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Abstract

Reinforcement learning solutions have great success in the 2-player general sum
setting. In this setting, the paradigm of Opponent Shaping (OS), in which agents
account for the learning of their co-players, has led to agents which are able to avoid
collectively bad outcomes, whilst also maximizing their reward. These methods
have currently been limited to 2-player game. However, the real world involves
interactions with many more agents, with interactions on both local and global
scales. In this paper, we extend Opponent Shaping (OS) methods to environments
involving multiple co-players and multiple shaping agents. We evaluate on over 4
different environments, varying the number of players from 3 to 5, and demonstrate
that model-based OS methods converge to equilibrium with better global welfare
than naive learning. However, we find that when playing with a large number of
co-players, OS methods’ relative performance reduces, suggesting that in the limit
OS methods may not perform well. Finally, we explore scenarios where more
than one OS method is present, noticing that within games requiring a majority of
cooperating agents, OS methods converge to outcomes with poor global welfare.

1 Introduction

Multi agent systems are increasingly deployed to the real world, in which interactions may be either
cooperative, competitive or both. These can be considered general-sum games where interactions
combine opportunities for coordination with self-interested motivations, where each player is trying
to maximise their own reward. Real-world examples of such games include global pollution, defor-
estation, over-fishing and arms races. In these settings, agents are incentivised to exploit the system
and/or other players for their own gains by defecting, but cooperation would result in greater social
welfare.

General sum games have multiple equilibria, many of which do not produce high social welfare. Naive
learning algorithms that work well in zero-sum settings do not perform well in general-sum settings:
they learn the Nash-equilibrium strategies by best-responding to the opponent’s past behaviour, but in
these settings many Nash-equilibria often coincides with worst-case outcomes for all participants.
[Letcher et al., 2021]

Opponent shaping (OS) methods are a family of approaches that take into account the evolving social
dynamics instead of simply best-responding to the opponent’s behaviour [Foerster et al., 2018b,
Lu et al., 2022, Zhao et al., 2022, Willi et al., 2022, Khan et al., 2023]. They act to influence
other participant’s learning dynamics to result in a favorable equilibrium. These methods have been
successfully used in 2-player general sum settings to achieve high rewards, however they do not
always achieve pro-social outcomes, and can sometimes successfully exploit their opponent.

The study of OS methods has so far been limited to only two interacting agents, whilst the real
world has many more agents. The interactions of more players give rise to more complicated and
unstable social dynamics, making cooperation harder to achieve. In particular, in diverse populations
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Figure 1: Normalised global welfare with a single shaping agent. We report the converged
(normalised) global welfare for training a shaping agent with unseen co-players across games and
player variants. Across most games SHAPER outperforms LOLA and as number of players increase,
both OS methods fail to find better welfare maximising equilibria than the naive baseline. Results are
reported over 5 seeds with mean and standard deviation.

equilibrium selection requires modelling not only a single co-player’s beliefs but also their beliefs of
other co-players.

In this work, we introduce a natural extension for OS methods to more-than-2-player setting. We then
evaluate this extension over a total of 12 varying games. We find that OS methods consistently help
achieve higher global welfare than baseline methods. While OS-methods are only maximising their
own reward, they do so while effectively avoiding collective welfare minimising outcomes, creating
better social dynamics and thus also improving their co-players’ rewards. We also find that between
model-based and model-free OS methods, model-free methods perform better in games with more
players. In some instances where OS methods are unable to exploit their opponents, they are also
willing to take lower rewards in order to avoid a collectively bad outcome. This is promising for
scenarios that involve some more capable self-interested agents in a population of less capable agents.

2 Background

Model-based OS methods such as LOLA Foerster et al. [2018b], COLA Willi et al. [2022], POLA
Zhao et al. [2022], SOS Letcher et al. [2021] and Meta-MAPG Kim et al. [2021] assume access to the
other agents parameters, and as such, anticipate their co-player’s updates as they learn. For example,
LOLA conditions its update on a co-player’s next set of parameters (effectively thinking one step
ahead). COLA, POLA and SOS are further adaptations and extensions of LOLA, addressing different
shortcomings of the original method. Meta-MAPG also differentiates through the opponent’s current
parameters via an additional peer learning objective.

In comparison, model-free OS methods [Lu et al., 2022, Khan et al., 2023, Fung et al., 2023, Lu
et al., 2023] frame opponent-shaping as a meta-reinforcement learning problem, where the goal is to
maximise reward over a series of games against a co-player that is learning. In these approaches a
shaping agent trains over T trials consisting of E episodes. Each trial consists of the following: the
shaping agent plays the game with the co-player for E episodes, with the co-player updating after
every episode according to its update rule. After every episode, the shaping agent updates its hidden
state to add the played games into its memory, whilst the opponent takes a full gradient learning step.
After a trial the shaping agent updates its policy parameters. Importantly, the shaping agent does not
update during an episode unlike the co-player.

3 Methods

We expand SHAPER Khan et al. [2023] to a multi-player setting and generalise the algorithm to
arbitrary numbers of shaping-agents and co-players. Co-players can be any type of other agents,
including SHAPER, other meta-agents or naive learners.

We extend opponent-shaping to a generic number of shaping agents and co-players naturally. Similar
to single SHAPER single co-player shaping, shaping agents play the game with their co-players for
E episodes but with all co-players simultaneously updating after an episode. After every episode,
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Figure 2: Normalised global welfare with multiple shaping agents. In IPD, the optimal amount
of SHAPERs is around a third of the population, too many decreases global welfare. In comparison
in Snowdrift - a game where only a single agent is required to cooperate, more shaping agents help
coordinate which naive learner is exploited. In ToC and Stag Hunt, where cooperation requires a
majority of players, increasing the number of SHAPERs did not increase welfare.

all shaping agents simultaneously update their respective hidden states. Shaping agents learn to
collectively shape their naive co-players.

We update SHAPERs using evolutionary strategies [Salimans et al., 2017], which are computationally
better suited to the long timescale of trials and are efficiently parallelisable. Given a game with N
SHAPERs and K co-players, at the start of a trial we sample a population of groups of SHAPERs.
These groups then each play against copies of the same co-players. At the end of the trial, we sample
a new generation of groups based on the parameters of the most successful groups. Importantly, there
is no mixture between the groups. SHAPERs do not play with members of other groups, only with the
SHAPERs in their own group, therefore the whole group evolves together. We present a multiplayer
extension in Appendix B.

4 Experiments

For all games, one episode consists of 100 iterated cooperate-defect choices. One trial consists of
1000 episodes. We evaluate on the following general sum games:

Iterated Prisoner’s Dilemma (IPD) is a game in which agents must commit to cooperating (staying
silent) or defecting (implicating your comrades) [Yao and Darwen, 2001]. For each player, assuming
that the actions of others players is fixed, defecting always results in a better payoff than cooperating
(that is to say, defection is the dominant choice). All players choosing cooperation is global welfare
maximising, but unstable with naive learners.

Snowdrift is a game in which players choose to shovel (cooperate) or ignore the snow (defect)
[Wettergren, 2021]. The shovelling players share a fixed cost. If a player doesn’t shovel, they don’t
incur a cost but still receive the benefits of the snow is shovelled. If no one shovels, all players receive
a low payoff. This game differs from IPD in that mutual defection is not the best choice - if no one
else cooperates, it is still better for the player to shovel alone than if everyone defects and the road
stays blocked.

Tragedy of the Commons (ToC) is an N-player social dilemma. We use a general formulation in
which there is a social benefit B such that if enough players pay a cost C, everyone gets the benefit.
The social benefit can be thought of as the shared resource, and the cost as the opportunity loss of
not exploiting the resource. This game encourages free-riding, as long as enough of the co-players
cooperate to prevent the tragedy.

Stag Hunt N players choose either to hunt a stag (cooperate) or to hunt a hare (defect) [Pacheco
et al., 2008]. A certain number of hunters are required to successfully hunt a stag (in our case more
than half the total population), the hunt is unsuccessful otherwise. If there is a successful hunt, the
payoff is related to the number of cooperating hunters (more hunters implies bigger game). The stag
hunters pay the cost of the hunt but everyone equally shares the benefits if the hunt is successful. This
setup also encourages free-riding similarly to ToC.

Methods - We consider three different methods for shaping: naive learners, a model-based OS
method (LOLA) and the model-free OS method SHAPER. Naive learners (NLs) are agents that don’t
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Figure 3: Normalised SHAPER versus naive co-player welfare. We report the (normalised)
converged scores attained by SHAPERs and their naive co-players. In all games, SHAPERs either score
similarly to their naive co-players, or heavily exploit them, particularly in IPD and Snowdrift.

account for the learning or adaptation of other agents in the environment. Updates are myopic, at
the end of single episodes, and make no modelling assumptions of other players. Our naive learners
are parameterized by a recurrent neural network and keep their hidden states between episodes.
Their networks are updated using proximal policy optimisation (PPO) Schulman et al. [2017] and
trained until convergence. For our model-free OS method we use LOLA-PG - a policy gradient
approximation to estimate the co-player’s gradient update. We use the Infinitely Differentiable
Monte Carlo Estimator [Foerster et al., 2018a, DICE] to approximate the gradients, and train until
convergence. For our model free OS method we use SHAPER, a meta-agent parameterised by a LSTM
network, specifically a GRU with hidden state of size 16. Models are trained until convergence.

5 Results, Discussion & Conclusion

Single Shaping Agent We firstly conduct experiments in which we evaluate a single SHAPER with
N − 1 naive learners across the many environments. In line with prior work [Lu et al., 2022] we find
that SHAPER outperforms LOLA across most tasks in improving global welfare (see Figure 1). We
also find that current OS methods provide diminishing results when applied on games with more than
2 players. In all 3-player settings, SHAPER exploits its co-players, but has varying success with more
co-players (Figure 3). In particular, SHAPER has difficulties on Staghunt and ToC, in scenarios where
a majority of players is required for cooperation to be rewarded.

We note that in ToC the difficulty of cooperation is not monotonic in number of players. In the
4-player game, 3 are required to coordinate to get welfare maximising outcome, whilst in the 5-player
variant the required number is also 3. Hence, with randomly searching agents it is easier in the
5-player variant to discover welfare maximising outcomes than the 4-player one. (50% vs 31%).

Many Shaping Agents With many shaping agents, we explore the stability of OS methods when
interacting with one another. In games where cooperation is related to only a small percentage of a
population cooperating, more SHAPERs improves global welfare (see Figure 2). In Snowdrift, only a
single agent must cooperate, therefore increasing the number of SHAPERs increases performance as
exploiting the naive learners becomes easier. Conversely, in IPD, where incentives for cooperation
are lower, we find multiple SHAPERs reduce global welfare when the majority of the population
become SHAPERs, due to overly exploiting the remaining naive learners (Figure 3). In games such
as ToC and Staghunt, cooperation is only beneficial if enough players coordinate. Two SHAPERs
successfully coordinate in the 3 player game (where only one player can defect), with one SHAPER
cooperating and the other defecting. However they do not succeed at coordination when more players
or SHAPERs are present, suggesting a limitation to the paradigm.

In conclusion, while OS methods improve global welfare over naive learning in multi-agent games,
they might do so by exploitation of their co-players. When the game dynamics do not allow for
this, they are willing to take lower rewards by cooperating. This is promising for improving the
dynamics of finite-resource games like ToC by including more capable agents in the population. The
method, however, faces limitations as the number of agents and SHAPERs increases, especially in
games requiring majority cooperation. Future work could extend this to the STORM environments
[Willi et al., 2023, Rutherford et al., 2023] with partial observability and temporally-extended action
spaces.
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A Additional Environment Details

For each game, we present payoff matrices for their work.

IPD Global welfare increases linearly with the number of cooperators, but agents are incentivised
to defect for individually higher payoffs. Therefore this game presents a free-riding problem. The
payoff matrix we use is structured as in Table 1: defection results in 1 more point than cooperation
given the actions of the co-players, and for each co-player cooperating our reward increases by 2.

No. of C among remaining n-1 players
0 1 2 ... n− 1

Player A C 0 2 4 ... 2(n− 1)
D 1 3 5 ... 2n− 1

Table 1: N-player IPD payoff where n is the total number of players, C is cooperation action and D is
defection action.

StagHunt

The payoffs are calculated with the following equations, where N is the population size, and the
reward is more than the individual cost of the hunt:

if num coop ≥ ⌈N
2
⌉ :

C payoff =
num coop ∗ reward

N
− hunt cost

D payoff =
num coop ∗ reward

N
otherwise:

C payoff = −hunt cost
D payoff = 0

In our experiments we set the cost of the hunt to 3 and the reward for a successful hunt to 6.

Tragedy of the Commons

The payoff matrix we use is presented in Table 2, as per Kuhn [2019]. In our experiments, we set the
benefit to 5 and the cost to 3.

more than T choose C T or fewer choose C
C benefit - cost -cost
D benefit 0

Table 2: Tragedy of the Commons payoff where T is the threshold for resource exhaustion, C is
cooperation action and D is defection action

B Multi-Shaping Method

Following algorithm:
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Algorithm 1 Training multiple SHAPER agents {S} against co-players {−S}
.
Require: Stochastic gameM

1: Initialise all SHAPER parameters ϕi for i ∈ {S}
2: for t = 0 to T do
3: Initialise trial reward J̄ = 0
4: Initialise co-players ϕi for i ∈ {−S}
5: Initialise all agent hidden state hi = 0 for i ∈ {S}

⋃
{−S}

6: for e = 0 to E do
7: Roll out trajectories Ji, h′

i =M(ϕ{S}, ϕ−{S}, h{S}, h−{S}) with i ∈ {S}
⋃
{−S}

8: Update co-player’s parameters ϕ−i with i ∈ {−S}
9: Update all hidden states hi ← h′

i with i ∈ {S}
⋃
{−S}

10: Update trial reward J̄ ← J̄ + Ji
11: end for
12: Update SHAPER parameters ϕi with respect to J̄ with i ∈ {S}
13: end for

C Hyperparameters

Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Torso GRU Size [16]
Length of Trial 1000
Length of Episode 100
Number of Generations until convergence
Number of parallel environments 2
Number of parallel opponents 10
Population Size 100
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 3: Hyperparameters for SHAPER

Hyperparameter Value
Number of Minibatches 10
Number of Epochs 4
Gamma 0.96
GAE Lambda 0.95
PPO clipping epsilon 0.2
Value Coefficient 0.5
Clip Value True
Max Gradient Norm 0.5
Anneal Entropy False
Entropy Coefficient Start 0.1
Entropy Coefficient Horizon 400000000
Entropy Coefficient End 0.01
LR Scheduling False
Learning Rate 0.0003
ADAM Epsilon 1e-5
With CNN False

Table 4: Hyperparameters for PPO

7


	Introduction
	Background
	Methods
	Experiments
	Results, Discussion & Conclusion
	Additional Environment Details
	Multi-Shaping Method
	Hyperparameters

