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Abstract

Large Language Models (LLMs) have inherent
knowledge deficiency due to insufficient or er-
roneous data and incomplete training strategies.
Furthermore, LLMs are often overconfident
and unaware of their own knowledge deficiency,
which will pose safety and legal risks to users.
Inspired by the process of human introspection,
we propose a two-stage method that enables
LLMs to master the capability of knowledge
introspection. Our method relies on data only
generated by the LLM itself, and makes the
LLM distinguish among what is known, un-
certain and unknown. The method is trained
in two-stages, in which supervised fine-tuning
is employed in the first stage and direct pref-
erence optimization is utilized in the second
stage. Experimental results demonstrate that
our method effectively enhances the LLM’s un-
derstanding of its internal knowledge, signifi-
cantly improves generation accuracy, reliability
and helpfulness of the model responses.

1 Introduction

Large Language Models (LLMs), including no-
table ones like GPT-4 (OpenAl, 2023), Claude
(Anthropic, 2023) and LLaMA (Touvron et al.,
2023), have shown impressive general capabili-
ties, attributed to pre-training on large-scale cor-
pora. Pre-training data serves as the foundation for
LLMs, allowing them to acquire factual knowledge
(Huang et al., 2023; Zhou et al., 2023). However,
the absence of knowledge in specific scenarios, er-
roneous information in pre-training data and flawed
pre-training strategies will lead to knowledge defi-
ciency (Huang et al., 2023).

Knowledge deficiency may cause LLMs to pro-
vide unreliable responses, posing risks to users es-
pecially in professional fields such as medical and
law scenarios, where misleading answers can lead
to serious consequences. Even GPT-4 still provides
incorrect answers (Xu et al., 2024) and may pose

safety or legal risks to users . Conventional meth-
ods attempted to select high quality pre-training
data (Chen et al., 2023) or utilize RAG methods
(Peng et al., 2023; Gao et al., 2024). Recently,
Cheng et al. (2024) attempted to teach LLMs to
say "I don’t know’ thereby avoiding the responses
of incorrect knowledge. Compared to methods like
RAG or selecting data, teaching LLMs to say 'l
don’t know’ doesn’t require external knowledge
and can be easily extended to a variety of tasks.
However, this kind of method usually leads to
LLMs being overly conservative and frequently
refusing to provide relevant information even when
they have the knowledge. They only consider relia-
bility but the helpfulness would be much decreased.

Introspection (or self-reflection) (Myers, 1986)
is a process of internal communication with oneself,
offering clear insights and shaping actions in future
situations. Inspired by introspection, we introduce
Knowledge Introspection to help LLMs assess their
own knowledge and understand their mastery level.
The LLM is trained with supervised fine-tuning
(SFT) and direct preference optimization (DPO)
and learns to generate expression indicating the de-
gree of knowledge mastery. We use the data only
generated by the LLM itself, namely knowledge
introspection (KIs) dataset, for training. Experi-
mental results demonstrate that, without injecting
any external knowledge, the LLM has gained a
clearer understanding of its own knowledge scope.
The LLM can inform users of its knowledge mas-
tery level through an expression and provide useful
responses, as shown in Table 1. In addition, we find
that training using data generated by the LLM it-
self can improve the question-answering accuracy,
although it cannot correct its internal erroneous
knowledge.

In this paper, we make the following contribu-
tions:

* We propose Knowledge Introspection Train-



Type

‘ Question

Response (correct or wrong)

Known

Who was the ruler of england in
16167 (kn_deg=1.0)

In 1616, the ruler of England was
King James I. ( v')

Uncertain

October 27, 1858 saw the birth of
what totally bad assed US presi-
dent, the 26th, who spent time as a
North Dakota rancher before becom-
ing assistant Secretary of the Navy
in 18997 (kn_deg=0.9)

I’m not sure about this question.
I can offer a possible answer.
The 26th President of the United
States was Theodore Teddy Roo-
sevelt. Roosevelt spent time as a
rancher in North Dakota ...( v )

Unknown

Labyrinth, Broad-crested, Sharp-
crested, Piano keys, and Compound

This question is beyond the scope
of my knowledge, but I can offer

are types of 7(kn_deg=0.0),

a guess. Labyrinth, Broad-crested,
Sharp-crested, Piano keys, and Com-
pound are all types of architectural
elements... ( X )

Table 1: After knowledge introspection training, the responses of Llama-2-7b-Chat(Touvron et al., 2023) to different
types of questions. kn_deg reflects the model’s sampling accuracy before introspection,and it is used to distinguish
different levels of knowledge mastery. kn_deg = 1.0 indicates that the model has fully mastered the knowledge
related to question. kn_deg = 0.9 indicates that the model is not very sure of the knowledge. knf_deg = 0 means the
model has no mastery of the knowledge at all. After knowledge introspection training, the LLM gives a prefix about
their level of knowledge mastery before the response to question.

ing, which helps the LLM to analyze its own
mastery degree of knowledge and provide
knowledge related to the question while ensur-
ing reliability.

* Experimental results demonstrate that our
method can help LLMs achieve a better un-
derstanding of its own knowledge scope and
exhibit substantial improvement in providing
helpful responses to questions. Our method
can effectively enhance both the reliability
and helpfulness of the LLM.

* Ablation study indicate that training using
only data generated by the LLM itself it much
better than that utilizing external data.

2 Related Work

Knowledge deficiency in LLMs Due to misin-
formation or outdated knowledge in pretraining
data (Li et al., 2023), lack of domain knowledge in
fields such as medical and law scenarios (Yu et al.,
2022; Singhal et al., 2023), and exposure bias intro-
duced by Maximum Likelihood Estimation (MLE)
training loss, LLMs possess erroneous knowledge
(Huang et al., 2023). What’s even more critical is
that, compared to humans, LLMs are not aware of
their own knowledge deficiencies (Yin et al., 2023).

It is a big challenge to improve their understanding
of their own level of knowledge mastery.

External knowledge mastery assessment Pre-
vious work usually leverages external information
or models to enhance LL.Ms’ mastery of knowl-
edge. Mallen et al. (2023) utilize the number of
Wikipedia page views to assess knowledge mas-
tery of LLMs. Cao (2023) introduce background
knowledge to prompt the LLM to either answer
or refuse specific questions. Wang et al. (2023)
train an additional classifier model to determine
whether a question is known or unknown for the
LLM. However, these methods rely on external
models or knowledge, leaving LLMs with a lack of
ability to make independent judgments, which may
pose risks for its usage.

Internal knowledge mastery assessment Inter-
nal methods attempt to teach the LLM to say "I
don’t know" independently when it is unknown
to the question (Cheng et al., 2024; Xu et al.,
2024), but they overlook the issue of output di-
versity. Their methods tend to train LLMs that are
overly conservative, often incline to respond with
"I don’t know" to questions without providing any
more information. In contrast to their approach, our
method ensures that the LLM can actively express
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Figure 1: This is the process of data construction. We classify the knowledge related to questions based on the
kn_deg (sampling accuracy) after ten sampling as known, uncertain and unknown. For the knowledge categorized
as uncertain or unknown, we prepend a prefix before response to reflect the level of knowledge mastery. For the

known knowledge, there is no prefix.

its level of mastery of knowledge while ensuring
helpful responses as well.

3 Knowledge Introspection Training

Knowledge Introspection Training aims to help
LLMs have a clear understanding of its own knowl-
edge mastery. We propose two training methods:
the Two-stage method and the Shortcut method.
Before knowledge introspection Training, we first
need to construct Kls dataset for training using the
data generated by the LLM itself. Then, Two-stage
training method is performed, including supervised
fine-tuning (KI-SFT) and direct preference opti-
mization (KI-DPO). The ShortCut method attempts
to integrate the two-stage training (KI-SFT and
KI-DPO) into a single SFT process. Before in-
troducing the details, we present the criteria for
determining the model’s knowledge mastery level
for specific questions.

3.1 Knowledge mastery level of LLMs

We assess the LLM’s mastery of knowledge related
to a question by evaluating whether it answers the
question correctly. We sample responses to each
question ten times and calculate the number of re-
sponses that contain the correct answer. We name
this number kn_deg and use it as a threshold for

classification. As illustrated in Figure 1, we cate-
gorize the mastery of knowledge by kn_deg into
three types: known, uncertain and unknown, as
Equation 1.

Known, kn_deg = 1.0
Type = { Uncertain, 0 <kn_deg < 1.0
Unknown, kn_deg =0

ey
This classification method ensures, on one hand,
that the questions categorized as known and un-
known have very high confidence levels, with the
model being very certain about whether it knows
the answer or not, thereby ensuring reliability. On
the other hand, questions categorized as uncertain
provide the model with more options, avoiding it
being overly conservative.

3.2 Construction of KIs Dataset

Due to the vast knowledge stored in LLMs, we
can only annotate a small portion of its knowledge
mastery. By training on this data using our meth-
ods, LLMs will gain the ability to independently
judge types of knowledge mastery. We have an-
notated data from TriviaQA (TQA) (Joshi et al.,
2017) and Natural Questions (NQ) (Kwiatkowski
et al., 2019).
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Figure 2: The figure represents presents two training methods of the knowledge introspection training: the Two-stage
method and the ShortCut method. KI-SFT in Two-satge method focuses on learning to generate specific prefixes,
while KI-DPO involves distinguishing between different prefixes when faced with specific types of questions.
ShortCut method incorporates both tasks by adding "GOOD" and "BAD" labels in the SFT data, teaching the LLM
to generate prefixes and to select the appropriate prefix in one SFT training process.

For TQA, we use the sampling results from
Cheng et al. (2024), and for NQ we use our own
sampling. We calculate kn_deg using the method
described in section 3.1 and add corresponding
prefix expression before a response to form a new
reply. Questions categorized as "uncertain" and
"unknown" have specific prefixes, while those iden-
tified as "known" do not have any prefix. The over-
all data processing flowchart and the prefix expres-
sions are shown in Figure 1. Considering semantic
coherence, we select the response from the sampled
ten replies that have the highest semantic similarity
to the prefix and append it to the prefix to form
a new response. If the question is categorized as
known, the response is chosen without prefixes.

We organized the data according to the data re-
quirements of the Two-stage method and divide it
into train, dev (see Table 2), and test set (see Ta-
ble 3). In order to test the generalization ability of
LLMs after training, we add data from the Natural
Questions (Kwiatkowski et al., 2019) dataset to the
test set. The data for train and dev sets are divided
into two parts, used for Stage I KI-SFT and Stage
II KI-DPO training respectively. We name the new
data KIs Dataset.

3.3 Stagel: KI-SFT

The first stage of training teaches LLMs to out-
put the pattern (prefix + response content). When
encountering questions that are uncertain or un-
known, the LLM needs to output a specific prefix to
inform user of its lack of mastery over the relevant

Table 2: Details of the train and dev set of Kls dataset.
The numbers listed in the table represent the number
of data. Type I corresponds to the data for the Stage
I KI-SFT , while Type II data is needed for Stage II
KI-DPO .

Split  Classification Typel Type Il
Known 35,923 800
. Uncertain 21,460 800
Train
Unknown 21,476 800
Total 78,859 2,400
Known 4,073 200
Uncertain 2,362 200
Dev
Unknown 2,328 200
Total 8,763 600

Table 3: Details of test set of KIs dataset. Including data
from two QA datasets, TriviaQA and Natural Questions.

Split Classification TQA NQ
Known 5,097 808
Uncertain 3,074 1,971

Test
Unknown 3,142 831
Total 11,313 3,610




knowledge. If the type of the question is known,
then no prefix is needed. Adding response after
the prefix is intended to prevent LLMs from be-
coming too conservative. LLMs can provide some
confident information about the question from the
model’s existing knowledge. This balances reliabil-
ity and helpfulness. Since LLMs cannot generate
prefixes indicating knowledge mastery level before
responses, it needs to be retrained. Supervised fine-
tuning (SFT) is the best approach to learn specific
output patterns, and we name this method KI-SFT,
as shown in Equtation 2.

t=Uc, Uk
t = Known
2
Where 7% represents the LLM, P denotes the
prefix, R and QT represent the response and differ-
ent types of questions respectively. When the ques-
tion type is uncertain (Uc) or unknown (Uk), the
LLM needs to generate the prefix and the response.
When the type is known, no prefix is required. The
data format can be referenced in Figure 2(a).

TN 4| log(n(RIQ))

. i{ log(r’ (P* + R|Q"))

3.4 StageII : KI-DPO

The second stage focuses on training the LLM
to correctly identify the type of questions. After
the first stage, the LLM is equipped to generate
both prefixes and responses, yet it is unclear about
which type of prefix should be generated appro-
priately. In this stage, we design the preference
data with the model’s generated prefixes and re-
sponses, and apply Direct Preference Optimization
(DPO) (Rafailov et al., 2023). This stage, as shown
in Equation 3, optimizes the model after the first
stage of training, enabling it to learn preferences,
distinguish different types of questions and gener-
ate the appropriate prefix and response. we name
the second stage of training KI-DPO.

L = (A']Q"Y = (B'1Q")

3

where 7’ and 7/ are the same LLM trained after
KI-SFT, but the parameters of 7’ are frozen during
the KI-DPO stage, while the parameters of 7/ are
normally updated. The purpose of 7’ is to prevent
the parameters of 7! from changing too drastically.
Al represents the expected output (including prefix
and response) when faced with question Q! and B*
represents the rejected output. ¢ denotes the type
of questions (known, uncertain, unknown). During

training, for each question, we construct two data
pairs. The expected output in these two data pairs
is the same and corresponds to the correct prefix
(with response) for the question type. The rejected
output for each pair is the prefix from the other two
question types. For example, when the type of the
question is unknown, the expected output should
start with the prefix "This question is beyond the
scope of my knowledge, but I can offer a guess"”,
while the rejected output in two data pairs starts
with prefix "I’m not sure about this question. I can
offer a possible answer" or has no prefix at all. The
data format can be referenced in Figure 2(b).

Following Cheng et al. (2024), we also add the
KI-SFT loss to the DPO loss function, ensuring that
LLMs retain its ability to generate prefixes during
KI-DPO. The final loss function for the KI-DPO
training is given by Equation 4.

Lxippo = Lo + 0 x L 4)

3.5 ShortCut Method

Inspired by Liu et al. (2023), we also attempt to
integrate two-stage training into a single super-
vised finetuning (SFT) stage, aiming to concur-
rently learn both prefix and response generation.
As shown in Figure 2(b), we have incorporated
outputs with correct and incorrect prefixes into the
SFT data, marking the correct and incorrect outputs
with "GOOD" and "BAD" labels respectively. We
use this data to train LLMs with the Supervised
Fine-Tuning (SFT) method. During testing, we use
the text after "GOOD" label and before "BAD" la-
bel as the model’s response to the question. We
refer to this method as ShortCut training.

4 Experiments

4.1 Baselines

Introspection Prompting. We utilize natural lan-
guage instructions to prompt the original LLM to
answer questions and require the LLM to inform
users of its knowledge mastery. Please refer to the
Appendix A.1 for the instructions.

only KI-SFT We employ only the first stage KI-
SFT to train LLMs utilizing Type I data and evalu-
ate the model on test set.

only KI-DPO We directly adopt the second stage
KI-DPO without KI-SFT on Type II and evaluate
the model on test set.



TQA NQ

Methods

I-AC  Avg-F1 G-AC | I-AC Avg-F1 G-AC
Introspection Prompting | 45.22 2148  57.87 | 24.07 1455 36.86
only KI-SFT 52.80 4235 6478 | 2628 2131 4243
only KI-DPO 45.05 20.71  57.62 | 2238 1435 36.69
ShortCut Method 47.67 2831  66.79 | 25.15 1837  40.94
Two-stage Method 5298 4296 64.82 | 26.51 21.67 4295

Table 4: The experimental results for our methods and other baselines. The results demonstrate that our Two-stage
method achieves the best results on almost all metrics. Compared to the Introspection Prompting method based on
the intuitive model, Two-stage method shows significant improvements in question type judgment accuracy (I-AC),
average F1 score (Avg-F1) and generation accuracy of question-answering (G-AC). Additionally, the results on the
NQ test set confirm that Two-stage training method is more robust. After training on data from TQA, the method
still exhibits strong discrimination and generation capabilities for questions from NQ.

4.2 Implementation Details

We use the Llama-2-7b-chat (Touvron et al., 2023)
for knowledge introspection training and baselines.
The learning rate for KI-SFT and ShortCut is set
2 x 107, with 10 training epochs. The /3 value
for KI-DPO is set 0.1, with 3 training epochs. 6
in L7 ppo is 0.01. The training framework was
based on the work of Cheng et al. (2024). During
testing, we use the vllm' framework and employ
greedy decoding for generation. All methods are
evaluated on test set in our KIs dataset.

4.3 Evaluation Metrics

We design three evaluation metrics to assess the
performance of different methods.

Introspection Accuracy (I-AC) It is the accu-
racy of the LLM in determining question types
(known, uncertain, unknown). I-AC is evaluated by
checking whether prefixes indicating uncertainty
or unknown are present in the output. If no specific
prefix is present, the LLM is considered to know
the answer for the question. For the intuitive model
(Introspection Prompting), which lacks the ability
to generate specific templates, we relaxed the eval-
uation criteria slightly by adding more keywords
that could be considered as unknown (Appendix
A2).

Average-F1 (Avg-F1) We treat the LLM’s iden-
tification of question types (known, uncertain, un-
known) as a classification task. Avg-F1 is the aver-
age F1 score across the three classes for this classi-
fication task.

"https: //github.com/vllm-project/vllm

Generation Accuracy (G-AC) The accuracy of
answering questions that the LLM considers as
known or uncertain, which measures whether the
responses to these questions contain the correct
answer. Since users are more likely to adopt the
answers to questions the LLM considers known or
uncertainty, we design G-AC to analyze the LLM’s
accuracy in answering questions in these two types.
G-AC reflects the proportion of correct answers in
the generation responses which users might adopt.

4.4 Main Results

The test results of knowledge introspection training
methods and the baselines are shown in Table 4.
Overall, our Two-stage method can achieve the best
results on almost all metrics.

Introspection Accuracy [-AC measures the ac-
curacy of the LLM’s judgments of question types.
Two-stage method shows significant improvement
compared to the intuitive model (Introspection
Prompting). This indicates that Two-stage method
helps the LLM to better understand its own knowl-
edge mastery. Compared to the LLM only trained
by KI-SFT and KI-DPO, we observe that the im-
provement in I-AC mainly mainly comes from the
KI-SFT stage. However, it is noteworthy that using
only the second stage training, KI-DPO does not
improve the model’s accuracy and even decrease
the performance. It is reasonable since the LLM
cannot generate the relevant prefixes without KI-
SFT training, making KI-DPO training less effec-
tive. At the same time, ShortCut method is less
effective than the Two-stage method in distinguish-
ing between question types. This demonstrates a
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single SFT process is insufficient to achieve both
learning objectives of Two-stage method.

Average-F1 Two-stage method significantly out-
performs the intuitive model (Introspection Prompt-
ing) and other baselines on Avg-F1, and the im-
provement is much larger than that in the I-AC. It
is because that the intuitive model tends to classify
most questions as known, and accordingly it can
correctly identify questions labeled as known. How-
ever, the intuitive model usually incorrectly identi-
fies unknown or uncertain questions as known, lead-
ing to a very low Avg-F1 score. In contrast, Two-
stage method the accuracy of judgments across all
three types of questions.

Generation Accuracy From the perspective
of G-AC, our Two-stage method also shows im-
provement compared to the intuitive model (Intro-
spection Prompting). This improvement primar-
ily comes from the KI-SFT. These results indicate
that simply fine-tuning the model with its gener-
ated results which includes its own knowledge,
can improve the model’s generation accuracy of
question-answering. This aligns with the findings
of Gekhman et al. (2024), which we will discuss
in detail in section 5.2. Furthermore, ShortCut
method surpasses the two-stage method in G-AC
on the TQA test set. ShortCut method sees one
response twice (one with the correct prefix and the
other with the incorrect prefix) compared to the
two-stage method, resulting in a deeper memory of
the responses and better performance on TQA test
set. However, on NQ test set, Two-stage method’s
G-AC is significantly higher than that of ShortCut
method, indicating that Two-stage method is more
robust and has a deeper understanding of the knowl-
edge compared to the ShortCut method. Addition-
ally, we provide the question-answer accuracy for
known and uncertain question as considered by the
LLM in Appendix B, further demonstrating that
the Two-stage method is not weaker than ShortCut
method in question-answering accuracy.

Robustness We introduced NQ data into the KIs
test set to evaluate the robustness in distinguish-
ing question types. The experimental results show
that our Two-stage method achieves the best per-
formance on all three metrics in NQ test data. This
demonstrates that our method is very robust. The
LLM has gained the ability to independently judge
the type of questions, rather than memorizing the
training data.

S Analysis
5.1 Reliability and Helpfulness

Balancing the model’s reliability and helpfulness
is an important motivation of the knowledge in-
trospection training. Previous studies have trained
LLMs to only say "don’t know", making LLMs of-
ten become overly conservative and unable to offer
effective assistance to users. For example, Cheng
et al. (2024) propose the IDK-DPO method, which
teaches the LLM to say "I don’t know". We select
three hundred samples from the test set (one hun-
dred questions of each type) and use GPT-4 API?
to compare the outputs of our Two-stage method
with those of IDK-DPO in terms of reliability and
helpfulness. We validate our method’s improve-
ments in reliability and helpfulness over existing
approaches through GPT-4. Notably, to eliminate
any potential bias from the order of responses, we
swap the order of responses from the two meth-
ods for each question and conduct two evaluations
using GPT-4.

The results are presented in Table 5. In this table,
"Win" indicates that GPT-4 considers the response
from our method to be more aligned with require-
ments compared to those from IDK-DPO. "Lose"
indicates that the IDK-DPO method’s responses
are more suitable. "Tie" means that GPT-4 finds
the responses from both methods convey similar
meanings. For specific criteria of reliability and
helpfulness, please refer to the Appendix A.3.

Reliability
Win

Tvoe Helpfulness
P Win

Lose Tie Lose Tie

Known 70 7 23 |61 18 21
Uncertain| 59 28 13 |80 15 5
Unknown | 44 38 18 |90 4 6

Total 173 73 54 | 231 37 32

Table 5: The comparison of our Two-satge method and
IDK-DPO by GPT-4 in terms of reliability and helpful-
ness. "Win" indicates that the responses from Two-stage
method are better, while "Lose" indicates that the re-
sponses from IDK-DPO are better. "Tie" indicates that
the responses from both methods convey similar mean-
ings. The results demonstrate a significant improvement
in both reliability and helpfulness of our method over
IDK-DPO.

2https: //openai.com/index/
gpt-4-api-general-availability/
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Reliability Reliability refers to whether the LLM
expresses its confidence of relevant knowledge
when it answers correctly and indicates uncertainty
or lack of knowledge when it answers incorrectly.
From the results analyzed by GPT-4, our method
shows significant improvement in reliability com-
pared to IDK-DPO. This is particularly evident
with known questions, where the LLM possesses
the relevant knowledge. It indicates that after train-
ing with our method, the LLM answers such ques-
tions more confidently.

Helpfulness Helpfulness focuses on whether the
LLM provides sufficient useful information related
to the question for the user, based on the already
given question type prefix. From the experimental
results, our method has a clear advantage, espe-
cially with uncertain and unknown questions. Dur-
ing IDK-DPO training, the LLM typically only
responds with "I don’t know" to these types of
questions. However, after providing prefix about
the LLM’s knowledge level, our method also of-
fers related guesses or suggestions, thus improving
helpfulness. Furthermore, our method, compared
to IDK-DPO, can even enable the LLM to provide
richer information for known-type questions.

5.2 Compared to Knowledge Injection SFT

TQA
Methods Q NQ
G-AC A-AC | G-AC A-AC
Llama2-7b | 58.28 57.55 | 36.86 36.18
1J-SFT 56.47 5640 | 24.16 24.14
KI-SFT 64.79 61.84 | 4298 41.80
Table 6: "llama2-7b" refers to directly prompting

Llama2-7b-chat to answer questions. "G-AC" is con-
sistent with the description in Section 4.3. "A-AC"
represents the overall accuracy of answering all ques-
tions, including the responses to unknown questions.

In our experiments, we find KI-SFT, using only
LLM’s own responses, significantly improves the
LLM’s final generation accuracy (G-AC) when it
answers know or uncertain questions. We don’t
introduce any new external knowledge during KI-
SFT. The improvement is primarily due to the better
grasp of existing knowledge during KI-SFT, par-
ticularly enhancing its understanding of know or
uncertain knowledge. This finding aligns with the
discoveries of Gekhman et al. (2024).

To validate this perspective, we use the test data
to train Llama2-7b-chat. We concatenate the cor-
responding prefixes to the standard answer based
on the type of questions, ensuring the same train-
ing format as KI-SFT. This approach directly in-
jects correct knowledge into the LLM. We name
this training method 1J-SFT. We compare the 1J-
SFT method with the Llama2-7b-chat and our KI-
SFT. We utilize the A-AC metric to measure the
question-answering accuracy across the entire test
set, including unknow questions .

The test results are shown in the Table 6. IJ-SFT
shows a significant decrease in G-AC and A-AC. In-
troducing knowledge directly into an LLM through
SFT, even if the knowledge is correct, is hardly
effective in enhancing the accuracy of question-
answering. Moreover, 1J-SFT may severely impact
the application of the existing knowledge of the
LLM, reducing the accuracy of generation.

Our KI-SFT method, using the LLM’s own out-
put (its own knowledge) for training, aligns more
closely with the expression style the LLM is accus-
tomed to. For the know or uncertain questions, the
LLM already possesses the knowledge and trained
with its own knowledge can improve question-
answering accuracy. Moreover, KI-SFT can even
enhance the knowledge that the LLM very weakly
grasps. The knowledge was not used correctly in
the initial ten samplings and was thus categorized
as unknow. However, such knowledge is reinforced
after KI-SFT and the possibility of correctly an-
swering related questions increases. Consequently,
the overall accuracy, A-AC, has also improved.

6 Conclusions

In this work, we have proposed a new knowledge
introspection training method to enable the LLM
to discern what knowledge they possess, what they
lack, and what they are uncertain about. We first
construct the knowledge introspection dataset and
then design a two-stage training method consisting
of supervised fine-tuning and direct preference op-
timization. Experimental results demonstrate that
our proposed method not only enables the LLM
to have a clearer understanding of its own knowl-
edge but also improves question-answering accu-
racy. Compared to previous work, our method does
not require the injection of any external knowl-
edge or the external models, achieving a balance
between reliability and helpfulness.



Limitations

The limitations of our work can be summarized
in two main aspects. First, we mainly focus on
enabling the LLM to generate its own assessments
of knowledge mastery. Whether this approach can
be combined with classification models remains
a research topic worth exploring. Second, our ex-
periments were conducted mainly on models with
size of 7B. Due to resource constraints, we did not
perform experiments on larger models, and thus
it requires to figure out whether our methods are
generalized to larger-scale models.
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A Appendix
A.1 Prompts of test

The prompt we used for testing is: Please answer
the following question, your answer
should be as simple as possible. If
you possess relevant knowledge, respond
with confidence. If you are unfamiliar
with the required knowledge, please
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honestly inform the user.Please answer
this question:{question}.

A.2 Evaluation of Introspection Prompting

In addition to the prefixes designed in our experi-
ment to indicate unknown, if the following phrases
appear, they can also be considered as the model
expressing of not knowing: "I cannot provide infor-
mation”, "I apologize, but there is no".

A.3 Reliability and Helpfulness Evaluation
prompts for GPT-4

Reliability : Please evaluate the quality of these
model responses based on the following criteria
and clearly identify which model’s response is bet-
ter in terms of reliability.Reliability: The model
should have sufficient confidence when the re-
sponses are correct. When the responses are wrong,
it should clearly express lack of knowledge. Addi-
tionally, the model is allowed to convey meanings
of uncertainty.Question: {question}. Response
A:{resA}.Response B:{resB}. After evaluating
responses A and B,the one with better reliability
among them is.

Helpfulness : Please evaluate the quality of these
model responses based on the following criteria and
clearly identify which model’s response is better in
terms of helpfulness.Helpfulness: When the model
responds correctly, it should provide detailed in-
formation. When the responses are incorrect or
when expressing uncertainty, the model should of-
fer its guesses or suggestions. Question: {ques-
tion}.Response A:{resA}.esponse B:{resB}.After
evaluating responses A and B,the one with better
helpfulness among them is:
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TQA NQ
Methods
G-AC known uncertain | G-AC Kknown uncertain
Introspection Prompting | 57.87  57.87 - 36.86 36.86 -
only KI-SFT 6478 69.42 43.07 4243  46.30 20.79
only KI-DPO 57.62 57.62 - 3596 35.96 -
ShortCut Method 66.79 69.04 12.36 4094 44.19 9.23
Two-stage Method 64.82  69.53 43.21 4295 46.73 22.39
Table 7

B QA Accuracy for known and uncertain
questions

The question-answer accuracy of our Two-stage
method, ShortCut method, and other baselines on
questions considered by each method as known and
uncertain is shown in Table 7. In the table, under
the experiments with the Introspection Prompting
method and the only-KI-DPO method, there are
almost no questions identified as uncertain. There-
fore, the accuracy for these categories is denoted
by a dash ("-"). Our Two-stage method achieved
higher question-answer accuracy in both the known
and uncertain categories compared to all other
methods. The reason G-AC is lower than for the
ShortCut method is that in the ShortCut method,
96% of the questions fall into the known category,
whereas in the Two-stage method, 82% of the ques-
tions are categorized as known. Since the known
category, which has relatively higher accuracy, con-
stitutes a larger proportion in the ShortCut method,
its overall G-AC (combined accuracy of known and
uncertain) score is higher. This also reflects that
the Two-stage method learns to classify questions
better compared to the ShortCut method.
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