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ABSTRACT

Patient data from real-world clinical practice often suffers from data scarcity
and long-tail imbalances, leading to biased outcomes or algorithmic unfairness.
This study addresses these challenges by generating lesion-containing image-
segmentation pairs from lesion-free images. Previous efforts in medical imag-
ing synthesis have struggled with separating lesion information from background,
resulting in low-quality backgrounds and limited control over the synthetic out-
put. Inspired by diffusion-based image inpainting, we propose LeFusion, a lesion-
focused diffusion model. By redesigning the diffusion learning objectives to fo-
cus on lesion areas, we simplify the learning process and improve control over
the output while preserving high-fidelity backgrounds by integrating forward-
diffused background contexts into the reverse diffusion process. Additionally,
we tackle two major challenges in lesion texture synthesis: 1) multi-peak and 2)
multi-class lesions. We introduce two effective strategies: histogram-based tex-
ture control and multi-channel decomposition, enabling the controlled generation
of high-quality lesions in difficult scenarios. Furthermore, we incorporate lesion
mask diffusion, allowing control over lesion size, location, and boundary, thus
increasing lesion diversity. Validated on 3D cardiac lesion MRI and lung nodule
CT datasets, LeFusion-generated data significantly improves the performance of
state-of-the-art segmentation models, including nnUNet and SwinUNETR.

1 INTRODUCTION

The development of AI for healthcare often suffers from data scarcity (Ibrahim et al., 2021; Schäfer
et al., 2024). In most biomedical scenarios, the number of pathological subjects is significantly lower
than that of normal ones. This discrepancy primarily arises from the naturally occurring distribution
of patient data, which frequently exhibits long-tail characteristics (Yang et al., 2022; Zhang et al.,
2023). Additionally, potential biases in data collection can introduce issues related to algorithmic
fairness (Xu et al., 2022; Chen et al., 2023; Yang et al., 2024), as well as concerns about security and
privacy (Price & Cohen, 2019; Qayyum et al., 2020). As a result, it has been argued that “synthetic
data can be better than real data” (Savage, 2023).

Generative lesion synthesis is a promising approach to generating diverse medical data, benefiting
many medical applications (Khader et al., 2023). By learning from lesion-containing data, gen-
erative models can synthesize various types of lesions, which in turn benefit downstream applica-
tions (Han et al., 2019; Jin et al., 2021; Yang et al., 2019; Lyu et al., 2022a; Shin et al., 2018;
Pishva et al., 2023; Du et al., 2023; Lyu et al., 2022b). While a range of generative methods have
been explored, they often struggle to preserve high-quality backgrounds outside of the lesion ar-
eas. This is because generating anatomically correct backgrounds in the human body is far more
challenging than synthesizing isolated lesions. Moreover, these methods often lack control over key
aspects of lesion generation, including texture type, size, location, and mask alignment. These issues
can severely degrade the performance of downstream applications, such as segmentation algorithms
trained using such synthetic data. Fig. 1 (a) illustrates standard diffusion models as an example.

One approach to avoiding the complexity of background generation is to start from readily available
normal scans and synthesize lesions into them. This involves generating lesion masks and filling
them with appropriate textures, ensuring perfect background preservation and mask alignment, while
also allowing precise control over lesion size and location. In this paper, we refer to this method
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Figure 1: Standard Conditional Diffusion vs. Lesion-Focused Diffusion (LeFusion). (a) Stan-
dard Conditional Diffusion concatenates background, lesion mask and noise as inputs and outputs
both lesion and background, risking background integrity and wasting capacity on difficult but un-
necessary background generation, especially in data-limited settings. (b) LeFusion uses forward-
diffused backgrounds and reverse-diffused foregrounds as input. The model generates only the
lesion, ensuring realistic background preservation and simplifying the task. (c) LeFusion with Fine
Control of Lesion Textures and Masks introduces histogram-based texture control for multi-peak le-
sions (lung nodules), multi-channel decomposition for multi-class lesions (myocardial damage), and
lesion mask diffusion for control over size, location and boundary, enhancing quality and diversity.

as background-preserving lesion synthesis. This approach has led to a resurgence of hand-crafted
methods, which have been used to model COVID-19 lesions (Yao et al., 2021) and liver tumors (Hu
et al., 2023). However, these methods rely on heuristics that do not generalize well.

Inspired by diffusion-based image inpainting schemes (Lugmayr et al., 2022; Avrahami et al., 2022),
it has been shown that explicitly integrating real background context during the diffusion process
ensures realistic background preservation outside lesion masks. Rather than using the background
as conditional inputs (Rombach et al., 2022), these methods directly incorporate forward-diffused
background contexts into the reverse diffusion process. However, these approaches are training-free
and do not focus on specific inpainted content. In contrast, our study emphasizes lesion generation.
In data-limited scenarios, it is more efficient for the model to focus solely on lesion synthesis.

To this end, we propose LeFusion, a lesion-focused diffusion model (Fig. 1b and Fig. 1c). We re-
design the diffusion learning objectives to focus solely on lesion data. Similar to diffusion-based
inpainting, the input combines forward-diffused backgrounds with reverse-diffused foregrounds,
while the model reconstructs only the lesion, avoiding the need to allocate capacity to learning com-
plex backgrounds. Furthermore, we address two major unresolved challenges in lesion synthesis:
1) multi-peak lesions, where lesions have distinct types, and 2) multi-class lesions, where multiple
classes of lesions need to be generated simultaneously. For the multi-peak challenge, we introduce
histogram-based texture control, integrating lesion texture histograms during training as a condi-
tion, which allows control over lesion types during inference. We find that explicitly controlling
the histogram is crucial when generating lesions on normal scans; otherwise, the model tends to
produce lesions biased toward healthy appearances. Notably, this histogram-based control method
is generic and does not require any additional information beyond image-mask pairs. To handle the
multi-class challenge, we propose a strategy for joint modeling of multi-class lesions through multi-
channel decomposition, where the diffusion model generates different lesion classes via separate
channels and then combines them into a single image. Finally, we introduce lesion mask diffusion,
enabling control over size, location and boundary, thereby increasing the diversity of lesion masks.

We validate LeFusion on 3D lung nodule CT datasets (Armato III et al., 2011) and cardiac lesion
MRI (Lalande et al., 2022), demonstrating its effectiveness in addressing both the multi-peak and
multi-class challenges while generating high-quality synthetic lesions. In downstream segmentation

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tasks, we show that LeFusion-generated data significantly enhances the performance of state-of-the-
art models such as nnUNet (Isensee et al., 2021) and SwinUNETR (Hatamizadeh et al., 2021).

2 RELATED WORK

2.1 GENERATIVE MODELS FOR LESION SYNTHESIS

Lesion synthesis using generative models has garnered significant attention for its potential to cre-
ate diverse and realistic medical datasets, particularly in addressing the scarcity and imbalance of
pathological data in biomedical applications. Early approaches have employed variational autoen-
coders (VAEs)(Kingma & Welling, 2013), generative adversarial networks (GANs)(Goodfellow
et al., 2020), and more recently, diffusion models (Ho et al., 2020) to generate synthetic lesions
across various medical imaging modalities and applications, including lung nodules (Han et al.,
2019; Jin et al., 2021; Yang et al., 2019) and COVID-19 lesions (Lyu et al., 2022a) in CT scans,
colon polyps in colonoscopy (Shin et al., 2018; Pishva et al., 2023; Du et al., 2023), tumor cells
in microscopy (Horvath et al., 2022), brain tumors in MRI (Billot et al., 2023), diabetic lesions in
retinal images (Wang et al., 2022), and synthetic liver tumors (Lyu et al., 2022b).

However, a persistent challenge for these methods is preserving anatomically accurate backgrounds
alongside the lesions. In medical imaging, the background must respect the anatomical structure
of the human body, which makes generating realistic backgrounds significantly more difficult than
synthesizing isolated lesions, particularly in large-scale 3D images. While recent studies (Hamamci
et al., 2024; Peng et al., 2024) have begun to address large-scale 3D medical image generation, these
methods often require significant computational resources and extensive data.

Another limitation of current methods is the lack of explicit control when generating image-mask
pairs. Typically, both the lesion and its corresponding mask are generated simultaneously, without
explicit constraints linking the two. This results in limited control over key lesion properties, such
as texture, size, location, and alignment between the image and mask. The absence of high-quality
background preservation and fine control over these properties hinders the scalability and effective-
ness, negatively impacting the performance of downstream tasks such as segmentation.

2.2 BACKGROUND-PRESERVING LESION SYNTHESIS

In clinical practice, normal scans (either whole or partial) are far more abundant than pathological
ones. For instance, in lung nodule cases, most pathological scans contain only a single lesion, yet
traditional lesion synthesis methods often focus on small crops around the lesion, utilizing as little as
< 1%1 of the original data and leaving large portions of the normal background unused. This raises
the question of whether it is necessary to rely on deep models to generate normal backgrounds.

Background-preserving lesion synthesis addresses this issue by starting from normal scans and syn-
thesizing lesions through filling textures into manually generated lesion masks. This approach sepa-
rates the generation of lesion masks and textures, allowing for finer control over lesions while main-
taining the original background structure. Prior work has predominantly relied on heuristic-based
methods (Yao et al., 2021; Hu et al., 2023), leveraging the abundance of normal backgrounds to gen-
erate lesions of varying sizes and textures at different locations. These studies have demonstrated
that the generated data can significantly benefit downstream segmentation tasks.

However, these hand-crafted approaches rely heavily on manual adjustments to ensure that the gen-
erated lesions resemble real-world pathology. For example, Hu et al. (2023) manually set grayscale
values for texture synthesis, and lesion shapes are generated using morphological operations from
ellipsoidal masks. Such hand-crafted rules limits the scalability and generalizability of these meth-
ods. In more complex scenarios, such as multi-peak and texture-rich lung nodules or multi-class
cardiac lesions, these methods tend to fail (see Sec.4.2). This highlights the need for more flexible
and robust data-driven techniques to address these challenges.

A recent study (Chen et al., 2024) uses conditional diffusion (Ho et al., 2020; Rombach et al., 2022)
to synthesize abdominal tumors, as illustrated in Fig. 1a, building on background-preserving lesion

1For example, a 643 cube crop from a 5123 volume occupies < 0.2% of the total voxels.
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Figure 2: LeFusion: Lesion-Focused Diffusion Model. The top illustrates the training process of
LeFusion, while the bottom shows the inference. During training, LeFusion avoids learning unnec-
essary background generation using a lesion-focused loss. In inference, by combining forward-
diffused real backgrounds with reverse-diffused generated foregrounds, LeFusion ensures high-
quality background generation. Additionally, we introduce histogram-based texture control to han-
dle multi-peak lesions and multi-channel decomposition for multi-class lesions.

synthesis . The image is first encoded with VQGAN (Esser et al., 2021), and a latent diffusion (Rom-
bach et al., 2022) learns both the background and lesion, using the lesion mask and background
(excluding the lesion) as conditional inputs. However, as the model still needs to generate back-
ground, the preservation of background integrity cannot be theoretically guaranteed. While it is
possible to fill the area outside the mask with real background data, this may lead to inconsistencies
in the final output. From our findings, this approach struggles with high-quality background gener-
ation, affecting downstream applications (Sec.4.2), particularly in data-limited scenarios. We also
tested a similar image-space conditional diffusion model, which showed similar limitations, though
image-space diffusion outperformed latent diffusion due to constraints imposed by the autoencoder.

A few concurrent studies (Lai et al., 2024; Wu et al., 2024; Zhu et al., 2024) have employed advanced
generative models for lesion synthesis. Due to differences in research focus or/and the unavailabil-
ity of their code/models, a comprehensive comparison could not be conducted. Besides, while some
studies leverage inpainting techniques to model specific regions of interest (Rouzrokh et al., 2022;
Hansen et al., 2024), these methods cannot theoretically guarantee background preservation. Our
work emphasizes lesion-specific synthesis rather than broader generative model paradigms, focus-
ing primarily on diffusion-based approaches within the framework of background-preserving lesion
synthesis. Comparisons with other generative model paradigms were not included in this study.

3 LEFUSION: LESION-FOCUSED DIFFUSION MODEL

We propose LeFusion, a lesion-focused diffusion model that concentrates solely on lesion. In
Sec.3.1, by combining forward-diffused backgrounds with reverse-diffused foregrounds, LeFusion
reconstructs only the lesion, eliminating the need to model complex backgrounds. To address key
challenges in lesion texture synthesis (Sec.3.2), LeFusion introduces histogram-based texture control
for multi-peak lesions, allowing control over distinct lesion types, and a multi-channel decomposi-
tion strategy for multi-class lesions, where classes are generated in separate channels and combined
into a single image. In Sec. 3.3, lesion mask diffusion enables control over lesion size, location and
boundary, increasing mask diversity and enhancing lesion synthesis quality and flexibility.

3.1 BACKGROUND-PRESERVING GENERATION VIA INPAINTING

Decoupled Lesion and Background Generation. Inspired by diffusion-based inpainting (Lug-
mayr et al., 2022; Avrahami et al., 2022), we aim to decouple the generation of lesions and back-
ground. As shown in Fig. 2, inpainting predicts the missing parts of an image, particularly lesions.
For standard diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), the inference process
starts by sampling a noise vector xT ∼ N (0, 1) and gradually denoising it to produce the output
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image x0. We focus on 3D images only in this study, while the method can be easily extended to
2D. The original grayscale image is denoted as x̂0 ∈ RD×H×W×1, where D, H , and W represent
the 3D image size. The reverse diffusion step from xt to xt−1 is decoupled into lesion and back-
ground components, as shown below. Here, Mf and Mb represent the lesion foreground mask and
background mask. The lesion ot−1 is predicted through the reverse diffusion process pθ using a 3D
U-Net, while x̂t−1 is derived from x̂0 by adding noise through forward diffusion q. ᾱt is defined as∏t

s=1(1 − βs). βt represents the variance schedule parameter, which determines the rate at which
noise is gradually injected over time.

pθ(ot−1|xt) = N (ot−1;µθ(xt, t),Σθ(xt, t)), (1)

q(x̂t|x̂0) = N (x̂t;
√
ᾱtx̂0, (1− ᾱt)I), (2)

xt−1 = ot−1 ⊙Mf + x̂t−1 ⊙Mb. (3)

This approach preserves the background accurately without requiring prediction.

Making Diffusion Model Lesion-Focused. The method above, while suitable for all diffusion-
based inpainting, cannot guarantee that the denoised output ot−1 is focused on the lesion area.
Unlike standard diffusion training, where the target region may vary, we know that the part to be
inpainted is specifically the lesion in our application. Therefore, we can design the model to predict
only the lesion and ignore other regions. To achieve this, we introduce a lesion-focused loss during
training. The general diffusion process starts with the original image x̂0, adding Gaussian noise over
T time steps (forward diffusion). The neural network is trained to predict the noise distribution at
time step t (reverse diffusion), conditioned on the noised image x̂t and the time step. To ensure the
model focuses only on the lesion, a mask Mf is applied, calculating the loss exclusively within the
lesion region. The training objective is defined as follows, where ε ∈ RD×H×W×1 represents the
noise sampled from a Gaussian distribution:

Ex̂0,ϵ∼N (0,1),t [Mf∥ϵ− pθ (x̂t, t) ∥2] . (4)

Despite the change in the training objective, inpainting inference remains unaffected. As shown in
Eq. 3, outside Mf , the predicted lesion ot−1 is replaced by the real noised background x̂t−1.

3.2 FINE CONTROL OF LESION TEXTURES

Cluster 1 Cluster 2 Cluster 3，
Texture Histogram

Histogram GTMask HistogramGT Mask GTHistogram MaskCluster Centroid 
Cluster 1
Cluster 2
Cluster 3

Figure 3: Illustration of Lung Nodule Texture Histogram
Distribution. Samples are clustered into three groups based
on the grayscale image histogram of lesions. The visual-
ized differences between groups are significant, indicating a
typical multi-peak distribution. These clusters roughly cor-
respond to ground-glass, part-solid, and solid nodules.

Handling Multi-Peak Distributed
Lesions. In the section above, the
model relies on the noised back-
ground x̂t to infer the texture of le-
sion within the mask. While this
works for lesions with minimal tex-
ture differences (as with cardiac le-
sions), it becomes problematic with
multi-peak data. As shown in Fig. 3,
lung nodules exhibit distinct texture
types. We empirically show that rely-
ing solely on the background can lead
to mode collapse.

To address this, we propose a simple yet effective approach, histogram-based texture control. The
lesion texture histogram h is used as a condition via cross attention Rombach et al. (2022), i.e.,

ot−1 ∼ pθ (x̂t, h, t) . (5)

During training, the histogram is computed from the ground truth, and during inference, texture
types can be controlled by adjusting the histogram. Notably, this approach requires no additional
lesion type annotations, such as nodule attenuation.

In Sec. 4, we demonstrate that the proposed histogram-based texture control is crucial for generating
lesions on normal scans. Without it, models tend to fail, biasing towards healthy appearances and
producing overly subtle lesions, which degrades the performance of downstream segmentation tasks
using these synthetic data.
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Figure 4: DiffMask: Lesion Mask Diffusion. To achieve fine control over lesion size, location, and
boundary, we propose two key designs: the boundary mask and the control sphere. The boundary
mask removes areas outside the boundary at each diffusion step. The control sphere, trained using
the bounding spheres of real masks, enables control over size and location during inference.

Joint Modeling of Multi-Class Lesions. The method above focuses on single-class lesions, but
many medical applications, such as cardiac MRI, require modeling multiple lesion types, like my-
ocardial infarction (MI) and persistent microvascular obstruction (PMO). To capture correlations
between lesion types and generate textures for multiple lesions simultaneously, we use a joint mod-
eling strategy called multi-channel decomposition, where each channel corresponds to a different
lesion type. The diffusion model generates each lesion in its respective channel, and they are com-
bined through lesion masks.

We expand the input image x̂0 ∈ RD×H×W×1 to x̂t ∈ RD×H×W×n, based on the number of
lesion classes n, where n = 2 in the cardiac MRI experiments. Similarly, ε ∈ RD×H×W×n and
ot−1 ∼ pθ (x̂t, t) ∈ RD×H×W×n are extended to n channels. The training objective is:

Ex̂0,ϵ∼N (0,1),t

n∑
i=1

[
M

(i)
f ∥ϵ− pθ (x̂t, t)∥(i)2

]
, (6)

where ∗(i) refers to the channel i of ∗. To combine these channels, we compute
∑n

i=1

[
M

(i)
f o

(i)
t−1

]
.

3.3 DIVERSIFYING LESION MASKS VIA DIFFMASK

To further enhance the controllability and diversity of lesion generation, we introduce lesion mask
diffusion (DiffMask). As shown in Fig. 4, to achieve fine control over lesion size, location, and
boundary, we propose two key designs: the boundary mask and the control sphere. The former
removes areas outside the boundary at each diffusion step, ensuring the generated mask stays within
reasonable limits, while the latter manages the size and location of the lesion. During training,
the control sphere is the bounding sphere of a real mask and is concatenated as a condition to the
DiffMask input, with the real mask serving as the target. In inference, users can adjust the size
and location to generate the desired lesion masks. In terms of implementation, the architecture of
DiffMask is similar to the texture diffusion model, also employing multi-channel decomposition
to capture shape correlations and spatial distributions between multiple lesion masks. Each output
channel is responsible for generating the lesion shape mask of a specific lesion. Finally, we apply a
smoothing kernel as a post-processing step.

4 EXPERIMENTS

4.1 SETUP

Dataset. LIDC: Multi-Peak Lung Nodule CT. We use LIDC dataset (Armato III et al., 2011), which
contains 1,010 chest CT scans, from which 2,624 regions of pathological (P) interest (ROIs) cor-
responding to lung nodules were extracted, along with 135 cases of healthy patients. The dataset
was divided into an 808-case training set, comprising 2,104 lung nodule ROIs, and a 202-case test
set, containing 520 lung nodule ROIs. Additionally, 3,076 normal ( N) ROIs were cropped from
the 135 healthy patients, representing regions where lung nodules typically appear. These normal
ROIs were used for data augmentation in the experiments. Emidec: Multi-Class Cardiac Lesion
MRI. The Emidec dataset (Lalande et al., 2022) consists of examinations featuring DE-MRI in a
short-axis orientation. This dataset offers access to 100 labeled cases, including 33 normal (N) and
67 pathological (P). The annotations cover 5 classes: background, left ventricle (LV), myocardium
(Myo), myocardial infarction (MI), and persistent microvascular obstruction (PMO). We split the 67

6
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Table 1: Downstream Lung Nodule Segmentation Dice(%) (↑) and NSD(%) (↑) on
LIDC (2011). P: real pathological cases. P’/N’: synthetic pathological cases from pathologi-
cal/normal cases. N”: more synthetic data than N’. Bold numbers indicate the best, with red
highlighting significantly adverse effects (> 1% lower) compared to the baseline, and blue indi-
cating significantly positive effects (> 1% higher).

Methods Training Setting nnU-Net (2021) SwinUNETR (2021)
Dice (↑) NSD (↑) Dice (↑) NSD (↑)

Baseline P 78.26 88.90 78.38 88.67

Texture Synthesis with Real Masks on P’
Hand-Crafted (2023) P+P’ 76.80 87.94 76.11 86.31
Cond-Diffusion (2020; 2022) P+P’ 77.05 87.69 77.51 88.09
Cond-Diffusion (L) (2024) P+P’ 76.66 87.20 76.44 86.56
RePaint (2022) P+P’ 77.57 88.07 77.14 87.96

LeFusion (Ours) P+P’ 78.77 89.25 78.43 88.54
LeFusion-H (Ours) P+P’ 80.62 90.90 80.95 90.98

Texture Synthesis with Hand-Crafted Synthetic Masks (2023) on N’
Hand-Crafted (2023) P+N’ 75.10 85.50 74.88 84.64
Cond-Diffusion (2020; 2022) P+N’ 76.62 86.44 76.66 87.20
Cond-Diffusion (L) (2024) P+N’ 76.71 86.83 77.20 87.88

LeFusion (Ours) P+N’ 77.67 87.94 77.98 88.42
LeFusion-H (Ours) P+N’ 80.19 89.75 80.08 90.42

Texture Synthesis with Copied Masks (2023) on N’
Copy-Paste P+N’ 77.29 87.60 77.80 88.84
Hand-Crafted (2023) P+N’ 76.04 86.57 76.58 87.72
Cond-Diffusion (2020; 2022) P+N’ 77.00 87.68 76.68 87.40
Cond-Diffusion (L) (2024) P+N’ 77.15 87.83 77.38 87.51

LeFusion (Ours) P+N’ 78.49 89.22 78.55 89.06
LeFusion-H (Ours) P+N’ 81.11 91.77 81.10 91.67

Enhanced with Diffusion-Based Synthetic Mask (DiffMask)
LeFusion-H+DiffMask (Ours) P+N’ 82.66 92.49 82.63 92.77
LeFusion-H+DiffMask (Ours) P+N” 83.19 93.21 83.07 93.10
LeFusion-H+DiffMask (Ours) P+P’+N” 83.44 93.35 83.13 93.20

P cases into 57 for training and 10 for testing. The 57 P cases are used to train the data synthesis
model. In the downstream evaluation (Sec. 4.2), we use those models to synthesize P cases based
on both 57 P and 33 N as the training set.

Method Comparison. The following synthesis algorithms are compared with the LeFusion.

Copy-Paste. We used the masks from real lesion data and matched them with normal data, copying
the original lesion textures onto normal cases to generate new synthetic data.

Hand-Crafted (Hu et al., 2023). The lesion mask is represented by the overlapping of multiple
ellipsoidal lesion masks, followed by several random morphological operations. The texture is ap-
proximated using Gaussian noise and softened through interpolation and Gaussian filtering.

RePaint (Lugmayr et al., 2022) or Blended-Diffusion Avrahami et al. (2022). These methods are
standard image diffusion models during training, while in inference, they remove and re-fill in the
texture within the lesion mask, by combining forward-diffused backgrounds with reverse-diffused
foregrounds. The model employs global training loss, which lacks the capability to focus on lesion
information. Due to the absence of guidance from lesion category information, it is unable to specify
corresponding lesions and is confined to simulating the generation of single-class lesions;

Cond-Diffusion (Ho et al., 2020; Rombach et al., 2022). These methods use the lesion mask and
background image information as conditional inputs (Rombach et al., 2022) to a diffusion model (Ho
et al., 2020). However, a downside of this approach is that it disrupts the background information.
Furthermore, directly using multiple masks as conditional inputs fails to control the corresponding
categories, limiting the method to modeling the generation of single-class lesions.
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Table 2: Downstream Cardiac Lesion Segmentation Dice(%) (↑) on Emidec (2022). The NSD
metric is provided in Tab. A1. MI and PMO are [lesion classes. P: real pathological cases. P’/N’:
synthetic pathological cases from pathological/normal cases. N”: more synthetic data than N’. Bold
numbers indicate the best, with red highlighting significantly adverse effects (> 1% lower) com-
pared to the baseline, and blue indicating significantly positive effects (> 1% higher)

Methods Training
Setting

nnU-Net (2021) SwinUNETR (2021)
MI Dice (↑) PMO Dice (↑) MI Dice (↑) PMO Dice (↑)

Baseline P 68.61 36.32 57.79 35.76

Texture Synthesis with Real Masks on P’
Hand-Crafted (2023) P+P’ 69.60 36.06 57.64 34.96
Cond-Diffusion (2020; 2022) P+P’ 66.89 37.76 56.75 36.31
Cond-Diffusion (L) (2024) P+P’ 68.07 31.93 56.97 32.72
RePaint (2022) P+P’ 69.14 28.93 55.14 33.86

LeFusion-S (Ours) P+P’ 69.88 34.79 57.85 35.63
LeFusion-J (Ours) P+P’ 69.95 38.01 59.61 37.99

Texture Synthesis with Hand-Crafted Synthetic Masks (2023) on N’
Hand-Crafted (2023) P+N’ 68.19 35.73 56.18 35.01
Cond-Diffusion (2020; 2022) P+N’ 67.41 31.03 56.73 35.28
Cond-Diffusion (L) (2024) P+N’ 67.08 36.31 56.70 33.84

LeFusion-S (Ours) P+N’ 69.17 37.18 59.42 34.83
LeFusion-J (Ours) P+N’ 69.87 37.31 59.56 36.19

Enhanced with Diffusion-Based Synthetic Mask (DiffMask)
LeFusion-J+DiffMask (Ours) P+N’ 69.81 40.62 58.94 39.00
LeFusion-J+DiffMask (Ours) P+N” 70.17 42.44 58.60 41.24
LeFusion-J+DiffMask (Ours) P+P’+N” 70.34 43.54 60.54 41.70
LeFusion-J-H+DiffMask (Ours) P+P’+N” 71.28 43.41 59.30 42.49

Cond-Diffusion (L) (Chen et al., 2024). Cond-Diffusion (L) is conceptually a latent diffusion (Rom-
bach et al., 2022) version of Cond-Diffusion but adds VQGAN (Esser et al., 2021) to map image into
latent space for diffusion. For a fair comparison, we fine-tuned open-source code and pre-trained
weights by Chen et al. (2024) and used the model outputs directly.

LeFusion and the Variants (Ours). Apart from standard LeFusion, there are two variants for
fine control of lesion textures. Histogram-Based Texture Control (*-H): A variant of LeFusion that
incorporates histogram control information, using the input histogram to guide the generation of
multi-peak lesion textures. Multi-Channel Decomposition (*-J): When handling multi-class lesions,
standard LeFusion trains individual models separately (*-S for distinction), lacking of correlation
modeling between classes. LeFusion-J is a generalized version to model multi-class lesions jointly.

4.2 IMPROVING SEGMENTATION WITH SYNTHETIC DATA

Lung Nodule Segmentation. We show that LeFusion can effectively benefit downstream ap-
plication of training nnUNet (Isensee et al., 2021) and SwinUNETR (Hatamizadeh et al., 2021) to
perform lung nodule segmentation. We use the following synthetic subset settings: P’: 2104 × 1
synthetic ROIs from the 808 real pathological cases P; N’: 3076× 1 synthetic samples from the 135
normal subjects N; N”: 3076× 2 synthetic cases from the 135 normal subjects N.

Tab. 1 show the Dice and normalized surface distance (NSD). For the first group (Texture Synthe-
sis with Real Masks), the texture of Hand-Crafted (Hu et al., 2023) and RePaint (Lugmayr et al.,
2022) differs significantly from the real texture, making it challenging to achieve satisfactory results.
Cond-Diffusion (Ho et al., 2020; Rombach et al., 2022) and Cond-Diffusion (L) (Chen et al., 2024),
on the other hand, disrupt the background structure of the generated images. Our baseline model,
LeFusion, is impacted by the pixel distribution of the background due to the lack of histogram con-
trol information, resulting in only a slight improvement over the baseline. We also synthesized
lesion data on normal data N using Hand-Crafted Synthetic Masks and masks matched from lesion
data, arriving at similar conclusions. In the final set of experiments, we validated the effectiveness
of the DiffMask we designed for lesion synthesis and further explored accuracy improvements with
increasing amounts of synthetic data. Compared to the baseline, in terms of Dice, we achieved im-
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Figure 5: Visualization of Synthetic Image on Emidec (2022) and LIDC (2011). We compare the
differences in image similarity between synthetic pathological cases generated by different methods,
using real pathological cases and using normal regions. More visualizations in Appendix E

provements of 5.18% and 4.75% for nnUNet (Isensee et al., 2021) and SwinUNETR (Hatamizadeh
et al., 2021), respectively. NSD improvements were 4.4% and 4.53%, respectively.

Cardiac Lesion Segmentation. We use the following synthetic subset settings : P’: 57 × 1 syn-
thetic cases from the 57 real pathological cases P; N’: 33 × 2 synthetic cases from the 33 normal
cases N; N”: 33 × 5 synthetic cases from the 33 normal cases N. We use combinations of these
subsets to train nnUNet (Isensee et al., 2021) and SwinUNETR (Hatamizadeh et al., 2021). The
results of the two types of lesions are reported in 2 in terms of the Dice (0-100, higher is better).
Due to page limitations, the corresponding NSD table is provided in Appendix Tab. A1.

In the first group of Tab. 2, we apply texture synthesis with real masks. The Hand-Crafted (Hu
et al., 2023) produces textures that differ from real textures, leading to a decrease in baseline per-
formance. Cond-Diffusion (Ho et al., 2020; Rombach et al., 2022) and Cond-Diffusion (L) (Chen
et al., 2024) disrupts background structure, blurring lesion categories, decreasing MI’s performance.
RePaint (Lugmayr et al., 2022), focusing on global information, struggles to generate textures that
conform to lesion characteristics, resulting in a significant decrease in the Dice for PMO lesions.
LeFusion models the two lesions separately, ignoring the correlation between lesions, which leads
to improved accuracy for MI but decreased accuracy for PMO lesions. In contrast, our proposed
LeFusion-J achieves superior results; For the second group, we expanded the normal data utilizing
texture synthesis with hand-crafted synthetic masks. Due to RePaint (Lugmayr et al., 2022)’s inabil-
ity to distinguish between multiple lesion categories, we did not repeat experiments for it. From the
experiments, we observed results similar to those of the first group; For the last, we evaluated our
proposed lesion mask synthesis. Our method significantly improved the performance for both MI
and PMO. Additionally, as data volume expanded, segmentation Dice consistently improved.

4.3 VISUAL QUALITY ASSESSMENT

Image Quality. Fig. 5 shows the generation results of different methods for lung nodule CT and
cardiac MRI based on lesion images and normal images. We have also quantitatively calculated
and compared the paired similarity between our generated images and real images; more details can
be found in Appendix D. Fig. 5(a) displays the synthesized visualization of lung nodules (red). The
Cond-Diffusion method (Ho et al., 2020; Rombach et al., 2022) and Cond-Diffusion (L) (Chen et al.,
2024) disrupt the background structure. The lesions generated by Hand-Crafted (Hu et al., 2023)
and RePaint (Lugmayr et al., 2022) fail to capture texture information, such as the grayscale varia-
tions characteristic of the lesions. Our baseline LeFusion, without histogram control information, is
easily influenced by background features, resulting in the generation of relatively shallow lesions.
In contrast, our LeFusion-H can better utilize histogram information to control the generation of
lesions. Fig. 5(b) displays the synthesized visualization of two lesions for the heart: MI (blue) and
PMO (red). The generation results for the heart show similar conditions. It is important to note that
since the heart has two types of lesions, LeFusion-J can more accurately reflect the textures of both
lesion types and, compared to LeFusion, results in smoother transitions at the boundaries between
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Figure 6: Illustration of Histograms Control Effectiveness. GT shows healthy lung tissue with the
red area indicating the mask of the generated lesion. Control 1,2, and 3 are images generated under
different histogram controls. Lower numbers indicate higher diversity in the generated images.
the two lesions and the background. However, due to the small contrast difference between heart
lesions, LeFusion-J-H with histogram control achieves similar effects.

Unpaired perceptual metrics such as FID (Heusel et al., 2017), KID (Bińkowski et al., 2018), and
SWD (Karras et al., 2018) primarily assess semantic-level similarity. However, their correlation with
visual quality, particularly for medical images, is limited Jayasumana et al. (2024). Despite these
shortcomings, we include these metrics as a reference for future work, with detailed results provided
in Appendix D. Nevertheless, we believe that evaluating generated data in medical contexts should
focus more on the effectiveness of downstream tasks. While assessing synthetic image quality is
meaningful, quantitatively comparing different methods remains a challenge.
Histogram Control Analysis. We studied the effect of histogram control on the lung nodule
dataset. The visualization results are shown in Fig. 6. Under different histogram controls, the atten-
uation (“transparency”) of the generated lesions changes from shallow to deep. Without histogram
control information, the generated lung nodules tend to match the pixel distribution of the normal
lung background, resulting in overly light lesions. We selected 100 subsets and used LeFusion-H
and LeFusion to generate each sample twice, calculating the similarity between pairs using Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), lower means more
diverse. As shown in the figure, with histogram control, there is greater diversity between samples.
We aslo quantitatively analyzed histogram control on lesion areas, revealing shifts in distribution
that align well with observations (see Appendix C for details).
Mask Quality. We also visualize synthetic lesion masks, as shown in Fig. A1 and Fig. A2. Com-
pared to the hand-crafted masks (Hu et al., 2023), our diffusion-generated masks are closer to the real
masks and exhibit a more diverse range of shape patterns. More details can be found in Appendix A.

5 CONCLUSION

In conclusion, we introduce LeFusion, a novel lesion-focused diffusion model capable of recali-
brating the diffusion learning objectives to lesion areas only. It preserves background by integrat-
ing forward-diffused background contexts into the reverse diffusion process. Our methodology is
extended to handle challenging multi-peak and multi-class lesions, and further enhanced by a gen-
erative model for lesion masks, significantly diversifying our synthetic data. We demonstrate that
synthetic data generated by our method can effectively boost the performance of state-of-the-art
models like nnUNet Isensee et al. (2021) and SwinUNETR Hatamizadeh et al. (2021).

Data-centric machine learning is becoming increasingly important across various scientific
fields (Reichstein et al., 2019; Rodrı́guez et al., 2024; Kimanius et al., 2024). This study focuses
on generating pathological abnormalities from normal anatomical structures, i.e., synthesizing ab-
normal objects based on normal ones. As demonstrated, this approach effectively mitigates data
bias Mittermaier et al. (2023). While significant in the medical community, it also holds broader ap-
plicability. Our target-oriented data synthesis paradigm is generalizable and can be extended to other
domains where normal data is abundant but anomalous data is scarce, such as industrial anomalies,
environmental anomalies in remote sensing, and structural defects in materials science.
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6 ETHICS STATEMENT

All experiments in this study were conducted using publicly available datasets. No clinical trials
were performed, and the study does not involve human subjects, new dataset releases, or issues
related to privacy or security. There are no potential conflicts of interest or sponsorships associ-
ated with this work. The paper does not address topics such as discrimination, bias, fairness, legal
compliance, or research integrity. However, it is important to acknowledge that our model could
potentially be misused to generate fraudulent medical images, such as fabricating lesions in healthy
individuals to commit insurance fraud.

7 REPRODUCIBILITY STATEMENT

To enhance reproducibility, we provide the core code at: https://anonymous.4open.
science/r/LeFusion. We are committed to fully open-sourcing the code along with the cor-
responding preprocessed data. Detailed descriptions of data preprocessing, model implementation,
experimental settings for our approach and comparison methods (including batch size, learning rate,
and checkpoint selection), as well as downstream evaluation procedures, are included in Appendix F.
We hope these measures facilitate reproducibility and encourage further research in this area.
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A MASK VISUALIZATION

Fig. A1 shows the real lung nodule lesion mask (a), the hand-crafted synthetic lung nodule mask (b),
and the mask generated by our proposed diffusion model (d). Comparing subfigures (a), (b), and
(d) in Fig. A1, it is evident that the real masks exhibit diverse shapes, while the DiffMask-generated
masks closely resemble the real ones, also displaying varied forms with similar characteristics. In
contrast, the handcrafted masks are relatively uniform in shape and differ significantly from the real
masks.

Besides, our proposed DiffMask can control the size and location of the lesion masks, allowing for
the generation of more diverse lesions. As shown in Fig. A1 (c) and Fig. A1 (d), we can use the
sphere (Size Ball) to precisely control the desired lesion size and its position within the background
image. This control enables us to produce various masks.

(c) Size Ball

(b) Hand-Crafted (d) DiffMask

(a) Real

Figure A1: Visualization of Real / Synthetic Lesion Masks of Lung Nodule. (a) and (b) show the
real masks and hand-crafted masks, (c) displays the control sphere (size ball) used by our proposed
DiffMask, and (d) shows the corresponding synthetic mask results generated by DiffMask.

Fig. A2 shows that our diffusion-generated masks are closer to the real masks and exhibit a more
diverse range of shape patterns, while Hand-Crafted masks consistently show large, continuous
regions.

Hand-Crafted DiffMaskReal

Figure A2: Visualization of Real / Synthetic Lesion Masks of Cardiac Lesion.

B DOWNSTREAM SEGMENTATION PERFORMANCE

Tab. A1, as a supplement to In Tab. 2, presents the NSD metric measured under the same experi-
mental settings as in In Tab. 2.

In the first set of Tab.A1, we employ texture synthesis with real masks. The Hand-Crafted ap-
proach (Hu et al., 2023) generates textures that deviate from real ones, resulting in a decline
in baseline performance. Cond-Diffusion (Ho et al., 2020; Rombach et al., 2022) and Cond-
Diffusion(L)(Chen et al., 2024) disrupt the background structure, leading to blurring between le-
sion categories and reducing MI’s performance. RePaint (Lugmayr et al., 2022), which emphasizes
global information, struggles to produce textures consistent with lesion characteristics, leading to a
marked decrease in NSD for PMO lesions. LeFusion-S models the two lesions independently, disre-
garding the correlation between them, resulting in higher accuracy for MI but reduced accuracy for
PMO lesions. Conversely, our proposed LeFusion-J outperforms the other methods; In the second
group, we extended the normal data by synthesizing textures using hand-crafted synthetic masks.
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Table A1: Downstream Cardiac Lesion Segmentation NSD(%) (↑) on Emidec (2022). MI
and PMO are lesion classes. P: real pathological cases. P’/N’: synthetic pathological cases from
pathological/normal cases. N”: more synthetic data than N’. Bold numbers indicate the best, with
red highlighting significantly adverse effects (> 1% lower) compared to the baseline, and blue

indicating significantly positive effects (> 1% higher).

Methods Training
Setting

nnU-Net (2021) SwinUNETR (2021)
MI NSD (↑) PMO NSD (↑) MI NSD (↑) PMO NSD (↑)

Baseline P 59.27 29.19 47.66 20.51

Texture Synthesis with Real Masks on P’
Hand-Crafted (2023) P+P’ 60.34 35.03 47.70 19.38
Cond-Diffusion (2020; 2022) P+P’ 58.21 24.04 46.35 20.87
Cond-Diffusion (L) (2024) P+P’ 58.98 25.96 46.83 18.72
RePaint (2022) P+P’ 59.79 23.61 45.10 19.19

LeFusion-S (Ours) P+P’ 60.77 33.13 46.66 20.05
LeFusion-J (Ours) P+P’ 60.44 36.65 48.23 24.11

Texture Synthesis with Hand-Crafted Synthetic Masks (2023) on N’
Hand-Crafted (2023) P+N’ 57.88 25.00 47.40 19.82
Cond-Diffusion (2020; 2022) P+N’ 58.22 22.19 46.15 20.30
Cond-Diffusion( L) (2024) P+P’ 58.64 26.26 47.90 19.54

LeFusion-S (Ours) P+N’ 60.75 23.96 47.81 19.91
LeFusion-J (Ours) P+N’ 60.68 30.62 49.69 20.71

Enhanced with Diffusion-Based Synthetic Mask (DiffMask)
LeFusion-J+DiffMask (Ours) P+N’ 61.35 38.93 48.62 22.43
LeFusion-J+DiffMask (Ours) P+N” 61.48 35.03 50.00 23.92
LeFusion-J+DiffMask (Ours) P+P’+N” 61.27 41.62 52.82 23.77
LeFusion-J-H+DiffMask (Ours) P+P’+N” 62.74 40.96 50.73 24.25

Due to RePaint (Lugmayr et al., 2022)’s limitations in distinguishing multiple lesion categories, we
did not conduct repeated experiments for it. The outcomes were similar to those of the first group;
Lastly, we evaluated our proposed lesion mask synthesis. Our approach significantly enhanced the
performance for both MI and PMO. Furthermore, as the data volume increased, the downstream
segmentation NSD showed consistent improvement.

C HISTOGRAM CONTROL ANALYSIS

For a given original image, the histogram information of its lesion region is represented as Ij , and
the control information as h1, h2, h3, . . . , hn (where i = 1, 2, 3, . . . , n), with n being the number of
controlled histograms. The resulting output image is defined as O, and O can be derived as follows:

mi = (r × log lj + p) + (s× log hi + q) (7)

O = emi , i = 1, 2, 3, . . . , n (8)

In this formula, r and s are scaling factors, and p and q are bias offset terms. Based on the above
formulas, given the input image and corresponding control information, we can theoretically deduce
the histogram of the lesion in the mask area of the generated image.

Fig. A3 shows the impact of histogram control information on the generation of lung nodules in a
normal chest background. We randomly sampled 20 cases from the generated lesion data for statis-
tical analysis. The first row represents the controlled histogram, where ”No control” indicates that
the standard diffusion configuration without histogram control information was used. The second
row shows the original mask areas of the 20 cases, as well as the average histogram effects of the
generated and predicted data. Rows 3, 4, and 5 display the results of three different sample cases.
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Avg.

Case 1

Case 2

No Control

(a) Texture GT

Control 1 Control 3

(b) Result Histograms

Control 2

Case 3

Figure A3: Illustration of Histograms Control Effectiveness.The light blue histogram on the far
left represents the original mask area. The pink histograms in the first row indicate the control in-
formation applied by the diffusion model. The yellow histogram represents the theoretically derived
output lesion area, while the darker blue shows the actual generated lesion histogram.

When the model does not use histogram control, the generated histograms of lung nodules in the
normal background areas tend to be relatively shallow, influenced by the surrounding background.
These histograms resemble the textures of the background mask areas, as shown in the rightmost
column. In this column, the dark blue represents the histogram of the image mask area generated by
the diffusion model, while the orange represents the theoretically fitted histogram control effect.

After introducing histogram control information, the interaction between the original image lesion
areas and the controlled histogram effects causes the generated mask areas to shift increasingly to
the right, following the peak effects of the three histograms (control 1, control 2, control 3). The
second-row average histogram effect shows the stable trend of this shift.

D IMAGE QUALITY EVALUATION

As shown in Tab. A2, we selected Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) to calculate the similarity between synthetic pathological cases generated
by different methods and real pathological cases. As for cardiac lesions on the EMidec dataset,
our proposed LeFusion achieved the highest average PSNR and SSIM. For lymph nodes with only
one type of lesion on the LIDC dataset, LeFusion also achieved the highest PSNR. We have also
included the Fréchet Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance
(KID) (Bińkowski et al., 2018) metrics, as shown in Tab. A3, and the Sliced Wasserstein Distance
(SWD) (Karras et al., 2018) in Tab. A4. These results align with the similar phenomena discussed
above. These experiments demonstrate that our synthesized lesions are more similar to real lesions
across both CT and MRI modalities.
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Table A2: Paired Synthesized Image Quality Assessment of PSNR (↑) and SSIM(%) (↑) on
Emidec (2022) and LIDC (2011). We compare the differences in image similarity between syn-
thetic pathological cases generated by different methods given real pathological cases.

Methods Emidec-MI Emidec-PMO Emidec-Avg. LIDC
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Hand-Crafted (2023) 9.39 8.30 7.63 9.15 8.516 8.70 1.97 0.07
Cond-Diffusion (2020; 2022) 13.25 46.92 8.00 9.23 10.62 28.07 16.95 93.46
Cond-Diffusion(L) (2024) 14.62 69.36 12.39 61.00 13.51 65.18 15.50 90.05
RePaint (2022) 19.81 80.68 15.23 70.27 17.52 75.47 18.91 91.22

LeFusion-S (Ours) 25.65 91.78 27.71 89.42 26.68 90.60 22.38 90.16LeFusion-J (Ours) 28.30 91.41 35.23 93.23 31.77 92.32

Table A3: Unpaired Synthesized Image Quality Assessment of FID (%) (↓) and KID (%) (↓)
on Emidec (2022) and LIDC (2011). We compare the differences in image similarity between
synthetic pathological cases generated by different methods given real pathological cases.

Methods Emidec-MI Emidec-PMO Emidec-Avg. LIDC
FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

Hand-Crafted (2023) 19.06 3.58 17.67 16.75 18.36 10.17 12.22 2.57
Cond-Diffusion (2020; 2022) 12.14 1.79 17.18 11.43 14.66 6.61 6.99 0.86
Cond-Diffusion(L) (2024) 12.38 1.94 22.92 9.71 17.65 5.83 9.13 1.54
RePaint (2022) 17.69 3.94 15.49 15.67 16.59 9.80 9.33 0.84

LeFusion-S (Ours) 7.09 1.31 5.21 4.01 6.15 2.66 6.42 0.73LeFusion-J (Ours) 5.39 0.78 4.15 0.50 4.77 0.64

E MORE VISUALIZATIONS

In this section, we provide multiple illustrative figures demonstrating the effects of our proposed
diffusion model, LeFusion.

Different Recurrent Length Effects. On the one hand, the recurrent operation enhances the sta-
bility of texture generation. For instance, employing a medium loop achieves more effective his-
togram control compared to no recurrent operation, particularly when histogram values are rela-
tively low, as demonstrated in the first and second rows. On the other hand, the recurrent approach
improves smoothness and semantic coherence in the intersecting regions between the lesion and the
background. For example, in the first row and the first column, the larger loop more effectively cap-
tures the spiculated features of the lung nodule, whereas the no recurrent approach tends to overlook
the correlation between the lesion and the background.

Table A4: Unpaired Synthesized Image Quality Assessment of SWD (1e-4) (↓) on
Emidec (2022) and LIDC (2011). We compare the differences in image similarity between syn-
thetic pathological cases generated by different methods given real pathological cases.

Methods Emidec-MI Emidec-PMO Emidec-Avg. LIDC

Hand-Crafted (2023) 26.62 4.13 15.38 10.64
Cond-Diffusion (2020; 2022) 26.51 5.24 15.88 6.64
Cond-Diffusion (L) (2024) 15.83 5.04 10.43 7.95
RePaint (2022) 13.75 2.93 8.34 11.64

LeFusion-S (Ours) 11.62 2.97 7.29 5.90LeFusion-J (Ours) 9.94 1.60 5.77
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Control 1

Control 2

Control 3

Small LoopNo Recurrent Medium Loop Large Loop Small LoopNo Recurrent Medium Loop Large Loop

Figure A4: Visualization of Different Recurrent Length Effects. ”No Recurrent” indicates no
recurrence during lesion generation. ”Small,” ”Medium,” and ”Large” represent varying levels of
time step skipping and cyclic folding, ranging from short to long durations. ”Control1,” ”Control2,”
and ”Control3” refer to the generation effects under three different histogram controls.

Lung Nodule CT. Fig. A5 presents additional illustrations of the effects of histogram control.
The histogram effectively controls the texture of the lesions, while the version without control in-
formation tends to generate lighter-colored lung nodules. Fig. A6 provides a visualization of the
synthesized lesion results using real samples and their corresponding normal samples.

GT No ControlControl 1 Control 3Control 2

Figure A5: Illustration of Histograms Control Effectiveness. GT shows healthy lung tissue with
the red area indicating the mask of the generated lesion. Control1, Control2, and Control3 are
images generated under three different histogram controls.

Cardiac Lesion MRI. Fig. A7 shows the visualization of the denoising process at different stages
in LeFusion for inpainting. Fig. A8 and Fig. A9 respectively show the generation of pathological
results on lesion cases and normal cases.
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Figure A6: Visualization of Synthetic Image on LIDC (Armato III et al., 2011). We compare
the differences in image similarity between synthetic cases generated by different methods, using
real pathological cases and normal regions.

Image + Mask Denoising 0% Denoising 60% ResultDenoising 75% Denoising 90%Input

Figure A7: Visualization of the Denoising Process in LeFusion for Inpainting. The process is
conditioned on the masked input. Starting from a random Gaussian noise sample, the procedure
iteratively denoises this input, progressively refining it into a high-quality image with the lesions.

F IMPLEMENTATION DETAILS

For the entire experiment, we used 6*A100 (40G) GPUs, including for diffusion and downstream
segmentation tasks, with Python 3.8 and PyTorch version 2.4.0.

Datasets. For lung nodules, we followed the common practice of uniformly rescaling the spacing
to 1.0 × 1.0 × 1.0 mm (Han et al., 2019). Additionally, we uniformly cropped and padded each
lesion to a fixed size of 64 × 64 × 32. For cardiac lesions, since the overall data quality was not high
and the variation in spacing was minimal, we retained the original spacing to ensure data precision.
Furthermore, we uniformly cropped and padded each lesion to a fixed size of 72 × 72 × 10.

Diffusion Models. Training the LeFusion diffusion model for lung nodules requires approxi-
mately 4 A100 GPUs for one day. For inference, generating a single data takes about 30-50 seconds
on one A100 GPU.

Recurrent Mechanism for Inpainting. To achieve better consistency between lesions and back-
ground, we aim to enhance the integration of lesion and background information by allowing the
generated images to undergo recurrent processes within the model. Specifically, we adopted some
commonly used techniques from the inpainting field (Meng et al., 2022) (Lugmayr et al., 2022).We
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 P Image Hand-CraftedMask Cond-Diffusion LeFusion-SRepaint LeFusion-J

Figure A8: Visualization of Synthetic Images Given Real Lesion Masks on Pathological Cases.
Our LeFusion are compared with Hand-Crafted Hu et al. (2023), Cond-Diffusion Ho et al. (2020);
Rombach et al. (2022) and RePaint Lugmayr et al. (2022).

 Normal Image Hand-CraftedMask Cond-Diffusion LeFusion-SRepaint LeFusion-J

Figure A9: Visualization of Synthetic Images Given Synthetic Lesion Masks on Normal Cases.
Our LeFusion are compared with Hand-Crafted Hu et al. (2023), Cond-Diffusion Ho et al. (2020);
Rombach et al. (2022) and RePaint Lugmayr et al. (2022).

defined two key parameters: the recurrent length and the recurrent sampling frequency. The recur-
rent length refers to the time span of the recurrent operation, where a larger recurrent length can
integrate more information from both the lesion and the background. The recurrent sampling fre-
quency refers to the number of times each recurrent point is sampled. For example, if the initial time
step is 300, the recurrent length is set to 2 (skipping two time steps), and the recurrent sampling fre-
quency is 2 (each jump point is revisited once), then the sequence of time steps during the diffusion
process would be as follows:

{300, 299, 298, 299, 300, 299, 298, 297, 296, 297, 298, 297, 296, 295, 294, 295, 296, 295, 294, 293...}

Selection of Histograms. When generating lesions, the control information for each lesion is
randomly selected from three control levels (control3, control2, control1) in the ratio of 75:20:5.
We also experimented with other ratios, such as 1:1:1 or 3:2:1, and found that the performance
on downstream tasks was roughly the same. To enhance the diversity of the generated lesions, we
introduced a fluctuation mechanism for each component of the control information. This mechanism
allows the value of each component to randomly vary within ±10% of its original value, while
ensuring that the sum of the components remains equal to 1.
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Comparison Method Details. For the diffusion model architectures compared in our pa-
per—RePaint, Cond-Diffusion, and Cond-Diffusion (L)—all share a similar U-shaped structure.
The primary difference between Cond-Diffusion and RePaint lies in their channel configurations,
with Cond-Diffusion (L) incorporating latent features as input. In our experiments, we observed
that the convergence speed is nearly identical across these models. Therefore, to ensure experi-
mental fairness, we used a unified configuration for all diffusion models. Specifically, all diffusion
models were set to 300 timesteps. For both datasets, we adopted a learning rate of 1e-4 and a batch
size of 16. To ensure that each diffusion model fully converged, we chose as many training epochs
as necessary to ensure the training loss remained stable without continuing to decrease.The training
process required approximately 30,000 timesteps for the cardiac dataset and 40,000 timesteps for
the LIDC lung nodule dataset.

Segmentation Models. We implemented nnUNet (Isensee et al., 2021) and Swin-
UNETR (Hatamizadeh et al., 2021) using the MONAI framework. For downstream tasks,
both SwinUNETR and nnUNet were trained for 200 epochs. Due to differences in dataset sizes, the
training time on a single A100 GPU was approximately 6 to 24 hours for SwinUNETR and 4 to 10
hours for nnUNet.
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