54.60 60.53
unrolled LRP (ours) 33.92 49.68 59.96 63.85
Architecture: ResNet50 backbone for encoder

UNet 25.89 43.40 55.10 60.07
multi-task UNet 25.06 39.77 55.13 60.37

unrolled LRP (ours) 39.80 50.29 58.30 61.50

Table 1: Segmentation mIOU on PASCAL VOC 2012 val for vgg16 and ResNet50 backbones,
models, and supervision scenarios, ranging from 20 to 1464 labelled images. We report average
mIoU over three independent training runs for all models.

Backbone 0 1.4 % (20) 6.8 % (100) 34.2 % (500) Full(1464)

vgg16bn 81.33 80.73 81.99 81.86 82.52
resnet50 81.62 80.35 80.80 82.21 81.49

Table 2: Classification F1 score of our unrolled LRP models on PASCAL VOC 2012 val after pre-
training (column ”0”) and after segmentation training across supervision scenarios.

respective totals of 20, 100, 500, and 1464 labelled images. We employ standard augmentations, as
well as standard cropping to fit the classifiers’ required input size. We initialize the classifier back-
bones of all architectures to their respective ImageNet pre-trained and PASCAL fine-tuned weights.

To give our UNet baseline the chance to leverage the 15,676 available image-level labels not just via
pre-training but also during segmentation training, we include a modified version of the resnet50-
encoder variant as additional baseline, where we extend a comparable classifier branch, i.e., simple
average pooling followed by a linear output layer, from the UNet bottleneck. We train this ”multi-
task” UNet with same combined classification- and segmentation loss as our unrolled architecture.

We train all models with batch size 10, AdamW with learning rate 1e−5. We give equal weight (=1)
to classification- and segmentation loss in our unrolled architectures and multi-task UNet baseline.

To cover different semi-supervised scenarios we sample 20, 100, 500 and 1464 labeled images
from the training set, respectively. For the scenarios with 20 and 100 labelled images we sample
(randomly, with fixed seed for all experiments) maximally uniform distributed classes. For the 20
labeled images case, this ensures that each class is sampled at least once. However, due to the strong
class imbalance within PASCAL, when dealing with larger image sets, sampling with a uniform
distribution is no longer possible; Thus we relax the strategy for ≥ 500 labeled images. Here, we
sample with the average of a uniform distribution and the class distribution in the training set.

Results. Table 1 reports results in terms of segmentation mIoU averaged over three independent
training runs per model. Our models outperform comparable UNets in all supervision scenarios,
where the margin increases drastically with decreasing pixel-level supervision. At the same time,
interestingly and in contrast to respective empirical findings by Rao et al. (2023), classifier perfor-
mance remains largely unaffected; Table 2 lists classifier F1 scores after pre-training (with only the
classification loss) as well as after training with combined classification and segmentation loss.

Our unrolled ResNet50 architecture has 23.55M trainable parameters, whereas the respective UNet
baseline has 38.84M. To make sure the inferior performance of the UNet is not just due to respective
higher susceptibility to overfitting, we trained another UNet baseline based on a ResNet18 backbone,
which has 18.81M parameters. However, the ResNet18 UNet is outperformed by the ResNet50
UNet, i.e., the fact that our UNet baseline has more parameters than our unrolled architecture does
not explain its inferior performance.

Figures 2 and 3 show exemplary segmentation results, as well as the evolution of segmentations and
heatmaps over training of unrolled LRP. We observe quick convergence to crisp segmentations, also
in cases with multiple labels.
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Figure 2: Exemplary unrolled LRP segmentations on the VOC validation set, 500 labelled images
scenario. Left: input image; Right: ground truth segmentaion; In-between: Evolution of segmenta-
tion over training of unrolled LRP, ranging from the first iteration to peak validation mIoU.

Method tied tied tied up- concat 1.4 % 6.8 % 34.2 % Full
ReLU Conv sample skip (20) (100) (500) (1464)

Unrolled LRP-0 (ours) ✓ ✓ ✓ - 39.80 50.29 58.30 61.50
WS-AE - ✓ ✓ - 29.50 46.59 54.74 57.91

FCN - - - - 26.23 39.98 51.27 56.64
UNet - - - ✓ 25.89 43.40 55.10 60.07

Table 3: Ablation of architectural elements between UNet and unrolled LRP. All results based on
Resnet50 backbone; average mIoU on VOC val set over three independent training runs.

Ablation Study. Architectural elements that turn unrolled LRP into a UNet are: (1) Tied vs
standard activation functions, (2) tied vs standard decoder weights and up-sampling, and (3) concat-
skip connections from encoder to decoder. Table 3 lists results of a respective ablation study. The
ablation includes a weight-sharing convolutional autoencoder (WS-AE), in which tied activations
as well as the bottleneck heaviside function in unrolled LRP are replaced by standard ReLUs. WS-
AE is trained with segmentation- and classification loss, like unrolled LRP. The ablation further
includes a standard Fully Convolutional Network (FCN), in which weights in the decoder are free,
and nearest neighbor upsampling is employed. To avoid the introduction of free weights per decoder
branch, FCN is reduced to a single decoder branch. This entails that FCN does not contain the class
weights of the classifier output layer. FCN is trained only with segmentaiton loss, like UNet.

Discussion. We hypothesize that superior performance of unrolled LRP over a comparable stan-
dard segmentation baseline in scenarios with limited supervision is due to the strong constraints
imposed by tied weights, tied up-sampling, and tied activations. Furthermore, we hypothesize that
the concordant losses as described in 2.3 facilitate the full exploitation of image-level labels for seg-
mentation, as not just the segmentation loss, but also the classification loss pushes the total relevance
in the heatmaps in a meaningful direction. As a quantitative indicator of this loss concordance, Table
2 reveals, to our knowledge for the first time, that vanilla classifiers can be trained in such a way
that they condense all relevance to respective class foregrounds while classification performance re-
mains unaffected. However, precisely how the sketched training dynamics play out for images with
multiple class labels (including background) requires further study.
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Figure 3: Exemplary unrolled LRP heatmaps on the VOC validation set, 500 labelled images sce-
nario (cf. Fig. 2 for corresponding segmentations). Left: input image; Right: ground truth seg-
mentaion; In-between: Evolution of heatmaps of the positive classes over training of unrolled LRP,
ranging from the first iteration to peak validation mIoU. Note that all heatmaps except for the initial
(left-most) one are shown after softmax to render standard blue-white-red visualization informative.

Our ablation study reveals that tied activation functions, an element our work newly introduces
to segmentation architectures, are essential for the superior performance of LRP-0 over a standard
UNet. Our study replicates previous findings that WS-AE outperforms FCN in few-labelled-samples
regimes; yet it reveals that including tied activation functions yields another significant performance
boost over WS-AE, which is crucial to outperforming the U-Net.

4 CONCLUSION

Our work establishes unrolled heatmap architectures as encoder-decoder-style convolutional archi-
tectures that can be trained for image segmentation. We observe superior performance to standard
segmentation baselines in scenarios with limited pixel-level supervision, which entails the potential
for practical use in semi-supervised segmentation. To this end, while not yielding state of the art
semi-supervised segmentation results per se, our architecture directly lends itself to incorporation
into orthogonal semi-supervised learning paradigms like augmentation consistency training. In con-
trast to previous work, we observe that training with a heatmap loss does not affect classification
performance. This is striking in that our approach yields highly performant standard classifiers that
nevertheless are trained to successfully focus on class foregrounds by means of our unrolled training
objective.
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