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ABSTRACT

Functional magnetic resonance imaging (fMRI) provides dynamic measurements
of human brain activity at high spatial resolution and depth, but its use is con-
strained by high cost, limited accessibility, and strict acquisition requirements.
Synthesizing fMRI data from more accessible, non-invasive modalities such as
electroencephalography (EEG) offers a promising alternative, enabling inference of
deep brain activity from low-cost scalp recordings in naturalistic settings. Despite
recent progress, existing EEG-to-fMRI translation methods typically require train-
ing separate models for individual brain regions and offer limited consideration
of subject-level variability in brain dynamics. In this study, we propose UniEFS,
a unified EEG-to-fMRI Synthesis model that enables full-brain fMRI reconstruc-
tion while accommodating datasets with varying demographic and physiological
contexts within a single model. UniEFS leverages a pretrained fMRI decoder to
embed rich spatial priors, as well as condition-aware prompt tokens that encode
subject-level and experimental metadata to handle heterogeneous datasets. We
extensively evaluate our model performance on eyes-closed resting-state data and
demonstrate that it can reliably reconstruct temporally-resolved whole-brain fMRI
activity, with strong potential to generalize to task-based fMRI in a zero-shot
setting.

1 INTRODUCTION

The ability to non-invasively monitor brain activity is essential for advancing both neuroscience
research and clinical care. Electroencephalography (EEG) and functional magnetic resonance imaging
(fMRI) represent two ends of the neuroimaging spectrum. EEG captures fast, millisecond-scale
electrical signals from the scalp, offering a direct window into neural activity with excellent temporal
resolution and broad accessibility (Nicolas-Alonso & Gomez-Gil, 2012; Tong & Thankor, 2009).
However, it suffers from poor spatial resolution and limited sensitivity for mapping large-scale and
deep-brain circuits (Cohen, 2017; Chang & Chen, 2021). In contrast, fMRI provides rich spatial detail
by measuring blood oxygenation-level dependent (BOLD) signals driven by neurovascular coupling
across the entire 3D volume of the brain (Logothetis, 2008; Matthews et al., 2006). Yet fMRI is
expensive, infrastructure-intensive, and constrained by low temporal resolution. It is also largely
inaccessible in under-resourced communities and outpatient settings, and may be contraindicated for
patients with certain implants or conditions (Jalloul et al., 2023; van Beek et al., 2019; Geethanath &
Vaughan Jr, 2019). These complementary characteristics raise an intriguing question: Can we equip
EEG with fMRI-like representational power? If so, it would unlock a new paradigm for scalable,
high-resolution brain monitoring and decoding using only a lightweight, real-time, and non-invasive
sensor, transforming both clinical practice and cognitive neuroscience.

These factors motivate a growing interest in reconstructing fMRI signals from EEG, leveraging their
underlying physiological correlation and the representational power of deep learning to bridge the
spatial and temporal divide between these two modalities. A particularly underexplored area in this
field involves the eyes-closed, resting-state condition. This condition is of significant interest in both
research and clinical contexts: it offers a window into the brain’s intrinsic functional organization
and is widely used due to its simplicity and ease of implementation. It is especially valuable for its
applicability to diverse populations, including children and patients who may not tolerate or comply
with task-based paradigms. However, unlike task-based paradigms that provide clear temporal
anchors, resting-state brain activity is more spontaneous and variable, spanning a variety of internal
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brain states such as mind-wandering, vigilance fluctuations, or even light sleep, which makes it
inherently more challenging to decode (Liu, 2016; Liu & Falahpour, 2020). For example, changes in
vigilance introduce substantial non-stationarity: the decline from alertness into drowsiness and light
sleep is accompanied by marked changes in the spectral content of EEG, and in the signal amplitude
and network structure of fMRI (Liu & Falahpour, 2020; Martin et al., 2021).

Within the body of existing work, NeuroBOLT (Li et al., 2024b) is - to our knowledge - the only study
to date that has explored EEG-fMRI translation under the eyes-closed resting-state condition. While
demonstrating promising results with multi-dimensional EEG representation learning, it requires
training separate models for individual brain regions, limiting efficiency and scalability. Another very
recent approach, CATD (Yao et al., 2025), demonstrated efficient cortical surface fMRI generation
by conditioning a diffusion model on EEG. However, by design, its reliance on fMRI surface maps
restricts reconstruction to the cortex, leaving subcortical regions outside the model’s representational
space. Subcortical brain areas are increasingly recognized as vital to healthy cognition as well as
a wide range of disease processes (Favaretto et al., 2022; Koshiyama et al., 2018; Shepherd, 2013).
This work also included resting-state data, albeit during eyes-open conditions, which may not be
as conducive to more dramatic shifts in vigilance (e.g., falling asleep) compared to eyes-closed
conditions. Moreover, these approaches share a common limitation: they treat the EEG-fMRI
relationship as largely uniform across individuals. This overlooks inter-subject variability driven by
demographic factors (e.g., age and sex) and from dynamic, time-varying physiological states (e.g.,
drowsiness or vigilance), which are particularly pronounced during resting-state recordings. Such
states have been shown to modulate both EEG and fMRI signals, as well as their correlations (Liu &
Falahpour, 2020; Olbrich et al., 2009; Wong et al., 2013). Addressing this variability is therefore
essential for developing scalable and generalizable EEG-to-fMRI translation frameworks that extend
beyond specific conditions or cohorts. A more comprehensive review of related work is provided in
Appendix A.

To address the issues discussed above, we propose a unified, context-aware framework for generaliz-
able and efficient EEG-to-fMRI translation, operating in a frame-wise manner to reconstruct the fMRI
frame at each time point. Rather than following prior work that relies solely on end-to-end training
with scarce paired EEG–fMRI data, which may not adequately capture population-level variability,
we adopt a two-stage strategy: (1) uni-modal fMRI pretraining, and (2) cross-modal alignment,
where EEG signals are embedded to align with the learned fMRI latent space via a context-aware
encoder. Stage (1) focuses on learning expressive and generalizable fMRI representations from
larger-scale unpaired fMRI data with rich coverage of brain dynamics. A key motivation stems from
the observation that fMRI activity exhibits structured spatial patterns even at the level of individual
frames (Liu et al., 2018; 2013). In particular, co-activation pattern (CAP) analyses have revealed that
groups of brain regions display recurring and instantaneous configurations of activation and deactiva-
tion (Liu et al., 2018). Building on this insight, and drawing inspiration from masked signal modeling
(MSM) in vision, language, and neuroimaging (Chen et al., 2023; Xie et al., 2022; Radford et al.,
2019; Yang et al., 2023; Jiang et al., 2024), we design a self-supervised masked modeling strategy
that trains the model to recover masked brain regions from the visible context within each frame. This
design encourages the model to capture transient spatial dependencies across regions and learn robust
representations of instantaneous brain states. Given the domain shift between the pretraining corpus
and the paired EEG-fMRI dataset, we then fine-tune the MAE on the fMRI portion of the EEG-fMRI
dataset to obtain a domain-adapted encoder and decoder. In Stage (2), we align EEG with this learned
fMRI latent space and reconstruct fMRI with the pretrained decoder. To facilitate this, we introduce a
context-aware EEG encoder that projects temporal and spectral features into the pretrained fMRI
space, while explicitly incorporating auxiliary metadata. This contextual conditioning enables the
model to account for individual variability in the EEG-fMRI relationship, thereby bridging the two
modalities in a unified framework. We demonstrate that the resulting framework enables full-brain
fMRI reconstruction from EEG within a unified model, without requiring region-specific supervision
or subject-dependent customization. By leveraging uni-modal fMRI pretraining, domain adaptation,
and latent alignment, UniEFS offers an effective and scalable solution for decoding intrinsic brain
activity under eyes-closed resting-state conditions. The key contributions are summarized as follows:

Context-aware EEG encoding. To better accommodate heterogeneity in EEG-fMRI data (e.g.,
different acquisition sites, demographic attributes, and vigilance levels), we introduce prefix prompt
tokens that encode dataset-specific and subject-level metadata, facilitating unified training across
formats.
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Whole-brain EEG-to-fMRI synthesis. We develop a unified framework that reconstructs fMRI
activity, spanning hundreds of functional regions, from EEG using a single model. By first pretraining
the fMRI decoder on unpaired fMRI data, we embed strong spatial priors to promote accurate and
efficient reconstruction across all brain regions.

Comprehensive evaluation of the predictive power. We conduct extensive evaluations of fMRI
time-series reconstruction performance across multiple brain areas, including cortical and subcor-
tical regions, as well as whole-brain functional connectivity patterns. In addition, we evaluate the
model’s ability to generalize across experimental conditions, demonstrating strong zero-shot transfer
performance and the model’s broad predictive capacity.

2 METHODS

2.1 OVERVIEW

In this section, we describe the overall task setting and proposed framework of UniEFS. Our approach
performs frame-by-frame fMRI prediction: given a sliding window of EEG signals preceding each
fMRI time point, the model predicts the corresponding fMRI frame. This design enables flexible
generation of fMRI sequences of arbitrary length. Our work mainly focuses on Regions-of-Interest-
level (ROI-level) fMRI reconstruction, which offers a favorable trade-off between spatial resolution
and efficiency. Compared to voxel-wise and surface-based methods, it reduces computational cost
and improves signal-to-noise ratio (SNR), while also covering both cortical and subcortical regions
for full-brain modeling. Moreover, as a representation adopted in recent fMRI foundation models
(Dong et al., 2024; Caro et al., 2024; Thomas et al., 2022), ROI-level modeling provides a scalable
and effective basis for future extensions.

However, achieving accurate frame-wise ROI-level reconstruction from EEG is non-trivial, due to the
following key challenges. First, frame-wise reconstruction implicitly involves learning the projection
from neuronal activity to its hemodynamic response, which is not uniform, varying across brain
regions, individuals, and brain states. Second, paired EEG–fMRI datasets are scarce and moreover
vary in their subject characteristics, potentially hindering generalization to broader populations and
different conditions. To address these challenges, we propose a two-stage learning framework as
illustrated in Figure 1: (1) fMRI Pretraining and Adaptation via Masked Signal Modeling:
We first pretrain a powerful encoder-decoder model on unpaired fMRI datasets using a masked
reconstruction objective. This stage enables the model to learn population-level representations
of brain activity. To bridge the domain gap between pretraining and downstream application, we
further fine-tune the pretrained model on the fMRI portion of the EEG-fMRI paired dataset, adapting
the decoder to the target domain while preserving its generalization capacity. (2) Context-aware
EEG-to-fMRI Mapping: In the second stage, we integrate a dedicated EEG encoder, conditioned
on demographic and physiological priors, with the adapted fMRI decoder. The EEG encoder learns
to map temporal and spectral features of EEG signals into the corresponding fMRI latent space,
enabling full-brain fMRI reconstruction.

2.2 STAGE 1: FMRI PRETRAINING AND ADAPTATION VIA MASKED SIGNAL MODELING
(F-MSM)

Pretraining. Functional MRI measures brain activity via blood-oxygen-level-dependent (BOLD)
signals represented as 3D volumes over time. To reduce dimensionality and improve signal-to-noise
ratio (SNR), these signals are commonly summarized using brain parcellation techniques, which
average voxel-wise signals within predefined regions of interest (ROIs), forming a 1D ROI vector per
time point. This yields a parcellated fMRI matrix denoted as Y ∈ RP×K , where P is the number of
ROIs and K is the total number of time points. Here, we employ the Dictionaries of Functional Modes
(DiFuMo) parcellation (Dadi et al., 2020) with P=512, which provides fine-grained, whole-brain
coverage. During pretraining, each 1D ROI vector corresponding to a single time point is treated as an
individual training sample, yielding K samples per fMRI scan. Although parcellation reduces voxel-
level redundancy, functional dependencies and spatial correlations persist across brain regions due to
the network-level organization of brain activity. To encourage the model to capture these intrinsic
patterns, for each of the above ROI vectors, we adopt a high masking ratio (50%) during pretraining,
forcing the network to infer random missing regional signals from the surrounding context. This
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Figure 1: Overall framework. (A) Stage 1: Masked signal modeling on fMRI frames. (B) Stage
2: EEG-to-fMRI mapping. The pretrained fMRI encoder and decoder are frozen in this stage. (C)
Context-aware EEG embedding.

design promotes the learning of expressive, population-level representations that generalize across
individuals and tasks. For this reconstruction task, we employ a transformer-based architecture
(Chen et al., 2023; 2024; Dosovitskiy et al., 2020), where each ROI is treated as an individual token.
An encoder processes only the visible (unmasked) ROIs, and a lightweight decoder is trained to
reconstruct the complete ROI vector based on the contextual information inferred from the unmasked
regions.

Fine-tuning. After pretraining on public fMRI datasets, we adapt the model using the fMRI portion
of our EEG–fMRI paired training set, with each scan preprocessed into ROI-level time series under
the same parcellation scheme as used in pretraining.

Training Objective. Following He et al. (2022), the reconstruction loss (MSE) is computed solely
on the masked tokens for both pretraining and finetuning.

2.3 STAGE 2: CONTEXT-AWARE EEG-TO-FMRI MAPPING

Following Li et al. (2024b), we extract the EEG window spanning a duration T , corresponding to
the approximate latency of the hemodynamic response function (HRF), before each fMRI frame
collection. This forms an EEG-fMRI paired input-output sample denoted as {X,Y

(paired)}, where
X ∈ RC×T represents the multichannel EEG input with C channels and T time points, and Y

(paired)
∈

RP denotes the corresponding parcellated fMRI ROI vector with P ROIs. The EEG input window X
is first processed by the EEG encoder EEEG to generate a latent representation, which is then passed
to the pretrained domain-adapted decoder DfMRI obtained from f-MSM. Overall, given the full model
fθ(.), the overall fMRI reconstruction task can be formulated as Ŷ (paired)

t = fθ(Xt−T ∶t−1), where

Ŷ
(paired)
t ∈ RP is the reconstructed fMRI frame at time index t.

EEG Encoder. Our objective is to enable EEG-driven fMRI reconstruction by aligning EEG repre-
sentations with the fMRI latent embedding space. To achieve this, we adapt the multi-dimensional
encoder from NeuroBOLT (Li et al., 2024b) as the backbone encoder, a transformer-based architecture
designed to capture rich and complementary spatial, temporal, and multi-scale spectral information
from EEG signals. We first segment a EEG window X into non-overlapping patches using a window
of length w, yielding a sequence of patches xc,k ∈ Rw for each channel c = 1, . . . , C and patch index
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k = 1, . . . , ⌊T/w⌋. These patches are then fed into (i) spatiotemporal module (a pretrained EEG
encoder adapted from the EEG foundation model LaBraM (Jiang et al., 2024)) and (ii) multi-scale
spectral transformer modules to generate two EEG latent embeddings zEEGst

, zEEGsp
∈ R(C× T

w
)×D

respectively, where D is the embedding dimension. Instead of applying global average pooling across
the token dimension (Li et al., 2024b; Jiang et al., 2024; Yang et al., 2023), we retain the full sequence
of token embeddings to preserve fine-grained spatial and temporal information. The embeddings
from two modules are summed up and then passed through a latent mapping module, which consists
of two linear projections to align the EEG embeddings with the dimensionality and structure of the
fMRI latent space. This final latent representation is then passed to the fine-tuned decoder D to
reconstruct the full-brain fMRI signal.

Prefix Prompt Injection. To incorporate auxiliary information (Gao et al., 2024) and enhance
the generalization of EEG representations, we introduce a set of learnable prefix prompts in the
EEG encoder that are concatenated to the EEG patches prior to the transformer modules. These
prompt tokens are designed to encode subject- and dataset-specific metadata and are optimized jointly
with the rest of the model, enabling the network to adaptively condition its representation based on
contextual information. Specifically, we include the following prompt tokens: (1) Dataset tokens:
learnable embeddings of shape RJ×D, where J is a tunable hyperparameter, representing the number
of dataset tokens (J = 5 in our experiments). Each dataset is assigned its own set of tokens, enabling
the model to capture dataset-specific characteristics. (2) Age token: A single token generated by
projecting the subject’s age through a linear embedding layer. (3) Sex token: A learnable token
indicating the subject’s biological sex (e.g., male or female). (4) Vigilance token: A categorical
learnable token encoding the vigilance level (drowsy, intermediate, alert) at each fMRI frame (TR),
allowing the model to condition its reconstruction on frame-specific vigilance states. All prefix tokens
share the same embedding dimension D as the EEG patch embeddings output by the EEG encoder.
Let Nprompt be the total number of prompt tokens used (e.g., Nprompt = 8 when all components
are included), such that zprompt ∈ RNprompt×D represents all prompt tokens. These tokens are then
concatenated to the EEG embedding zEEG along the token dimension to form the augmented token
sequence z ∈ R(Nprompt+NEEG)×D. This enriched EEG representation is then passed to the following
transformers and to the alignment module for EEG-to-fMRI mapping.

EEG-fMRI Embedding Alignment. To align the EEG embeddings with the fMRI latent space,
during training, we first obtain a reference embedding from fMRI by passing ground-truth fMRI
vector Y

(paired) through the frozen fine-tuned fMRI encoder EfMRI. This yields the fMRI latent
embedding:

EfMRI = EfMRI(Y (paired)) ∈ RP×DfMRI , (1)

where DfMRI is the dimension of the fMRI latent space.

In parallel, the EEG input X is first processed by the EEG encoder EEEG to obtain patch-wise latent
embeddings z. To align this representation with the fMRI latent space, we apply a linear projection
module P to map the enriched EEG embedding into the same shape as the fMRI embedding:

E
proj
EEG = P(EEEG) ∈ RP×DfMRI , (2)

which is then used in the alignment and decoding modules.

To extract compact and semantically aligned representations between EfMRI and E
proj
EEG, we adopt

a LoRA-inspired low-rank projection mechanism (Hu et al., 2022). Specifically, we define two
learnable matrices: B ∈ RDfMRI×r and A ∈ Rr×Dcomp , where r is the intermediate rank and Dcomp is
the final compressed dimension. The final low-rank embeddings are computed as:

ẼfMRI = EfMRI ⋅B ⋅A ∈ RP×Dcomp , ẼEEG = E
proj
EEG ⋅B ⋅A ∈ RP×Dcomp . (3)

To encourage alignment between the low-rank EEG and fMRI embeddings, we optimize the mean
squared error (MSE) between the two latent embeddings:

Lalign =
1

P

P

∑
p=1

»»»»»Ẽ
(p)
EEG − Ẽ

(p)
fMRI

»»»»»
2

2
, (4)
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where Ẽ
(p) is the embedding for the p-th ROI.

Training Objective. Our framework is trained using a joint objective that combines (1) a latent
alignment loss, which uses MSE to align EEG and fMRI representations in latent space, and (2) a
reconstruction loss, which ensures accurate full-brain fMRI prediction by comparing the decoder’s
output to the ground truth fMRI vector. The reconstruction loss is formulated as a weighted
combination of MSE and spatial correlation (SCorr) to capture both absolute and relative accuracy:

Lrecon = λMSE ⋅ LMSE + (1 − λMSE) ⋅ LSCorr. (5)

The overall training objective of Stage 2 is a weighted sum of the alignment and reconstruction losses:

Ltotal = λalign ⋅ Lalign + λrecon ⋅ Lrecon, (6)

where λalign and λrecon are hyperparameters that balance the contribution of each loss term.

3 EXPERIMENTS

3.1 DATASETS AND PREPROCESSING

Pretraining fMRI Dataset. A subsample of resting-state fMRI (rs-fMRI) data from the HCP 1200-
subject release (Van Essen et al., 2012) was used for pretraining. Subjects were scanned up to 4 times,
twice on one day and twice on a second day. We included only those subjects who completed all
four runs and were reported to have passed quality control in Xifra-Porxas et al. (2021); Power et al.
(2017), resulting in 375 subjects (n = 1500 scans). The rs-fMRI scans in this dataset were acquired
with a temporal resolution (TR) of 0.72 seconds, a duration of 1,200 frames per run (14.4 minutes),
and a spatial resolution of 2 mm isotropic. Please refer to the Appendix B for preprocessing details.

Resting-state Simultaneous EEG-fMRI Datasets. Dataset 1 is a shared dataset from Li et al.
(2024b). This dataset comprises 29 simultaneous EEG-fMRI scans from 22 healthy subjects, with
7 participants having two scans. Each scan lasts 20 minutes (575 TR, TR = 2.1 seconds). Scalp
EEG was recorded using a 32-channel MR-compatible system (10–20 layout). Additional details
on data acquisition and preprocessing can be found in Li et al. (2024b). Dataset 2 is a different
in-house rs-EEG-fMRI dataset. It comprises 10 scans from 7 healthy participants, with 3 individuals
undergoing two scans each. During the scans, participants rested passively with their eyes closed.
Written informed consent was obtained from all participants, and all procedures were approved by
the Institutional Review Board. BOLD fMRI data were acquired on a 3T Siemens Prisma scanner
using a multi-echo gradient-echo EPI sequence (TR = 2.1 seconds). Simultaneous scalp EEG was
recorded using a 32-channel MR-compatible system (10–20 layout). To ensure consistency, this
dataset was preprocessed using the same pipeline as Dataset 1. Further details on data collection and
preprocessing are provided in Appendix B.

Vigilance Score. The vigilance state is a categorical score with three classes (drowsy, intermediate,
and alert) assigned to each fMRI frame. This classification is derived from EEG data based on
Vigilance Algorithm Leipzig (VIGALL 2.1 add-on for Brain Vision Analyzer 1) (Olbrich et al., 2015;
Huang et al., 2015; Jawinski et al., 2019). VIGALL stages each 1-second segment of preprocessed
EEG into one of five vigilance levels (A1, A2, A3, B1, B2/3), reflecting decreasing levels of arousal.
These vigilance stage labels are then grouped into 63-second epochs (corresponding to 30 fMRI time
points), and the distribution of stages within each epoch is used to assign a single vigilance class,
i.e., alert, intermediate, or drowsy, to that epoch. This final label is then propagated to each of the
30 fMRI frames within the corresponding epoch. Note that vigilance labels were shifted forward by
5 seconds (∼2 TRs) to account for the temporal delay between neural activity and the peak BOLD
response. Please see the Appendix B for further details.

3.2 EXPERIMENTAL SETUP

Data Preparation. From the preprocessed fMRI data in the paired and unpaired datasets, we extract
time courses from regions of interest using the DiFuMo atlas (Dadi et al., 2020) with P=512 for full
brain coverage. We regress out six motion-related confounds, apply a low-pass filter with a cutoff

1https://brainvision.com/products/analyzer-2/
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Figure 2: Reconstruction performance. (A) Distribution of average prediction performance for all
brain regions with (w/) and without (w/o) context embedding. (B) Visualization of reconstruction
performance and top predictive brain networks; dots represent brain regions. (C) Regional differences
in performance. (D) Sample-wise differences in performance; points represent test scans.

at 0.15 Hz (which captures the low-frequency band typically of interest in rs-fMRI studies), and
z-normalize each ROI time series. For EEG preprocessing, we remove non-EEG channels, including
ECG, EOG, and EMG, retaining 26 channels in Dataset 1 and 31 channels in Dataset 2. We select
the 23 common EEG channels from these datasets for joint training. The EEG data are resampled to
200 Hz to improve computational efficiency while preserving relevant frequency information. For
each fMRI time point, we extract a 16-second EEG window preceding the scan, strictly following the
protocol described in Li et al. (2024b). EEG amplitude normalization is also performed, where the
signal is divided by 100 to ensure that the majority of values fall within the range of -1 to 1.

Baselines. We compare our model with three open-source EEG-to-fMRI synthesis baselines (Kovalev
et al., 2022; Li et al., 2024b;a) and state-of-the-art EEG encoders including recent foundation models
(please refer to Appendix C.2 for details). These baseline models were originally designed or
benchmarked in Li et al. (2024b) under a region-specific setting. To enable comparison on multi-
region reconstruction, we adapt them by modifying the final projection layer to map the latent
embeddings to the entire set of ROIs, thus extending them into multi-region baselines.

Implementation Details. All experiments are conducted on a single NVIDIA RTX A5000 GPU
using Python 3.9.12, PyTorch 2.0.0, and CUDA 11.8. The training set for stage 1 consists of 1,200
scans, with 300 scans used for validation, resulting in approximately 720,000 training samples (one
per time point). During stage 2, we train the model to predict fMRI signals across entire unseen scans
using EEG, and use the same data partitioning strategy as in Li et al. (2024b) (an approximately 3:1:1
split for unseen-subject whole-scan reconstruction). We incorporate Dataset 2 as additional training
data, resulting in a total of 28 training scans, 5 validation scans, and 6 test scans. Scans from the
same individual are always assigned to the same split (training, validation, or test), since data from
the same subject may have similar latent representations. For reproducibility, a fixed random seed is
used across all experiments. Please refer to Appendix C for optimization and training details.

3.3 MAIN RESULTS

Our model was trained to predict held-out recordings across entire 20-minute scans using 23 EEG
electrodes. We compare UniEFS with state-of-the-art EEG-to-fMRI translation baselines (Table 1)
and EEG encoders (Table 5 in Appendix D.1), finding that UniEFS consistently outperforms the
others in reconstructing regional time courses and has the second-best performance in recovering FC.
We refer readers to Appendix E.1 for a detailed discussion on potential factors contributing to this
observation and D.7 for visualization examples of reconstructed time series. Figure 2(A-C) presents
a comprehensive evaluation of model performance, including region-wise distributions of predictive
accuracy across brain areas with and without context embeddings. The results highlight the effec-
tiveness of incorporating context embeddings, and indicate that activity in the somatomotor network
is most reliably predicted from EEG signals, followed by the dorsal attention and salience/ventral
attention networks. We further investigate the effectiveness of context embeddings under varying
amounts of training data. As shown in Figure 2(D), when training on both datasets, the inclusion of
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Table 1: Comparison of different models on full brain fMRI reconstruction. MM: Whether the
model is originally designed for multi-region prediction; FB: Full brain; GM: Cortical gray matter;
SC: Sub-cortical regions; CB: Cerebellum; Conn: Metric is applied on the full brain functional
connectivity (FC) matrix; TCorr: Temporal correlation between prediction and ground truth; PCorr:
Pixel-wise correlation between predicted and real FCs. Bold: the best; Underlined: the second best.
Values are shown as mean ± std.

Model Name MM FB TCorr ↑ GM TCorr ↑ SC TCorr ↑ CB TCorr ↑ Conn PCorr ↑ Conn MSE ↓

Ours ✓ 0.367± 0.052 0.394± 0.060 0.276± 0.082 0.247± 0.060 0.527± 0.084 0.233± 0.072
NeuroBOLT (Li et al., 2024b) ✗ 0.331± 0.044 0.357± 0.049 0.258± 0.092 0.216± 0.046 0.455± 0.079 0.349± 0.097

Li et al. (Li et al., 2024a) ✗ 0.312± 0.038 0.329± 0.037 0.253± 0.090 0.236± 0.058 0.535± 0.077 0.217± 0.065
BEIRA (Kovalev et al., 2022) ✗ 0.171± 0.148 0.196± 0.170 0.086± 0.085 0.063± 0.073 0.459± 0.080 0.368± 0.090

Figure 3: Performance improvements with vigilance embedding. (A) Brain regions showing
the greatest performance improvement. (B) Distribution of region-wise improvement within brain
networks. (C) The top 100 regions benefitting from vigilance embedding were selected and assigned
to their corresponding brain networks. The 6 networks with the highest counts among these top-
ranked regions is shown.

context embeddings significantly improves prediction performance across individual scans (paired
t-test, p = 0.018). However, when training is limited to Dataset 1 alone and evaluated on the same test
scans, the performance difference between models with and without context embedding is negligible.
This suggests that the benefit of incorporating context information emerges only when the training
data exhibit sufficient variability, such as differences in subjects, vigilance levels, or population
characteristics, allowing the model to meaningfully leverage auxiliary metadata.

To better understand the role of context information, we further analyze the effect of incorporating
vigilance embeddings. Specifically, we compare model performance with and without vigilance
conditioning to identify brain regions that benefit the most from this additional context. As shown in
Figure 3, several regions, particularly within sensory-motor network, salience and attention-related
networks, as well as one thalamus region, show marked improvement when vigilance information is
included. These regions have been consistently reported in the fMRI literature as being associated
with vigilance, and the spatial distribution observed in Figure 3(A) closely overlaps with vigilance-
related fMRI maps reported by previous studies (Liu & Falahpour, 2020; Schneider et al., 2016;
Goodale et al., 2021). These results support the biological plausibility of our approach and provide
compelling evidence that incorporating vigilance context enables more accurate and interpretable
EEG-to-fMRI translation, particularly in regions sensitive to fluctuations in arousal and attention,
which is especially crucial to consider for resting-state data.

3.4 GENERALIZATION PERFORMANCE AND ABLATION STUDIES

Generalization. We evaluate the zero-shot performance of our multi-region model on an unseen
auditory task-based dataset from Li et al. (2024b) (Figure 4). Our model generalizes well to task-
induced fMRI dynamics, capturing prominent brain activity features despite not being trained on
task-based data. A comprehensive analysis of various rest-to-task transfer strategies, including fine-
tuning, joint training and personalized-finetuning, is provided in Appendix D.2. To further validate
the quality of the zero-shot generated fMRI and its ability to reflect true subject-specific patterns in
FC, we additionally performed a connectome fingerprinting analysis, as described in Appendix D.3.
Notably, our model’s zero-shot predicted fMRI also demonstrated high fingerprinting accuracy across
full-brain, gray matter, and subcortical FC matrices (see Table 6 in Appendix). These findings suggest
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Figure 4: Zero-shot reconstruction on task-condition data. (A) Prediction performance distribution
for all 512 regions. (B) Performance comparison with the baseline. (C) Example of reconstructed
time series within the insula, shown for part of a scan.

that the generated fMRI signals preserve individualized FC signatures, supporting their potential
utility in downstream applications involving subject-specific brain representations, such as cognitive
trait identification, behavioral decoding, and clinical profiling (Finn et al., 2015; Mantwill et al., 2022;
Lu et al., 2024).

Ablation Studies. We evaluate the contribution of each component (Table 2). We first compared
our full model against a variant in which the transformer-based fMRI decoder was trained from
scratch, without pretraining. Results indicate that without pretraining, the model struggles to capture
temporal correlations between brain regions, leading to significantly reduced performance. Next, we
examined the impact of different components of the context prompt. We found that removing any of
the context tokens resulted in a drop in performance, highlighting their importance. The number of
dataset tokens serves as a tunable hyperparameter. We found that using five tokens was sufficient to
effectively handle the two training datasets used in our experiments. Beyond these ablations, we also
analyzed the impact of data scale (Figure 6), mask ratio (Table 7), and patch size (Table 8) during
fMRI pretraining, please see Appendix D.4, D.5, D.6 for details.

Table 2: Ablation study on model components. Each row removes one input or loss function from the
full model. vig.: vigilance token; demo.: demographic token; d.t.: dataset token; w/o: without.

Model Type FB Tcorr ↑ GM Tcorr ↑ Conn PCorr ↑ Conn MSE ↓

Full (context + 5 d.t.) 0.367± 0.052 0.394± 0.060 0.527± 0.084 0.233± 0.072

w/o fine-tune 0.365± 0.056 0.391± 0.064 0.527± 0.066 0.267± 0.075
w/o pretrain 0.329± 0.033 0.361± 0.039 0.315± 0.074 0.439± 0.102

w/o vig. 0.357± 0.040 0.381± 0.044 0.532± 0.076 0.237± 0.070
w/o demo. 0.351± 0.060 0.378± 0.068 0.503± 0.081 0.271± 0.082
w/o demo. & vig. 0.327± 0.075 0.356± 0.089 0.491± 0.079 0.288± 0.089
w/o age 0.351± 0.047 0.376± 0.052 0.513± 0.088 0.261± 0.078
w/o sex 0.358± 0.041 0.382± 0.044 0.529± 0.079 0.235± 0.071
w/o d.t. 0.355± 0.049 0.380± 0.055 0.527± 0.081 0.234± 0.069
1 d.t. 0.349± 0.051 0.375± 0.059 0.494± 0.084 0.288± 0.085
10 d.t. 0.356± 0.048 0.381± 0.054 0.527± 0.081 0.236± 0.070

w/o Lalign 0.339± 0.052 0.367± 0.055 0.502± 0.082 0.280± 0.083
w/o Lrecon 0.147± 0.022 0.150± 0.025 0.172± 0.052 0.266± 0.042
w/o LSCorr in Lrecon 0.355± 0.049 0.384± 0.056 0.500± 0.083 0.293± 0.088
w/o LMSE in Lrecon 0.347± 0.050 0.376± 0.058 0.481± 0.085 0.317± 0.092

4 CONCLUSION

We introduce UniEFS, a unified framework for reconstructing full-brain fMRI activity from EEG. By
leveraging large-scale fMRI pretraining, followed by domain adaptation and cross-modal alignment,
our model effectively bridges the spatial-temporal gap between EEG and fMRI without relying on
region-specific supervision or subject-dependent customization. We incorporate context-aware EEG
encoding using metadata-informed prompt tokens, enabling the model to account for physiological
and demographic variability that modulates EEG-fMRI correspondence. Our results demonstrate that
UniEFS achieves state-of-the-art performance in time-resolved fMRI signal reconstruction across
hundreds of brain regions, and its potential to recover functional connectivity. Our results highlight
the effectiveness of combining self-supervised fMRI representation learning with context-conditioned
EEG encoding for generalizable, scalable, context-aware, and interpretable cross-modality translation.
UniEFS paves the way for real-world applications where high-resolution, fMRI-like insights could be
derived from lightweight, portable EEG systems, enabling more accessible neuroimaging in clinical,
cognitive, and mobile settings.
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ETHICS STATEMENT

All study procedures were conducted with approval from the Institutional Review Board (IRB),
and the research is classified as posing minimal risk to participants since both EEG and fMRI are
non-invasive neuroimaging modalities. Individuals with contraindications to MRI were precluded
from study participation. During our data collection, participants rested passively with their eyes
closed and received compensation for their participation. Written informed consent was obtained
from all participants prior to enrollment. The protocols explicitly outlined the nature of the resting-
state scanning, any possible discomfort, and the participants’ right to withdraw at any time without
penalty. We confirm that no vulnerable populations were targeted or exploited, and the study did not
involve any experimental manipulations beyond routine neuroimaging procedures. Collected data
were anonymized and handled in compliance with appropriate privacy and confidentiality safeguards
to minimize the risk of re-identification or misuse.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made our experimental setup as transparent and accessible as
possible. Key model architectures, training protocols, and evaluation metrics are described in detail
in Sections 2 and 3 of the main text. Additional implementation details and hyperparameter settings
are provided in the Appendix B and C. Upon acceptance, we will release our complete source code,
pretrained model weights, and the in-house EEG-fMRI dataset (i.e., Dataset 2) used in this study
under an appropriate data-sharing agreement. This will allow the community to fully reproduce and
build upon our results.
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A RELATED WORK

EEG-to-fMRI reconstruction, while currently an underexplored research area, has received growing
attention in recent years owing to advances in deep learning and cross-modality synthesis. Several
studies (Liu & Sajda, 2023a;b; Calhas & Henriques, 2022; Lanzino et al., 2024) have proposed
methods for reconstructing volume-wise fMRI spatial patterns from EEG signals. However, these
approaches generally lack quantitative evaluation of temporal dynamics, that is, how brain activity
evolves over time, or of temporal correlation across brain regions, which are critical readouts, under-
pinning analyses of functional connectivity, network dynamics, and brain state transitions. Without
assessing these aspects, it remains unclear whether such models can support broader neuroscientific
or clinical applications that rely on accurate reconstruction of brain-wide temporal structure. A
complementary line of work has investigated fMRI time series reconstruction in specific brain regions,
particularly in subcortical regions, such as early work using ridge regression (Meir-Hasson et al.,
2014; Or-Borichev et al., 2023), along with more recent deep-learning studies using seq-to-seq models
(Kovalev et al., 2022; Li et al., 2024a). Yet, these models are typically trained on a within-subject
basis, which hinders generalizability to new individuals. Furthermore, the majority of EEG-fMRI
synthesis efforts have been limited to task-based paradigms, where external cues help structure the
neural responses (Kovalev et al., 2022; Li et al., 2024a; Liu & Sajda, 2023a;b; Wei et al., 2020). As a
result, spontaneous resting-state activity, particularly in the natural eyes-closed condition, remains
largely unexplored. To bridge this gap, recent work Li et al. (2024b) introduced a transformer-based
framework for reconstructing fMRI time series in a few selected brain regions during eye-closed
resting-state. While this method shows promising generalization, it still requires training separate
models for each target region, limiting scalability and efficiency. A more recent work by Yao et al.
(2025) demonstrated efficient cortical surface fMRI generation by conditioning a diffusion model
on EEG. However, its reliance on fMRI surface maps restricts reconstruction to the cortex, leaving
subcortical regions outside the model’s representational space.

B DATASET AND PREPROCESSING

Pretraining fMRI Dataset: Preprocessing The HCP dataset (here, used for pretraining) had been
processed using the HCP Minimal Preprocessing Pipeline (Glasser et al., 2013). In addition to this
standard preprocessing, we removed low-order trends (polynomials up to the 4th order) to mitigate
scanner drift artifacts, and temporally downsampled the data by a factor of 2, resulting in a final
temporal resolution of 1.44 seconds and 600 frames per scan. This step was performed to render the
temporal resolution more comparable to conventional fMRI scans, including those of the EEG-fMRI
datasets used in our study. After extracting time courses from regions of interest using DiFuMo atlas
(Dadi et al., 2020), we additionally regress out six rigid-body head-motion parameters (translation
and rotation), apply a low-pass filter with a cutoff at 0.15 Hz (which captures the low-frequency band
typically of interest in rs-fMRI studies), and z-normalize each ROI time series.

Details about paired EEG-fMRI Dataset 2 Dataset2 is an in-house resting-state EEG-fMRI
dataset. It comprises 10 scans from 7 healthy participants, with 3 individuals undergoing two scans
each. During the scans, participants rested passively with their eyes closed. Written informed consent
was obtained from all participants, and all procedures were approved by the Institutional Review
Board. MRI data were acquired on a 3T Siemens Prisma scanner. The T1-weighted structural images
were collected with the following parameters: TR = 2200 ms, TE = 4.25 ms, flip angle = 9 deg, 1
mm isotropic. BOLD fMRI images were collected using multi-echo gradient-echo EPI sequence
with TR = 2100 ms, echo times = 13.0, 29.4, and 45.7 ms, voxel size = 3 × 3 × 3 mm³, slice gap
= 1 mm, matrix size = 82 × 50, 30 axial slices. MRI scanner triggers were recorded together with
the EEG signals for data synchronization. The first seven volumes in fMRI data were dropped to
allow magnetization to reach steady state. The fMRI preprocessing steps are kept consistent with Li
et al. (2024b). Specifically, the steps included slice-timing and motion coregistration, noise reduction
using multi-echo ICA which is implemented in tedana 0.0.9a2, alignment to an MNI152 standard
template (matrix shape: 91 × 109 x 91), removal of low-order trends (up to 4th-order polynomials),
and spatial smoothing (to 3mm FWHM) using AFNI 3. Simultaneous scalp EEG was acquired using

2https://tedana.readthedocs.io/en/stable/
3https://afni.nimh.nih.gov/afni
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a 32-channel MR-compatible system (10–20 layout, FCz reference; BrainAmps MR, Brain Products
GmbH) at a sampling rate of 5 kHz. The EEG system was synchronized to the scanner’s 10 MHz
clock to support gradient artifact correction. Preprocessing included removal of MR-related artifacts
using BrainVision Analyzer 2 (Brain Products, Munich, Germany) (Moehlman et al., 2019; Allen
et al., 2000), followed by downsampling to 250 Hz. No additional filtering was applied. The full
set of 32 EEG channel labels is: [‘FP1’, ‘FP2’, ‘F3’, ‘F4’, ‘C3’, ‘C4’, ‘P3’, ‘P4’, ‘O1’, ‘O2’, ‘F7’,
‘F8’, ‘T7’, ‘T8’, ‘P7’, ‘P8’, ‘FZ’, ‘CZ’, ‘PZ’, ‘OZ’, ‘FC1’, ‘FC2’, ‘CP1’, ‘CP2’, ‘FC5’, ‘FC6’, ‘CP5’,
‘CP6’, ‘TP9’, ‘TP10’, ‘POZ’]. For joint training across Dataset 1 (Li et al., 2024b) and Dataset 2, we
used the intersection of their channel sets, resulting in 23 overlapping channels: [‘FP1’, ‘FP2’, ‘F3’,
‘F4’, ‘C3’, ‘C4’, ‘P3’, ‘P4’, ‘O1’, ‘O2’, ‘F7’, ’F8’, ’T7’, ’T8’, ’P7’, ’P8’, ’FZ’, ’CZ’, ’PZ’, ’OZ’,
’TP9’, ’TP10’, ’POZ’].

Auditory-task Dataset In Section 3.4, we evaluate whether our model, trained on resting-state data,
can generalize to a different domain without additional training. To this end, we use only the test set
from the auditory-task EEG-fMRI dataset from Li et al. (2024b). During the scans, binaural tones
were presented with randomized inter-stimulus intervals (ISI), and the task included two versions
differing only in tone timing: (1) a fast-ISI version (500 TRs per scan) and (2) a sparse-ISI version
(693 TRs per scan). The test set comprises four scans. Two scans correspond to the fast-ISI version,
and the other two to the sparse-ISI version. For additional details, please refer to Li et al. (2024b).

Vigilance States The vigilance state is represented as a categorical label with three classes—drowsy,
intermediate, and alert—assigned to each fMRI frame. To derive these vigilance classes, we employed
the automated VIGALL method (Huang et al., 2015; Jawinski et al., 2019; Olbrich et al., 2015),
which classifies scalp EEG segments into five vigilance stages based on spatial power distributions.
Specifically, we used the VIGALL 2.1 add-on in BrainVision Analyzer 2 to segment the preprocessed
EEG into non-overlapping 1-second intervals and label each interval as one of five stages: A1, A2,
A3, B1, or B2/3, corresponding to decreasing levels of alertness. Prior to staging, EEG signals were
re-referenced to the average, and spherical spline interpolation was applied to reconstruct any missing
channels required by the VIGALL standard. These vigilance stage labels are then grouped into
63-second epochs (corresponding to 30 fMRI time points) and the distribution of stages within each
epoch is used to assign a single vigilance class, i.e., alert, intermediate, or drowsy, to that epoch,
according to the following rules: (1) First, the five VIGALL stages were converted to integer values
from 1 (most drowsy) to 5 (most alert); (2) The Wilcoxon signed-rank test was then applied to the
integer values of each epoch to test for a significant difference of the median away from a (weighted)
center value of 2.75; (3) Based on the test statistic, we assigned each epoch to one of the three
vigilance classes using a z-threshold of ±1.5: epochs with significantly high or low median vigilance
were labeled as alert or drowsy, respectively, while others were classified as intermediate; (4) Finally,
consecutive epochs with the same vigilance label were merged to form continuous segments.

C MORE IMPLEMENTATION DETAILS

C.1 HYPERPARAMETERS

The default hyperparameters for the full pretraining model architecture are summarized in Table 3.
The fMRI masked signal modeling (f-MSM) model is pretrained for 225 K iterations. The checkpoint
achieving the highest spatial correlation between predicted and ground-truth signals on the validation
set is selected as the final pretrained model, which is further fine-tuned for 20 epochs. The training
hyperparameters of EEG-to-fMRI mapping are shown in Table 4.

Other Implementation Details We initialize EEG encoder’s spatiotemporal module using pre-
trained weights from LaBraM-base (Jiang et al., 2024), with a token length of 200 (i.e., 1 second)
and no overlap. For the multi-scale spectral module, we set the smallest scale size to l0 = 200 (1
seconds without overlap), and use a multiscale level of 3. The functional connectivity metrics, i.e.,
Conn PCorr and Conn MSE, are calculated using the upper triangle of the correlation matrices, as
they are symmetric.
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Table 3: Hyperparameters used for stage 1: f-MSM pretraining and finetuning
Hyperparameters Values

batch size pretrain: 96, fine-tune: 16
learning rate pretrain: 3e-4, fine-tune: 5.3e-5
weight decay 0.05

Optimizer AdamW
patch size 1

encoder embedded dim 512
mask ratio 0.5
mlp ratio 2.0

decoder embedded dim 256
encoder depth 12
encoder heads 8
decoder depth 8
decoder heads 8

Table 4: Hyperparameters for stage 2: EEG-to-fMRI mapping
Hyperparameters Values

Batch size 64
Peak learning rate 3e-4

Minimal learning rate 1e-6
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.99)

Weight decay 0.05
Drop path 0.1

Layer-wise learning rate decay 0.65
λMSE 0.5
λalign 0.8
λrecon 0.2

C.2 BASELINES

We compare our model against three publicly available and adaptable EEG-to-fMRI translation
frameworks, all of which have been benchmarked in Li et al. (2024b). These are the only open-source
methods compatible with the datasets and experimental setup in this study and Li et al. (2024b).

• BEIRA (Kovalev et al., 2022): BEIRA introduces a convolutional neural network (CNN)-
based encoder-decoder architecture that translates EEG sequences into corresponding fMRI
sequences in a sequence-to-sequence manner.

• Li et al. (Li et al., 2024a): This method extends BEIRA by incorporating an additional
light-weight spectral representation learning module that leveraging sinusoidal activation
function to better capture the frequency characteristics of EEG signals. It uses CNN-based
downsampling and upsampling encoder-decoder blocks to perform the translation from EEG
to fMRI during an eyes-open-eyes-closed task.

• NeuroBOLT (Li et al., 2024b): NeuroBOLT proposes a transformer-based multi-
dimensional encoder for EEG-to-fMRI mapping in a seq-to-one format. It is a region-
specific model, which means that models are trained separately for each region. It achieved
state-of-the-art prediction performance in their resting-state dataset.

Among these baselines, the models by BEIRA and Li et al. were originally designed in a sequence-to-
sequence format, where both the input and output are time series. To account for the hemodynamic
delay of fMRI relative to EEG, the EEG sequence was temporally shifted by 6 seconds, i.e., the
input EEG was delayed by 6 seconds to align with the corresponding fMRI response. For now
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we do not include CATD (Yao et al., 2025) as a baseline, since CATD operates at the surface-map
level restricted to the cortex, whereas our study focuses on ROI-based reconstruction covering the
whole brain, including both cortical and subcortical regions, making the two settings not directly
comparable. Moreover, since the implementation of CATD has not been publicly released, accurate
reproduction is not currently feasible, which would preclude a fair comparison.

We also compare our model performance with state-of-the-art EEG encoders, and results are shown
in D.1.

• CBraMod (Wang et al., 2025): CBraMod is a recent foundation model for EEG that
follows the design of prior EEG foundation models by segmenting EEG signals into patches
and pre-training via masked patch reconstruction. Building on this framework, CBraMod
introduces two key innovations: (1) a criss-cross transformer backbone with parallel spatial
and temporal attention mechanisms to separately capture heterogeneous dependencies in
EEG, and (2) an asymmetric conditional positional encoding scheme that enables flexible
adaptation to diverse EEG formats. Pre-trained on a large-scale EEG corpus, CBraMod
outperforms state-of-the-art methods and demonstrates strong generalizability across up to
10 downstream BCI tasks (12 public datasets). In our experiments, we initialize the model
with these pre-trained weights to provide a warm start for the EEG-to-fMRI translation task.

• LaBraM (Jiang et al., 2024): LaBraM (Large Brain Model) is a unified foundation model for
EEG that enables cross-dataset learning by segmenting EEG signals into channel patches and
using vector-quantized neural spectrum prediction to encode them into compact neural codes.
Pre-trained on 2,500 hours of EEG data from 20 datasets, LaBraM achieves state-of-the-art
performance in various downstream tasks such as abnormal detection, event classification,
emotion recognition, and gait prediction. In our experiment, we load the pre-trained weights
as initialization (version: LaBraM-base).

• BIOT (Yang et al., 2023): BIOT is a transformer-based foundational architecture for
biomedical signal encoding. It segments EEG signals into patches and learns spatiotemporal
and spectral representations from EEG, which can be applied to various downstream tasks.

• CNNTransformer (Peh et al., 2022): CNNTransformer is a transformer convolutional
neural network originally designed for automated artifact detection in EEG.

• STTransformer (Song et al., 2021): STTransformer is a transformer-based spatial-temporal
feature learning neural network originally designed for EEG decoding.

• FFCL (Li et al., 2022): FFCL is a model combining learned latent features from CNN and
LSTM models for the purpose of motor imagery EEG classification.

In the NeuroBOLT experiments Li et al. (2024b), the authors adapted all baselines to a sequence-to-
one format for evaluation. Following this approach, we apply the same adaptation and further attach
a shared multi-ROI MLP decoder to each EEG encoder, enabling a single model to predict the full set
of ROI signals for fair comparison.

D ADDITIONAL RESULTS

D.1 PREDICTION PERFORMANCE OF OTHER EEG ENCODING BASELINES

In this section, we compare the performance of our model with that of other state-of-the-art EEG
encoders, which were originally developed either as general-purpose EEG foundation models (Yang
et al., 2023; Jiang et al., 2024; Wang et al., 2025) or were specifically designed for EEG decoding tasks
(Song et al., 2021; Peh et al., 2022; Li et al., 2022). For a fair comparison, we attach a multi-region
prediction head to each encoder to decode the full vector of fMRI ROIs. The results are reported in
Table 5, where our model achieves superior performance on the majority of evaluation metrics.

D.2 RESTING-STATE TO TASK-CONDITION GENERALIZATION

In this section, we include a more detailed evaluation of generalization from resting-state EEG-fMRI
to task-based EEG-fMRI using the auditory task dataset in Li et al. (2024b). We followed the same
train-test split, resulting in 9 scans for training, 3 for validation, and 4 for testing. The results
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Table 5: Full brain fMRI reconstruction: comparison with EEG encoding baselines. FB: Full brain;
GM: Cortical gray matter; SC: Sub-cortical regions; CB: Cerebellum; Conn: Metric is applied on
the upper triangle of the full-brain functional connectivity (FC) matrix; TCorr: Temporal correlation
between predicted and ground truth fMRI signals; PCorr: Pixel-wise correlation between predicted
and measured FC. Bold: the best; Underlined: the second best. Values are shown as mean ± std.

Model Name FB TCorr ↑ GM TCorr ↑ SC TCorr ↑ CB TCorr ↑ Conn PCorr ↑ Conn MSE ↓

Ours 0.367± 0.052 0.394± 0.060 0.276± 0.082 0.247± 0.060 0.527± 0.084 0.233± 0.072
CBraMod (Wang et al., 2025) 0.349± 0.033 0.369± 0.035 0.276± 0.081 0.257± 0.059 0.520± 0.062 0.234± 0.072

LaBraM-base (Jiang et al., 2024) 0.288± 0.041 0.320± 0.049 0.207± 0.082 0.161± 0.037 0.432± 0.069 0.401± 0.090
BIOT (Yang et al., 2023) 0.318± 0.068 0.353± 0.075 0.211± 0.101 0.175± 0.053 0.489± 0.077 0.299± 0.089

CNNTransformer (Peh et al., 2022) 0.319± 0.085 0.346± 0.092 0.242± 0.083 0.197± 0.081 0.518± 0.078 0.281± 0.070
STTransformer (Song et al., 2021) 0.091± 0.062 0.106± 0.074 0.052± 0.036 0.048± 0.015 0.436± 0.075 0.326± 0.033

FFCL (Li et al., 2022) 0.298± 0.034 0.321± 0.030 0.220± 0.074 0.194± 0.048 0.471± 0.075 0.319± 0.085

Figure 5: Comparison across rest-to-task transfer and training strategies. Performance com-
parison between our model and the state-of-the-art EEG-to-fMRI translation baseline, NeuroBOLT,
under various evaluation setups: zero-shot transfer, fine-tuning, joint training on both rest and task
scans with testing on task scans (JT-task), joint training and testing on resting-state scans (JT-rest),
and personalized fine-tuning on individual task scans using a model pretrained on resting-state data
(PF). (A) Full-brain temporal correlation (FB TCorr); (B) Gray matter temporal correlation (GM
TCorr); (C) Spatial correlation of predicted and ground-truth functional connectivity (ConnCorr); (D)
MSE of connectivity strength between real and reconstructed FC matrices (ConnMSE).

are summarized below in Figure 5 and benchmarked against the current state-of-the-art method,
NeuroBOLT.

Specifically, we considered four experimental settings: (1) Zero-shot generalization: The model is
trained only on resting-state data and directly evaluated on task fMRI without any further training.
(2) Fine-tuning: The model is pretrained on resting-state data and then fine-tuned on task data. (3)
Joint training: The model is trained on a mixture of resting-state and task data. (4) Personalized
fine-tuning: Starting from the resting-state pretrained model, we fine-tune individually for each test
scan in the task dataset using 80% of the scan for fine-tuning, 10% for validation, and 10% for testing.
As shown in Figure 5, our model shows strong generalization from resting-state to task-based fMRI
in the zero-shot setting. Fine-tuning improves performance slightly, mainly in the FC reconstruction
part. Joint training helps task-fMRI FC reconstruction, but not necessarily for resting-state, which
might be due to already richer variability of brain dynamics in the resting state. Although both models
perform similarly in personalized fine-tuning, overall our method still performs better in most metrics
especially in full-scan reconstruction scenario.
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D.3 CONNECTOME FINGERPRINTING VALIDATION OF ZERO-SHOT FC RECONSTRUCTION

Table 6: Connectome fingerprinting accuracy across brain regions using ground-truth and zero-shot
predicted fMRI. Our model’s zero-shot outputs preserve subject-specific FC signatures. FB: full-
brain; GM: gray matter; SC: subcortical regions; FC: functional connectivity; Acc: fingerprinting
accuracy.

Model FB-FC Acc GM-FC Acc SC-FC Acc
Ground-truth fMRI 100% ± 0% 100.00% ± 0.00% 100% ± 0%
Zero-shot pred fMRI 90% ± 10% 80.00% ± 14.14% 90% ± 10%

To further validate the quality of the zero-shot generated fMRI under task conditions as described
in D.2, we performed a connectome fingerprinting analysis (Finn et al., 2015). This approach
assesses whether the predicted functional connectivity (FC) patterns retain one’s true brain portrait
and subject-specific patterns by attempting to identify individuals based on their FC profiles.

Specifically, we selected 5 subjects from the auditory task dataset, each of whom had two scans
under different conditions (fast and sparse auditory stimulus). In each trial, one scan per subject
was randomly assigned to a "database set", and the other scan formed the "target set". For each
target FC matrix, we computed Pearson correlations with all database matrices (using vectorized
upper-triangular edge values), and predicted subject identity by selecting the database matrix with the
highest similarity. This procedure was repeated across all 16 possible permutations (trials), and the
average identification accuracy was reported.

As shown in Table 6, ground-truth fMRI achieved perfect identification accuracy. Notably, our model’s
zero-shot predicted fMRI also demonstrated high fingerprinting accuracy across full-brain, gray
matter, and subcortical FC matrices. These findings suggest that the generated fMRI signals preserve
individualized functional connectivity signatures, supporting their potential utility in downstream
applications involving subject-specific brain representations, such as cognitive trait identification,
behavioral decoding, and clinical profiling (Finn et al., 2015; Mantwill et al., 2022; Lu et al., 2024).

D.4 EFFECT OF DATA SCALING DURING PRETRAINING

To further assess the impact of sample size during uni-modal fRMI pretraining, we conducted
additional experiments by varying the number of training samples. We also incorporated age-
matched resting-state scans (ages 35–50) from the HCP-Aging dataset (Bookheimer et al., 2019;
Harms et al., 2018) as supplementary pretraining data, allowing the model to learn from a broader
range of fMRI variability and provide a more comprehensive analysis. As shown in Figure 6, we
observed that using less than 75% of the training data leads to a noticeable performance drop across
all metrics. However, once the training set exceeded 75% of the total data, the improvement in
average temporal correlation became marginal. Interestingly, functional connectivity reconstruction,
especially ConnMSE, continued to improve more consistently with additional data within the HCP-
YA dataset. In contrast, supplementing with age-matched HCP-Aging scans did not lead to further
improvements in EEG-to-fMRI translation, suggesting that the current data scale (1,200 training
scans, 600 TRs each) may already be sufficient for effective pretraining. Therefore, we conclude
that the current number of subjects in the HCP-YA dataset provides a substantial and efficient scale
for fMRI representation learning and for capturing instantaneous spatial dependencies across brain
regions.

D.5 EFFECT OF MASKING RATIO DURING PRETRAINING

Table 7 shows the impact of different mask ratios on performance. We found that a mask ratio of 0.5
yielded the best results. In typical Masked Autoencoder (MAE) training, a high mask ratio (e.g., 0.75)
is often chosen to challenge the model to recover missing information and learn robust representations
(He et al., 2022; Chen et al., 2023). However, in our case, a mask ratio of 0.75 did not yield the best
performance for fMRI ROI data. The suboptimal performance of this high mask ratio may be due to
the significant loss of inter-ROI correlation information, which is necessary for recovering full brain
fMRI patterns. In other words, since we have already averaged the (voxel-wise) signals within regions
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Figure 6: Impact of data amount during pretraining (under varying proportions of training scans:
25%, 50%, 75%, and 100%, where 100% corresponds to the dataset used in the main experiments;
additional 300, 600, and 900 age-matched scans from HCP-A were also evaluated). (A) Impact on
averaged temporal correlation within full-brain (FB TCorr) and gray matter (GM TCorr). (B) Spatial
correlation (Conn Corr) between predicted and ground-truth functional connectivity (FC). (C) Mean
squared error (Conn MSE) of connectivity strength in reconstructed FC matrices.

to obtain the ROI data, much of the redundancy in voxel-wise signals has been reduced. Masking
too much information hampers the model’s ability to capture the relationships between ROIs, which
are essential for meaningful fMRI-to-EEG mapping. Preserving spatial continuity and functional
connectivity is critical for the model to learn accurate representations. While when the mask ratio
is small, it makes the task too easy for the model to learn complex patterns and may overfit to the
existing information, leading to suboptimal generalization and performance on unseen data.

Table 7: Influence of mask ratio in f-MSM
Mask ratio FB TCorr ↑ GM TCorr ↑ SC TCorr ↑ CB TCorr ↑ Conn PCorr ↑ Conn MSE ↓

0.25 0.352± 0.044 0.378± 0.048 0.272± 0.080 0.234± 0.052 0.511± 0.078 0.274± 0.086
0.50 0.367± 0.052 0.394± 0.060 0.276± 0.082 0.247± 0.060 0.527± 0.084 0.233± 0.072
0.75 0.357± 0.058 0.385± 0.066 0.269± 0.090 0.241± 0.061 0.518± 0.086 0.263± 0.085

D.6 IMPACT OF PATCH SIZE

Table 8: Influence of patch size in f-MSM
Patch size FB TCorr ↑ GM TCorr ↑ SC TCorr ↑ CB TCorr ↑ Conn PCorr ↑ Conn MSE ↓

1 0.367± 0.052 0.394± 0.060 0.276± 0.082 0.247± 0.060 0.527± 0.084 0.233± 0.072
2 0.347± 0.069 0.375± 0.079 0.256± 0.088 0.222± 0.057 0.475± 0.083 0.322± 0.088
4 0.355± 0.040 0.378± 0.045 0.281± 0.078 0.245± 0.054 0.491± 0.093 0.282± 0.081
8 0.362± 0.062 0.387± 0.070 0.281± 0.087 0.245± 0.063 0.500± 0.082 0.257± 0.072

In our default setting, the model uses a patch size of 1, where each token corresponds to a single
brain region. This approach is grounded in the understanding that, unlike images - where adjacent
pixels often share semantic content due to spatial continuity Dosovitskiy et al. (2020) - the ordering
of regions of interest (ROIs) in a brain data vector does not inherently reflect anatomical proximity or
functional similarity. Consequently, neighboring entries in the ROI vector may correspond to brain
areas that are neither anatomically adjacent nor functionally related. By representing each ROI as a
separate token, the model avoids imposing artificial spatial assumptions and allows for the learning of
functional relationships based on actual connectivity patterns rather than from an arbitrary ordering.
Here we compare the performance across different patch sizes in transformer of f-MSM. For patch
sizes larger than 1, the patched data are transformed into embeddings using a 1D convolutional layer
with the stride equal to the patch size. As shown in Table 8, a patch size of 1 achieves the best
performance among most of the metrics compared with the larger patch sizes.
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Figure 7: Held-out whole-scan reconstruction examples.

D.7 UNSEEN RESTING-STATE SCAN RECONSTRUCTION EXAMPLES

In this section, we present several examples of held-out resting-state fMRI scan reconstructions,
focusing on regions similar to those displayed in Li et al. (2024b) (Figure 7). These examples
demonstrate the ability of our unified model to efficiently reconstruct entire resting-state fMRI scans
across a wide time range using a single model.

E ADDITIONAL DISCUSSION

E.1 DISCUSSION ON FC RECOVERY AND COMPARISON WITH BASELINES

While comparing our model with other EEG-to-fMRI translation baselines, we observe that UniEFS
achieves the second-best performance in recovering functional connectivity (FC). One plausible reason
our model does not outperform the CNN-based approach by Li et al. (2024a) in FC reconstruction
is that FC is computed using Pearson correlation, which is highly sensitive to noise. Even minor
prediction deviations can result in amplified discrepancies in pairwise correlations. The CNN baseline
tends to produce smoother and more regularized outputs, which may suppress high-frequency
fluctuations and thus yield more stable FC metrics—particularly in small-scale evaluation settings. In
contrast, our model prioritizes frame-wise fidelity and regional dynamics, which may introduce local
variability despite capturing more detailed temporal patterns. Notably, despite this, our model offers
overall more consistent and strong performance across diverse evaluation settings.

E.2 LIMITATIONS AND FUTURE WORK

For the resting condition, our model is trained on only two paired EEG-fMRI datasets with fewer than
32 EEG electrodes. The limited electrode coverage may impede the ability to accurately reconstruct
signals from subcortical regions. Since our context-aware embeddings are designed to accommodate
variability across datasets and populations, we plan to incorporate and collect additional resting-state
datasets, ideally with denser EEG electrode coverage, to further enhance the model’s capacity for
capturing fine-grained fMRI spatial dynamics, particularly in deep brain structures. Moreover, based
on our finding that the model exhibits strong zero-shot transfer ability, an exciting future direction
is to evaluate the pretrained resting-state model on diverse task-based datasets. Such downstream
evaluations would allow us to probe how well the learned EEG-to-fMRI mapping generalizes beyond
resting conditions, potentially enabling task-specific decoding and offering new insights into the
neural mechanisms that link spontaneous and task-evoked brain activity. In the longer term, this line
of work may also open avenues for clinical applications, such as noninvasive brain decoding and
monitoring of cognitive or pathological states in settings where fMRI is impractical.
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for non-substantive editing tasks (e.g. grammar polishing and phrasing refinements). All scientific
content, analysis, experimental design, and writing decisions were conceived and carried out solely
by the authors.
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