Under review as a conference paper at ICLR 2026

FATE: A FORMAL BENCHMARK SERIES FOR FRON-
TIER ALGEBRA OF MULTIPLE DIFFICULTY LEVELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have demonstrated im-
pressive capabilities in formal theorem proving, particularly on contest-
based mathematical benchmarks like the IMO. However, these contests do
not reflect the depth, breadth, and abstraction of modern mathematical re-
search. To lﬂridge this gap, we introduce FATE (Formal Algebra Theorem
Evaluation)®, a new benchmark series in formal algebra designed to chart
a course toward advanced mathematical reasoning. We present two new
components, FATE-H and FATE-X, each with 100 problems in abstract
and commutative algebra. The FATE series spans a difficulty spectrum
from undergraduate exercises to problems exceeding PhD qualifying exams.
Notably, FATE-X is the first formal benchmark to surpass both PhD-level
exam difficulty and the coverage of the Mathlib library. Our evaluations
of state-of-the-art LLM provers on this new benchmark reveal a stark per-
formance gap compared to contest math: the best model achieves only
3% (pass@64) accuracy on FATE-H and 0% on FATE-X. Our two-stage
evaluation reveals that models’ natural-language reasoning is notably more
accurate than their ability to formalize this reasoning. We systematically
classify the common errors that arise during this formalization process. Fur-
thermore, a comparative study shows that a specialized prover can exhibit
less effective reflection than general-purpose models, reducing its accuracy
at the natural-language stage. We believe FATE provides a robust and
challenging benchmark that establishes essential checkpoints on the path
toward research-level formal mathematical reasoning.

1 INTRODUCTION

The emergence of reasoning models (Guo et all, 2025; OpenAl, 2025; Anthropid, 2025; Gem-
ini Team, Google, 2025) has boosted the prospect that AT will assist in frontier mathematical
research and produce rigorous proofs. Although modern mathematics has been successfully
built upon the foundation of natural language proofs, complex proofs generated by current
models remain unreliable. A major obstacle to improvement lies in verification: the more ad-
vanced a natural language proof is, the more it relies on limited human experts for rigorous
verification, resulting in a process that is slow, unscalable, and error-prone. This creates a
critical bottleneck for iterative development, In contrast, formal verification through proof
assistants like Lean (Moura & Ullrich, 20214) provides an automated, scalable, and reliable
alternative for proof checking (see Appendix |A for an introduction).

Following this direction, the research community has made rapid progress in formal auto-
mated theorem proving with large language models (LLMs). State-of-the-art. models (Ren
et all, 2025; Wang et al), 2025; Lin et all, 2025; Zhou et all, 2025; Chen et al), 2025) have
achieved impressive results on existing benchmarks and even on IMO contests. However,
current benchmarks have largely focused on two areas that differ significantly from modern
mathematical research: contest-style problems (Zheng et _all 2022: Liu et all, 2023) and
introductory university-level mathematics (Azerbayev et all, 2022; Tsoukalas et all, 2024).

!The FATE benchmark is open sourced at Link_ommited_for_blind_review.

link_ommited_for_blind_review

Under review as a conference paper at ICLR 2026

Mathematical contests often prioritize clever tricks over the systematic application of theoret-
ical frameworks, and introductory university courses operate at a lower level of abstraction.
In contrast, advanced mathematics is more open-ended, requiring not only the comprehen-
sion and application of broad, deeply nested abstract concepts but also the exploration of
new insights and the creation of theoretical frameworks. To address this gap, we introduce
two benchmarks: the graduate-level FATE-H (Formal Algebra Theorem Evaluation - Hard)
and the PhD qualifying-exam-level FATE-X (- Expert). These benchmarks build upon the
undergraduate-level FATE-M benchmark by Shen et al| (2025) in the same domain, forming
a progressive series of increasing mathematical difficulty designed to assess formal reasoning
from undergraduate to post-PhD qualifying exam levels.

FATE focuses on abstract and commutative algebra, a domain emphasizing abstract proofs
and the study of structures, reflecting the character of modern mathematics. All problems
were selected by expert mathematicians and formalized by specialists to ensure quality and
originality. To our knowledge, FATE-X is the first formal benchmark whose mathematical
difficulty exceeds that of PhD _qualifying exams and whose formalized content surpasses the
current scope of Mathlib (mathlib Community, 2020), the mathematical library of Lean.

70% 4 Models 80%=
Reasoning Models 71% Natural Language
| ®03 70%4 Formal Language

= claude4 sonnet

o gemini 2.5 pro 60%
50% o deepseek-r1
2\ Theorem Provers 50% |
40% ® ds-prover-v2-671b-cot
2 = kimina-prover-72b 40% 39%

goedel-prover-v2-32b 33%

10% 4 9%

3%

0o — 0 0% 0% 0%
FATE-M FATE-H FATE-X ds-r1 ds-p-v2 ds-r1 ds-p-v2
FATE-H FATE-X
(a) Formalizaton accuracy (Pass@64) (b) Intermediate natural language (Pass@1) vs. formal
across FATE-M/H/X benchmarks. language (Pass@64) accuracy on FATE-H/X.

Figure 1: Main experimental results. (a) Formalization accuracy drops sharply along the
difficulty progression of FATE-M, FATE-H (< 3%), and FATE-X (0%). (b) A significant gap
exists between intermediate natural language reasoning and final formal proof generation.
Model abbreviations: ds-rl (DeepSeek-R1), ds-p-v2 (DeepSeek-Prover-V2).

To establish baseline performance, we conducted a comprehensive, two-stage evaluation of
state-of-the-art LLMs and specialized provers, mirroring their observed common process of
first generating a natural language Chain-of-Thought (CoT) and then formalizing it. We
used expert human assessment for the CoT and automated verification for the final Lean
code. This dual analysis revealed that formalization accuracy on our research-oriented
benchmarks is exceedingly low—with top models achieving just 3% on FATE-H and 0%
on FATE-X—a stark drop from their performance on contest-level problems. In contrast,
the natural language reasoning was significantly more accurate, identifying the translation
from informal reasoning to formal code as the primary bottleneck. Our case studies of this
bottleneck showed that errors related to Mathlib hallucinations and Lean proficiency were
the most common, while Misalignment issues were infrequent.

We also compare a general reasoning model (DeepSeek-R1) with a specialized theorem prover
(DeepSeek-Prover-V2) to analyze differences in their reasoning behavior. Among our find-
ings, DeepSeek-Prover-V2 exhibits less effective reflection in natural language reasoning,
resulting in significantly reduced accuracy at this stage.

To summarize, our core contributions are as follows:

1. Progressive Benchmark Creation. We introduce two new benchmarks, FATE-H and
FATE-X (100 problems each), and extend the existing FATE-M benchmark from 141
to 150 problems with quality improvements, forming the complete FATE series. This

Under review as a conference paper at ICLR 2026

series spans from undergraduate to post-PhD qualifying exam level in algebra. To our
best knowledge, FATE-X is the first formal benchmark to surpass PhD qualifying exam
difficulty and Mathlib’s formalization coverage.

2. Baseline Performance Evaluation. We comprehensively evaluate state-of-the-art
models, establishing performance baselines where the best model achieves only 3%
(pass@64) on FATE-H and 0% (pass@64) on FATE-X.

3. Natural and Formal Two-Stage Output Analysis. Based on the pattern of natural
language reasoning followed by formalization in model outputs, we conduct a detailed
two-stage analysis. Our evaluation reveals: (1) significantly higher accuracy in natural
language reasoning versus formalization; (2) a classification of common formalization er-
rors: Mathlib hallucinations and Lean proficiency issues were the most common. General
capability issues occurred with intermediate frequency, while misalignment were the least
common; and (3) in comparative studies, that specialized provers (DeepSeek-Prover-V2)
exhibit less effective reflection in natural language reasoning than general-purpose models
(DeepSeek-R1), resulting in reduced accuracy at this stage.

2 RELATED WORKS
) rmal i B hmarks Natural language benchmarks by
obbe et al (EOQ 1) and gendrycks et al] (R021)) cover elementary to high school problems,
where leading model performa ri t re challengin d
benchmarks include those by ge et aJ (2024), ﬁao et alj (202 E_mw. 24)
ﬁu.th_pr sion t a e levels in works by Sawada et al! (2023)
et_al, (2024), and t hernyshev et alj (2025). Research-level benchmarks by Zhang et al

(2025), Glazer et all (2024), and partially Phan et all (2025) represent the current frontier.
A common limitation of these benchmarks is their reliance on final-answer verification.

ormal benchmarks enable reliable proof assessment. The miniF2F benchmark (Zheng et a
2022 th ical compet1t1ons with snmlar efforts including | MIHm

oukalas et al] (2024).
t all, 2022), hybrid dataset,

—

)]

O
—
=i
oL
@
wn
- g
—
B
%
@D
=
/\
>
N
@
=
O"
93
¢]

2025), specialized combinatorics
benchmarks (Xiong et_all, 20 i 025) and the abstract algebra benchmark
FATE-M (IShen et all, IZOZH u et all (2025) provides undergraduate-accessible problems

extracted from formal projects by supplying all necessa it] These
are primarily implemented in Lean, building on Mathlib iiathlib Communitj (2020).

nal Theorem Proving with Language Models Early systems by lPolu & Sutskeverl
d)ﬂ) pioneered E?‘amh basﬂ prﬁ { generaij variants o
b_es.t;]ﬁrst search ([Yang et al in et al 'EBE% w; Xin_e
025) and variants of Monte Carlo tree search ([Lample et all, 202 loeckle et alJ, 4; Xi
t_all, 2024). \7 te-of-the- Ren et al/ M), in
et al) (2025); %ang et all (2025); Ehou et alj (E()Qa) F?hen et ad (2025) have shlfted to single-
pass generation. Trained with large-scale reinforcement learning, these models produce long

chain-of-thought reasoning to decompose and c achlevmg accuracy rates
approaching 100% on the miniF2F benchmark (Zheng et al 022)

3 THE FATE BENCHMARK SERIES: DESIGN AND CURATION

The FATE series consists of three benchmarks of increasing mathematical difficulty: FATE-
M, FATE-H, and FATE-X. Among these, FATE-H and FATE-X are newly introduced, each
containing 100 problems. The existing FATE-M has been expanded from 141 to 150 prob-
lems, with improved natural-language comments and formalization details while preserving
the original mathematical content.

FATE focuses on abstract and commutative algebra, emphasizing proofs based on abstract
properties and the study of algebraic structures instead of equation-solving or num |
computation, thereby reflecting the character of modern mathematics (see Appendix B.2.]

Under review as a conference paper at ICLR 2026

for common problem types). This area is particularly suitable for testing research-level rea-
soning due to its abstract and self-contained nature, which enables deep problem-solving
without requiring extensive mathematical input from other fields. Lean’s existing algebra
libraries provide a solid foundation for research-level questions, enabling one to attack ad-
vanced problems in this area with minimal additional formalization. Unlike benchmarks
based on contest problems or introductory undergraduate material, FATE is designed to es-
tablish a difficulty progression toward modern mathematical research, structured as follows:

o FATE-M: Textbook-level basic exercises.
o« FATE-H: Problems at the level of honors course exams or graduate-level difficulty.
o« FATE-X: Problems at the level of PhD qualifying exams or beyond.

This graded structure offers a more comprehensive evaluation than a single accuracy score,
preventing strong performance on simpler tasks from masking weaknesses in advanced rea-
soning, or vice versa.

To demonstrate that the mathematical difficulty is progressive and reaching the PhD qual-
ifying exam level, we first describe the curation process in Section B.l|, then focus on @

mathematical content, followed by a description of formalization propert n Section
Representative examples from each benchmark are provided in Appendixl@

3.1 BENCHMARK CURATION

Data Sources Mathematical problems for FATE are selected from established sources.
The supplementary FATE-M problems are drawn from undergraduate textbooks. FATE-H
and FATE-X problems are sourced from: (1) more than 20 standard undergraduate and
graduate textbooks, such as Lang (2012) and Eisenbud (2013); (2) publicly available PhD
qualifying exams from various universities and exams for honors undergraduate courses; and
(3)_research papers and advanced community-driven resources such as the Stacks Project
(Stacks Project Authors, 2018).

Review
/\5&\§~(, Collect
2y —
Mathemetical 200 +200 Problems 100 + 100 Problems
Literature (Natural Language) (Formal Language)

Figure 2: The curation process of FATE-H and FATE-X benchmarks

Curation Workflow The curation process for FATE-H and FATE-X is highly demanding,
as it requires experts with deep mathematical knowledge, specialists in Lean formalization,
and extremely rare individuals with dual expertise. Figure E)illustrates the curation process.

1. Collection: We gathered and classified 400 candidate problems from the sources de-
scribed above into two difficulty-based categories: 200 for FATE-H and 200 for FATE-X.
The initial curation was conducted through a four-day collaborative effort involving nearly
twenty experts—primarily postdocs and PhDs in pure algebra from top institutions—
under the supervision of leading algebra researchers. This process ensured the final selec-
tion is mathematically profound, sound, well-balanced across key topics, and challenging
for both human and machine reasoning.

2. Formalization: A subset of 200 problems (100 from each difficulty level) was formal-
ized in Lean by five experienced formalization specialists, all contributors to Mathlib,
including some involved in the ongoing formalization of Fermat’s Last Theorem (Buz-
zard, 2024). This effort was organized into five dedicated workshops, each involving over
five hours of collaborative work.

3. Review: The formalizations were checked and corrected by two reviewers possessing
both strong mathematical backgrounds and Lean expertise, each dedicating over 10 hours

Under review as a conference paper at ICLR 2026

per benchmark. The accuracy was further verified with assistance from external leading
experts in the Lean community.

3.2 BENCHMARK CHARACTERISTICS

Problem distributions by mathematical topics in FATE-H and FATE-X are provided in
Appendix , including Figure B visualizing the data. The charts illustrate a shift in
focus from abstract algebra in FATE-H to advanced commutative algebra topics in FATE-
X.

Progressive Difficulty Although a strong consensus exists among mathematicians re-
garding problem difficulty, it lacks objective, quantitative measures. We support this from
three aspects:

o Case Studies We present three examples (one from each benchmark) in Appendix
involving similar mathematical topics with increasing difficulty. Analysis shows that these
problems require: (1) direct application of a theorem as a linear deduction (FATE-M),
(2) synthetic analysis of several direct results as integrative reasoning (FATE-H), and
(3) exploration and analysis of new mathematical objects after synthesis as recursive
structural analysis (FATE-X). This forms a clear difficulty progression.

e Perfori e-based Metrics The following model performance data presented in Ap-
pendix &reﬂec‘c the difficulty progression across the three benchmarks: (1) the in-
termediate natural language accuracy during formalization of DeepSeek-R1 on FATE-M,
FATE-H, and FATE-X decreases from nearly 94.7% to 71.0% to 33.0%; (2) the average
output token length of reasoning models when solving natural language mathematical
problems shows a clear increasing trend from M to H to X for each model.

o Expert Assessment We conducted a questionnaire survey with ten professors from top
institutions specializing in algebra (see Appendix for details). The results indicate
that when comparing FATE to classical textbooks and ProofNet, experts consistently
rated FATE significantly higher in difficulty, coverage, and originality. Regarding the
suitability of FATE problems for PhD qualifying exams, 7/10 experts indicated that the
problems were either directly appropriate for algebra/commutative algebra qualifying
exams or notably more challenging than standard PhD qualifying exam questions.

Formalization Properties Due to its scope and difficulty, FATE-X uses mathematical
definitions not yet in Mathlib. This introduces a distinctive formalization feature: new
definitions are given before the problem statement. Consequently, LLMs must derive the
necessary lemmas to use these definitions effectively. Moreover, to solve these challenging
problems successfully, models are expected to discover mathematical phenomena, abstract
them into useful lemmas, and, when needed, spontaneously formulate new definitions. This
capability is critical for research-level mathematical formalization and problem-solving.

All benchmark problems follow strict formalization standards: each Lean file has only one
sorry after the final theorem; natural language descriptions in IWTEX are included as com-
ments before formal statements; files depend only on Mathlib and are self-contained; and
universe levels are fixed to prevent issues from category theory.

4 EXPERIMENTS AND RESULTS

In Section @ and Section @, we detailed the experimental setup and baseline results on
FATE. Observation of the model outputs indicated a two-stage_generation pat , Where
natural language precedes formalization. Consequently, Section @ and Section @‘anal
the impact of this two-stage process on the models’ final accuracy separately. Section ﬁ
presents a com tive study between a general reasoning model and a theorem prover.
Finally, Section provides a comprehensive discussion synthesizing these findings.

Under review as a conference paper at ICLR 2026

4.1 EXPERIMENT SETUP

Our experiment included general reasoning models such as 03 (OpenAl, 2025), Gemini-
2.5-Pro (Gemini_Team, Googld, 2025), Claude-4-Sonnet-thinking (Anthropid, 2025), and
DeepSeek-R1 (Guo et all, 2025). We also tested state-of-the-art theorem provers, including
DeepSeek-Prover-V2-671B (CoT), Kimina-Prover-72B, and Goedel-Prover-72B without self-
correction_mode. For both categories, we employed whole-proof generation, using pass@64
metric (Chen et all, 2021))-defined as successful if at least one correct proof is found within
64 independent attempts—with a maximum token limit of 64k. For detailed setup and
prompt, see Appendices [F.1.1 and (4.

During, formal verification, we implemented multi-process parallelization using the Lean
REPLE (a read-eval-print-loop for Leand) to enable efficient large-scale evaluations. Every
proof is rigorously checked by the Lean kernel to confirm it contains no sorry or compilation
errors. Furthermore, to ensure semantic correctness and prevent unintended modifications,
we employ string-matching checks to verify the accurate transcription of theorems and def-
initions. Any model-generated lemmas are alsq v compiled to confirm their validity. A
detailed methodology is available in Appendix.

4.2 BENCHMARK PERFORMANCE

Table 1: Formalization accuracy across FATE benchmarks (pass@64, max 64k tokens)

Model FATE-M FATE-H FATE-X
Reasoning model
o3 51.3% 3.0% 0.0%
Claude-Sonnet-4 45.3% 0.0% 0.0%
Gemini-2.5-Pro 40.0% 0.0% 0.0%
DeepSeek-R1 34.7% 0.0% 0.0%
Theorem prover
DeepSeek-Prover-V2-671B 62.7% 3.0% 0.0%
Goedel-Prover-V2-32B 48.7% 2.0% 0.0%
Kimina-Prover-72B 36.0% 2.0% 0.0%

These results reveal a stark contrast in performance: while models achieve reasonable success
rate on FATE-M, the best-performing model solves only 3 out of 100 problems in FATE-H,
and no model produces any valid Lean proofs in FATE-X. Additional pass@2* results (for
k=0,1,...,6) are provided in Appendix .

To understand the reason behind low accuracy, we examine the model’s output and rea-
soning content. We observed a consistent behavior across all models with visible reasoning
process (DeepSeek-R1 and all theorem provers): even without explicit instructions, mod-
els always first work out a full natural language (informal) proof, followed by formalizaion.
Among those models without available reasoning content, Gemini-2.5-Pro and Claude-4-
sonnet-thinking also tried to solve the problem in natural language first in the output, while
only 03 directly output formalization attempts without any natural language content.

Given the models’ two-stage process (natural language reasoning followed by formalization),
we investigate the impact of each stage on final proof correctness in the followjng two
subsections. For a discussion of the interaction between these stages, see appendix .

4.3 NATURAL LANGUAGE REASONING ANALYSIS

In this section, we first present a manuyal evaluation of the mathematical reasoning in the
main experiment’s output in Section , which reveals a significant gap between the
correctness of the natural language portion and the final formalization. Based on this, we

2https://github.com/leanprover-community/repl

https://github.com/leanprover-community/repl

Under review as a conference paper at ICLR 2026

argue that formalization ability is the primary factor in Section . To understand the
k)

gap between the intermediate result evaluated by us and the model’s real natural language
mathematical ability, we also conduct an ablation study in Section

4.3.1 MANUAL EVALUATION OF NATURAL LANGUAGE PROOFS

The two-stage reasoning phenomenon observed in Section @ prompted us to question: do
the models’ final formalization failures stem from errors in their initial mathematical rea-
soning, or from the translation process between natural language and formal language? To
answer this, we organized a manual evaluation to independently assess the models’ natural
language reasoning abilities under the original task settings.

Our mathematics experts evaluated the pass@1 correctness of the natural language proofs
generated by DeepSeek-R1 and DeepSeek-Prover-V2 on the FATE-H and FATE-X. Manual
evaluation criteria and procedures are detailed in Appendix . We attribute errors to four
main categgries: GGap, Hallucination, Reasoning Problem, and No Progression. See
Appendi for definition and examples. The overall results of the evaluation are presented
in Table}E. Furthermore, we conducted a pass@16 evaluation for some problems and found
that the models do exhibit diverse behaviors on the same problem; see Appendix [for
details.

Table 2: Comparing Natural Language (NL) (Pass@1) and Formal Language (FL) (Pass@64)
Proof Accuracy on FATE-H and FATE-X

Model FATE-H FATE-X
NL FL NL FL

Prover-V2 39.0% 3.0% 9.0% 0.0%

DeepSeek-R1 71.0% 0.0% 33.0% 0.0%

4.3.2 ABLATION STUDY ON THE IMPACT OF PROMPTS

Before drawing our conclusions, we must address a potential confounding variable: does
the formalization task itself suppress the model’s natural language mathematical ability.
Conseq ly, we designed an ablation study testing different prompt settings for DeepSeek-
R1, see . We find that the models’ natural language mathematical ability is higher when
unburdened by the prompt to generate a formal proof. However, modifying the baseline
prompt to explicitly require a “math-before-lean” output had almost no impact on accuracy
regarding Deepseek-R1.

4.3.3 ANALYSIS OF MAIN FINDINGS

1. Primary Bottleneck: The Translation to Formal Language. First, for all mod-
els tested, intermediate natural language reasoning accuracy (pass@l) far exceeds final
formalization accuracy (pass@64). The ablation study further suggests that the models’
mathematical ability when tasked only with generating a natural language proof provided
with an informal statement is likely even higher than what this evaluation captured. In
conjunction with our finding (see Section) that formalization attempts are highly
aligned with their preceding natural language reasoning, these results together show that
the bottleneck is not the mathematical ability itself. Rather, the critical challenge lies in
the translation and implementation of a correct natural language proof into an absolutely
precise formal language.

2. Difference in Mathematical Abilities Between Models. At the level of natural
language mathematical reasoning, the general-purpose reasoning model (DeepSeek-R1)
behave significantly better than the specialized prover model (DeepSeek-Prover-V2). We
will conduct a deeper comparative analysis of this phenomenon in Section ﬁ

Under review as a conference paper at ICLR 2026

4.4 FORMALIZATION ERROR ANALYSIS

This subsection classifies and quantifies common LLM formalization errors. Our human
Lean experts analyzed proof attempts from DeepSeek-Prover-V2 on DeepSeek-R1 on the
FATE-H benchmark, selected for its significant gap between natural language and formal
language accuracy. After natural language evaluation in Section , experts manually
counted distinct formalization errors in mathematically correct but formally incorrect at-
tempts. These errors fall into four categories:

1. Mathlib Hallucinations: Errors in this category involve the generation of non-existent
or incorrectly used Lean theorems or definitions;

2. Lean Proficiency Issues: These are errors related to a lack of understanding of Lean’s
specific syntactic rules, sophisticated type system, or idiomatic proof structures;

3. General Capability Issues: This category includes problems such as modifying headers
and the others -leaving sorrys, producing repetitive output or unmatched brackets;

4. Misalignment: This error occurs when the model’s formal proof is inconsistent with
previous mathematical reasoning.

For more details of these four categories, see Appendix E)

Table 3: Formal error counting result for models on FATE-H

Formal Error DeepSeek-Prover-V2 DeepSeek-R1
Mathlib Hallucination 35/39 70/71
Lean Proficiency 36/39 70/71
General Capability (header) —/- 63/71
General Capability (others) 19/39 18/71
Misalignment 3/39 0/71

For results in Table E, the denominator is the number of whole proofs generated by LLMs,
which intermediate natural proof is manually judged to be correct. Among the four errors,
Mathlib hallucinations and Lean proficiency issues were the most common errors, frequently
recurring within almost every single proof attempt. In contrast, misalignment were remark-
ably infrequent. As DeepSeek-Prover-V2’s output lacks headers, we could not include its
data for header-related issues. However, among other general capability issues, DeepSeek-
Prover-V2 performed notably worse. Additionally, we found that only DeepSeek-Prover-V2
exhibited repetitive proof steps and misalignment.

A case study in Appendix @ revealed that the types of formalization errors on FATE-X
were consistent with those on FATE-H. Notably, for problems involving new definitions,
models rarely generated auxiliary lemmas to aid in proving.

4.5 GENERAL MODELS vS. THEOREM PROVERS

As demonstrated by the experimental results in Section H, the general-purpose reasoning
model significantly outperforms the specialized proof-assistant model in terms of natural
language success rate. To investigate the root cause of this performance gap, we conducted
a detailed qualitative analysis of the reasoning processes of DeepSeek-V3 (Liu et all, 2024),
DeepSeek-Prover-V2, and DeepSeek-R1-a series of models all post-trained from the same
base mod More detailed experimental setup, results and case studies are provided in
Appendix [E. Here, we summarize the main conclusions:

In the initial phase of reasoning, all three models often adopt similar strategies or invoke
comparable concepts. However, as the reasoning deepens and established problem-solving
patterns fail to address the specific problem, their behaviors diverge significantly. The typ-
ical behavior for DeepSeek-V3 is to directly assemble associated concepts into a superficial
argument. In contrast, both DeepSeek-Prover-V2 and DeepSeek-R1 attempt to provide
more detailed discussions.

Under review as a conference paper at ICLR 2026

The essential difference between the latter two lies in a capability we term effective re-
flection: the ability to locate, diagnose and repair flaws. While DeepSeek-R1 can some-
times achieve this, DeepSeek-Prover-V2 is confined to performing formal reflections, such
as starting over or a rhetorical shift without a corresponding logical change. Furthermore,
our studying discovers non-aligned phenomena during mathematical reasoning unique to
DeepSeek-Prover-V2. These behaviors, which also affect their performance, include ques-
tioning the correctness of the problem statement itself after a failure and even engaging in
conscious cheating behaviors.

The intermediate natural language accuracy results of three models in Table E confirm these
observations: the DeepSeek-Prover-V2, which offers detail but lacks effective reflection,
achieves a final success rate nearly identical to that of the formally reasoning DeepSeek-V3.
Meanwhile, DeepSeek-R1, which possesses this capability, significantly outperforms both.
Nevertheless, we must note that even DeepSeek-R1’s reasoning ability has its limitations
when faced with truly complex reasoning environments.

4.6 IMPLICATIONS AND DISCUSSION

Our experimental results and analyses lead to two points for discussion regarding future
research in automated theorem proving:

First, our findings show that whole proof generation models use a two-stage process for
formal proving: generating a natural language proof, then a well-aligned formalization,
suggesting these stages are largely decoupled. Considering our findings that the intermediate
natural language accuracy of DeepSeek-Prover-V2 is lower than that of DeepSeek-R1, further
lower than pure natural language accuracy of DeepSeek-R1. Together, these points strongly
suggest that an explicitly decoupled approach, developing a natural language prover and a
separate autoformalizer, would gain extra improvement.

Next, our comparative experiments reveal that the general-purpose model performs more
“effective reflection”, a capability crucial to human mathematical reasoning. In contrast, the
specialized prover, despite reinforcement learning in the narrower domain of formalization,
did not gain the expected boost in mathematical reasoning. Instead, its performance was
often hindered by various misaligned behaviors that degraded its reasoning ability relative
to the general model. Considering the comparison with its base model (DeepSeek-V3),
this raises the question of whether the DeepSeek-Prover-V2’s lack of effective reflection
is an unintended outcome of its specialized training scheme. This, in turn, leads to a
critical challenge for future work: is it possible to design a training methodology that can
simultaneously leverage the precise reward signals from formalization while also fostering
essential meta-reasoning capabilities such as “effective reflection”?

Although our findings suggest these research directions, rigorously confirming them is be-
yond the scope of this article and remains a key task for future work.

5 CONCLUSIONS

To bridge the gap between contest-style mathematics and modern research, we introduced
FATE-H and FATE-X, extending the FATE series of formal algebra benchmarks, which
features a graded mathematical difficulty structure and a frontier research focus. Our eval-
uation of state-of-the-art models reveals their significant limitations in conducting formal
reasoning in advanced mathematics, with maximum pass rates of just 3% (Pass@64) on
FATE-H and 0% on FATE-X. Further analysis indicates that the primary bottleneck lies
in the formalization stage, with errors stemming mainly from hallucinations of the formal
library and insufficient language proficiency, rather than in natural language mathemati-
cal reasoning, as the two stages exhibit a functional decoupling. Furthermore, we found
that general-purpose reasoning models outperform their specialized counterparts, due to a
more effective “reflection” capability. These findings collectively point to two fundamental
research directions: first, explicitly decoupling the task of natural language reasoning from
formalization generation; and second, balancing the pursuit of formal accuracy with the
cultivation of effective and aligned reasoning capabilities.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. System card: Claude opus 4 & claude sonnet 4. Anthropic, May 2025. URL
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba
2a7c285.pdf. Released May 23, 2025. Accessed on September 25, 2025.

Jeremy Avigad, Leonardo De Moura, and Soonho Kong. Theorem proving in Lean. Carnegie
Mellon University, 2021. URL https://leanprover.github.io/theorem_provi
ng_in_lean4.

Zhangir Azerbayev, Bartosz Piotrowski, and Jeremy Avigad. ProofNet: A benchmark for
autoformalizing and formally proving undergraduate-level mathematics problems. In Sec-
ond MATH-AI Workshop, 2022.

Grzegorz Bancerek, Czestaw Byliniski, Adam Grabowski, Artur Kornitowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker
Sorge (eds.), Intelligent Computer Mathematics, pp. 261-279, Cham, 2015. Springer In-
ternational Publishing. ISBN 978-3-319-20615-8. doi: 10.1007/978-3-319-20615-8_17.
URL https://doi.org/10.1007/978-3-319-20615-8_17

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Yann Coscoy, David Dela-
haye, Daniel de Rauglaudre, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin,
et al. The Coq proof assistant reference manual. INRIA, 1999.

Kevin Buzzard. The Fermat’s Last Theorem Project. Blog Post, https://leanprover
-community.github.io/blog/posts/FLT-announcement, 2024.

Mario Carneiro. The type theory of Lean. Master’s thesis, Carnegie Mellon University, 2019.
URL https://github.com/digama0/lean-type-theory/releases/downloa
d/v1i.0/main.pdf

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xi-
aoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad
reasoning for automated theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Eval-
uating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Konstantin Chernyshev, Vitaliy Polshkov, Vlad Stepanov, Alex Myasnikov, Ekaterina Arte-
mova, Alexei Miasnikov, and Sergei Tilga. U-MATH: A university-level benchmark for
evaluating mathematical skills in large language models. In Proceedings of the Fourth
Workshop on Generation, Evaluation and Metrics (GEM?), pp. 974-1001, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

David Steven Dummit, Richard M Foote, et al. Abstract algebra, volume 3. Wiley Hoboken,
2004.

David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume 150.
Springer Science & Business Media, 2013.

Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Jonah Brenner, Danxian
Liu, Nianli Peng, Corey Wang, and Michael Brenner. HARDMATH: A benchmark dataset
for challenging problems in applied mathematics. In The 4th Workshop on Mathematical
Reasoning and AI at NeurIPS’24, 2024. URL https://openreview.net/forum?i
d=gt6prlTEGL

10

https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://leanprover.github.io/theorem_proving_in_lean4
https://leanprover.github.io/theorem_proving_in_lean4
https://doi.org/10.1007/978-3-319-20615-8_17
https://leanprover-community.github.io/blog/posts/FLT-announcement
https://leanprover-community.github.io/blog/posts/FLT-announcement
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://openreview.net/forum?id=gt6prlTEGL
https://openreview.net/forum?id=gt6prlTEGL

Under review as a conference paper at ICLR 2026

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao
Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghao-
ran Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao
Chang. Omni-MATH: A universal olympiad level mathematic benchmark for large lan-
guage models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=yaqPfOKALN.

Gemini Team, Google. Gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning,
Caroline Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos,
et al. FrontierMath: A benchmark for evaluating advanced mathematical reasoning in Al
arXiv preprint arXiv:2411.04872, 2024.

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. ABEL: Sample
efficient online reinforcement learning for neural theorem proving. In The 4th Workshop
on Mathematical Reasoning and Al at NeurIPS’24, 2024. URL https://openreview
.net/forum?id=kk3mSjVvCUO.

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. Journal
of Formalized Reasoning, 3(2):153-245, 2010. ISSN 1972-5787. doi: 10.6092/issn.1972-5
787/1980. URL https://jfr.unibo.it/article/view/1980.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Du-
mont, and Sanmi Koyejo. Putnam-AXIOM: A functional and static benchmark for mea-
suring higher level mathematical reasoning. In The 4th Workshop on Mathematical Rea-
soning and AI at NeurIPS’24, 2024. URL https://openreview.net/forum?id=
YXnwlZeOyf.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin
Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms
through reinforcement learning. Nature, 645(8081):633-638, 2025.

John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel (eds.), Theorem Proving in Higher Order Logics, pp. 60—
66, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03359-9. doi:
10.1007/978-3-642-03359-9_4. URL https://doi.org/10.1007/978-3-642-033
59-9_4.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
OlympiadBench: A challenging benchmark for promoting AGI with olympiad-level bilin-
gual multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3828-3850, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.211. URL
https://aclanthology.org/2024.acl-1long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
MATH dataset. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net
/forum?id=7Bywt2mQsCe.

Jiewen Hu, Thomas Zhu, and Sean Welleck. miniCTX: Neural theorem proving with (long-
Jeontexts. In The Thirteenth International Conference on Learning Representations, 2025.

URL https://openreview.net/forum?id=KIgaAqEFHW.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury
Hayat, Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for

11

https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://jfr.unibo.it/article/view/1980
https://openreview.net/forum?id=YXnwlZe0yf
https://openreview.net/forum?id=YXnwlZe0yf
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=KIgaAqEFHW

Under review as a conference paper at ICLR 2026

neural theorem proving. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, 2022.

Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hun-
yuanprover: A scalable data synthesis framework and guided tree search for automated
theorem proving. arXiv preprint arXiv:2412.20735, 2024.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave
thinking and proving, 2024. URL https://arxiv.org/abs/2407.10040.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yi-
han Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem prov-
ing with scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.036183,
2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei
Ju, Chuanyang Zheng, Yichun Yin, Lin Li, et al. FIMO: A challenge formal dataset for
automated theorem proving. arXiv preprint arXiv:2309.04295, 2023.

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman
Soletskyi, Haiming Wang, Yunzhou Xie, Beibei Xiong, et al. CombiBench: Benchmarking
llm capability for combinatorial mathematics. arXiv preprint arXiv:2505.03171, 2025.

The mathlib Community. The Lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, 2020.

Norman Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical
Proofs. Lulu Press, 2019.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction — CADE 28,
pp. 625-635, Cham, 2021a. Springer International Publishing. ISBN 978-3-030-79876-5.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In 28th International Conference on Automated Deduction, 2021b.

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002. doi:
10.1007/3-540-45949-9.

OpenAl. Openai 03 and o4-mini system card. OpenAl, April 2025. URL https://open
ai.com/index/03-04-mini-system-card/. Released April 16, 2025. Accessed on
September 25, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen
Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam.
arXiw preprint arXiv:2501.14249, 2025.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving. arXiv preprint arXiv:2009.03393, 2020.

77 Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, et al. DeepSeek-Prover-V2: Advancing for-
mal mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv

preprint arXiv:2504.21801, 2025.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas,
Alexander Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. ARB: Advanced
reasoning benchmark for large language models. arXiv preprint arXiv:2307.13692, 2023.

12

https://arxiv.org/abs/2407.10040
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/

Under review as a conference paper at ICLR 2026

Ziju Shen, Naohao Huang, Fanyi Yang, Yutong Wang, Guoxiong Gao, Tianyi Xu, Jiedong
Jiang, Wanyi He, Pu Yang, Mengzhou Sun, et al. Real-prover: Retrieval augmented lean
prover for mathematical reasoning. arXiv preprint arXiv:2505.20613, 2025.

Konrad Slind and Michael Norrish. A brief overview of hol4. In Otmane Ait Mohamed,
César Mufioz, and Sofiéne Tahar (eds.), Theorem Proving in Higher Order Logics, pp. 28—
32, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-71067-7. doi:
10.1007/978-3-540-71067-7_6. URL https://doi.org/10.1007/978-3-540-710
67-7_6.

The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu,
2018.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jen-
nings, Amitayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural
theorem-provers on the putnam mathematical competition. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 11545-11569. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/fi
le/1582eaf9e0cf349elebabeed53100aal-Paper-Datasets_and_Benchmar
ks_Track.pdf.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos San-
tos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover pre-
view: Towards large formal reasoning models with reinforcement learning. arXiv preprint
arXiv:2504.11354, 2025.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Zheng Yuan, Wenwei Zhang,
Dahua Lin, and Kai Chen. InternL.LM2.5-stepprover: Advancing automated theorem prov-
ing via critic-guided search. In 2nd AI for Math Workshop @ ICML 2025, 2025. URL
https://openreview.net/forum?id=qwCgelIghil.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-vl. 5: Harnessing proof as-
sistant feedback for reinforcement learning and monte-carlo tree search. arXiv preprint
arXiw:2408.08152, 2024.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng,
and Ming Ding. BFS-prover: Scalable best-first tree search for LLM-based automatic
theorem proving. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 32588-32599, Vienna, Aus-
tria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
10.18653/v1/2025.acl-long.1565. URL https://aclanthology.org/2025.acl-1
ong.1565/.

Beibei Xiong, Hangyu Lv, Haojia Shan, Jianlin Wang, Zhengfeng Yang, and Lihong Zhi. A
combinatorial identities benchmark for theorem proving via automated theorem genera-
tion. arXiv preprint arXiv:2502.17840, 2025.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with
retrieval-augmented language models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, 2023.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan
Zhang, Zheng Yuan, Huajian Xin, Wenhao Huang, et al. FormalMath: Benchmarking
formal mathematical reasoning of large language models. arXiv preprint arXiv:2505.02735,
2025.

Jie Zhang, Cezara Petrui, Kristina Nikoli¢, and Florian Trameér. RealMath: A continuous

benchmark for evaluating language models on research-level mathematics. arXiv preprint
arXiv:2505.12575, 2025.

13

https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://stacks.math.columbia.edu
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://openreview.net/forum?id=qwCqeIg5iI
https://aclanthology.org/2025.acl-long.1565/
https://aclanthology.org/2025.acl-long.1565/

Under review as a conference paper at ICLR 2026

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: A cross-system bench-
mark for formal olympiad-level mathematics. In The Tenth International Conference on

Learning Representations, 2022.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui
Wang, Haowei Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by
decomposition and iterative reflection. arXiv preprint arXiv:2507.15225, 2025.

14

Under review as a conference paper at ICLR 2026

A INTRODUCTION TO FORMALIZATION AND LEAN

Mathematical Formalization Mathematical formalization is the process of translating
intuitive, informal ideas and concepts into a precise, unambiguous language defined by
strict logical rules. To support this process, interactive theorem provers (ITPs) assist users
in constructing formal proofs. ITPs typically provide a tactic mode, in which the prover
tracks available hypotheses and the current goal as the proof state. Users manipulate this
state through concise, high-level commands called tactics, and the prover automatically
generates corresponding low-level proof code once all goals are solved. Tactics are designed
to mirror patterns in natural language proofs, improving both readability and writability.
Almost all LLM-based formal theorem provers generate such tactics to construct formal
proofs.

éfﬂr]g]]s [TP built on dlStlﬂiﬂ] but._equally (Emdg %Jca fgjlndaggf tamath (
Wheele E_g{_a and Mizar (Bancerek et all, 201 abowski e E%)dlﬁ) are based on
sef. theory; HOL4 (Slind & Norrish, 2008), HOL Light M%L_M,_a belle/HOL
(Nipkow et. al }200) are based on simple type theory; and Coq (Barras et al), 1999) and Lean
(Moura & Ullrich, R021b) are based on dependent type theory. The mathematical library
available in each prover deterrﬁinﬁs the_difficu t;gz 0 malizing different topics. Lean’s
extensive and unified Mathlib (mathlib Community|, 2020) distinguishes it from other ITPs.
Lean and Mathlib Lean 4 (|Moura & Ullrch l2021b| is an interactive theorem prover
hased _on dependent type theory, with proof irrelevance and non-c ni S
). An introduction to the language can be found in (rz}l.vigad et al), E%IQS]T)
Lean 4 is designed to be highly extensible through its metaprogramming capabilities, en-
abling the accurate and concise extraction of important metadata.

Mathlib4 (Imathlib Communityl, l202d) is a community-driven effort to build a unified library
of mathematics in Lean 4. It formalizes a substantial portion of modern mathematics and
currently contains over 1,700,000 lines of code contributed by more than 550 developers.
Mathlib covers a wide range of topics, including algebraic geometry, analysis, category the-
ory, combinatorics, geometry, general algebra, linear algebra, logic, number theory, order
theory, probability theory, and topology. Among these, the formalization in algebra is the
most developed. This makes Lean particularly suitable for formalizing advanced mathemat-
ics, especially in algebra. Such formalization remains inaccessible in many other interactive
theorem provers, which lack similarly extensive foundational libraries.

15

Under review as a conference paper at ICLR 2026

B BENCHMARK QUALITY ANALYSIS

ical content. Following illustrative examples from each benchmark in Appendi , we
provide case studies and statistics emonstrate the diversity (see Appendix and
progressive difficulty (see Appendix@) of the prob . The results of an expert survey
assessing the benchmarks are reported |in Appﬁn.d, . For comparison, examples from
the FATE-M benchmark introduced by Shen et al) (2025) are included. For analyses focused
purely on mathematical content, we provide only the natural-language problem statements
without formalization details for brevity.

This appendix presents the quality of the FATE benchmarks, emphasizing their Iﬁma‘c—
)

B.1 REPRESENTATIVE EXAMPLES

FATE-M

import Mathlib

/--
Suppose D is integral domain, m and n are coprime positive integers. Prove
that for any $a, b \in D$, if $a*{m}=bA{m}$ and $a*{n}=bAr{n}$, we have $a=b$.
-/
theorem eq_of_pow_eq_of_coPrime {R : Typex} [Ring R] [IsDomain R] (a b : R)
(mn :N) (hm : m>0) (hn : n>0) (hmn : m.Coprime n)
(he1:a?*m=bAm) (h2:a?r*n=DbArn):a=>b:=hy
sorry

FATE-H

import Mathlib

open IntermediateField RatFunc

/--

Let \mathbb{F}_4 be the field with 4 elements, t a transcendental over $
\mathbb{F}_4$, and $F =\mathbb{F}_4(t*4 + t)$ and $K =\mathbb{F}_4(t)$. Show
that K is Galois over F.

-/

theorem isGalois_galoisField_adjoin_X_pow_four_add_X :
IsGalois (GaloisField 2 2)((X A 4 + X : RatFunc (GaloisField 2 2)))
(RatFunc (GaloisField 2 2)) := by

sorry

FATE-X

import Mathlib

/__

Let \(A \) be a domain and \(K \) its field of fractions.

\(x \in K \) is called almost integral if there exists an element

\(r\in A, r \ne 0 \) such that \(rx*n \in A \) for all \(n \ge 0 \).

-/

def IsAlmostIntegral {A : Type} [CommRing A] [IsDomain A] (x : FractionRing A) :
Prop :=

Ir A, T#0O0AYN:N, Iy : A,

T o (x A n) = algebraMap A (FractionRing A) y

/--
\(A \) is called completely integrally closed if
every almost integral element of \(K \) is contained in \(A \).

16

Under review as a conference paper at ICLR 2026

-/

def IsCompletelyIntegrallyClosed (A : Type) [CommRing A] [IsDomain A] : Prop :=
Y x : FractionRing A, IsAlmostIntegral x » 3y : A, x = algebraMap A
(FractionRing A) vy

/--

Let \(A \) be a domain. Show that if \(A \) is completely

integrally closed, so is \(A[X] \).

-/

theorem completely_integrally_closed_polynomial_ring {A : Type} [CommRing A]
[IsDomain A] (h : IsCompletelyIntegrallyClosed A) :
IsCompletelyIntegrallyClosed (Polynomial A) := by

sorry

B.2 DIVERSITY

Appendix presents three principal problem types within the series, each accompanied
by a representative case. The statistical distribution of mathematical domains is detailed
in Appendix |

B.2.1 PROBLEM TYPES

The FATE benchmark includes a variety of problem types, with three representative cate-
gories outlined below.

Abstract Reasoning Problems These problems start from an abstract condition and
require proving a general conclusion.

(FATE-M) Prove that if a finite abelian group has order a power of a prime p, then
the order of every element in the group is a power of p.

Concrete Example Problems These problems start from a specific, concrete example
and ask for the proof of one of its properties.

(FATE-H) Prove that the order of Aut(Zs x Zg) is 108.

Open Constructive Problems These problems require the construction of an object
that satisfies a specific property.

(FATE-X) There exists two commutative rings R, S, such that R[z] is isomorphic to
S[z] but R is not isomorphic to S.

The first category, abstract reasoning problems, is the most common type in FATE-H and
FATE-X. It is noteworthy that the abstractness of a problem type does not directly correlate
with its mathematical diffi . A detailed case study on the benchmark’s difficulty gradient
is available in Appendix ﬁ‘/

B.2.2 DOMAIN STATISTICS

We classify abstract algebra and commutative algebra into subfields and further break down
these subfields into specific topics. For a complete list of subfields, topics, and cqrresponding
statistics, see Table {; for a visual sunburst chart representation, refer to Figure B. The chart
illustrates a shift in emphasis from abstract algebra in FATE-H to advanced commutative
algebra topics in FATE-X.

17

Under review as a conference paper at ICLR 2026

Table 4: Problem Distribution by Mathematical Topic in FATE-H and FATE-X

Subfield Topic FATE-H FATE-X
Abstract Algebra
Basic Axioms and Examples 4 0
Subgroups and Quotient groups 3 3
Group Theory Group Actions and Sylow theorems 9 5
p-Groups, Nilpotent Groups and Solvable Groups 2 1
Basic Definitions and Examples 2 3
Ring Theory PID, ED and UFD 1 4
Polynomials 8 3
Field Extensions 11 1
Field Theory Galois theory 11 11
Explicit Computations 11 1
. Linear Algebra 3 0
Other Topics Elementary Number Theory 1 0
Commutative Algebra
Ideals and Modules 5 9
Localization and Decomposition of Ideals 3 3
Ideal Theor Integral Dependence and the Nullstellensatz 7 5
Y Noetherian rings and Chain Conditions 1 3
Dedekind Domains and DVRs 4 1
Tensor Product and Flatness 2 8
Heights and Dimensions 2 6
Dimension Theory Regular Sequences and Regular Local Rings 4 5
and Smoothness Smoothness and the Module of Differentials 0 4
Depth, Cohen-Macaulay Rings and Gorenstein Rings 0 8
Completions and Hensel’s lemma 1 4
Algebraic Number Theory and Valuation Theory 5 3
Other Topics Algebraic and Arithmetic Dynamics 0 6
Homological Methods 0 2
Noncommutative Algebras 0 1
B.3 PROGRESSIVE DIFFICULTY
Appendix presents three topic-related examples of increasing difficul onstrat-
ing the progressive structure of the benchmarks. Furthermore, Appendix provides

statistics on model output token length and natural language accuracy to reflect problem
difficulty.

B.3.1 Casi StuDY: A GRADED CHALLENGE ON NON-SIMPLE GROUPS

To demonstrate the difficulty gradient of the FATE benchmark, we analyze the solutions
and reasoning contexts generated by DeepSeek-R1 on three topic-related problems from
FATE-M, H, and X. As illustrated in Figure {, the model’s generated proofs exhibit a clear
progression in structure and complexity, reflecting the increasing mathematical difficulty of
the problems.

For the M-level problem, the approach is direct: the model applies Sylow’s theorem to a
single prime p (as suggested by the problem setup) and reaches the conclusion directly using
the given conditions. In contrast, for the H-level problem, the single-prime approach is insuf-
ficient. The model synthesizes information from Sylow’s theorem applied to all prime factors
of the group order and employs a counting argument to derive a contradiction. The X-level
problem requires an additional step: after performing the aforementioned analyses, several
possibilities remain. To resolve these, one must examine new objects and conduct further

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ess.
e

ond!
roduct

onsor ¥
s and Dimension

Dimension Theory
— gt Soqancs
egular Local Rin
les gs
Basic Axioms. and ExamPp!

: Tensor Product and Flatness
Galoisitheory

o
©
o
ES
&
o
<

suei0D PUe
o uouo wded

(b) FATE-X

Figure 3: Problem distributions by mathematical topics in FATE-H/X.

19

Under review as a conference paper at ICLR 2026

analysis using Sylow’s theorem—specifically, by investigating the relationship between the
normalizer of the Sylow 17-subgroups and the Sylow 3-subgroups.

FATE-M

FATE-H

FATE-X

Let G be a finite group of order p?q, where
p and q are primes with p > q. Then the
Sylow p-subgroup of G is normal. (As a
consequence, G is not simple.)

Prove that if #G = 56 then G is not simple.

Prove that if #G = 1785 then G is not simple.

Approach

1. **Sylow’s Third Theorem**:
<>

2. **Divisors Analysis**:

<>

3. **Contradiction for \(n_p =
<>

leading to a contradiction.

q\)**:

We consider the Sylow 7-subgroups.
<..> By Sylow’s third theorem:
<..apply sylow for p=7..>

Now consider the Sylow 2-subgroups.
<..apply sylow for p=2..>

Therefore, we are left with the case:

n_7=8 and n_2=7.

<>

We have 48 elements of order 7, so
the remaining 56-48=8 elements must
form the Sylow 2-subgroup?

But wait, we have 7 Sylow 2-
subgroups, each of order 8. How can
we have only 8 elements left?

<>

Thus, G is not simple.

We will consider the Sylow subgroups
for the primes 3,5,7,17.
<..apply sylow for every possible p..>
Thus:

n_3 € {7,85,595}

n_5 € {21,51}

n_7 € {15,85}

n_17 € {35}
<>
So total nonidentity elements of
prime order: 2*n3 + 4*n5 + 6*n7 +
560
<..long reasoning about counting..>
But we have to find a contradiction
in the remaining 8 cases.
<>

Let's take a specific combination.
For example, combination 1: n3=7,
n5=21, n7=15.

<..long exploration..>

But a Sylow 3-subgroup that is
normalized by P would give a
subgroup generated by P and that
Sylow 3-subgroup, which would have
order 17*%3=51. And we know there are
subgroups of order 51. (This is the
critic construction)

<..long reasoning, failed at the
end..>

Figure 4: Proof structure progression generated by DeepSeek-R1 on FATE-M, FATE-H,
and FATE-X benchmarks. The colored segments represent different reasoning phases: initial
theorem application (blue), synthesis of intermediate results (orange), and exploratory steps
(green).

From Proof Structure to Capability Gradient The increasing complexity of the
required proof structure is directly reflected in the model’s output. The reasoning conte
produced by the model aligns with this structural progression, as visualized in Figurer‘g
using distinct colors to mark different reasoning stages:

e The M-level problem exhibits a simple sequential dependency chain, requiring only linear
deduction. Its monolithic, unidirectional reasoning is represented by a single blue block;

e The H-level problem requires a tree-like dependency structure. The model’s initial paral-
lel explorations (blue block) converge into a final synthetic conclusion (orange block)—a
process we term integrative reasoning;

e The X-level problem corresponds to a more complex, nested proof structure. After initial
analysis proves insufficient, one must extract a new mathematical object from the
proof state and reapply major theorems to it (green block). This nested re-analysis of
intermediate results requires recursive structural analysis.

In summary, the difficulty gradient in this case arises from the deliberate design of increas-

ingly complex proof structures, which in turn demand a progression of capabilities: from
linear to integrative to recursive structural reasoning.

B.3.2 AUXILIARY STATISTICS ON PROOF DIFFICULTY

In this section, we present two statistics: (1) human evaluation of the intermediate natural
language accuracy during the formalization process of DeepSeek-R1 on FATE-M, FATE-H,

20

Under review as a conference paper at ICLR 2026

and FATE-X; and (2) the average output token length of various reasoning models when
solving natural language mathematical problems without formalization.

As noted at the end of Section @, the model first_produces a complete natural language
solution before formalizing it. The data in Table f| reflect expert evaluations of these in-

termediate natural language solutions (Pass@1), showing a clear decreasing accuracy trend
from FATE-M to FATE-H to FATE-X.

Table 5: Intermediate Natural Language Accuracy Across FATE-M/H/X

Model FATE-M FATE-H FATE-X
DeepSeek-R1 94.7% 71.0% 33.0%

It should be noted that these results do not directly represent natural language performance,
since the model’s final task is formalization rather than natural language proof generation.
An ablation study in Appendix @ compares natural language accuracy between a direct
natural language task and the intermediate natural language output within the formalization
task. The results show that although a pure natural language task yields higher accuracy,
the improvement is significantly smaller than the gap between different levels and therefore
does not affect the observed decreasing accuracy trend across the three benchmarks.

Table 6: Average Output Token Length on FATE-M/H/X (Pass@1)

Model FATE-M FATE-H FATE-X
03 1122.4 3799.5 6203.5
Claude-Sonnet-4 3827.8 11872.2 12118.8
Gemini-2.5-Pro 4867.5 8508.6 14694.1
DeepSeek-R1 3845.0 10625.1 16597.4

The token length data in Table E indicate a clear increasing trend in output token length
from FATE-M to FATE-H to FATE-X across all models.

B.4 EXPERT ASSESSMENT

We distributed a questionnaire to 10 professors specializing in algebra and number theory
at top institutions, consisting of two parts: (1) _a_comparison of the difficulty of FATE
against a classical textbook and the ProofNet (Azerbayev et al), 2022) benchmark, and (2)
an assessment of the suitability of FATE benchmark problems for use in PhD qualifying
examinations.

In the first part, we divided the FATE-H and FATE-X benchmarks, classical algebra text-
books Dummit et al) (2004), and the algebra component of ProofNet by mathematical topic.
We then randomly sampled 10 problems with balanced topic distribution from each to form
three anonymous problem sets. Participants were asked to compare and select the best set
across several dimensions. The results are summarized as follows:

o For the most difficult, 10/10 choose FATE.

o For the best coverage, 8/10 choose FATE, 2/10 choose hard to distinguish.

o For the best to test deep understanding, 9/10 choose FATE, 1/10 choose classical text-
book.

o For the most original, 9/10 choose FATE, 1/10 choose hard to distinguish.
« For the best to evaluate ability in mathematical research, 9/10 choose FATE, 1/10 choose
classical textbook.

It has shown that an absolute majority of experts support the view that the problem set
chosen from FATE has the best difficulty, coverage, ability to test deep understanding,

21

Under review as a conference paper at ICLR 2026

originality, and effectiveness for evaluating ability in mathematical research, compared to
the problem sets chosen from classical textbook and ProofNet.

In the second part, we randomly sampled an additional 30 non-overlapping problems from
FATE-X while maintaining balanced topic distributions. Minor supplements from FATE-H
were used to adjust the proportion of abstract algebra and commutative algebra. Partici-
pants were then asked to evaluate the suitability of these problems for PhD qualifying exams
based on several criteria. The results are summarized as follows:

 For coverage of knowledge points in PhD qualifying exams, 4/10 choose completely cov-
ered, 2/10 choose almost completely covered, 3/10 choose mostly covered with no impor-
tant points omitted, 1/10 choose important points omitted.

« For difficulty, 7/10 choose meets or exceeds PhD qualifying exam level, 3/10 choose meets
excellent undergraduate level.

o For ability to differentiate students, 3/10 choose very well, 4/10 choose reasonably well,
3/10 choose insufficient.

o For possibility to construct PhD qualifying exam, 4/10 choose possible, 6/10 choose need
adjustment. Among those choosing need adjustment, 3/6 report too difficult, 3/6 report
need more topics like group representation theory.

The results show that an absolute majority recognize that the problem set meets or exceeds
PhD qualifying exam difficulty and mostly covers knowledge points in abstract and com-
mutative algebra with no important points omitted. One important factor affecting both
differentiation ability and exam construction is that the problem set is more difficult than
standard PhD qualifying exams.

C ANALYSIS OF NATURAL LANGUAGE OUTPUT

C.1 INTERACTION BETWEEN NATURAL LANGUAGE REASONING AND FORMALIZATION

In the main body of this paper, we conclude that the natural language mathematical rea-
soning stage and the formalization stage are functionally decoupled in current models. This
appendix serves to explore the few, yet insightful, cases where a positive interaction between
these two stages does occur.

A clear example of this interaction is when the formalization process reveals a mathemat-
ical error in the preceding natural language proof: In the following example, the model
DeepSeek-R1 initially derived an incorrect formula for an element count. It was only when
attempting to formalize this flawed formula that the model recognized its logical mistake
and reverted to the natural language stage to correct it.

Output of DeepSeek-R1 (FATE-X)

<...>
total_elements_accounted = 1 + 2n_3 + 4n_5 + 6n_7 + 560.
// The model initially provides a counting formula, but forgets to include
elements of composite order.
<...>
let elements_prime_powers : N :=
(Finset.univ.filter (fun x : G => 3 p, p.Prime A orderOf x = p)).card

But note: we are counting elements of prime order?

// During formalization, it reflects on the true meaning of the equation.
<...>

So the total number of elements is:

1 + [n3%2 + n5%4 + n7%6 + n17%16] + (# composite order elements) = 1785.
// It then corrects the counting formula to include all elements.
<...>

22

Under review as a conference paper at ICLR 2026

The comments after // in the code block explain the model’s behavior.

In addition to this, a similar interaction is observed when a model deems a mathematically
valid natural language proof to be ill-suited for formalization. In such instances, the
model may also abandon its initial natural language proof and return to the reasoning stage
to devise an alternative strategy that is more amenable to formalization.

Paradoxically, this consistent pattern of interaction reinforces the hypothesis of functional
decoupling. Whether the feedback from the formal language stage reveals a mathematical
error or a practical formalization obstacle, the model’s response is the same: it reverts to
the natural language stage to perform the core logical revision. The model does not fix
the mathematical logic within the formal framework; instead, it treats the formal language
stage as a verifier that sends the task back to a functionally separate natural language
“prover”. This workflow highlights a clear separation of concerns, further supporting the
view that a decoupled, two-stage research approach is a promising path forward.

C.2 ABLATION STUDY OF PROMPTS

To understand how the prompt influence the model’s natural language performance, we
designed a pass@]1 ablatjon study testing four different prompt settings for DeepSeek-R1 on
FATE-X, see Appendix for explicit prompts:

1. Baseline Prompt: Requires generating a Lean proof and provides the formal statement.

2. Pure Math Prompt: Does not require generating Lean and does not provide the formal
statement.

3. Math Output Prompt: Does not require generating Lean but provides the formal
statement.

4. Math-before-Lean Output Prompt: Builds on the Baseline Prompt, adding a clear
instruction to “output the mathematical proof first”.

Table 7: Natural language accuracy of DeepSeek-R1 under different prompts on FATE-X

Baseline Pure Math Math Output Math-before-Lean Output
Accuracy 33% 43% 39% 32%

The results, shown in Table H, reveal the following:

e The primary influencing factor is the formalization task itself: When the model’s
objective includes generating Lean code (comparing Prompt 1 and 3), the correctness of
its natural language reasoning significantly decreases.

¢ A minor factor is the formal context: When the model is shown the formal state-
ment (comparing Prompt 2 and 3), the correctness of its mathematical reasoning slightly
decreases.

o Explicitly requiring a math-first output has almost no effect: The results for
the Explicit Instruction Prompt 4 were nearly identical to those for the Baseline Prompt
1.

C.3 CASE STuDY: COMMON ERRORS IN NATURAL LANGUAGE REASONING

To better understand the models’ weaknesses in reasoning, we analyzed and categorized
errors in their natural language proofs. These categories are not a non-overlapping classi-
fication but a summary of typical failure modes observed by our experts that covers most
issues. Since advanced models often make subtle errors, this classification relies not just on
the raw output, but also on an expert’s deep understanding of the problem and experience
on grading.

23

Under review as a conference paper at ICLR 2026

C.3.1 Gar

A Gap occurs when the model’s reasoning direction is correct but leaves a key, non-trivial
step not proved. This often involves secretly assuming a necessary lemma or citing an overly
powerful theorem to bypass the argument.

Natural Language Problem Statement

(FATE-X) Prove that if #G = 396 then G is not simple.

Model Output (DeepSeek-Prover-V2)

<...>
- If $n_2 = 99%, count elements:
- $99 \cdot 3 = 297% elements of order 2 or 4.
- Total elements $\geq 120 + 176 + 297 = 593 > 396$, contradiction.

Analysis A standard solution here is to derive a contradiction by counting elements in
all Sylow subgroups. However, a crucial premise for this method is the proof that any two
distinct Sylow subgroups have a trivial intersection. DeepSeek-Prover-V2 skips this key
argument, which is itself a difficult and key part of the problem.

C.3.2 HALLUCINATION

A Hallucination is an explicit statement of a false mathematical fact, typically stemming
from an incorrect recollection of a theorem or flawed mathematical intuition.

Natural Language Problem Statement

(FATE-X) Let k be a field, and set A = k[X,Y, Z]/(X%? - Y2, Y2 - 2% XY, YZ, ZX).
Show that A is Gorenstein.

Model Output (DeepSeek-R1)

<...> For an Artinian local ring to be Gorenstein, it suffices to show that the
socle \operatorname{Soc}(A) = \operatorname{ann}_A(\mathfrak{m}) has \dim_k
\operatorname{Soc}(A) = 1. <...>

Analysis This is a factual error; the condition that the socle has dimension 1 is not
sufficient to be Gorenstein (the correction need an extra condition). Notably, all tested
results (including DeepSeek-Prover-V2, DeepSeek-R1 in 4 attempts) made the exact same
mistake on this problem, suggesting a common knowledge gap in current models regarding
more specialized algebraic theory.

C.3.3 NoO PROGRESSION

A model exhibits “No Progression” when it fails to provide any substantive mathematical
progress, for instance, by reformulating the problem or—similar to a “Gap” error—citing an
overly powerful theorem. The crucial difference is that a “Gap” involves some substantive
progress, while “No Progression” does not.

(FATE-X) Let K/Q be a finite extension. Let g be a nontrivial element of the absolute
Galois group G(K) of K. Show that g admits an infinite number of conjugates.

Model Output (DeepSeek-R1)

24

Under review as a conference paper at ICLR 2026

<...> step 6: the center of the absolute Galois group of a number field is
trivial. This is a theorem. <...>

Analysis The “theorem” stated by the model is, in fact, equivalent to the original problem.
The problem’s actual difficulty lies in constructing specific field extensions. The model thus
merely restated the problem. It is worth mentioning that in the pass@16 experiment for
this problem, almost all attempts made no progress. This outcome suggests—a view also
supported by our expert evaluators—that problems eliciting a “No Progression” response
tap into a fundamental mathematical difficulty that is particularly useful for differentiating
the capabilities of state-of-the-art models.

C.3.4 REASONING PROBLEM

Unlike the previous three categories, which relate primarily to mathematical knowledge or
strategy, a Reasoning Problem stems from deficiencies in the model’s general-purpose
reasoning capabilities. Here, the model uses largely correct mathematical facts but con-
nects them with a flawed logical flow. Because the patterns of these errors are more complex,
we provide a detailed discussion and case analysis in Appcndix@

C.4 VARIANCE IN NATURAL LANGUAGE REASONING

In our pass@16 evaluation of the following problem in FATE-X, we found that the model
initiated three proof routes that are fundamentally different in their mathematical essence.
It is worth noting that while the model made errors in the latter execution of the two
non-standard routes, expert mathematicians confirmed that all three discovered approaches
correspond to viable proof strategies.

PROBLEM STATEMENT

(FATE-X) Let p be a prime number. Let K/Q be a finite extension, such that the
p2-th root of unity is contained in K. Let L/K be a Galois extension of degree p. Show
that there exists a Galois extension L'/L of degree p, such that the extension L'/K is
also Galois.

The model’s approaches are summarized below:

Method 1 (Attempt 1) This is the most common and standard approach, directly
applying Kummer theory for construction:

<...> ‘XAp7r2 - a' over ‘K'. <...>

Method 2 (Attempt 3) This is a more abstract, existential proof that also applies
Kummer theory but relies on an extra deep property of number fields’ multiplicative group:

<...> the key point is: in a number field, the group KA%/(K*%)Ap is infinite.
<eee>

Method 3 (Attempt 12) This is a seemingly direct shortcut that bypasses the general
theory: the construction of the cyclotomic field extension.

<...> To get a nontrivial element, we can take the class of T_p”2 in A <...>

On this open-ended constructive problem, the model was not limited to a single solution but
independently explored and initiated three valid paths of varying difficulty and abstraction.

25

Under review as a conference paper at ICLR 2026

Its strategic distribution also aligns with human intuition: the most standard approach
(Method 1) appeared most frequently. This performance also indicates that a model’s ability
to discover diverse proof strategies—a deeper mathematical capability-can be effectively
tested even when its executional precision remains imperfect.

D ANALYSIS OF FORMAL LANGUAGE OUTPUT

This appendix provides a -depth characterization of the four formalization error cate-
gories identified in Sectionn@, accompanied by illustrative case studies.

D.1 DETAILED FORMAL ERRORS

Mathlib Hallucinations Errors in this category arise when models generate references
to theorems in Mathlib library that do not exist or are used incorrectly in the given context.

1. Hallucinating Theorems or Instances: Models may attempt to use or make up theorems,
definitions, or typeclass instances which does not exist in Mathlib or is named differently.

2. Incorrect Naming Conventions: Models might incorrectly guess the name of an existing
Mathlib lemma or definition, resulting in unknown identifier error.

3. Misunderstanding of Conclusion Forms: Models may incorrectly predict the exact form,
argument order, or return type of a Mathlib function or theorem (e.g., applying a lemma
whose output type does not match the current goal).

Lean Proficiency Issues This category encompasses errors related to the model’s in-
complete or incorrect understanding of Lean’s specific features, conventions, and design
principles, beyond simple syntax.

1. Familiarity with Lean Design and Formal Disciplines: Models struggle with Lean’s unique
design choices. This can include difficulties with specific constructs such as knowing
when a specific instance must be available for a tactic to work, or understanding the
implications of open inappropriate namespace leading to name conflicts.

2. Pure Syntactic and Type-related Problems: Minor but critical syntactic errors. Examples
include incorrectly using structure dot notation, attempting to rw a let binding (which
is not directly rewritable), or failing to explicitly specify type annotations where Lean’s
type inference struggles.

3. Incorrect Prediction of Non-Finishing Tactic Outcomes: Models often fail to correctly
predict whether a non-finishing tactic will successfully make progress towards the goal
or simply fail. For instance, while rw (rewrite) tactic can sometimes be predicted, the
outcomes of complex simp (simplification) tactics are highly unpredictable without inter-
active execution.

General Capability Issues This category encompasses fundamental problems related
to the model’s ability to follow instructions or maintain coherence.

1. Instruction Following Failures: Models generate erroneous import statements or modify
the given formal statement, even when the prompt explicitly forbids such alterations.

2. Collapsing Repetition: Models sometimes fall into repetitive loops, generating the same
sequence of tactics or proof pattern multiple times, or producing long stretches of text
that do not advance the proof. This indicates a failure in coherent generation or an
inability to terminate a thought process.

3. Leaving sorry placeholders: The model fails to complete parts of the proof, leaving sorry
placeholders which indicate an admitted gap in the formal argument.

4. Mismatching Parentheses/Brackets: Basic syntax errors, such as mismatched parentheses,
square brackets, or curly braces, lead to compilation failures.

26

Under review as a conference paper at ICLR 2026

Misalignment This error occurs when the model’s formal proof is inconsistent with pre-
vious mathematical reasoning.

We now present a partial formal proof generated by Deepseek-Prover-V2 that covers the
first three types of errors.

-- Failed by General Capability Issues: Instruction Following Failures (header)
import Mathlib.GroupTheory.GroupAction.Group

import Mathlib.GroupTheory.Index

<...>

open Subgroup QuotientGroup Function Cardinal

noncomputable theorem subgroup_normal_index_le_factorial {G : Type} [Group G] {n
: N} (hn : n# 0) (H: Subgroup G) (hH : H.index = n) : 3 K : Subgroup G,
K.Normal A K < H A K.index # 0 A K.index < n.factorial := by

-- Failed by Mathlib Hallucinations: Misunderstanding of Conclusion Forms

havel : Fintype (G / H) := H.fintypeQuotientOfFiniteIndex (by rw [hH]; exact
nat_lt_aleph0 n)

have card_quot : Fintype.card (G / H) = n := by
rw [Subgroup.index_eq_card] at hH
-- Failed by Lean Proficiency Issues: Familiarity with Lean Design
exact hH

let @ : G »% Equiv.Perm (G / H) := MulAction.toPermHom G (G / H)

let e : G/ H=Fin n := Fintype.equivFinOfCardEq card_quot

-- Failed by Lean Proficiency Issues: Familiarity with Lean Design

let ¥ : G =% Equiv.Perm (Fin n) := (MulAction.toPermHom G (Fin n)).comp
(MonoidHom.comp (Equiv.Perm.congr e.symm) @)

let K : Subgroup G := MonoidHom.ker ¥

-- Failed by Mathlib Hallucinations: Incorrect Naming Conventions

have K_normal : K.Normal := MonoidHom.ker_normal V¥
have K_le_H : K £ H := by
intro g hg

change ¥y g = 1 at hg

-- Failed by Lean Proficiency Issues: Pure Syntactic and Type-related
Problems

have h : ¥ g @ = 0 := by rw [hg, _root_.map_one, one_apply]

For the other two general capability issues, repetition and leaving sorry,we selected an
example to illustrate.

-- Repetition case from Deepseek-Prover-V2
<...>
have h ; : Fintype.card (Sylow 3 G) = 1 [MOD 3] := by
have h g : Fintype.card (Sylow 3 G) = 1 [MOD 3] := by
have h ¢ : Fintype.card (Sylow 3 G) = 1 [MOD 3] := by
have h 10 : Fact (Nat.Prime 3) := szh
have h 11 : Fintype.card (Sylow 3 G) = 1 [MOD 3] := by
exact?
exact h 11
exact h o
exact h g
<...>

-- ‘sorry' case from Deepseek-Prover-V2

<...>
- intro x
rw [dist_eg_norm, dist_eg_norm, one_mul]
sorry -- Continuity of the linear map

27

Under review as a conference paper at ICLR 2026

. sorry -- Injectivity
- sorry -- Surjectivity

Here is an example for misalignment from Deepseek-Prover-V2. During the formalization
process, the model abandoned the correct method of mathematical reasoning in the step of
proving that sin(7/180) is algebraic and instead used a mathematically incorrect path.

Problem Statement (FATE-H)

Prove that sin 1° is algebraic over Q.

Model Output (Deepseek-Prover-V2)

<...>

- The complex number ‘er{in/180%}‘ is a root of unity (specifically, a ‘360‘-th
root of unity, since ‘(e*{in/180})*{360} = er{i2=} = 1').

The sine can be expressed as ‘sin(n/180) = (e*{in/180} - er{-ir/180})/(2i)",
which is a polynomial expression in ‘er{ir/180}‘' and its algebraic
conjugates.

- The field of algebraic numbers is closed under addition, multiplication, and

taking roots, so ‘sin(x/180)‘ is algebraic.

<...>

theorem isAlgebraic_sin_pi_div_180 : IsAlgebraic @ (sin (= / 180)) := by
have h_main : 3 (p : Polynomial Q), p # 0 A Polynomial.aeval (sin (= / 180))
p=0:=hy
-- mathematical incorrect step
have h 1 : IsIntegral @ (sin (x / 180)) := by
have h 2 : IsIntegral R (sin (x / 180)) := by
apply isIntegral_algebraMap
exact
IsIntegral.of_finite @ R (sin (x / 180))
have h » : IsAlgebraic @ (sin (= / 180)) := i1h.isAlgebraic

<...>

D.2 CASE sTuDY ON FATE-X

We conducted a case study on FATE-X, observing that the categories of formalization errors
made by the models were consistent with those identified in FATE-H. Given the novel for-
malization features of FATE-X, we specially examed the models’ behavior on these problems
with new definitions.

Due to the structured output tendency of Deepseek-Prover-V2, we focused our analysis solely
on Deepseek-R1’s results. We observed that the model seldom generates new lemmas re-
lated to the general mathematical properties of the problem’s definitions or establishes new
definitions beyond abbreviations. Furthermore, in no example did the model attempt to
establish lemmas concerning novel mathematical properties presented in the problem state-
ment. This suggests that models do not typically prove reusable theorems (i.e., connections
between abstract properties) or generate such lemmas even when defining new objects.

In the example below, we highlight the new definitions and lemmas output by the model.
Deepseek-R1 established a new definition, but this merely served as an abbreviation for
a mathematical object already present in the problem statement. In subsequent lemmas,
the model attempted to prove some basic properties of this object. However, it failed to
establish any lemmas concerning the new mathematical properties introduced in the problem
statement.

<...>

28

Under review as a conference paper at ICLR 2026

-- #### New definitions lemmas generated by Deepseek-R1

namespace GorensteinProof

variable (k : Type) [Field k]

--- A new definition

def A := MvPolynomial (Fin 3) k / Ideal.span ({(X 0)* 2 - (X 1)*2, (X 1)*2 - (X
2)22, (X 0) * (X 1), (X 1) * (X 2), (X2) % (X0)} : Set (MvPolynomial (Fin
3) k)

variable {k}

instance : CommRing (A k) := <...>

instance : Algebra k (A k) := <...>

instance : Module.Finite k (A k) := by <...>

instance : FiniteDimensional k (A k) := Module.Finite.finiteDimensional

lemma residue_field_iso (h: (LocalRing.maximalIdeal (A k)).IsMaximal) :
LocalRing.ResidueField (A k) =+x k := by <...>

lemma isLocalRing : IsLocalRing (A k) := by <...>

lemma isArtinian : IsArtinianRing (A k) := by <...>
<...>

E COMPARATIVE ANALYSIS: GENERAL MODELS VS. THEOREM
PROVERS

A comparison of intermediate natural language accuracy on FATE-H (Table E) reveals that
DeepSeek-R1 significantly outperforms both DeepSeek-V3 and DeepSeek-Prover-V2. The
latter two models exhibit similar performance.

Table 8: Intermediate natural language accuracy of DeepSeek-V3, DeepSeek-Prover-V2, and
DeepSeek-R1 on the FATE-H benchmark.

DeepSeek-V3 DeepSeek-Prover-V2 DeepSeek-R1
Accuracy 40 % 39 % 71 %

In this section, an asterisk (*) indicates that the results for this model were not obtained
from our main experiment.

E.1 ANALYSIS OF BEHAVIORS DURING THE REASONING PROCESS

In research-level mathematical reasoning, the initial phase often requires associating the
concepts in a problem with common proof patterns or established theories to guide the
exploration. This phase primarily tests prior knowledge and mathematical intuition. We
observe that the three models in the DeepSeek series often exhibit similar approaches, and
occasionally fall into the same traps, during this stage.

CaAsE 1: SIMILAR INITIAL INTUITION (FATE-H)

Problem Statement

29

Under review as a conference paper at ICLR 2026

Let E be the splitting field of

2" -1
flx)= T =S+ttt 41

over Q. Let ¢ be a zero of f(x), i.e., a primitive seventh root of 1. Let 3 = ¢ + (% + (%
Show that the intermediate field Q(8) is actually Q(v/—7).

Model Output (DeepSeek-Prover-V2)

<...>

key observation: The element ‘\beta = \zeta + \zeta?2 + \zeta?4' is a sum of
terms that are permuted by the Galois group of ‘f(x)‘ over ‘\mathbb{Q}‘. The
Galois group is isomorphic to ‘(\mathbb{z}/7\mathbb{Z})A\ast \cong
\mathbb{z}/6\mathbb{z}*

<...>

*xDeriving the Minimal Polynomial of ‘B‘:xx...

Model Output (DeepSeek-R1)

<..> --Let “\tau = \sigma”*{2}‘. So the subgroup ‘H = \{\mathrm{id}, \tau,
\tau”r2\}' has order 3... Now observe that ‘\beta = \zeta + \zeta”2 + \zeta”4'
is fixed by ‘\tau'

<...>

Model Output (DeepSeek-V3)

<...> -- ‘\beta' is fixed by the Galois automorphism ‘\sigma‘' sending ‘\zeta‘' to
‘\zetar2?
<...>

(This is cited from its formal proof, because the output provides very few natural language
reasoning.)

Analysis: In Case 1, all three models first considered the Galois action on the cyclotomic
field, as it is the most relevant systematic theory. However, the most direct solution to this
problem does not require such background knowledge, as evidenced by DeepSeek-Prover-
V2’s subsequent adoption of an independent proof strategy.

As reasoning deepens, established theories or templates often provide only a framework or,
more weakly, a mere directional hint. The core task then becomes filling in details, adjusting
the approach, and iterating through trial and error. This process, which demands deep
thinking and what we term effective reflection—the ability to locate, diagnose, evaluate,
and repair internal flaws in an argument—is crucial.

At this stage, DeepSeek-V3 typically resorts to skipping the details within the framework
or fabricating intermediate conclusions. Lacking a robust reflective capability, DeepSeek-V3
often fails to deeply analyze or simply sidesteps the problem’s core challenge.

CASE 2: SIDESTEPPING THE CORE CHALLENGE (FATE-H)

Problem Statement

Let R be an integral domain and let 7, j be relatively prime integers. Prove that the
ideal (z* — y7) is a prime ideal in R[z,y].

Model Output (DeepSeek-V3)

30

Under review as a conference paper at ICLR 2026

<...> step3, We show that \(x*i - y*j\) is irreducible by using the fact that
\(X*i - YA3\) is irreducible in \(R[X,Y]\) when \(i\) and \(j\) are coprime
(this is a known result from algebra). <...>

Analysis: Translating the problem of proving a prime ideal to proving the irreducibility
of its generator is a standard method in commutative algebra. The main challenge of this
problem, however, lies in proving this irreducibility. DeepSeek-V3 circumvents this task by
citing it as a “known result”.

In contrast, while DeepSeek-Prover-V2 engages in more detailed reasoning, it often fails to
properly evaluate, summarize, or correct its attempts. Instead, it tends to abruptly switch
to a new line of reasoning or introduce different errors, which hinders its ability to construct
effective long-chain arguments.

CASE 3: INEFFECTIVE SELF-EvALUATION (FATE-H)

Problem Statement

Prove that if #G = 56 then G is not simple.

Model Output (DeepSeek-Prover-V2)

<...>

The remaining 8 elements must form the Sylow 2-subgroup. <...>

These 8 elements must be the unique Sylow 2-subgroup.

<...>

However, the most straightforward way is to use the following logic:
<...>

But this is still not correct:

<...>

The correct way is to observe that if n2=7, then G acts transitively on these 7
subgroups

<...>

A better way is to use the counting argument:

<...>

Analysis: DeepSeek-Prover-V2’s behavior here is highly typical. It begins with a correct
counting-based approach but then abruptly shifts to a slightly different counting argument.
It subsequently retracts this, moves to a group action approach (failing to notice a counting
error within it), and finally returns to its initial argument. This demonstrates that DeepSeek-
Prover-V2’s “reflection” is often a formalistic exercise in changing direction rather than
a substantive self-assessment. The disconnectedness of the reasoning across paragraphs
indicates an inability to effectively evaluate its own arguments.

DeepSeek-R1, however, sometimes demonstrates an ability to make minor but effective ad-
justments to its reasoning path. It can extract useful information from incomplete lines
of argument and occasionally exhibits iterative error correction (Case 4). Yet, this very
iterative process rapidly increases the complexity of the reasoning state, posing a signifi-
cant challenge to the model’s context-handling capabilities. In such complex environments,
DeepSeek-R1 is still prone to reasoning errors (Case 5).

CASE 4: ITERATIVE CORRECTION (FATE-X)

Problem Statement

Let A=R[X,Y]/(X?+Y?+1). Then it is a principal ideal domain.

31

Under review as a conference paper at ICLR 2026

Model Output (DeepSeek-R1%*)

<...>

So what is the ideal that we should consider?

<...>

Therefore, the ideal generated by X and Y <...> No, because 1 = - (2X+2?Y) <...>
For example, the point (i,0) is defined over the complexes <...> we cannot
write it as (X - i, Y) because i is not in the base ring. <...> So (X, Y-1)
has no common zero, so by Hilbert's Nullstellensatz, it is the unit ideal?

<...>

Analysis: This excerpt shows DeepSeek-R1 attempting to construct a non-trivial ideal. It
tries to define an ideal by picking points in the complex field but realizes through several
attempts that these constructions are either invalid or lead to the trivial ideal. Through
this process of trial and error, it gradually recognizes that a non-trivial ideal must be
constructed over the reals and correctly connects the problem to the conditions of Hilbert’s
Nullstellensatz.

CASE 5: FAILURE IN A COMPLEX REASONING STATE (FATE-X)

Problem Statement

Prove that if #G = 1785 then G is not simple.

Model Output (DeepSeek-R1)

<...>

Combination 1: n3=7, nb=21, n7=15 -> 2%7=14, 4%21=84, 6%15=90;
total=14+84+90=188 \leq 1224 -> ok, but then C=1224-188=1036>0, so no
contradiction.

<...>
So only combinations 1-8 are possible. Let's take a specific combination.
For example, combination 1: n3=7, nb=21, n7=15.<...> The normalizer has index
n3=7, so its order is 1785/7=255.... But we can't get a contradiction from
that.

<...>

the number of Sylow 17-subgroups: n_17 in the normalizer: must divide 255.

Analysis: This solution is also discussed in the most difficult example of Appendix . As
the analysis before, after applying sylow theorem and counting elements, the model reduces
the problem to eight possible combinations of Sylow subgroup counts. It then explores a
specific case (Combination 1) and derives an intermediate result—that the normalizer of
a Sylow 3-subgroup has order 255—but this path does not lead to a contradiction. The
model then returns to the general case and successfully deduces a key relationship between
the Sylow 17-subgroups and Sylow 3-subgroups. Unfortunately, it then incorrectly applies
the intermediate result (order 255), which is valid only for Combination 1, to the general
argument, causing the proof to fail.

We note that on the more difficult FATE-X problems, the performance gap between
DeepSeek-R1 and DeepSeek-Prover-V2 widens even further than on FATE-H. This suggests
that for frontier-level mathematics, the guidance offered by prior knowledge and established
patterns becomes increasingly insufficient. Instead, the ability to conduct long-range reason-
ing within a complex state and, crucially, to loacate, diagnose and repair flaws via effective
reflection, becomes the determining factor. We therefore believe that enhancing the capac-
ity for deep thinking with effective reflection, as demonstrated by general reasoning models,
is a more promising path toward research-level mathematical AI than merely expanding a
model’s repository of prior knowledge.

32

Under review as a conference paper at ICLR 2026

E.2 MiISALIGNED BEHAVIORS IN NATURAL LANGUAGE REASONING PROCESS

In addition to differences in reasoning ability, we observed behaviors in DeepSeek-Prover-V2
model that are inconsistent with the core objective of solving the mathematical problem.

CASE 6: Conscrous “CHEATING” (FATE-H)

Problem Statement

Let Dg be the dihedral group with 8 elements. Prove that Aut(Dg) & Ds.

Model Output (DeepSeek-Prover-V2)

<...>

‘theorem problem_59 : Nonempty (MulAut (DihedralGroup 4) =% DihedralGroup 4) :=
by classical apply Nonempty.intro sorry*

The simplest. This is admittedly cheating, but it matches the requirements of
the Lean problem.

<...>

Analysis: In this case, the model explicitly acknowledges that it is “cheating” by using
sorry to bypass the proof and satisfy the formal verifier.

CASE 7: QUESTIONING THE PROBLEM STATEMENT (FATE-X)

Problem Statement

Let A be a Noetherian ring, P C @ prime ideals such that ht P = h, ht Q/P = d, where
d > 1. Prove that there exist infinitely many intermediate primes P’, P C P’ C @ such
that ht PP =h+1and htQ/P' =d — 1.

Model Output (DeepSeek-Prover-V2)

<...>
Wait, no: in Lean, ‘Ideal.height‘ is the Krull dimension of ‘R / I‘ (‘I.height =
krullbim (R / I)'), not the height of ‘I‘ as commonly defined in commutative

algebra! ... But ‘krullDim (R / Q) = d‘ by assumption, so ‘d = d - 1', which
is false for 'd > 1'. This is a contradiction unless the interpretation is
incorrect.

Analysis: After a period of standard reasoning, DeepSeek-Prover-V2 arrives at a contra-
diction due to a misunderstanding of the formal definition of Ideal.height in Lean. Instead
of questioning its own interpretation of the formal library, it concludes that the problem
statement itself must be flawed.

F EXPERIMENT DETAILS

In Appendix @, we detailed our formal experiment setup, encompassing both the genera-
tion and verification phases, while Appendix further elaborates on the process, standards,
and methodology for our manual natural language evaluations.

F.1 DETAILED BASELINE EXPERIMENT SETUP
F.1.1 GENERATION

For our main experiments, we deployed all theorem provers as services with OpenAl-style
API interfaces. Similar to the general reasoning models, we interacted with these large
models via APT calls. In all experiments, we consistently used a maximum token length of

33

Under review as a conference paper at ICLR 2026

64k. The temperature settings were kept at their defaults for each model: OpenAl models
defaulted to a temperature of 1 (ranging from 0 to 2), while both Gemini and Anthropic
models defaulted to 1 (ranging from 0 to 1).

F.1.2 VERIFICATION

This appendix explained the verification methodology in Section @ employed to ensure the
correctness and integrity of the generated Lean proofs, especially considering the models’
flexibility to generate auxiliary definitions and lemmas.

The verification process is divided into string checking and Lean REPL testing.

String-Based Pre-validation Initially, we perform a series of string-based checks on
the generated Lean code. This involves removing all comments and using based regular
expressions based on Lean keyword to identify all headers (including import, namespace,
section, and other configurations), definition, instance, lemma, and theorem statements.
After standardizing import statements to import Mathlib, we proceed with several string-
level validations:

1. Keyword Detection: We scan for critical keywords such as axiom, opaque, unsafe, or
unsound. The presence of any such keyword immediately flags the proof as a failure;

2. Component Alignment: We verify that all definition, instance, and lemma statements
from the original problem’s formalization exactly appear in the extracted components of
the generated formal proof, and critically, that they appear in the correct order. Any
deviation in sequence or omission leads to the proof being marked as a failure;

3. Theorem Statement Match: A final structural check ensures that the theorem component
extracted from the generated file precisely matches the main theorem statement of the
original problem. Any mismatch also results in the proof being deemed a failure.

Lean Verification Upon successfully passing all the string-based checks, every formal
proof is rigorously checked by the Lean kernel to confirm it contains no sorry or compilation
erTors.

A proof that passes both phases is considered to be correct.

F.1.3 ADDITIONAL PASs@QK RESULTS

We report Pass@k results (with & = 2™ for n = 0,...,6) in Table E for the FATE-M and
FATE-H benchmarks, omitting FATE-X as no model achieved a successful proof. These
results are estimated from n = 64 samples per problem using the unbiased estimator:

|

PassQk = Eproblems |} - (1]2)
(%)
as introduced in Chen et al) (2021).

F.2 NATURAL LANGUAGE ACCURACY EVALUATION

F.2.1 EVALUATOR QUALIFICATIONS

To ensure a professional and accurate evaluation, we convened a team of mathematical
experts. All evaluators are PhDs or postdoctoral researcher in algebra with deep domain
expertise. Furthermore, all have prior experience grading university-level mathematics ex-
aminations as teaching assistants or examiners, making them well-versed in the standards
of academic proofs.

F.2.2 EVALUATION WORKFLOW AND STANDARDS

Our evaluation workflow was designed to assess the validity of model-generated natural
language proofs in an objective and consistent manner.

34

Under review as a conference paper at ICLR 2026

Table 9: PassQk results across the FATE series

(a) Pass@k on FATE-M (%)

Model Pass@k
1 2 4 8 16 32 64
Reasoning model
03 24.8 323 38.7 43.1 46.2 488 51.3
Claude-Sonnet-4 11.6 16.7 226 29.0 352 406 45.3
Gemini-2.5-Pro 8.0 123 174 23.0 28.7 344 40.0
DeepSeek-R1 74 11.3 158 204 24.8 29.3 34.7

Theorem Prover

Deepseek-Prover-V2-671B 25.3 33.7 41.0 472 53.2 588 62.7
Goedel-Prover-V2-32B 21.2 269 323 36.9 41.0 449 487
Kimina-Prover-72B 10.5 145 19.0 23.8 284 32,5 36.0

(b) Pass@k on FATE-H (%)

Model Pass@k
1 2 4 8 16 32 64
Reasoning model
03 0.1 02 04 0.8 14 22 3.0
Claude-Sonnet-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gemini-2.5-Pro 00 00 00 00 00 0.0 0.0
DeepSeek-R1 00 00 00 00 00 0.0 0.0

Theorem Prover

Deepseek-Prover-V2-671B 0.4 0.7 1.1 1.7 2.2 2.5 3.0
Goedel-Prover-V2-32B 0.4 0.7 1.1 1.5 1.8 2.0 2.0
Kimina-Prover-72B 0.5 0.8 1.1 1.3 1.6 1.9 20

Understanding the Ground-Truth Proof Before reviewing any model output, evalu-
ators were required to first carefully read and fully understand the ground-truth proof of
the problem, grasping its key steps and core ideas.

Assessing the Model’s Proof Based on their understanding of the ground-truth proof,
evaluators then judged whether the natural language text generated by the model consti-
tuted a valid mathematical proof. Given that this evaluation aims to assess mathematical
ability in a decoupled manner, evaluators were instructed to completely disregard any for-
malization code and its associated errors, focusing solely on the mathematical logic of the
natural language portion. It is important to note that judging the “validity” of a natural
language proof inevitably relies on the professional knowledge and subjective judgment of
the evaluator, which underscores the importance of our evaluators’ expert background.

Standard for Adjudicating Long Outputs We observed that reasoning models, such
as DeepSeek-R1, often produce exceptionally long outputs containing extensive preliminary
thoughts, trials, self-corrections, and even discarded paths. For this scenario, we established
a clear standard:

e The evaluator’s primary task is to locate and identify the proof that the model
ultimately presents as its “final answer”.

e Using this “final proof” as a thread, the evaluator must then trace back and integrate
all relevant arguments that the model provided throughout its entire reasoning

35

Under review as a conference paper at ICLR 2026

process to support this conclusion. Components of the argument are sometimes
scattered across the long-form output.

e The final judgment is based on this reconstructed, complete chain of reasoning.

F.3 JUDGMENT AND ATTRIBUTION

Based on the above standards, evaluators provided a conclusion and attribution for each
model output.

e Validity Assessment: First, to determine if the reconstructed proof was valid and
whether there were any logical gaps, particularly in its core steps.

e Error Attribution: If the model failed to provide a correct proof, the evaluator
was required to clearly identify the core error and provide a reason. This provided
crucial data for our subsequent error analysis.

e Evaluator Remarks: After completing the above tasks, we encouraged evaluators
to write down any additional observations or comments on the model’s performance.
These remarks provided valuable qualitative insights into the models’ “thought pat-
terns”.

G PRroOMPTS

G.1 MAIN EXPERIMENT PROMPTS

For theorem provers that provide a prompt in the original paper, we use the specified prompt,
which is listed below. For other models, we employ the following baseline prompt:

Baseline Prompt

You are an expert in Lean 4 and Mathematics. Please finish the following proof
in Lean4 code. Do not change the original statement. Copy the final statement to
prove exactly. Please include the complete header (including imports and
namespaces) so that your code can pass the Lean4 compiler. Please solve the
statement step by step and provide your complete Lean4 code between ‘‘‘lean4 and
‘' after careful reasoning. The statement for you to complete is:

‘‘‘Yleand
{FORMAL_STATEMENT}

ANAWAY

DeepSeek-Prover-V2(CoT)/Goedel Prompt

Complete the following Lean 4 code:
‘Y 'leand
{FORMAL_STATEMENT}

ANAWAY

Before producing the Lean 4 code to formally prove the given theorem, provide a
detailed proof plan outlining the main proof steps and strategies. The plan
should highlight key ideas, intermediate lemmas, and proof structures that will
guide the construction of the final formal proof.

Kimina Prompt

Think about and solve the following problem step by step in Lean 4.
Problem: {INFORMAL_STATEMENT}

Formal statement:
‘*‘leand
{FORMAL_STATEMENT}

ANAWAY

36

Under review as a conference paper at ICLR 2026

G.2 NATURAL LANGUAGE ABLATION

Pure Math Prompt

You are an expert mathematician in the field of abstract algebra and commutative
algebra. Your task is to provide a complete and detailed proof for the following
mathematical problem. The solution will be meticulously assessed by a human
expert for correctness, clarity, and logical rigor. So while you can assume
foundational knowledge, every step of your argument must be explicit, rigorous,
and logically sound.
Problem:

{INFORMAL_STATEMENT}

Math Output Prompt

You are an expert in Mathematics. Please complete the following proof. The
problem is stated in Lean4 code. You don't need to write a formal —proofall
reasoning and proofs should be explained in natural language. Solve the
statement step by step and provide your final answer after ###Final Answer,
after careful reasoning. The statement for you to complete is:

‘YVleand
{FORMAL_STATEMENT}

ANAWAY

Math-before-Lean Output Prompt

You are an expert in Lean 4 and Mathematics. Please finish the following proof
in Lean4 code. Do not change the original statement. Copy the final statement to
prove exactly. Please include the complete header (including imports and
namespaces) so that your code can pass the Lean4 compiler. Please solve the
statement step by step and provide your complete Lean4 code between ‘‘‘lean4 and
‘' after careful reasoning. Please also write down your complete natural
language proof in detail before the Lean4 code. The statement for you to
complete is:

‘*‘leand
{FORMAL_STATEMENT}

AN WY

H UsaGe or LLM

During the preparation of this manuscript, large language models were used solely for the
purpose of language polishing.

37

	Introduction
	Related Works
	The FATE Benchmark Series: Design and Curation
	Benchmark Curation
	Benchmark Characteristics

	Experiments and Results
	Experiment Setup
	Benchmark Performance
	Natural Language Reasoning Analysis
	Manual Evaluation of Natural Language Proofs
	Ablation Study on the Impact of Prompts
	Analysis of Main Findings

	Formalization Error Analysis
	General Models vs. Theorem Provers
	Implications and Discussion

	Conclusions
	Introduction to Formalization and Lean
	Benchmark Quality Analysis
	Representative Examples
	Diversity
	Problem Types
	Domain Statistics

	Progressive Difficulty
	Case Study: A Graded Challenge on Non-Simple Groups
	Auxiliary Statistics on Proof Difficulty

	Expert Assessment

	Analysis of Natural Language Output
	Interaction Between Natural Language Reasoning and Formalization
	Ablation Study of Prompts
	Case Study: Common Errors in Natural Language Reasoning
	Gap
	Hallucination
	No Progression
	Reasoning Problem

	Variance in Natural Language Reasoning

	Analysis of Formal Language Output
	Detailed Formal Errors
	Case study on FATE-X

	Comparative Analysis: General Models vs. Theorem Provers
	Analysis of Behaviors during the Reasoning Process
	Misaligned Behaviors in Natural Language Reasoning Process

	Experiment Details
	Detailed Baseline Experiment Setup
	Generation
	Verification
	Additional Pass@k Results

	Natural Language Accuracy Evaluation
	Evaluator Qualifications
	Evaluation Workflow and Standards

	Judgment and Attribution

	Prompts
	Main Experiment Prompts
	Natural Language Ablation

	Usage of LLM

