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ABSTRACT

There has long been a variety of theoretical and empirical evidence supporting the
success of ensemble learning. Deep ensembles in particular leverage training ran-
domness and expressivity of individual neural networks to gain prediction diver-
sity and ultimately a boost in generalization performance, robustness and uncer-
tainty estimation. In respect of generalization ability, it is found that minimizers
pursuing wider local minima result in models being more robust to shifts between
training and testing sets. A natural research question arises out of these two ap-
proaches as to whether better generalization ability can be achieved if ensemble
learning and loss sharpness minimization is integrated. Our work takes the lead
in investigating this connection and proposes DASH - a learning algorithm that
promotes diversity and flatness within deep ensembles. More concretely, DASH
encourages base learners to move divergently towards low-loss regions of minimal
sharpness. We provide a theoretical backbone for our method along with empirical
evidence demonstrating an improvement in ensemble generalization ability.

1 INTRODUCTION

Ensemble learning refers to learning a combination of multiple models in a way that the joint per-
formance is better than than any of the ensemble members (so-called base learners). An ensemble
can be an explicit collection of functionally independent models where the final decision is formed
via approaches like averaging or majority voting of individual predictions. It can implicitly be a sin-
gle model subject to stochastic perturbation of model architecture during training (Srivastava et al.,
2014; Wan et al., 2013; Huang et al., 2016) or composed of sub-modules sharing some of the model
parameters (Wenzel et al., 2020; Wen et al., 2020). An ensemble is called homogeneous if its base
learners belong to the same model family and heterogeneous otherwise.
Traditional bagging technique (Breiman, 1996a) is shown to reduce variance among the base learners
while boosting methods (Breiman, 1996b; Zhang & Zhang, 2008) are more likely to help reduce
bias and improve generalization. Empirical evidence further points out that ensembles perform
at least equally well as their base learners (Krogh & Vedelsby, 1994) and are much less fallible
when the members are independently erroneous in different regions of the feature space (Hansen &
Salamon, 1990). Deep learning models in particular often land at different local minima valleys due
to training randomness, from initializations, mini-batch sampling, etc. This causes disagreement
on predictions among model initializations given the same input. Meanwhile, deep ensembles (i.e.,
ensembles of deep neural networks) are found to be able to “smooth out” the highly non-convex loss
surface, resulting in a better predictive performance (Hansen & Salamon, 1990; Perrone & Cooper,
1995; Garipov et al., 2018; Fort & Ganguli, 2019; Li et al., 2018). Ensemble models also benefit
from the enhanced diversity in predictions, which is highlighted as another key driving force behind
the success of ensemble learning (Dietterich, 2000). Further studies suggest that higher diversity
among base learners leads to better robustness and predictive performance (Hansen & Salamon,
1990; Ovadia et al., 2019; Fort et al., 2019; Sinha et al., 2020). A recent work additionally shows
that deep ensembles in general yield the best calibration under dataset shifts (Ovadia et al., 2019).
Tackling model generalization from a different approach, sharpness-aware minimization is an
emerging line of work that seeks the minima within the flat loss regions, where SAM (Foret et al.,
2021) is the most popular method. Flat minimizers have been theoretically and empirically proven
in various applications to yield better testing accuracies (Jiang et al., 2020; Petzka et al., 2021; Dz-
iugaite & Roy, 2017). At every training step, SAM performs one gradient ascent step to find the
worst-case perturbations on the parameters. Given plenty of advantages of ensemble models, a nat-
ural question thus arises as to whether ensemble learning and sharpness-aware minimization can be
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integrated to boost model generalization ability. In other words, can we learn a deep ensemble of
sharpness minimizers such that the entire ensemble is more generalizable?
Motivated by this connection, our work proposes a sharpness-aware ensemble learning method that
aims to improve the ensemble predictive accuracy. More concretely, we first develop a theory show-
ing that the general loss of the ensemble can be reduced by minimizing loss sharpness for both the
ensemble and its base learners (See Theorem 1). By encouraging the base learners to move closer to
flat local minima, we however observe that under this sharpness-minimization scheme, the networks
converge to low-loss tunnels that are close to one another, thereby compromising ensemble diversity
(See Section 3.3). Fortunately, this means that ensemble generalization can still be further improved.
To this end, we contribute a novel diversity-aware agnostic term that navigates the individual learners
to explore multiple wide minima in a divergent fashion. This term is introduced early on in the
process where it first encourages individual learns to agnostically explore multiple potential gradient
pathways, then to diverge towards those that help achieve the common goal.
In the remainder of the paper, we provide empirical evidence confirming that promoting diversity re-
sults in an increase the ensemble predictive performance and better uncertainty estimation capability
than the baseline methods. To the best of our knowledge, we are the first to explore the connection
between ensemble diversity and loss sharpness. Our work sheds lights on how to guide individual
learners in a deep ensemble to collaborate effectively on a high-dimensional loss landscape. Our
contributions in this paper are summarized as follows:

• We propose DASH: an ensemble learning method for Diversity-aware Agnostic Ensemble
of Sharpness Minimizers. DASH seeks to minimize generalization loss by directing the
base classifiers in the ensemble towards diverse loss regions of maximal flatness.

• We provide a theoretical development for our method, followed by the technical insights
into how adding the diversity-aware term promotes diversity in the ensemble that ultimately
leads to better model generalization.

• Across various image classification tasks, we demonstrate an improvement in model gener-
alization capacity of both homogeneous and heterogeneous ensembles up to 6%, in which
the latter benefits significantly.

2 RELATED WORKS

Ensemble Learning. The rise of ensemble learning dates back to the development of classical
techniques like bagging (Breiman, 1996a) or boosting (Breiman, 1996b; Freund et al., 1996; Fried-
man, 2001; Zhang & Zhang, 2008) for improving model generalization. While bagging algorithm
involves training independent weak learners in parallel, boosting methods iteratively combine base
learners to create a strong model where successor learners try to correct the errors of predecessor
ones. In the era of deep learning, there has been an increase in attention towards ensembles of deep
neural networks. A deep ensemble made up of low-loss neural learners has been consistently shown
to yield to outperform an individual network (Hansen & Salamon, 1990; Perrone & Cooper, 1995;
Huang et al., 2017; Garipov et al., 2018; Evci et al., 2020). In addition to predictive accuracy, deep
ensembles has achieved successes in such other areas as uncertainty estimation (Lakshminarayanan
et al., 2017; Ovadia et al., 2019; Gustafsson et al., 2020) or adversarial robustness (Pang et al., 2019;
Kariyappa & Qureshi, 2019; Yang et al., 2021; 2020).
Ensembles often come with high training and testing costs that can grow linearly with the size of
ensembles. This motivates recent works on efficient ensembles for reducing computational over-
head without compromising their performance. One direction is to leverage the success of Dynamic
Sparse Training (Liu et al., 2021; Mocanu et al., 2021; Evci et al., 2022) to generate an ensemble
of sparse networks with lower training costs while maintaining comparable performance with dense
ensembles (Liu et al., 2022). Another light-weight ensemble learning method is via pseudo or im-
plicit ensembles that involves training a single model that exhibits the behavior or characteristic of an
ensemble. Regularization techniques such as Drop-out (Srivastava et al., 2014; Gal & Ghahramani,
2016), Drop-connect (Wan et al., 2013) or Stochastic Depth (Huang et al., 2016) can be viewed as an
ensemble network by masking the some units, connections or layers of the network. Other implicit
strategies include training base learners with different hyperparameter configurations (Wenzel et al.,
2020), decomposing the weight matrices into individual weight modules for each base learners (Wen
et al., 2020) or using multi-input/output configuration to learn independent sub-networks within a
single model (Havasi et al., 2020).
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Sharpness-Aware Minimization. There has been a growing body of works that theoretically and
empirically study the connection between loss sharpness and generalization capacity (Hochreiter &
Schmidhuber, 1994; Neyshabur et al., 2017; Dinh et al., 2017; Fort & Ganguli, 2019). Convergence
in flat regions of wider local minima has been found to improve out-of-distribution robustness of
neural networks (Jiang et al., 2020; Petzka et al., 2021; Dziugaite & Roy, 2017). Some other works
(Keskar et al., 2017; Jastrzebski et al., 2017; Wei et al., 2020) study the effect of the covariance of
gradient or training configurations such as batch size, learning rate, dropout rate on the flatness of
minima. One way to encourage search in flat minima is by adding regularization terms to the loss
function such as Softmax output’s low entropy penalty (Pereyra et al., 2017; Chaudhari et al., 2017)
or distillation losses (Zhang et al., 2018; 2019).
SAM (Foret et al., 2021) is a recent flat minimizer widely known for its effectiveness and scalability,
which encourages the model to search for parameters in the local regions that are uniformly low-
loss. SAM has been actively exploited in various applications: meta-learning bi-level optimization
in (Abbas et al., 2022), federated learning (Qu et al., 2022), domain generalization (Cha et al.,
2021), multi-task learning (Phan et al., 2022) or for vision transformers (Chen et al., 2021) and
language models (Bahri et al., 2022). Coming from two different directions, ensemble learning
and sharpness-aware minimization yet share the same goal of improving generalization. Leveraging
these two powerful learning strategies in a single framework remains an explored area. Our work
contributes a novel effort to fill in this research gap.

3 METHODOLOGY

In this section, we first present the theoretical development demonstrating why incorporating sharp-
ness awareness in ensemble learning is beneficial for improving the generalization ability of ensem-
ble models. While encouraging sharpness in the base learners guides them closer towards flat regions
of local minima, it compromises the ensemble diversity, which is crucial for ensemble learning. Ad-
dressing this issue, we later propose a novel early diversity-aware term that introduces diversity
among the base learners.

3.1 ENSEMBLE SETTING AND NOTIONS

We now explain the ensemble setting and the notions used throughout our paper. Given m base
learners f (i)

θi
(x) , i = 1, ...,m, we define the ensemble model

f ens
θ (x) =

1

m

m∑
i=1

f
(i)
θi

(x) ,

where θ = [θi]
m
i=1, x ∈ Rd, and f (x) ∈ ∆M−1 =

{
π ∈ RM : π ≥ 0 ∧ ∥π∥1 = 1

}
. Here, parame-

ters θi and θ are used only for the classifier f (i)
θi

and the ensemble classifier f ens
θ , respectively. It is

worth noting that the base learners f (i)
θi

can be different architectures.

Assume that ℓ : RM × Y −→ R, where Y = [M ] = {1, . . . ,M} is the label set, is a convex and
bounded loss function. The training set is denoted by S = {(xi, yi)}Ni=1 of data points (xi, yi) ∼ D,
where D is a data-label distribution. We denote

LS (θi) =
1

N

N∑
j=1

ℓ
(
f i
θi (xj) , yj

)
and LD (θi) = E(x,y)∼D

[
ℓ(f i

θi(x), y)
]

as the empirical and general losses w.r.t. the base learner θi.
Similarly, we define the following empirical and general losses for the ensemble model

LS (θ) =
1

N

N∑
j=1

ℓ (f ens
θ (xj) , yj) and LD (θ) = E(x,y)∼D [ℓ (f ens

θ (x) , y)] .

One of the key motivations is to ensure the ensemble model fens
θ can generalize well on the data-

label distribution D, while only be optimized on a finite training set S. To achieve this desideratum,
we develop an upper-bound for the general loss of the ensemble model in Section 3.2.

3



Under review as a conference paper at ICLR 2024

3.2 SHARPNESS-AWARE ENSEMBLE LEARNING

The following theorem explains how minimizing the sharpness for the ensemble and base learners
help reduce the general loss of the ensemble model, whose proof can be found in Appendix A.
Theorem 1. Assume that the loss function ℓ is convex and upper-bounded by L. With the probability
at least 1− δ over the choices of S ∼ DN , for any 0 ≤ γ ≤ 1, we have

LD (θ) ≤ (1− γ)

m

m∑
i=1

max
θ
′
i :∥θ

′
i−θi∥<ρ

LS

(
θ
′

i

)
+ γ max

θ′:∥θ′−θ∥<
√
mρ
LS(θ

′) +
CL√
N
×

{
m

√
log

mNk

δ

+

√
km log

(
1 +

∑m
i=1 ∥θi∥2
mρ2

(
1 +

√
log(N)/(mk)

)2)
+

m∑
i=1

√
k log

(
1 +
∥θi∥2
ρ2

(
1 +

√
log(N)/k

)2)
+O(1)

}
,

where C is a universal constant.
As introduced in Foret et al. (2021), given a model fθ, the sharpness is defined as the maximum loss
difference between the model and its perturbed version, i.e., maxθ′:∥θ′−θ∥<ρ LS (θ′)−LS (θ) which
is an upper bound of the generalization error LD(θ). Therefore, minimizing the sharpness can help
to improve the generalization ability of the model. However, most of the previous sharpness-aware
methods focused on a single model. For the first time, we connect the sharpness-aware minimiza-
tion with ensemble learning. Theorem 1 suggests that enforcing sharpness awareness for both the
ensemble and base learners could assist us in improving the generalization ability of the ensemble
model. More specifically, the first term on the RHS of the inequality can be interpreted as the average
sharpness of the base learners, while the second term is the sharpness of the ensemble model. The
trade-off parameter γ signifies the levels of sharpness-aware enforcement for the ensemble model
alone and its base learners themselves.
To further investigate the trade-off between these terms, we conduct the experiments on the CI-
FAR100 dataset by varying γ and observing the ensemble performance as shown in Figure 1. It can
be seen that varying γ does significantly affect the ensemble performance, with a difference of more
than 1.8% in ensemble accuracy. Interestingly, the ensemble accuracy and its uncertainty estimation
capability peak when γ = 0 and decrease when γ increases. This observation suggests that min-
imizing the sharpness of the base learners is more effective than minimizing the sharpness of the
ensemble model, which is the base setting of our method from now on. This antagonistic behavior
of the ensemble model interestingly concurs with an observation in Allen-Zhu & Li (2022). The
paper shows that directly training an average of neural learners in fact barely yields any better per-
formance than the individual networks because the learners end up learning the same set of features.
In our case, increasing γ may adversely induce this behavior. However, this motivates the intuition
that diversity in the ensemble will play an important role in the learning process, especially in the
multi-view data setting introduced in Allen-Zhu & Li (2022) commonly found in classification tasks.

3.3 DIVERSITY-AWARE AGNOSTIC ENSEMBLE OF FLAT BASE LEARNERS

We now dig into the technical details of sharpness-aware ensemble learning discussed in the previous
section to clearly understand the ensemble behavior. If we enforce the sharpness within the base
learners with SAM as in Foret et al. (2021), a given model f i

θi
is updated as

θai = θi + ρ1
∇θiLB (θi)

∥∇θiLB (θi) ∥
, (1)

θi = θi − η∇θiLB (θai ) .

where B is the current mini-batch, ρ1 > 0 is the perturbed radius, and η > 0 is the learning rate.
To inspect the behavior of the above updates, let us analyze the following gradient using the first-
order Taylor expansion

∇θiLB (θai ) = ∇θi

[
LB

(
θi + ρ1

∇θiLB (θi)

∥∇θiLB (θi) ∥

)]
≈∇θi

[
LB (θi) + ρ1∇θiLB (θi) ·

∇θiLB (θi)

∥∇θiLB (θi) ∥

]
= ∇θi [LB (θi) + ρ1∥∇θiLB (θi) ∥] , (2)
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Figure 1: Tuning parameter γ. Both the ensemble accuracy (higher is better) and the expected
calibration error (ECE, lower is better) peak when γ = 0. See Table 12 for other metrics.

Figure 2: Illustration of the model dynamics under sharpness-aware term on loss landscape. Two
base learners θi and θj (represented by the red and black vectors respectively) happen to be initial-
ized closely. At each step, since updated independently yet using the same mini-batch from θi and
θj , two perturbed models θai and θai are less diverse, hence two updated models θi and θj are also
less diverse and more likely end up at the same low-loss and flat region.

where · represents the dot product.
The approximation in (2) indicates that since we follow the negative gradient −∇θiLB (θai ) when
updating the current model θi, the new model tends to decrease both the lossLB (θi) and the gradient
norm ∥∇θiLB (θi) ∥, directing the base learners to go into the low-loss and flat regions as expected.
However, it can be seen that the current mechanism lacks cooperation among the base learners,
which possibly reduces the diversity among them. This may stem from the usage of well-known
initialization techniques (e.g., He initializer (He et al., 2015) or Xavier initializer (Glorot & Bengio,
2010)), making the initial base models θi, i = 1, . . . ,m significantly less diverse. Moreover, the
normalized gradients ∇θi

LB(θi)

∥∇θi
LB(θi)∥ , i = 1, . . . ,m reveals that the perturbed models θai , i = 1, . . . ,m

are also less diverse because they are computed using the same mini-batch B. This eventually leads
to less diverse updated models θi, i = 1, . . . ,m , which is illustrated in Figure 2.
It is natural to ask the question: “how to strengthen the update in Eq. (1) that encourages the
base learners to be more diverse, while still approaching their low-loss and flat regions.” To this
end, we propose the following “agnostic” update approach method so that the desired properties are
explicitly achieved after updating

θai = θi + ρ1
∇θiLB (θi)

∥∇θiLB (θi) ∥
+ ρ2

∇θiLdiv
B (θi, θ̸=i)

∥∇θiLdiv
B (θi, θ̸=i) ∥

, (3)

θi = θi − η∇θiLB (θai ) ,
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Figure 3: Illustration of the model dynamics under diversity-aware term. Given two base learners
θi and θj (represented by the red and black vectors respectively), the gradients −∇θiLB(θi) and
−∇θiLB(θi) navigate the models towards their low-loss (also flat) regions. Moreover, the two
gradients ∇θiLdiv

B (θi, θ̸=i) and ∇θjLdiv
B (θj , θ̸=j) encourage the models to move divergently. As

discussed, our update strategy forces the two gradients −∇θiLB(θi) and ∇θiLdiv
B (θi, θ̸=i) to be

more congruent. As the result, two models are divergently oriented to two non-overlapping low-loss
and flat regions. This behavior is imposed similarly for the other pair w.r.t. the model θj , altogether
enhancing the ensemble diversity.

where θ ̸=i specifies the set of models excluding θi and the i-th divergence loss is defined as

Ldiv
B (θi, θ̸=i) =

1

|B|
∑

(x,y)∈B

∑
j ̸=i

KL

(
σ

(
hi
θi
(x)

τ

)
, σ

(
hj
θj
(x)

τ

))
, (4)

where hk
θk

returns non-targeted logits (i.e., excluding the logit value of the ground-truth class) of
the k-th base learner, σ is the softmax function, τ > 0 is the temperature variable, ρ2 is another
perturbed radius, and KL specifies the Kullback-Leibler divergence. In practice, we choose ρ2 = ρ1
for simplicity and τ < 1 to favor the distance on dominating modes on each base learner.
It is worth noting that in the formulation of the divergence loss in Eq. (4), we only use the non-
targeted logits to diversify the non-targeted parts. The reason is that we aim to diversify the base
learners without interfering the their performance on predicting ground-truth labels.
To inspect the agnostic behavior of the second gradient when adding to the formula of the perturbed
models θai , we investigate the following gradient using the first-order Taylor expansion

∇θiLB (θai ) =∇θi

[
LB

(
θi + ρ1

∇θiLB (θi)

∥∇θiLB (θi) ∥
+ ρ2

∇θiL
div
B (θi, θ ̸=i)

∥∇θiLdiv
B (θi, θ ̸=i) ∥

])

≈∇θi

[
LB (θi) + ρ1∇θiLB (θi) ·

∇θiLB (θi)

∥∇θiLB (θi) ∥
+ ρ2∇θiLB (θi) ·

∇θiL
div
B (θi, θ ̸=i)

∥∇θiLdiv
B (θi, θ ̸=i) ∥

]

=∇θi

[
LB (θi) + ρ1∥∇θiLB (θi) ∥ − ρ2

−∇θiLB (θi) · ∇θiL
div
B (θi, θ ̸=i)

∥∇θiLdiv
B (θi, θ ̸=i) ∥

]
. (5)

In Eq. (5), the first two terms lead the base learners to go to their low-loss and flat re-
gions as discussed before. We then analyze the agnostic behavior of the third term. Accord-
ing to the update formula of θi in Eq. (3), we follow the positive direction of ∇θiLd

B =

∇θi

[
−∇θi

LB(θi)·∇θi
Ldiv

B (θi,θ ̸=i)

∥∇θi
Ldiv

B (θi,θ ̸=i)∥

]
, further implying that the updated base learner networks aim to

maximize −∇θi
LB(θi)·∇θi

Ldiv
B (θi,θ̸=i)

∥∇θi
Ldiv

B (θi,θ ̸=i)∥
. Therefore, the low-loss direction −∇θiLB (θi) becomes

more congruent with ∇θi
Ldiv

B (θi,θ ̸=i)

∥∇θi
Ldiv

B (θi,θ ̸=i)∥
, meaning that the base learners tend to diverge while moving

along the low-loss and flat directions. Figure 3 visualizes our arguments.
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Table 1: Evaluation of the ensemble accuracy (%) on the CIFAR10/100 and Tiny-ImageNet
datasets. R10x5 indicates an ensemble of five ResNet10 models. R18x3 indicates an ensemble
of three ResNet18 models. RME indicates an ensemble of ResNet18, MobileNet and EfficientNet,
respectively.

CIFAR10 CIFAR100 Tiny-ImageNet
Accuracy ↑ R10x5 R18x3 RME R10x5 R18x3 RME R18x3

Deep Ensemble 92.7 93.7 89.0 73.7 75.4 62.7 65.9
Fast Geometric 92.5 93.3 - 63.2 72.3 - 61.8
Snapshot 93.6 94.8 - 72.8 75.7 - 62.2
EDST 92.0 92.8 - 68.4 69.6 - 62.3
DST 93.2 94.7 93.4 70.8 70.4 71.7 61.9
SGD 95.1 95.2 92.6 75.9 78.9 72.6 62.3
SAM 95.4 95.8 93.8 77.7 80.1 76.4 66.1
DASH (Ours) 95.7 96.7 95.2 80.8 82.2 78.7 69.9

Table 2: Evaluation of Uncertainty Estimation (UE). Calibrated-Brier score is chosen as the repre-
sentative UE metric reported in this table. Evaluation on all six UE metrics for CIFAR10/100 can be
found in the supplementary material. Overall, our method achieves better calibration than baselines
on several metrics, especially in the heterogeneous ensemble setting.

CIFAR10 CIFAR100 Tiny-ImageNet
Cal-Brier ↓ R10x5 R18x3 RME R10x5 R18x3 RME R18x3

Deep Ensemble 0.091 0.079 0.153 0.329 0.308 0.433 0.453
Fast Geometric 0.251 0.087 - 0.606 0.344 - 0.499
Snapshot 0.083 0.071 - 0.338 0.311 - 0.501
EDST 0.122 0.113 - 0.427 0.412 - 0.495
DST 0.102 0.083 0.102 0.396 0.405 0.393 0.500
SGD 0.078 0.076 0.113 0.346 0.304 0.403 0.518
SAM 0.073 0.067 0.094 0.321 0.285 0.347 0.469
DASH (Ours) 0.067 0.056 0.075 0.267 0.255 0.298 0.407

4 EXPERIMENTS

We evaluate our methods on the classification tasks on CIFAR10/100 and Tiny-Imagenet. We exper-
iment with homogeneous ensembles wherein all base learners has the same model architecture, i.e.,
R18x3 is an ensemble which consists of three ResNet18 models. We also experiment with heteroge-
neous ensemble, i.e., RME is an ensemble which consists of ResNet18, MobileNet and EfficientNet
models. The configuration shared between our method and the baselines involves model training
for 200 epochs using SGD optimizer with weight decay of 0.005. We follow the standard data pre-
processing schemes that consists of zero-padding with 4 pixels on each side, random crop, horizon
flip and normalization. The ensemble prediction has been aggregated by averaging the softmax pre-
dictions of all base classifiers.1 In all tables, bold/underline indicates the best/second-best method.
↑,↓ respectively indicates higher/lower performance is better

4.1 BASELINES

This work focuses on improving generalization of ensembles. We compare our method against
top ensemble methods with high predictive accuracies across literature: Deep ensembles (Lakshmi-
narayanan et al., 2017), Snapshot ensembles (Huang et al., 2017), Fast Geometric Ensemble (FGE)
(Garipov et al., 2018), sparse ensembles EDST and DST (Liu et al., 2022). We also deploy SGD
and SAM (Foret et al., 2021) as different optimizers to train an ensemble model and consider as two
additional baselines to compare with.

4.2 METRICS

We use Ensemble accuracy (Acc) as the primary metric used to measure the generalization of an
ensemble learning method. To evaluate the uncertainty capability of a model, we use the standard
metrics: Negative Log-Likelihood (NLL), Brier score, and Expected Calibration Error (ECE), which
are widely used in the literature. Additionally, we employ calibrated uncertainty estimation (UE)

1Our code is anonymously published at https://anonymous.4open.science/r/DASH.
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metrics, such as Cal-NLL, Cal-Brier, and Cal-AAC, at the optimal temperature to avoid measuring
calibration error that can be eliminated by simple temperature scaling, as suggested in Ashukha
et al. (2020). To measure ensemble diversity, we use Disagreement (D) of predictions, which is a
common metric (Kuncheva & Whitaker, 2003). We also utilize the Log of Determinant (LD) of a
matrix consisting of non-target predictions of base classifiers, as proposed in Pang et al. (2019). The
LD metric provides an elegant geometric interpretation of ensemble diversity, which is better than
the simple disagreement metric.

4.3 EVALUATION OF PREDICTIVE PERFORMANCE

The results presented in Table 1 demonstrate the effectiveness of our proposed method, DASH, in
improving the generalization ability of ensemble methods. Across all datasets and architectures,
DASH consistently and significantly outperformed all baselines. For example, when compared to
SGD with R18x3 architecture, DASH achieved substantial improvement gaps of 1.5%, 3.3%, and
7.6% on the CIFAR10, CIFAR100, and Tiny-ImageNet datasets, respectively. When compared to
Deep Ensemble, DASH achieved improvement gaps of 3.0%, 6.8%, and 4.0%, respectively, on these
same datasets. Our results also provide evidence that seeking more flat classifiers can bring signifi-
cant benefits to ensemble learning. SAM achieves improvements over SGD or Deep Ensemble, but
DASH achieved even greater improvements. Specifically, on the CIFAR100 dataset, DASH outper-
formed SAM by 3.1%, 2.1%, and 2.3% with R10x5, R18x3, and RME architectures, respectively,
while that improvement on the Tiny-ImageNet dataset was 3.8%. This improvement indicates the
benefits of effectively collaborating between flatness and diversity seeking objectives in deep en-
sembles. Unlike Fast Geometric, Snapshot, or EDST methods, which are limited to homogeneous
ensemble settings, DASH is a general method capable of improving ensemble performance even
when ensembling different architectures. This is evidenced by the larger improvement gaps over
SAM on the RME architecture (i.e., 1.4% improvement on the CIFAR10 dataset) compared to the
R18x3 architecture (i.e., 0.9% improvement on the same dataset). These results demonstrate the ver-
satility and effectiveness of DASH in improving the generalization ability of deep ensembles across
diverse architectures and datasets.

4.4 EVALUATION OF UNCERTAINTY ESTIMATION

Although improving uncertainty estimation is not the primary focus of our method, in this section
we still would like to investigate the effectiveness of our method on this aspect by measuring six UE
metrics across all experimental settings. We present the results of our evaluation in Table 2, where
we compare the uncertainty estimation capacity of our method with various baselines using the
Calibrated-Brier score as the representative metric. Our method consistently achieves the best per-
formance over all baselines across all experimental settings. For instance, on the CIFAR10 dataset
with the R10x5 setting, our method obtains a score of 0.067, a relative improvement of 26% over the
Deep Ensemble method. Similarly, across all settings, our method achieves a relative improvement
of 26%, 29%, 51%, 18%, 17%, 31%, and 10% over the Deep Ensemble method. Furthermore, in
Table 3, we evaluate the performance of our method on all six UE metrics on the Tiny-ImageNet
dataset. In this setting, our method achieves the best performance on five UE metrics, except for the
ECE metric. Compared to the Deep Ensemble method, our method obtains a relative improvement
of 1%, 1%, 10%, 3%, and 14% on the NLL, Brier, Cal-Brier, Cal-ACC, and Cal-NLL metrics, re-
spectively. In conclusion, our method shows promising results in improving uncertainty estimation,
as demonstrated by its superior performance in various UE metrics.

5 ABLATION STUDIES

5.1 EFFECT OF SHARPNESS-AWARE MINIMIZATION

Since proposed in Foret et al. (2021), there are several sharpness-aware minimization methods have
been developed to address various limitations of the pioneer method. Notably, Kwon et al. (2021)
proposed an adaptive method to reduce the sensitivity to parameter re-scaling issue, thus reducing
the gap between sharpness and generalization of a model. In this section, we would like to exam-
ine the impact of different sharpness-aware methods to the final performance when integrating into
our method. More specifically, we consider two sharpness-aware methods which are Standard (Non-
Adaptive) SAM (Foret et al., 2021) and Adaptive SAM (Kwon et al., 2021), corresponding to our two
variants which are Standard DASH and Adaptive DASH. We conduct experiment on the CIFAR10
and CIFAR100 datasets with two ensemble settings, i.e., R18x3 and R10x5 architectures and report
results in Table 4. We choose ρ = 0.05 for the standard version and ρ = 2.0 for the adaptive version

8
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Table 3: Evaluation of Uncertainty Estimation (UE) across six standard UE metrics on the Tiny-
ImageNet dataset with R18x3 architecture.

NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 1.400 0.452 0.110 0.453 0.210 1.413
Fast Geometric 1.548 0.501 0.116 0.499 0.239 1.544
Snapshot 1.643 0.505 0.118 0.501 0.237 1.599
EDST 1.581 0.496 0.115 0.495 0.235 1.548
DST 1.525 0.499 0.110 0.500 0.239 1.536
SGD 1.999 0.601 0.283 0.518 0.272 1.737
SAM 1.791 0.563 0.297 0.469 0.242 1.484
DASH (Ours) 1.379 0.447 0.184 0.407 0.204 1.213

Table 4: Analysis of the effect of the sharpness aware methods on the CIFAR10 (C10) and CI-
FAR100 (C100) datasets. A denotes the adaptive sharpness-aware minimization, which is scale-
invariant as proposed in. S denotes the standard (non adaptive) version.

R18x3 R10x5
Accuracy ↑ Cal-Brier ↓ Accuracy ↑ Cal-Brier ↓

C10

SGD 95.2 0.076 95.0 0.078
SAM 95.8 0.067 95.4 0.073
S-DASH 96.4 0.060 95.8 0.066
A-SAM 96.0 0.064 95.6 0.071
A-DASH 96.7 0.056 95.7 0.067

C100

SGD 78.9 0.304 75.8 0.346
SAM 80.1 0.285 77.7 0.321
S-DASH 81.7 0.262 80.3 0.279
A-SAM 80.9 0.275 79.1 0.301
A-DASH 82.2 0.255 80.9 0.267

as suggested in the project 2. The results show that integrating sharpness-aware methods into our
approach yields a significant improvement, regardless of the version. For example, Adaptive-DASH
outperforms Adaptive-SAM across all settings, in both generalization and uncertainty estimation ca-
pability. Notably, the improvements are 1.3% and 1.76% in CIFAR100 dataset prediction tasks with
R18x3 and R10x5 architectures, respectively. Similarly, Standard-DASH achieves a significant im-
provement over Standard-SAM in all settings, with the highest improvement being 2.55% ensemble
accuracy with the R10x5 architecture on the CIFAR100 dataset. Interestingly, our Standard-DASH
version even outperforms the Adaptive-SAM to achieve the second-best performance, just after our
Adaptive-DASH version. This result emphasizes the effectiveness and generality of our method in
various settings. Based on these results, we use the Adaptive-DASH as the default setting.

6 CONCLUSION

We developed DASH Ensemble - a learning algorithm that optimizes for deep ensembles of diverse
and flat minimizers. Our method begins with a theoretical development to minimize sharpness-aware
upper bound for the general loss of the ensemble, followed by a novel addition of an agnostic term
to promote divergence among base classifiers. Our experimental results support the effectiveness
of the agnostic term in introducing diversity in individual predictions, which ultimately leads to an
improvement in generalization performance. This work has demonstrated the potential of integrating
sharpness-aware minimization technique into the ensemble learning paradigm. We thus hope to
motivate future works to exploit such a connection to develop more powerful and efficient models.

2https://github.com/davda54/sam

9

https://github.com/davda54/sam


Under review as a conference paper at ICLR 2024

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. arXiv preprint arXiv:2206.03996, 2022. 3

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. In The Eleventh International Conference on Learning Repre-
sentations, 2022. 4

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations
of gibbs posteriors. Journal of Machine Learning Research, 17(236):1–41, 2016. URL http:
//jmlr.org/papers/v17/15-290.html. 14

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In International Conference on Learning
Representations, 2020. 8

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7360–7371, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.508. URL https:
//aclanthology.org/2022.acl-long.508. 3

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996a. 1, 2

Leo Breiman. Bias, variance, and arcing classifiers. Technical report, Tech. Rep. 460, Statistics
Department, University of California, Berkeley . . . , 1996b. 1, 2

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405–22418, 2021. 3
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A PROOFS

Theorem 2. Assume that the loss function ℓ is convex and upper-bounded by L. With the probability
at least 1− δ over the choices of S ∼ DN , for any 0 ≤ γ ≤ 1, we have

LD(θ) ≤ γ max
θ′:∥θ′−θ∥≤

√
mρ
LS(θ

′) +
1− γ

m

[ m∑
i=1

max
θ′
i:∥θ′

i−θi∥≤ρ
LS(θ

′
i)
]
+

CL√
N
×

[
m

√
log

m(N + k)

δ
+

m∑
i=1

√
k log

(
1 +
∥θi∥2
ρ2

(1 +
√
log(N)/k)2

)
+√

km log
(
1 +

∑m
i=1 ∥θi∥2
mρ2

(
1 +

√
log(N)/(mk)

)2)
+O(1)

]
where the θi and the loss function ℓ satisfying the conditions: for all ρ > 0, Pi ∼ N (θi, ρ

2Ik) and
P = N (θ, ρ2Imk)

E(x,y)∈D
[
ℓ(f i

θi(x), y)
]
≤ Eθ′

i∼Pi
E(x,y)∈D

[
ℓ(f i

θ′
i
(x), y)

]
E(x,y)∈D

[
ℓ(f ens

θ (x), y)
]
≤ Eθ∼PE(x,y)∈D

[
ℓ(f ens

θ (x), y)
]
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Proof. We use the PAC-Bayes theory in this proof. In PAC-Bayes theory, θ could follow a distribu-
tion, says P , thus we define the expected loss over θ distributed by P as follows:

LD(θ, P ) = Eθ∼P

[
ℓD(θ)

]
LS(θ, P ) = Eθ∼P

[
ℓS(θ)

]
.

For any distribution P = N (0, σ2
P Ik) and Q = N (θ, σ2Ik) over θ ∈ Rk, where P is the prior

distribution and Q is the posterior distribution, use the PAC-Bayes theorem in Alquier et al. (2016),
for all β > 0, with a probability at least 1− δ, we have

LD(θ,Q) ≤ LS(θ,Q) +
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β,N)

]
, (6)

where Ψ is defined as

Ψ(β,N) = logEPEDN

[
exp

{
β
[
LD(fθ)− LS(fθ)

]}]
.

When the loss function is bounded by L, then

Ψ(β,N) ≤ β2L2

8N
.

The task is to minimize the second term of RHS of equation 6, we thus choose β =√
8N

KL(Q∥P )+log 1
δ

L . Then the second term of RHS of equation 6 is equal to√
KL(Q∥P ) + log 1

δ

2N
× L.

The KL divergence between Q and P , when they are Gaussian, is given by formula

KL(Q∥P ) =
1

2

[
kσ2 + ∥θ∥2

σ2
P

− k + k log
σ2
P

σ2

]
.

For given posterior distribution Q with fixed σ2, to minimize the KL term, the σ2
P should be equal

to σ2 + ∥θ∥2/k. In this case, the KL term is no less than

k log
(
1 +
∥θ0∥2

kσ2

)
.

Thus, the second term of RHS is√
KL(Q∥P ) + log 1

δ

2N
× L ≥

√
k log

(
1 + ∥θ∥2

kσ2

)
4N

× L ≥ L

when ∥θ∥2 > σ2
{
exp(4N/k) − 1

}
. Hence, for any ∥θ∥2 > σ2

{
exp(4N/k) − 1

}
, we have the

RHS is greater than the LHS, the inequality is trivial. In this work, we only consider the case:

∥θ∥2 < σ2
(
exp{4N/k} − 1

)
. (7)

Distribution P is Gaussian centered around 0 with variance σ2
P = σ2+∥θ∥2/k, which is unknown at

the time we set up the inequality, since θ is unknown. Meanwhile we have to specify P in advance,
since P is the prior distribution. To deal with this problem, we could choose a family of P such that
its means cover the space of θ satisfying inequality equation 7. We set

c = σ2
(
1 + exp{4N/k}

)
Pj = N

(
0, c exp

1− j

k
Ik
)

P :=
{
Pj : j = 1, 2, . . .

}
Then the following inequality holds for a particular distribution Pj with probability 1 − δj with
δj =

6δ
π2j2

Eθ′∼N (θ,σ2)LD
(
fθ′
)
≤ Eθ′∼N (θ,σ2)LS

(
fθ′
)
+

1

β

[
KL(Q∥Pj) + log

1

δj
+Ψ(β,N)

]
.
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Use the well-known equation:
∑∞

j=1
1
j2 = π2

6 , then with probability 1 − δ, the above inequality
holds with every j. We pick

j∗ :=

⌊
1− k log

σ2 + ∥θ∥2/k
c

⌋
=

⌊
1− k log

σ2 + ∥θ∥2/k
σ2(1 + exp{4N/k})

⌋
.

Therefore,
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k log
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⌉
⇒ log
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]
.

Thus the KL term could be bounded as follow
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For the term log 1
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Hence, the inequality

LD

(
θ′,N (θ, σ2Ik)

)
≤ LS

(
θ′,N (θ, σ2Ik)

)
+

√
KL(Q∥Pj∗) + log 1

δj∗

2N
× L

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
1 + k log

(
1 +
∥θ∥2
kσ2

)
+ 2 log

π2

6δ
+ 4 log(N + k)

≤ LS

(
θ′,N (θ, σ2Ik)

)
+

L

2
√
N

√
k log

(
1 +
∥θ∥2
kσ2

)
+O(1) + 2 log
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δ
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Since ∥θ′ − θ∥2 is k chi-square distribution, for any positive t, we have

P
(
∥θ′ − θ∥2 − kσ2 ≥ 2σ2

√
kt+ 2tσ2

))
≤ exp(−t).
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By choosing t = 1
2 log(N), with probability 1−N−1/2, we have

∥θ′ − θ∥2 ≤ σ2 log(N) + kσ2 + σ2
√
2k log(N) ≤ kσ2

(
1 +

√
log(N)

k

)2
.

By setting σ = ρ×
(√

k +
√
log(N)

)−1
, we have ∥θ′ − θ∥2 ≤ ρ2. Hence, we get

LS
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θ′,N (θ, σ2Ik)

)
= Eθ∼N (θ,σ2Ik)ES

[
fθ′
]
=

∫
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ES
[
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]
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N

L
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.

It follows that
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ρ2
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δ
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.

Replace θ = θi, with probability 1− δ/(m+ 1) we have

LD(θi) ≤ LD

(
θ′i,N

(
θi, σ

2I
))
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∥θ′
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For the loss on the ensemble classifier, we use the assumption

E(x,y)∈D
[
ℓ(f ens

θ (x), y)
]
≤ Eθ∼PE(x,y)∈D

[
ℓ(f ens

θ (x), y)
]
.

Repeating the same step of proof for θ, with probability at least 1− δ/(m+ 1), we obtain
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By the convexity property of ℓ, we have
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Finally, we obtain
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]
where C is an universal constant.
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B TRAINING ALGORITHM

We present the pseudo code for our proposed method DASH as in Algorithm 1 and also provide
our implementation in the anonymous link https://anonymous.4open.science/r/DASH. It is a worth-
noting that we utilize the cross entropy loss with label smoothing with α = 0.1 as the loss function
l. Compared to the standard SAM (Foret et al., 2021), our method has one modification in the first
optimization phase when we consider the diverse-aware loss Ldiv

B (θi, θ̸=i) in addition to the predic-
tive loss LB(θi) in order to find the perturbed weight θai . However, this process requires to calculate
the gradients ∇θiLB(θi) and ∇θiLdiv

B (θi, θ̸=i) of the two losses with respect to the same θi sepa-
rately which consumes one more back-propagation step compared to SAM. Therefore, in practice,
we alternatively consider to maximize the combined loss Lc

B(θi) = LB(θi) + γc Ldiv
B (θi, θ̸=i) to

find the perturbed weight θai . The trade-off parameter γc now replaces the perturbed radius ρ2 and
can be found adaptively by adjusting the strength of two gradients in the first iteration of each epoch.
By using this approach, we can use the same number of back-propagation step as SAM in the first
optimization phase.

Input: Training set S ≜ {(xn, yn)}Nn=1; Loss function l : RM × Y; Batch size b; Learning rate
η; Trade-off parameter γ; Perturbed radiuses ρ1, ρ2; Ensemble size m.

Output: Ensemble trained with DASH θt

Initialize weights for m base learners θ0 := [θi]
m
i=1, t = 0;

while not converged do
Sample batch B = {(x1, y1), ...(xb, yb)};
for i← 1 to m do

Compute gradient∇θiLB (θi) of the batch’s training loss;
Compute i-th divergence loss Ldiv

B (θi, θ̸=i) per Eq. (4);

Compute the perturbed weight: θai = θi + ρ1
∇θi

LB(θi)

∥∇θi
LB(θi)∥ + ρ2

∇θi
Ldiv

B (θi,θ ̸=i)

∥∇θi
Ldiv

B (θi,θ ̸=i)∥
per Eq.

(3);
Update weights: θi = θi − η∇θiLB (θai );

end
θt+1 ← [θi]

m
i ;

t = t+ 1
end

Algorithm 1: DASH Algorithm

C EXPERIMENTAL SETTING

C.1 BASELINES

The goal of our experiments is to evaluate the predictive performance of DASH Ensemble. We com-
pare DASH against top ensemble learning methods consistently reported to yield high accuracies:
Deep ensembles (Lakshminarayanan et al., 2017), Snapshot ensembles (Huang et al., 2017), Fast
Geometric Ensemble (FGE) (Garipov et al., 2018), sparse ensembles EDST and DST (Liu et al.,
2022). We use SGD optimizer and the same weight decay rate at 0.005 for all methods including
DASH. For the remaining hyper-parameters, we reuse the best settings reported in the baseline pa-
pers for the appropriate datasets. For example, Snapshot and FGE have customized learning rate
schedulers as part of their proposed frameworks. The final prediction of the ensemble is obtained by
taking the unweighted average of individual predictions from base learners. This strategy is applied
consistently for the baselines to ensure fair comparison. While many existing works employ stronger
learners such as ResNet50 or WideResNet in their experiments, it is also worth paying attention to
the base architectures used in our experiments that mainly involve weak learners. This is because
DASH inherits the principles of classic ensembles i.e., bagging or boosting, which aims to combine
weak learners to improve the overall predictive capacity.

C.2 DATASET SETTING

Through our experimenents, we make use of three datasets including the CIFAR10, CIFAR100
(Krizhevsky et al., 2009) and Tiny-ImageNet datasets. The CIFAR10 and CIFAR100 datasets have
50k training images and 10k testing images, with the image resolution of 32 × 32 × 3. The Tiny-
ImageNet datasets consits of 100k training images, 10k valiation and 10k testing images, all with
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resolution of 64× 64× 3. The CIFAR10 dataset has just 10 classes while the CIFAR100 and Tiny-
ImageNet are more complex datasets with 100 classes and 200 classes, respectively. It is worth
noting that, in the Tiny-ImageNet dataset, we evaluate on the validation set instead of testing set,
which is a common practice in the literature.
We follow the standard data pre-processing schemes for the CIFAR10 and CIFAR100 datasets that
consists of zero-padding with 4 pixels on each side, random crop, horizon flip and normalization.
For the Tiny-Imagenet dataset, we apply resize and random crop operations to change the resolution
to 224x224x3 as similar as the Imagenet dataset.

C.3 TRAINING SETTING

The training configuration shared between our method and the baselines involves model training
for 200 epochs using SGD optimizer with weight decay of 5e-3 and momentum 0.9. We use the
learning rate scheduler, starting with learning rate 0.1 and changing at epoch 60th, 120th and 160th
with scale 0.2 as suggested in the project https://github.com/davda54/sam.

D ADDITIONAL EXPERIMENTS

D.1 EVALUATION OF UNCERTAINTY ESTIMATION

We would like to provide the complete experimental results with all six Uncertainty Estimation
metrics on the CIFAR10 dataset (Tables 6, 7, 8), the CIFAR100 dataset (Tables 9, 10, 11) and the
Tiny-ImageNet dataset (Table 5).
On evaluation of the predictive performance, as reported in Section 4.3 in the main paper, our pro-
posed method DASH consistently and significantly outperforms all baselines across all datasets
and architectures. Unlike Fast Geometric, Snapshot, or EDST methods, which are limited to ho-
mogeneous ensemble setting, our DASH is a general method capable on either homogeneous or
heterogeneous ensemble.
On evaluation of the uncertainty estimation capability, in addition to the result on the Tiny-Imagenet
dataset that has been reported in Section 4.4 in the main paper, Tables 6, 7, 8 show the results on the
CIFAR10 dataset, with R10x5, R18x3 and RME architectures, respectively, while Tables 9, 10, 11
show the results of the same architectures on the CIFAR100 dataset. As similar as the observation on
the Tiny-Imagenet dataset, it can be seen from the results on the CIFAR10 and CIFAR100 datasets
that our proposed method DASH achieves the best performance on the five UE metrics, except for the
ECE metric. In comparison to the Deep Ensemble, our method achieves much better performance
on the heterogeneous setting (i.e., RME architecture) as seen from Table 8 or Table 11. Overall, the
experimental results demonstrate the superiority of our proposed DASH method over other baseline
methods for both predictive performance and UE capabilities across all datasets and architectures.

Table 5: Evaluation on the Tiny-ImageNet dataset with R18x3 architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 65.9 1.400 0.452 0.110 0.453 0.210 1.413
Fast Geometric 61.8 1.548 0.501 0.116 0.499 0.239 1.544
Snapshot 62.2 1.643 0.505 0.118 0.501 0.237 1.599
EDST 62.3 1.581 0.496 0.115 0.495 0.235 1.548
DST 61.9 1.525 0.499 0.110 0.500 0.239 1.536
SGD 62.3 1.999 0.601 0.283 0.518 0.272 1.737
SAM 66.1 1.791 0.563 0.297 0.469 0.242 1.484
DASH (Ours) 69.9 1.379 0.447 0.184 0.407 0.204 1.213
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Table 6: Evaluation on the CIFAR10 dataset with R10x5 architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 92.7 0.226 0.107 0.053 0.091 0.108 0.272
Fast Geometric 92.5 0.555 0.261 0.113 0.251 0.144 0.531
Snapshot 93.6 0.202 0.095 0.048 0.083 0.107 0.249
EDST 92.0 0.245 0.118 0.057 0.122 0.112 0.301
DST 93.2 0.211 0.099 0.049 0.102 0.108 0.261
SGD 95.1 0.277 0.096 0.143 0.078 0.108 0.264
SAM 95.4 0.257 0.087 0.136 0.073 0.107 0.268
DASH (Ours) 95.7 0.244 0.084 0.134 0.067 0.107 0.248

Table 7: Evaluation on the CIFAR10 dataset with R18x3 architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 93.7 0.197 0.091 0.047 0.079 0.107 0.273
Fast Geometric 93.3 0.257 0.108 0.055 0.087 0.108 0.261
Snapshot 94.8 0.201 0.082 0.043 0.071 0.108 0.270
EDST 92.8 0.231 0.110 0.054 0.113 0.110 0.281
DST 94.7 0.172 0.080 0.042 0.083 0.107 0.253
SGD 95.2 0.249 0.083 0.120 0.076 0.108 0.282
SAM 95.8 0.229 0.074 0.120 0.067 0.107 0.261
DASH (Ours) 96.7 0.215 0.065 0.124 0.056 0.107 0.250

Table 8: Evaluation on the CIFAR10 dataset with RME architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 89.0 0.905 0.391 0.431 0.153 0.126 0.395
DST 93.4 0.209 0.101 0.058 0.102 0.109 0.282
SGD 92.6 0.328 0.128 0.136 0.113 0.112 0.317
SAM 93.8 0.310 0.112 0.145 0.094 0.110 0.280
DASH (Ours) 95.2 0.276 0.095 0.151 0.075 0.106 0.236

Table 9: Evaluation on the CIFAR100 dataset with R10x5 architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 73.7 0.973 0.365 0.101 0.329 0.162 0.870
Fast Geometric 63.2 1.926 0.658 0.213 0.606 0.324 1.723
Snapshot 72.8 1.072 0.382 0.112 0.338 0.165 0.929
EDST 68.4 1.142 0.427 0.112 0.427 0.207 1.151
DST 70.8 1.064 0.393 0.103 0.396 0.189 1.076
SGD 75.9 1.502 0.522 0.400 0.346 0.174 1.001
SAM 77.7 1.302 0.460 0.357 0.321 0.164 0.892
DASH (Ours) 80.8 0.864 0.316 0.180 0.271 0.144 0.684

D.2 EVALUATION ON ADVERSARIAL ROBUSTNESS

In this section, our goal is to evaluate the adversarial robustness of our proposed method against
adversarial attacks. To achieve this, we conducted experiments on the CIFAR10 dataset using the
R18x3 architecture and employed the PGD attack (Madry et al., 2017), which is considered the
standard adversarial attack for evaluating robustness. Specifically, we set the number of attack steps
to k = 10, step size to η = 1/255, and varied the change in perturbation size ϵ from 1/255 to 6/255.
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Table 10: Evaluation on the CIFAR100 dataset with R18x3 architecture.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL↓
Deep Ensemble 75.4 0.927 0.342 0.095 0.308 0.155 0.822
Fast Geometric 72.3 1.12 0.394 0.124 0.344 0.169 0.950
Snapshot 75.7 1.011 0.347 0.111 0.311 0.153 0.903
EDST 69.6 1.125 0.412 0.106 0.412 0.197 1.123
DST 70.4 1.228 0.419 0.140 0.405 0.194 1.153
SGD 78.9 1.225 0.389 0.285 0.304 0.156 0.919
SAM 80.1 1.080 0.356 0.261 0.285 0.151 0.808
DASH (Ours) 82.2 0.892 0.300 0.196 0.255 0.138 0.679

Table 11: Evaluation on the CIFAR100 dataset with RME architecture.

Accuracy ↑ NLL↓ Brier ↓ ECE ↓ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
Deep Ensemble 62.7 2.137 0.699 0.401 0.433 0.209 1.267
DST 71.7 1.056 0.393 0.111 0.393 0.187 1.066
SGD 72.6 1.559 0.531 0.350 0.403 0.201 1.192
SAM 76.4 1.439 0.501 0.377 0.347 0.177 1.005
DASH (Ours) 78.7 0.969 0.342 0.202 0.298 0.151 0.764

While it is widely recognized in the Adversarial Machine Learning literature that strong attacks are
required to truly challenge defense methods (i.e., PGD attack with more than 200 attack steps with
a perturbation size of ϵ = 8/255), we chose a weaker attack for our experiments. This decision was
based on the fact that all methods we evaluated were not specifically designed to enhance adversarial
robustness, and therefore may not perform well against a stronger attack.
It can be seen from Figure 4a that our DASH achieves better adversarial robustness than all baselines
on the R18x3 architecture. More specifically, our method consistently outperforms SGD by around
3% across different levels of ϵ. While there is a huge drop of adversarial robustness on SAM when
the attack becomes stronger (i.e., 61.28% with ϵ = 1/255 and 27.61% with ϵ = 2/255), our method
is more robust with a smaller drop (i.e., 65.53% with ϵ = 1/255 and 42.23% with ϵ = 2/255).
On the R10x5 architecture, our method still outperforms SGD and SAM across all levels of attack
strength. However, it can be observed that our DASH achieves a lower performance than DST and
EDST methods if the perturbation size ϵ ≥ 2/255 as shown in Figure 4b. While our method does
not specifically target improving adversarial robustness, the superior performance we achieve on the
R18x3 architecture suggests that our principle of considering sharpness-aware and diverse-aware
mechanisms could be a promising direction for addressing this issue.

D.3 HYPER-PARAMETER SENSITIVITY

In this section, we investigate the effect of the hyper-parameter γ on the performance of our method
by tuning it over the range of [0, 1]. Recall that γ = 0 means that we seek flatness on all individual
base classifiers but not the entire ensemble model, while γ = 1 means that we seek flatness on the
entire aggregated ensemble model only. We conduct the experiment on the CIFAR100 dataset with
R10x5 architecture and report results on Table 12. It can be seen that our method achieves the best
performance in both generalization and uncertainty estimation aspects when γ = 0 and there is a
significant drop of 1.8% in accuracy when γ = 1. This result suggests that combining individual
flattened base classifiers can lead to better generalization performance than seeking flatness on the
entire ensemble model. In our experiments, we set γ = 0 as the default setting.

D.4 ANALYSIS OF THE ENSEMBLE SIZE

In this section, our aim is to examine the impact of ensemble size, that is, the number of base
classifiers, on the final performance. We performed an experiment on the CIFAR100 dataset by
varying the ensemble size from two to seven base classifiers, in which each base classifier is a
ResNet10 model. The results of this experiment are presented in Table 13 and Figure 5. Ensemble
learning theory suggests that the generalization capacity of an ensemble improves with the number
of base classifiers, assuming the base classifiers exhibit diversity. Figure 5 demonstrates that the
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(a) R18x3 (b) R10x5

Figure 4: Evaluation on Adversarial Robustness. The x-axis denotes the perturbation size ϵ (*255).

Table 12: Evaluation of ensemble accuracy under various the trade-off parameters γ. ↑ Higher is
better. ↓ Lower is better.

Accuracy ↑ NLL ↓ Brier ↓ ECE ↓
γ = 0.0 80.84 0.86 0.32 0.18
γ = 0.2 80.48 0.97 0.35 0.23
γ = 0.5 80.42 0.95 0.34 0.22
γ = 0.8 79.81 1.08 0.38 0.29
γ = 1.0 78.86 1.12 0.40 0.28

ensemble accuracy increases linearly with the number of base classifiers, with a 1.7% improvement
in ensemble accuracy when increasing the number of base classifiers from 2 to 6. Furthermore, our
method’s uncertainty estimation capability benefits from a larger ensemble size, as evidenced by the
improvements in all three UE metrics shown in Table 13. Interestingly, we also observed that the
performance of the base classifiers, as measured by the average accuracy metric in Table 13, also
improves when working in collaboration with a larger number of base classifiers, with an accuracy
improvement of 0.4%. However, we noted that the benefits of a larger ensemble appear to reach a
saturation point when the number of base classifiers exceeds 6.

D.5 CONTRIBUTION OF EACH COMPONENT

In this section, our objective is to assess the impact of each component by comparing the perfor-
mance of two variants: DASH and DASHF , which is our method with flat seeking mode only. To
conduct the experiment, we used the CIFAR10 and CIFAR100 datasets with RME architecture, and

Table 13: Evaluation of ensemble performance on CIFAR100 with different number of base classi-
fiers. Avg. denotes the average accuracy value all base learners.

Accuracy ↑ Avg. Accuracy ↑ Cal-Brier ↓ Cal-AAC ↓ Cal-NLL ↓
R10x2 79.19 77.60 0.289 0.792 0.751
R10x3 79.86 77.49 0.280 0.147 0.715
R10x4 80.71 77.77 0.272 0.143 0.691
R10x5 80.84 77.94 0.267 0.142 0.676
R10x6 80.89 77.98 0.268 0.142 0.677
R10x7 80.89 77.88 0.268 0.142 0.673
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Figure 5: Evaluation of different of number of ResNet10 base classifiers on the CIFAR100 dataset.

the results are presented in Table 14. We observed that DASHF outperforms the standard SGD
method by a significant margin when using the flat seeking mode only. The performance improve-
ment is remarkable, with a gap of 1.72% and 3.73% on the CIFAR10 and CIFAR100 datasets,
respectively. This enhancement can be attributed to the improvement of each single base classifier.
The ensemble can achieve better generalization performance by combining these classifiers. In par-
ticular, the average accuracy of all base classifiers with DASHF is 93.21%, which is 5.07% higher
than that achieved with the SGD method. However, in terms of ensemble diversity, measured by the
Log-Determinant metric, DASHF ’s base classifiers are less diverse than those of SGD. Specifically,
on the same CIFAR100 dataset, SGD obtains a LD score of -16.88, while that of DASHF is only
-19.47, which is a 15.3% relatively lower. The lower LD score indicates that the predictions of the
base classifiers on DASHF have a higher similarity than those on SGD. Consequently, in some hard
negative samples, the predictions of all base classifiers fall into similar incorrect patterns, and the
final ensemble prediction becomes incorrect. On the other hand, when comparing between DASH
and DASHF , it can be observed that, DASH obtains a higher LD score in both datasets, while also
improves the average performance of the base classifiers. As consequent, DASH improves over
DASHF by 0.84% 2.44% on the CIFAR10 and CIFAR100, respectively.

Table 14: Ablation study on the contribution of each component on the CIFAR10 (C10) and CI-
FAR100 (C100) datasets with RME architecture. DASHF represents our method with flat seeking
mode only.

Accuracy ↑ LD ↑ D ↑ Avg. Accuracy ↑

C10
SGD 92.61 -24.7 0.149 88.14
DASHF 94.33 -25.8 0.034 93.21
DASH 95.17 -23.3 0.068 93.41

C100
SGD 72.55 -16.88 0.853 38.09
DASHF 76.28 -19.47 0.123 73.38
DASH 78.72 -18.92 0.237 74.69

D.6 ANALYSIS OF THE CHOICE OF THE HYPER-PARAMETER

As mentioned in Section 3.3, in default we choose ρ1 = ρ2 for simplicity, with the value of 2.0
as recommended in Kwon et al. (2021). To understand more the effect of hyper-parameters on the
performance of our method, in this experiment, we choose different ρ2 values while fixing ρ1. It
can be seen from Table 15 that though fine-tuning helps slightly improve our current performance
(at ρ1 = ρ2), simple hyper-parameter setting that works well is an advantage of our approach.

D.7 EXPERIMENTS WITH WIDERESNET

Table 16 reports the predictive accuracy of all methods on an ensemble of three WideResNet28-
10 models. It can be seen that our method consistently outperforms all baselines across different
choices of model architectures and datasets.
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Table 15: Analysis of the choice of the hyper-parameter. ∗Current setting

ρ2/ρ1 0 0.1 1.0∗ 2.0 3.0
Acc.↑ 80.07 82.14 82.19 82.44 82.25

Cal-Brier↓ 0.285 0.255 0.255 0.246 0.248

Table 16 also reports the training time measured in seconds per epoch on a single GPU which shows
that the time efficiency of our method is comparable to many baselines.

Table 16: Additional experiment with WideResNet28-10 architecture

CIFAR10 CIFAR100
Acc.↑ Time (s) ↓ Acc.↑ Time (s) ↓

Deep Ensemble 91.61 360 70.92 560
Fast Geometric 91.04 308 72.63 540
Snapshot 94.63 216 76.52 360
EDST 96.30 84 82.20 84
DST 96.30 252 83.30 294
SGD 96.09 190 80.23 195
SAM 96.61 390 81.95 400
DASH (Ours) 97.21 460 84.09 470
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