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ABSTRACT

How do two individuals differ when performing the same action? In this work, we
introduce Video Action Differencing (VidDiff), the novel task of identifying subtle
differences between videos of the same action, which has many applications, such
as coaching and skill learning. To enable development on this new task, we first
create VidDiffBench, a benchmark dataset containing 549 video pairs, with human
annotations of 4,469 fine-grained action differences and 2,075 localization times-
tamps indicating where these differences occur. Our experiments demonstrate that
VidDiffBench poses a significant challenge for state-of-the-art large multimodal
models (LMMs), such as GPT-40 and Qwen2-VL. By analyzing failure cases of
LMMs on VidDiffBench, we highlight two key challenges for this task: localiz-
ing relevant sub-actions over two videos and fine-grained frame comparison. To
overcome these, we propose the VidDiff method, an agentic workflow that breaks
the task into three stages: action difference proposal, keyframe localization, and
frame differencing, each stage utilizing specialized foundation models. To en-
courage future research in this new task, we release the benchmark']and codef}

1 INTRODUCTION

The ability to compare two videos of the same action and discern their detailed differences plays a
critical role in a wide variety of applications. For instance, in fitness coaching, a novice learning
to perform a barbell squat typically watches instructional videos and then compares their actions
in a recorded video to identify discrepancies between their movements and those of an expert. In
medical training, junior surgeons compare videos of themselves performing surgical procedures with
reference videos from experts to identify errors and improve surgical skills.

There are two critical obstacles. First is precise localization of sub-actions: finding differences
requires finding the sub-action frames where the differences might occur, and aligning those frames
between the two videos. Second is fine-grained understanding: the ability to perceive subtle visual
differences in motions.

Current research on video difference understanding largely emphasizes feature visualization (Bal-
akrishnan et al.| [2015)) or coarse-grained comparisons between different actions or interacting ob-
jects (Nagarajan & Torresani, [2024). However, many real-world applications demand fine-grained
comparisons between videos of the same action, a challenge that has received little attention.

We introduce a new task, Video Action Differencing (VidDiff). Given two videos of the same action,
(va,vp), along with a description of the action, the task is to generate two sets of statements: one
that is more true for v 4 and another for vg. For example, in a video pair featuring an expert and a
novice performing a barbell squat, key differences might include “knees caving in more in video A”
and “the squat is deeper in video B” (Figure[I). Since generating the initial difference candidates
relies heavily on language capabilities, we also introduce a simpler ‘closed’ setting that focuses on
video analysis. In this setting, the target difference strings are provided, and the task is to predict
whether each applies more to video A or B.

To facilitate research in this new direction, we present VidDiffBench, a comprehensive benchmark
designed for video action differencing. VidDiffBench contains 549 video pairs drawn from domains

"Benchmark: |https://huggingface.co/datasets/jmhb/VidDiffBench
2Project page: |ttp://jmhb0.github.io/viddiff
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Figure 1: The Video Action Differencing task and benchmark (VidDiffBench). Given a pair of
videos and an action, the task is to generate a list of differences as natural language descriptions.
Our VidDiffBench consists of annotated differences across diverse domains, where the differences
are relevant to human skill learning. The first row emphasizes the first key challenge: localization of
sub-actions between segments of the video for comparison. The second row highlights the second
key challenge: fine-grained image understanding of actions in order to perform comparison.

that require expert feedback, such as fitness, sports, music, and surgery. The videos are annotated
with 4,469 fine-grained differences (~8 per video pair), along with 2,075 timestamp annotations
that identify where these differences occur. To ensure the annotated differences are relevant to skill
learning, we create a taxonomy of action differences that leverages domain expertise. This makes
VidDiffBench the first large-scale dataset dedicated to video action differencing.

In addition to introducing a new task and benchmark, we propose the VidDiff Method, an agentic
workflow for solving VidDiff in zero-shot. The method incorporates large lan-
guage models (LLMs) to propose differences, localizes relevant frames using contrastive language-
image models (CLIP), and compares frames for differences using vision-language models (VLMs).
The key idea is that localizing specific video segments where differences occur enables more effec-
tive visual comparison with VLMs. We further benchmark both open-source (Qwen2-VL, LLaVA-
Video) and proprietary (GPT-40, Gemini-1.5 pro, Claude 3.5 Sonnet) large multimodal models
(LMMs) on VidDiffBench. Our results demonstrate that VidDiff is a very challenging task for
zero shot models, while the structured approach in the VidDiff Method enhances video comparison.

2 RELATED WORK

Skilled Action Understanding in Videos Video comparison has many potential applications, and
our benchmark focuses on the specific goal of natural language feedback in skill learning. Most of
the video action comparison papers from this section’s first paragraph are systems for skill feedback,
showing that skill feedback is well-motivated. Many works give feedback by classifying coarse mo-
tion errors, or by visualizing motions, with applications in yoga (Zhao et al., 2022} [Thoutam et al.}
[2022}, [Chen et al ., 2018} Dittakavi et al.,[2022} [Chen & Yang], [2020; Xie et al.,[2019), physical ther-
apy (Velloso et al., 2013), weightlifting (Parmar et al.,[2022; (Ogata et al.l 2019), and general fitness
(Fieraru et al.l 2021} /Ashwin et al.,[2023). The feedback tends to be coarse-grained. In contrast, our
task focuses on open natural language feedback, and identifying fine-grained feedback. Recently,
the Ego-Exo4D dataset (Grauman et all,[2023)) provides videos with expert commentary on skilled
actions, which is promising for developing instructional feedback systems. This, along with exist-

ing works that give language feedback (Li et al., [2024b} [Fieraru et all, 2021}, [Parmar et al.} 2022}
Velloso et all, 2013), support our claim that language is a good medium for providing skill feed-
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back to humans. Zooming out from skills feedback, skilled action understanding — which includes
foundational capabilities for feedback systems — has attracted enormous interest. For example, in
sports, music, dance, and surgery, prior works have tackled action recognition (Verma et al., 2020;
Shahroudy et al.l|2016; Soomro et al.} 2012} Zhang et al.|[2013;|Wang & Zemel, 2016} Chung et al.,
2021)); spatial and temporal action localization / segmentation (Shao et al.,2020; Liu et al.| {2022} |L1
et al.,|2021b; Zhang et al.,|2023b; Ibrahim et al., 2016} |Garrow et al., |2021; |L1 et al., |2021b; |Aklilu
et al.,[2024)); human pose and motion estimation / reconstruction (Cai et al.}[2022; Tang et al.,|2023bj
Wang et al., 2023; |Andriluka et al., 2014; |L1 et al., [2021a} [Fieraru et al.,2021; Zhu et al., 2022; |Bera
et al., 2023} |Liu et al. 2024; Grauman et al., [2023)); and hand and tool pose estimation (Doosti,
2019; Johnson et al., [2020; 2016} |Gao et al.l 2014} |Grauman et al., [2023)). Skilled action domains
also tackle higher level reasoning tasks like question answering (L1 et al.,[2024a), and action quality
assessment (Pirsiavash et al., 2014} [Parmar & Tran Morris, [2017).

Visual Difference Understanding Only a few prior works have considered video comparison in
actions. They mostly emphasize skill learning in similar categories to our benchmark, but their
methods tend to tackle single domains. One approach visualizes the user’s motion against a target
expert motion in video or in augmented reality (AR) (Trout, |2013} [Motokawa & Saito}, [2006; |Han
et al., 2016; [Kyan et al., |2015}; Kurillo et al., |2008). Since interpreting discrepancies between mo-
tions is challenging, especially for novices, other works generate visualizations of differences (Liu
et al., [2023;; [Liao et al., [2023; |Balakrishnan et al., [2015). In contrast, we summarize action differ-
ences in natural language, which enables direct and interpretable feedback. Also, our benchmark
covers many skill categories, encouraging the development of generalizable methods that do not
require domain-specific training data and methods. The most related work by Nagarajan & Torre-
sani| (2024) focuses on coarse-grained step differences in instructional videos using question-answer
pairs. In contrast, our approach targets fine-grained action differences, such as a “deeper squat”,
which offers more detailed insights for skill learning. Additionally, our VidDiff method is zero-shot
for a benchmark spanning multiple skilled domains, while their method requires instruction tun-
ing data and is specialized to cooking. Beyond inference-time comparison, a number of important
works in skill assessment leverage video pairs in training — here the supervision signal is typically
a binary variable indicating which video demonstrates greater skill |[Doughty et al.| (2018 2019);
Pan et al|(2021); |Zhang et al.[(2023a)). In appendix |El we discuss all related datasets having video
pairs, finding that none have labels for fine-grained comparison while being large scale, unlike our
VidDiffBench

Describing differences between images in language is an established task called ‘difference caption-
ing’ or ‘change captioning’ (Jhamtani & Berg-Kirkpatrick} 2018} [Park et al.,[2019; Kim et al., 2021}
Yao et al.,|2022; |Hu et al., 2023). LMM evaluation and instruct-tuning papers address image differ-
encing for pairs or small sets of images (Alayrac et al., 2022} |Li et al.l 2023 |/Achiam et al., 2023
Jiang et al., |2024). The task of image set differencing with large sets was introduced in (Dunlap
et al.,2023). Our VidDiff method uses image differencing with LMMs as a subroutine, however the
task of video action differencing with natural language has not previously been explored.

3 VIDEO ACTION DIFFERENCING

Video Action Differencing (VidDiff) is a novel and challenging task, offering significant potential
for applications in coaching, skill acquisition, and automated performance feedback. To facilitate
the development of models capable of handling such a task, we define two complementary task
settings: a closed setting, evaluated via multiple-choice format, and a more complex open setting,
requiring generation of action differences. Both are essential for advancing video understanding,
especially in contexts where precise feedback on actions is critical.

3.1 TASK DEFINITION

The goal of video action differencing is to identify skill-based differences between two videos of
the same action, in a zero-shot setting. We first introduce the simpler closed-set version, followed
by the more difficult open-set variation.

Closed-Set Video Action Differencing: In the closed-set task, the input is an action descrip-
tion string s, a video pair (va,vg), and a list of k candidate difference statements D =
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{do,d1,...,dr_1}, such as “the jump is higher”. For each k, the model makes a predictions
P = {po,p1,...,pk—1}, where each prediction is either ‘A’ if the statement applies more to v 4,
or ‘B’ if it applies more to vp. This setup simulates real-world scenarios like coaching, where spe-
cific differences of interest are already known. For benchmark purposes, the dataset only includes
instances where there is a clear ground-truth label (‘A’ or ‘B’) for each difference, which makes
evaluation both reliable and automatic.

Open-Set Video Action Differencing: In the open-set task, the input is the action description string
s, a video pair (v4,vp), and an integer Ngir. The model must generate at most Ny difference
statements D and their associated predictions P, which label the differences as ‘A’ for video v4 or
‘B’ for video vp. This setting is more challenging, as the model must not only identify differences,
but also generate those differences without any pre-defined options, closely mimicking real-world
conditions.

3.2 EVALUATION METRIC

Our choice of benchmark evaluation metrics is driven by two major challenges for designing annota-
tions: ambiguity and calibration. First, there is ambiguity around what differences are important for
performing an action skillfully. Second, annotators are calibrated differently — they have different
thresholds for whether a difference like “wider feet stance” is different enough to be annotated.

Closed-Set Evaluation: In the closed-set task, the evaluation is straightforward: prediction ac-
curacy is measured as the percentage of correct predictions, where 50% corresponds to random
guessing and 100% represents perfect performance (assuming a balanced evaluation set). There is
no ambiguity because we provide the possible differences. There is no calibration issue because the
answer must be ‘A’ or ‘B’ (and not ‘C’ for “not different”). Overall, it’s an automatic metric that
focuses on video understanding.

Open-Set Evaluation: In the open-set task, we use an LLM query (GPT-40) to match the ground
truth difference strings to predicted difference strings in a ‘partial matching’. Then we only consider
“positive differences” — where the ground-truth label is ‘A’ or ‘B’ and not ‘C’. Then the recall @ N
is calculated as the number of correctly matched and predicted positive differences, divided by the
total number of positive differences. To handle the ambiguity of what differences are relevant, we
set Ngigr to be 1.5 times the number of labeled differences, so models can predict more differences
without penalty. This is a reasonable number because the annotation taxonomy is designed to cover
skill-relevant differences. Moreover, we handle the calibration challenge of whether a difference is
‘above a threshold’ by only considering the positive differences where ground truth is ‘A’ or ‘B’.

4 BENCHMARK DATASET AND ANNOTATIONS

The Video Action Differencing task presents a novel challenge in video understanding, requiring
precise comparison of subtle action differences. As no comprehensive benchmark to evaluate this
task exists, we introduce VidDiffBench, a comprehensive benchmark specifically designed to test
and advance the ability of models to detect fine-grained differences in complex actions. Our bench-
mark consists of publicly available videos and our human-created annotations are freely available
on HuggingFace Hu VidDiffBench covers a wide range of actions relevant to skill learning and
performance feedback, and is constructed to challenge models across varying levels of difficulty, en-
suring its relevance for long-term model development. Table[dsummarizes the key dataset statistics.

4.1 VIDEO DATASETS

The video collection for VidDiffBench was designed to capture a diverse range of actions where
performance feedback is essential, ranging from simple exercises to complex professional tasks.
This diversity ensures that models are challenged not only on temporal localization but also on the
subtlety and complexity of visual differences. Actions in VidDiffBench span multiple levels of
difficulty—from the basic “hip rotations” in fitness exercises to the intricate “surgical knot tying.”
This wide coverage tests models across varying degrees of granularity and action complexity. The
are five categories:

*https://huggingface.co/datasets/jmhb/VidDiffBench
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Category  Source Dataset Activity  Video Pair  Difference  Timestamp
Fitness HuMMan (Cai et al., [2022) 8 193 1,466 310
Ballsports  Ego-Exo4d (Grauman et al., 2023) 4 98 996 595
Surgery JIGSAWS (Gao et al.;[2014) 3 166 1,386 672
Music Ego-Exo4d (Grauman et al.| 2023) 2 29 180 320
Diving FineDiving (Xu et al.;[2022) 1 63 441 140
Total 18 549 4,469 2,075

Table 1: Summary of VidDiffBench statistics across categories and datasets: number of unique
activities, video pairs, annotations for differences, and timestamps.

* Fitness videos are simple, single-human exercises sourced from HuMMan (Cai et al.|
2022), characterized by clean consistent backgrounds, consistent camera viewing angles,
and consistent movement patterns.

* Ballsports includes basketball and soccer actions from Ego-Exo4D (Grauman et al.,|2023),
recorded across various environments with some diversity in background and camera angle,
as well as action detail.

* Diving features high-level Olympic performances from the FineDiving dataset (Xu et al.,
2022)), capturing subtle and complex movements in professional diving. The backgrounds
may be different, but the camera angles are consistent.

* Music contains guitar and piano exercises from Ego-Exo4D (Grauman et al., 2023)), focus-
ing on detailed finger and hand movements. Background and camera angles can vary.

* Surgery includes long, intricate procedures such as “knot tying” and “needle passing” from
the JIGSAWS dataset (Gao et al.,2014)). The background and camera angles are consistent.

Within each action, video pairs are randomly sampled to ensure a wide range of comparison diffi-
culty. The range of tasks is broad in terms of action complexity and background variation.

4.2 VIDEO ACTION DIFFERENCE ANNOTATIONS

A critical innovation of VidDiffBench is its detailed human-annotated dataset, designed to address
two major challenges in annotating the video differencing task: ambiguity in identifying relevant
differences and calibration consistency among annotators. To tackle ambiguity, we introduce a
structured difference taxonomy for each action, ensuring clarity on what aspects are being com-
pared. Then we assign annotators to label video pairs with differences — to handle the calibration
challenge we ensure labeling consistency by maintaining a consistent annotator identity within each
action. Additionally, we provide frame-level localization annotations of differences, which can en-
able analysis for future model development. In the following section, we describe these components
in greater detail.

4.2.1 ANNOTATION TAXONOMY

For each action, we define a structured difference taxonomy — a list of key visual differences relevant
to the task. For instance, in the basketball jump shot, a skill-relevant difference might be “the ball
is more in front of the body”; on the other hand, we do not include differences not directly relevant
to skill performance like “the athlete is taller”. Annotators assign labels to video pairs as follows:
‘A’ if the difference is more pronounced in video A, ‘B’ if it’s more pronounced in video B, and
‘C’ if the difference is negligible. By fixing this taxonomy, we address the ambiguity challenge —
that different annotators may not focus on the same differences. This allows for more objective and
consistent comparisons.

We consulted domain experts to create the taxonomies for each action category. For Fitness and
Surgery, we worked with a personal trainer and an attending surgeon, respectively, to identify vi-
sually salient differences between novice and expert performers. For Ballsports and Music, we
extracted relevant differences from expert commentary in the Ego-Exo4D dataset using a large lan-
guage model (LLM). For Diving, we leveraged the FINA diving manual, processed by an LLM, to
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identify key differences. We filtered differences that were difficult to visually assess, such as “more
wrist snap” in basketball jump shot (because video resolution was not high enough).

This method resulted in 148 distinct difference descriptions, which are detailed in Appendix [G.2]
This fixed taxonomy allows for precise evaluation of model performance across video pairs and
helps identify failure cases where models struggle with particular types of differences.

4.2.2 ANNOTATING ACTION DIFFERENCES

For each action a; and its corresponding differences, annotators reviewed video pairs (v4, vg) side-
by-side, with the ability to step through frames. Each difference was labeled as ‘A’ if it applied
more to video v4, ‘B’ if it applied more to vp, or ‘C’ if the difference was insignificant. Consis-
tent annotation was achieved by assigning a single annotator to each action, ensuring that models
are evaluated uniformly across all samples. This avoids the calibration challenge, that different
annotators may have different thresholds for significance.

To verify annotation quality, a second annotator reviewed 25% of the samples. We assessed dis-
agreements where one annotator marked ‘A’ and the other marked ‘B’, which occurred in only 2%
of cases, indicating low error rates. Annotators were provided with clear visual guidelines to en-
sure accurate and impartial labeling. On average, annotators spent three minutes per video pair to
evaluate about eight differences.

4.2.3 ANNOTATING DIFFERENCE LOCALIZATIONS

In addition to action differences, VidDiffBench provides localization annotations, pinpointing the
exact frames in each video where key differences occur. Since identifying localizing frames and
aligning them across videos is a key step in performing video action differencing, these annotations
enable analysis of model weaknesses, for example through ablation tests in our results section.

We define specific key points for each action, representing critical frames where important move-
ments occur. For example, in a squat, key points might include “knees start to bend”” and “reaches
lowest position.” Differences are then linked to these key points: for example the difference “faster
squat descent” is defined as the frame spanning “knees start to bend” and “reaches lowest position”.
Further details are provided in Appendix[C.2]

4.3 DATASET SPLITS AND STATISTICS

Dataset Splits To account for varying levels of difficulty in VidDiffBench, we categorize actions
into easy, medium, and hard splits. GPT-40 was used to assign actions to these splits based on de-
scriptions, difference lists, and video lengths. The easy split includes simple movements like Fitness
exercises, while medium and hard splits contain more complex actions like Ballsports, Diving, Mu-
sic, and Surgery. This ensures that models are challenged across a range of difficulties, from basic
movements to subtle, fine-grained comparisons.

Dataset Statistics VidDiffBench includes 549 video pairs, 4,469 annotated differences, and 2,075
key point annotations across Fitness, Weightlifting, Ballsports, Surgery, Music, and Diving domains.
Video lengths range from a few seconds to several minutes, providing comprehensive coverage of
different action complexities. This diversity ensures that VidDiffBench is a robust benchmark for

testing and advancing models in fine-grained action comparison. Under the closed setting, the A/B
ratio is 0.493/0.507, and in the open setting, the A/B/C ratio is 0.259/0.264/0.476.

5 VIDDIFF METHOD

We propose a three-stage framework, the VidDiff Method, that addresses the Video Action Dif-
ferencing task. The method follows an agentic workflow (Anthropic, 2025) consisting of three
components: Difference Proposer, Frame Localizer, and Action Differencer Figure 2] The stages
decompose the differencing task into logical steps, and leverage strong zero-shot models for each
step. The method described is for the open setting. The method for the closed setting is the same,
except the LLM query for candidate differences in stage 1 is replaced with the ground truth differ-
ences.
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“Weighted Squat” Proposer Proposed Action Differences: “Wider foot stance at start”, “Faster decent”, “Longer
9 q (LLM) Squat’, “Deeper Squat”, “Faster ascent”

Frame Retrieval Strings: [A person rising from a squat with a barbell on their back., “A person
“Faster ascent” Localizer at the gym lifting from a squat position with a barbell.’, ..]
(REV)} Number of frames needed: 4

Which set of frames
R i Frame Sk [ = contains a faster ascent?
Video A |1} F & Localizer 1 I Answer A, B, or neither
: (cLip) | T

Action “Video B has a
Differencer faster ascent
(VQA) than video A"

Video B » & Localizer
(cLip)

Figure 2: VidDiff Method. One input is an action description (e.g. “weighted squat”). The Dif-
ference Proposer generates potential differences using a large language model (LLM). The Frame
Localizer assigns frames where these differences are observable. Finally, the Action Differencer
checks each difference using a vision-language model, determining whether it applies more to video
A or video B, or neither.

1. Difference Proposer: The Difference Proposer module generates candidate differences for a
given action description s. It leverages the extensive knowledge embedded in large language models
(LLMs) to predict likely differences between the two videos. For example, given the description “A
practice basketball jump shot”, the module might generate difference candidates such as “the athlete
jumps higher”. These difference statements, which are visually assessable, form the basis for further
analysis. The goal of this stage is to create a diverse set of meaningful and relevant comparisons.

2. Frame Localizer: The Frame Localizer module focuses on identifying the most relevant frames
in the video where the proposed differences can be observed. By retrieving the most salient segments
from both frames, we solve the key challenge of temporal localization of sub-actions, which makes
the next stage more effective. Our approach is to do temporal sub-action segmentation. The LLM
takes uses the action description string to produce a list of sub-actions, along with retrieval strings
to guide localization. A pretrained CLIP model (Radford et al [2021) is used to compute frame
similarity based on these retrieval strings, and then we assign each frame to one of the sub-actions.
Here, we use a Viterbi-based algorithm (Kukleva et al., [2019), which assigns each frame to a sub-
action based on its similarity score, while enforcing that the frames follow the fixed sequence of
sub-actions. Finally, the LLM predicts a mapping between the sub-actions and their corresponding
differences, yielding a set of precisely localized frames for each difference.

3. Action Differencer: In the final stage, the Action Differencer module validates the proposed
differences using vision-language models (VLMs). Given the localized frames from both videos,
this module poses multiple-choice questions (derived from the generated difference candidates) to a
VLM, which determines whether each difference is more pronounced in v 4, vp, or if it is indistin-
guishable. This stage transforms the problem into a structured multiple-choice task. Moreover, by
providing the localized-frames relevant to each difference.

Overall the VidDiff method is structured to localize the key parts of the video where differences are
possible, which should make visual comparison with the VLM easier.

6 RESULTS

In this section, we present the results of evaluating large multimodal models (LMM:s) and our Vid-
Diff Method and on the challenging task of video action differencing on our VidDiffBench bench-
mark. Our experiments show the complexity of this task, particularly in capturing subtle, fine-
grained action differences across diverse video categories. We demonstrate that existing state-of-
the-art LMMs, such as GPT-40 and Gemini, struggle with these challenges, while our proposed
VidDiff Method outperforms the baselines, especially in the close-set evaluation. Through detailed
error analysis and ablation studies, we uncover key factors that influence model performance, shed-
ding light on future directions for improving video-based model capabilities.
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6.1 MAIN RESULTS

As described in Section we evaluate our approach on both the closed-set and open-set tasks.
In the closed-set task, models are provided with predefined difference descriptions and must pre-
dict whether the difference applies to video A or B. In the open-set task, models are tasked with
both generating the difference description and making a prediction. These tasks are fundamental to
assessing models’ capabilities in fine-grained action comparison.

For our experiments, we benchmark large multimodal models (LMMs) that have demonstrated
strong performance in video tasks. Specifically, we use top models from the Video-MME bench-
mark (Fu et al.|[2024)): GPT-40 (Achiam et al.,2023), Gemini-1.5-Pro (Reid et al.|[2024), Claude 3.5
Sonnet |Anthropic| (2024), and the leading open-source models, Qwen2-VL-7B (Wang et al., [2024;
Bai et al.| 2023) and LLaVA-Video (Zhang et al.l [2024). Following model guidelines, we provide
Gemini, Qwen, and VideoLLaVA with video inputs, while for GPT-40 and Claude we give frames,
with text prompts explaining which frames belong to which video. For categories with shorter, fine-
grained actions (e.g., Fitness, Ballsports, and Diving), we sample frames at 4-6 fps, while for longer
actions (e.g., Music and Surgery), we sample at 2 fps. Our method, VidDiff, is evaluated alongside
these baselines, were the proposer LLM is gpt-40-2024-08-06, the localizer embedding model
is CLIP ViT-bigG-14, and frame differencer VLM is gpt-40-2024-08-06. The results are
results shown in Table[2l and Table

Closed-Set Benchmark Performance The closed-set results are in Table |2} revealing that video
action differencing is a highly challenging task. While some models surpass the random-guessing
baseline of 50% — where gray shading indicates better-than-random with statistical significance —
their improvements are modest, especially in the harder splits where no model performs signifi-
cantly better than chance. Gemini, which has emphasized its results in video understanding, has
the strongest overall performance. Our VidDiff Method, which uses GPT-40 as a visual perception
backbone, outperforms GPT-40 on the raw video frames and is second overall, demonstrating the
value of our scaffolding for this task. LLava-Video is competitive with GPT and Claude, while
Qwen2-VL performs poorly, possibly related to instruction-following challenges appendix [G.4]

Table 2: Results for closed setting (accuracy). Best scores in bold, second best underlined. Scores
are better than random, with statistical significance highlighted in gray. Significance is p-value<
0.05 on a binomial test,

| Easy Med Hard Avg

GPT-40 583 532 489 535
Gemini-1.5-Pro 678 53.6 517 57.7
Claude-3.5-Sonnet | 57.1 50.5 525 534

LLaVA-Video 56.6 520 483 523
Qwen2-VL-7B 49.0 526 496 504
VidDiff (ours) 62.7 562 50.0 563

Open-Set Benchmark Performance In the open-set task (Table [3), our method outperforms all
other models across most splits, except on the medium difficulty. Among the LMMs, GPT-40 per-
forms much better than Gemini. We analyze this gap by breaking down errors into two categories:
difference recall error, where the model fails to generate the ground-truth difference, and flipped pre-
diction error, where the generated difference is correct but the prediction (‘A’ or ‘B’) is incorrect.
The closed-set results show that Gemini has lower flipped prediction error, suggesting that Gemini’s
main weakness is in difference recall. Specifically, on the easy split, Gemini’s recall error is 66%
compared to GPT-40’s 30%. Despite generating a similar number of differences as GPT-40, Gemini
struggles to identify the most important ones in our taxonomy, which hampers its performance. Suc-
cess in the open setting requires strong language capabilities, and this limitation is the bottleneck for
handling subtle differences. This explains why, when using the same language proposer, our model
performs similarly to GPT-4o.
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Table 3: Results for open setting (recall @ Ny;ig). Best scores in bold, second best underlined.
| Easy Med Hard Average

GPT-40 45.7 41.5 38.0 41.7
Gemini-1.5-Pro 30.3 30.5 24.1 28.3
Claude-3.5-Sonnet 37.8 34.6 343 35.6
LLaVA-Video 7.8 9.0 8.5 8.4
Qwen2-VL-7B 11.2 8.8 1.6 7.2
VidDiff (ours) 49.9 379 38.5 42.1

6.2 ABLATION STUDIES

We conducted ablation studies to better understand the individual contributions of different compo-
nents within VidDiff. These studies focus on the Closed setting, isolating the effects of the frame
differencing and frame localization stages.

Frame Differencer Image Comparison In the final stage of VidDiff, the model performs visual
question answering (VQA) on frames retrieved from the two videos. To evaluate the effectiveness of
this process, we conducted a test using the ground-truth timestamp annotations from VidDiffBench.
The results (Table 4)) show that even with perfect frame alignment, zero-shot VLMs struggle to
consistently detect subtle differences in images. Performance decreases significantly on the medium
and hard splits, which suggests room for improvement in zero-shot VLMs’ image understanding
capabilities.

Frame Localization Design We also analyzed the per-
formance of the Frame Localizer in the closed-set case
for the easy split, using ground-truth difference proposals
to measure VQA accuracy. Table [5] shows that random Acc 786 61.2 510
frame retrieval leads to significant performance drops,

while the addition of Viterbi-based decoding (which en- Table 4: Ablation study results for
forces a fixed action transcript) substantially improves ac- frame differencing VQA with ground
curacy. The improvement suggests that temporal align- truth frames. Questions are 3-way
ment plays a critical role in achieving robust video differ- multiple-choice.

encing.

Split Easy Medium Hard

In summary, these ablation studies confirm that both ac-
curate frame localization and careful VQA processing are

. .. S . Method Accuracy
essential to achieving strong performance in video action
differencing. Oracle (GT timestamps) 78.6
Random 50.1
Ours w/o Viterbi Decoding 57.4
6.3 DIFFERENCE-LEVEL ERROR ANALYSIS Ours 62.7

VidDiffBench’s predefined taxonomy allows us to ana-
lyze model performance on 148 specific types of action
differences, highlighting where models succeed and fail.
The results for each difference are detailed in Appendix
Table and we perform a statistical significance test to
compare models against the random-guessing baseline.

Table 5: Ablation on frame localization
using different retrieval techniques on
easy.

We find that model performance is highly dependent on

the visual complexity of the action and the difficulty of localization. Successful examples (Figure[3]
left column) show high accuracy for simple, easily localized actions, such as “wider foot stance” in
hip rotations (83% accuracy) or “guiding the ball” in a basketball layup (90% accuracy). These cases
feature coarse differences that are apparent in most frames, or require only approximate localization.

Conversely, failure cases (Figure [3] right column) often involve precise localization or fine-grained
differences. For instance, identifying the angle of a diver’s entry into the water in a 10m dive’ re-
quires frame-perfect alignment, and recognizing subtle changes in speed in “piano scales” is difficult
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when reasoning over multi-frames. These challenges highlight the limitations of current models in
handling fine-grained video analysis.

Success cases Failure cases

“Wider foot stance”. Accuracy: 80% ) .
Ny N i AN i

“Body closer to 90° at water entry”
a

N

) (L ORATAY: LOE RTAY:
Zx 7‘5 S el -
+ Coarse visual difference < No localization « Moderately fine difference - Difficult localization

“Non-shooting hand guides the ball”. Accuracy: 90% “Plays the scales faster”. Accuracy: random

« Fine-grained difference over multiple frames « Easy localization

“Instrument applies more force to the tissue”. Accuracy: random

*+ Multi-frame reasoning * Easy localization « Fine-grained differencing over multiple frames « Complex motion

Figure 3: Examples of ‘success cases’ (left) — differences where GPT-40 has high accuracy — and
failure cases (right). Success cases typically involve coarse differences, easy localization, or simple
actions, while failure cases often involve fine differences, precise localization or complex actions.

7 CONCLUSION

In this paper, we introduce the novel task of Video Action Differencing (VidDiff), aimed at com-
paring actions in videos. We define this task, compile a meticulously annotated benchmark, and
propose a zero-shot agent-based framework. Our findings demonstrate that this task is feasible with
current foundation models, although more challenging splits in the benchmark reveal significant op-
portunities for further methodological improvements. We believe that Video Action Differencing
represents a promising research direction with broad applications in fields such as skill acquisition,
sports analytics, and scientific research.

8 FUTURE WORK AND LIMITATIONS

While our work demonstrates the potential of Video Action Differencing, there are areas for future
improvement. Enhancing frame retrieval techniques could improve performance. While many large
models have emergent capabilities not trained for (Tang et al., 20234} [Burgess et al., [2024)), explicit
training for comparing fine-grained features of Vision-Language Models (VLMs) is likely underuti-
lized. Further, developing methods tailored to specialized domains such as healthcare or education
could unlock more targeted applications. Limitations in our current approach include reliance on
general foundation models, which may struggle with domain-specific tasks or fine-grained compar-
isons. We hope this work encourages further exploration into broader video comparison methods
and inspires advancements in these areas.

10
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A BENCHMARK: DOWNLOAD INSTRUCTIONS

Our benchmark is released at https://huggingface.co/datasets/jmhb/VidDiffBench. It has complete
instructions on how to access annotations, how to download external datasets, and all licenses for
our annotations and the source video datasets.

B BENCHMARK: DIFFERENCE ANNOTATION TAXONOMY GENERATION

Each dataset underwent a thorough taxonomy generation process. Details for each dataset are pre-
sented in this section. Most datasets were first processed with the Difference Proposer.

B.1 GENERATING JIGSAWS DIFFERENCE ANNOTATION TAXONOMY FOR SURGERY VIDEOS

To produce the JIGSAWS taxonomy for surgery videos, we first used the Difference Proposer to gen-
erate difference candidates. As we found many proposed variations to be irrelevant, we consulted a
surgeon from janonymous_hospital;. We first showed them a variety of videos from the JIGSAWs
dataset and brainstormed visually discernible differences. Next, we shared the GPT-generated varia-
tions with the surgeon and discussed which ones should be added to the brainstormed listed. Lastly,
we dropped all differences that could not be annotated consistently. For instance, we removed ”Sur-
geon exploits robotic instrument’s range of movement more efficiently in Video A than in Video B”,
as the difference is subject to interpretation.

B.2 GENERATING EGO-EX04D DIFFERENCE ANNOTATION TAXONOMY

For datasets with expert annotation, such as Basketball, Soccer, and Music, we processed the ex-
pert commentary with GPT instead of asking for difference proposals directly. We asked GPT to
summarize the expert commentary using the following prompt:

Below are a sequence of text strings.
The strings are written by experts who are watching videos of a task with this
description: "{action descriptions}".
As the experts watch each video, they pause the video and record verbal commentary about
how that person is performing the task.

Return a list of text strings that summarizes what are the key visual cues that the
expert is looking when they provide feedback.

Each item in the list should be specific and testable, so that anybody watching a single
video can assess whether that visual cue applies to a particular video.

Your response should be a json with this structure:
{ "summary_texts" : ["text0", "textl", ...] }
The list should have at least 15 items.

Here are the texts to summarize:
{texts}

As GPT has no knowledge of the specifics of the dataset, we then manually parsed the proposed list
and kept items that could be distinguished by non-experts based on visual information only. Some
differences were not visible in our data. For instance, the "wrist snap” in basketball was excluded,
as it could not be discerned from the videos.

As we found that GPT lost a lot of information from the expert commentary, we also manually
parsed the expert comments and added key visual cues that were mentioned by the experts.

B.3 GENERATING FINEDIVING DIFFERENCE ANNOTATION TAXONOMY

For the diving dataset, we used the Difference Proposer. As all videos are of experts, there is little
variation between the videos. We thus used the diving score annotations given in the dataset, to find
pairs of images with more variability and used those proposed differences that were discernible in
these pairs.
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C BENCHMARK: ANNOTATION DETAILS

Two annotators were provided with a list of variations and a folder containing all videos as well as
concatenated videos of two actions next to each other. They were instructed to annotate differences
only as such, if they were obvious. The instructions for the annotators were as follows:

You' 1l get pairs of videos and be asked questions about how they’ re different. They' 11
be specific querstions:

— E.g. "Which one has a wider foot stance: (a) video A, (b) video B, or (c) they’'re the
same.

— if it’s hard to tell whether there really is a difference, then say "c". Rule of
thumb: once you’ve found the important point in the video, if it takes you more
than 10 seconds to make a decision, then say "c".

C.1 BENCHMARK: THE DIFFERENCE TAXONOMY

The difference taxonomy is available as part of the benchmark release at this link. The full list of
differences can also be previewed in the analysis table[T4]

C.2 BENCHMARK: RETRIEVAL ANNOTATION GENERATION

For the closed-evaluation scenario, we need to temporally align the videos we wish to compare.
For this alignment, we annotate retrievals, which are important and identifiable moments within an
action. To generate retrievals, we used the Frame localizer, where we prompt GPT4-V to propose
stages for a given action (see Section [C.3| for details). We found that the stages were sometimes
to coarse. We thus either manually identified key moments that helped retrieve sections of the
videos important for comparing differences, or, for JIGSAWS consulted our expert. The retrieval
annotations are available as part of the VidDiffBench benchmark release, and are in the folder called
‘retrieval’.

C.3 PROMPTS FOR ACTION ASSIGNMENT TO THE EASY/MEDIUM/HARD SPLITS

I'm designing a benchmark for comparing pairs of videos of the same action.

We have many actions and each action has a list of differences we look for.

The benchmark’s task is to examine differences and say whether the statement applies
more to "video A" or "video B".

Below we show a dictionary where each element is a single action.

Each action has an "action_description" describing the action.

It also has "average seconds_per_video", for the median length of videos in seconds.
Each action has a dictionary of "differences", where each difference has these keys:
— 'name’ for the difference

— ’descriptiorY describing the difference

Finally, for each action, there are two unfinished options:

— ’split’ which currently says ’easy|medium|hard’

— ’split_reasor which currently says ...’

Your task is to fill in these values:

— Decide whether the ’split’ value is ’easy’, 'mediu’ or "hard . This evaluation judges

the difficulty of performing actionn difference comparison for all differences

within an action. Having a high number of actions should not be considered as
criteria for difficulty.

— Justify your choice in ’split_reasorY .

Return the same dictionary as json, with the values of ’split’ and ’split_reasor
populated.

Here are the actions.

{actions}

The actions field is replaced with a json with the structure that is described in the prompt.
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C.4 DIFFICULTY SPLITS

The result of the difficulty splits is in table 6]

Table 6: The difficulty splits with action code and names

Split Action Action Name Action description

easy fitness_0 Hip circle anticlockwise fitness exercise called standing hip circle with hands on hips, one rota-
tion anticlockwise

easy fitness_3 lucky cat fitness exercise called two arm standing lucky cat starting with arms up,
one repetition

easy fitness_4 Squat Knee Raise side view squat without weights, then knee raise on left side

easy fitness_6 Hip circle clockwise fitness exercise called standing hip circle with hands on hips, one rota-
tion clockwise

medium  ballsports_0  basketball jump shot a person is doing a basketball mid-range jump shot, starting with the
ball in their hand, no defense, practice only

medium  ballsports_1 basketball mikan layup a person does the Basketball drill called the Mikan layup where they
start under the basket, do a layup with the right hand and catch it, do a
left hand layup and catch it, no defense, practice only

medium  ballsports_2  basketball reverse layup a person playing basketball does a reverse layup starting from the left
side of the basket and lays it up with their right hand on the right hand
side, no defense, practice only

medium  ballsports-3  soccer penalty kick a person does a soccer drill where they do a single penalty kick, practice
only, no defense, no goalie

medium  diving-0 diving competitive diving from 10m

medium  fitness_1 Opening and closing step left side first fitness exercise called opening and closing step on left side and then
opening and closing step on right side

medium  fitness_2 car deadlift a single free weight deadlift without any weight

medium  fitness-5 Squat Knee Raise diagonal view a squat then a knee raise on left side

medium  fitness-7 Opening and closing step right side first  fitness exercise called opening and closing step on right side and then
opening and closing step on left side

hard music_0 piano a person is playing scales on the piano

hard music_1 guitar a person is playing scales on the guitar

hard surgery_0 Knot Tying The subject picks up one end of a suture tied to a flexible tube attached
at its ends to the surface of the bench-top model, and ties a single loop
knot.

hard surgery-1 Suturing The subject picks up needle, proceeds to the incision (designated as a
vertical line on the bench-top model), and passes the needle through
the fake tissue, entering at the dot marked on one side of the incision
and exiting at the corresponding dot marked on the other side of the
incision. After the first needle pass, the subject extracts the needle out
of the tissue, passes it to the right hand and repeats the needle pass three
more times.

hard surgery_2 Needle Passing The subject picks up the needle (in some cases not captured in the video)

and passes it through four small metal hoops from right to left. The
hoops are attached at a small height above the surface of the bench-top
model.

C.5 VALIDATING SPLIT GENERATION - HUMAN STUDY

Choosing the difficulty splits requires a holistic view of all the actions, so we decided it didn’t make
sense for experts to suggest them, since they are only familiar with a few actions each. On the
other hand, we didn’t want to rank the splits based on performance of current models since this felt
like biasing towards current models; and besides, the performance for many actions in ‘medium’
and ‘hard’ is already random, so it would be hard to differentiate these actions. LLMs are a good
candidate because they have a good understanding of the actions and are relatively free of the biases
of this paper’s authors Furthermore, human annotators could not do the ranking, because no human
annotated all the actions.

To further support the choice of an LLM, we asked 3 humans to rank the action comparisons from
easiest to hardest, and compared against the LLM ranking. We then computed the Spearman’s
rank correlation between all ranking sets, and the results are in table [/} The mean of the pairwise
correlations between the humans was 0.602, while the mean of pairwise correlations between the
LLM and humans was higher at 0.673. This shows (i) that there is non-negligible variability in
human rankings, and (ii) that the LLM ranking is reasonable, and actually better correlated with
most humans compared to several of the human annotations.
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Table 7: Results on human evaluation study on choosing the splits. This is the Spearman’s rank
corrlation between the ranks of action dificulty, comparing our LLM approach and 3 humans.

LLM Humanl Human2 Human3

LLM 53.1 68.0 80.6
Human 1 53.1 459 64.5
Human2  68.0 459 70.3
Human3  80.6 64.5 70.3

Average 67.3 54.5 61.4 71.8

C.6 FURTHER DATASET CONSTRUCTION CONSIDERATIONS

Camera angles The change of camera angle perspective does make the task harder. For samples
in the ‘Fitness’ category, the camera angle is the same because the source dataset has a fixed camera
rig, and we chose to use the same camera angle. For samples in ‘diving’ and ‘surgery’ categories, the
camera angle is approximately the same. On the other hand, samples from ‘ballsports’ and ‘music’
categories can change. A related attribute (not mentioned here) is differences in background — sim-
ilarly the ‘ballsports’ and ‘music’ categories often had different backgrounds as well. Importantly,
these attributes were considered when assigning the difficulty splits. This may partly explain why
the fitness exercises are all in the easy and medium split.

FPS Each video pair has the same fps. In case others want to leverage our code with new videos,
our code does handles the case where FPS is different. Specifically, the input configuration has a
value for the target FPS for running inference, and we subsample the video to have this FPS. (If the
videos cannot be subsampled to have the exact target fps, then a warning is printed).

Impact of different actor heights For annotator instructions, we clarified that all differences on
things like distance should be relative to the actor’s height. We gave the example of ‘wider foot
stance’, saying that if a 5ft actor and a 6ft actor both had their legs 3ft apart, then the shorter actor
has a ‘wider foot stance’ relative to their height. This reflects what is commonly understood by
descriptions like these in skills coaching.

D BENCHMARK STATISTICS

Beyond the main statistics in the main, table [8| shows further statistics broken down by difficulty
splits.

Table 8: Detailed data statistics by split

Split easy medium hard Overall

# video pairs 95 265 197 557
Avg video length (secs) 2.1 3.9 18.7 8.8
Total video length (mins) 6.5 34.7 122.5 163.7
# differences tagged 1224 4788 3542 9554
StdDev within retrieval type 8.4% 5.2% 4.1% 5.9%
StdDev across retrieval types 17.3% 25.7% 20.2% 21.0%
Difference annotations count 578 1771 2370 4719

Difference annotations A/B/C distribution 167/190/221 622/605/1143  435/452/884 1224/1247/2248

Average video length is longer as the difficulty gets higher: 2.1/3.9/18.7 seconds, for easy/medi-
um/hard. Compared to video QA datasets, the lengths are relatively shorter because we focus on
fine-grained action understanding in how actions are performed. The total length of videos is 163
minutes.

Retrieval tags, temporal bias For the ‘retrieval tags’, we first show the number of retrieval tags
— 9554 total. To give insight into their distribution within each video, each instance is normalized
to the video length, and compute its ‘video location’. E.g. in a squat, the starting position might
be position 0.1, the bottom of the descent 0.45, and the squat finish at 0.87. Within each retrieval
type, we compute ‘StdDev within retrieval type’, which intuitively measures how well-aligned are
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the key points in the video. For example, if the average squat video records ‘bottom of descent’ at
location 0.45, and ‘within StdDev’ is 0.06, then the mean distance from the average is 0.06 (so at
0.39 or 0.51). The ‘within StdDev’ is on average 0.059, indicating there is some variation in retrieval
position, but there is temporal bias. This is expected since each video is trimmed and contains an
atomic action. Future benchmarks could use untrimmed videos to make retrieval annotations less
aligned, but the present benchmark is already difficult for SOTA models, so this is unnecessary now.

Retrieval tags, coverage We also measure ‘StdDev across retrieval types’, meaning the standard
deviation of different retrieval classes within one video. Intuitively this measures how much of
the video is ‘covered’ by retrieval keypoints. This is 0.21 on average. So if the mean of retrieval
keypoints were 0.5, then the average retrieval annotations is around 0.29 or 0.71 in the video.

A/B/C distribution Additionally, we have shown the count of difference annotations and the
A/B/C distribution; the ‘no difference’ annotation of ‘C’ is the most prevalent.

E BENCHMARK: RELATED VIDEO PAIR DATASETS

A small number of prior works have datasets of paired videos with some label of the difference.
However none have labels for fine-grained comparison while also having a large scale.

* Nagarajan & Torresani| (2024)) has a large-scale dataset of video differences in instructional
video — large enough to be used for instruction tuning. However their differences are very
coarse-grained, for example ‘cooking video A forgot to add salt’. Here, large-scale is pos-
sible because differences can be derived automatically from annotated instructional video
datasets.

* (Balakrishnan et al.,|2015) considers fine-grained action differences. However their dataset
is very small (less than 50), and they have no labels.

* (Doughty et al.| [2018) has a dataset of paired actions called EPIC-Skills2018. Here, the
scale is large, but the difference label is more coarse: a binary for which video shows more
skill.

F EVALUATION

The evaluation code is available at this GitHub repo https://github.com/jmhb0/viddiff.

F.1 CLOSED EVALUATION DESIGN CHOICE

Our closed evaluation setting has options for ‘A’ and ‘B’, but not ‘c’. Our initial approach to for-
mulating this did include an option ‘C’ for insignificant differences. However, the challenge of
calibration made fair evaluation difficult. For example, when comparing two videos of a basketball
shot to evaluate stance width, the question arises: how different is “different enough” to be both
relevant for skill learning and perceptible? Different annotators may apply varying thresholds for
what constitutes a significant difference, leading to inconsistencies. Introducing option ‘C’ further
complicates evaluation because it requires calibrating not only the human annotators but also the
VLMs, which may have different internal thresholds for perceiving significance. To address these
challenges, we adopted the following approach:

* Annotators were instructed to choose either ‘A’ or ‘B’ only when the difference was clearly
perceptible.
* We limited the evaluation of VLMs to cases where there was a very clear ground truth

answer of either ‘A’ or ‘B’.

This method ensures fairness by focusing on scenarios with unambiguous ground truth, avoiding
complications introduced by subjective calibration thresholds. While we briefly discuss this in the
section on annotation creation, we recognize that this is a nuanced point.
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F.2 EVALUATION: MATCHING WITH LLMS

As described in section[3.2} we use an LLM

We use ‘gpt-40-2024-08-06" with the following prompt for matching ground truth to predicted de-
scriptions. We do one prompt per video pair sample.

You are analyzing videos of people performing a specific action described as "{
action_description}."

In this task, a "difference" refers to how two people might perform the same action in
distinct ways.

Each difference consists of:

— A name (key) and

— A description that explains how the two performances differ visually.

You are provided with two dictionaries:
— Dictionary 0: {differencesO}
— Dictionary 1: {differencesl}

Your task is to match the differences from Dictionary O to Dictionary 1. Here's how:

1. For each entry in Dictionary 0, find the best match in Dictionary 1.

2. Each item in Dictionary 1 can only be used once.

3. Only match entries if their description strings are visually similar, even if the
word choices differ. If no suitable match exists, return "None."

Your output should be a JSON object where:

— The keys are from Dictionary 0: {dict(O_keys}.

— The values are a key from Dictionary 1 or "None" if no match is found.
— The available keys from Dictionary 1 are: {dictl keys}.

Example output format:
{

"O": "3",

lll'l : llNonell’
"2": "l",

ll3'l: "5",
ey s on

}
Important: the keys in this dictionary should be" {dict0_keys}

We replace:

» {action_description} with a string describing the action

» {differences0} with a dictionary where keys are gt difference keys ("0", "1", ...
and values which are strings describing differences.

* {differencesl} is the same as {differences0}, except for the predicting differ-
ences.

* {dict_keys} are the keys in {differences0}
{dictl_keys} arethe keysin {differencesl}
* {final} is the highest key in {differences0}

An issue with matching is that the prediction actually has the opposite value to the ground truth —
e.g. “the arms are more straight” vs “the arms are more bent”. If this is the case, then the prediction
‘a’ should be reversed to ‘b’ and vise versa. To identify those cases, we use this prompt, and we
evaluate them in batches of 6 difference sequences at once.

Task:
You will be given pairs of statements. Your task is to determine the logical
relationship between each pair.
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Instructions:
1. Analyze Each Pair: For each pair of statements, carefully analyze their meaning and
relationship.

2. Categorization:
— Return "0O" if the statements are equivalent, very similar, or differ only in minor
details.
Example: "X is bigger than Y" and "X is larger than Y" should both return "0".
— Return "1" if the statements are direct opposites in meaning.
Example: "X is bigger than Y" and "X is smaller than Y" should return "1".
3. Edge Cases:
— Avoid returning "1" for statements that are not true opposites, even if they have
some differences in detail or degree.
Example: "X is much bigger than Y" and "X is slightly bigger than Y" should still
return "0".

Output Format:

— Your response should be a JSON object with a single key "results" and an array of
string values "0" or "1" as its value.

— The array should exactly match the number of statement pairs given in the input.

Input Format:
— The list of statement pairs will be provided in the following format:

{statements}
Important Requirements:

— Ensure that each value in the output array is either "0" or "1".
— The length of the "results" array must exactly match the number of input pairs.

We replace the {statements} with a list, where each element is a two element list of strings,
which are matched difference descriptions.

F.3 PROMPTS FOR LMM BASELINES

The LMM baselines — GPT, Gemini, and Qwen — all receive the same prompts. Prompts for action
assignment to the easy/medium/hard splits:

Here are two videos of an action with the following description: "{action_description}".
{video_representation description}

Below is a set of identified differences that describe how the action be performed
differently.

Each difference is associated with a unique key:

{differences_annotated}

Your task is to predict, for each difference, whether it is more true for video ’"a’ or
video "b’.
{target_out}

The {action_description} is replaced with a string describing the action which is the same
as in table The {differences_annotated} is a dictionary mapping the ground truth
difference key to a difference description, and are the same stringes used in table [T4] The
{video_representation.description} tells the model how the video data is passed in.
If 2 videos — for Gemini and Qwen — then it’s:

‘We have passed ’'video a’ and ’'video b’ as videos to the prompt in that order.

If passing in the videos as frames — for GPT — then it’s:

We have passed a sequence of images into the prompt.
The first {vidO_nframes} are video a. The last {vidl_nframes} are video b.
The frame rate is the same and is {fps}.
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The open prompt is:

Here are two videos of an action with the following description: "{action_description}".
{video_representation description}

Return a list of ’‘differences’ in how the action is being performed.

Each difference should have a "descriptiory that is a specific statements that is more
true in one video compared to the other video.

Then there is a 'predictiory which is ’a’ if the statement applies more to video a and ’
b’ if it applies more to video b.

The difference descriptions should be visual and about how the action is performed.
For example 'the jump is higher’, or ’the arm is more straight’.

The difference descriptions should not refer to a specific video.

For example you would not say ’the jump in video B is higher’.

Instead, the ’descriptiory would be ’the jump is higher’, and the 'predictiory is 'b’.
Suggest no more than {n_differences} differences.

Return a json like this, replacing ’...” with actual content:

{

"o o |
"description" : "....",
"prediction" : "al|b"
e
"roe |
"description" : "....",
"prediction" : "alb"

}

F.4 VALIDATION OF MATCHING PROCESS

We leverage LLMs in open evaluation to identify matching between the ground truth difference
description strings and the predicted differences. Here we validate that this is a reasonable approach.

Robustness to multiple LLM runs The LLM evaluation is robust to random seed. We repeated
the evaluation five times with different random seeds and observed a standard deviation of only 0.7
in the final evaluation score. This indicates that the results are consistent across runs. Although the
prompt was specifically engineered for the GPT-40-2024-08-06 model, we ensured consistency by
fixing the model for all evaluations, treating all comparisons under identical conditions.

Comparison with Human Evaluation To measure alignment with humans, we recruited 3 human
annotators to perform open evaluation matching, each with 44 video pairs and 347 individual dif-
ferences. For each video pair, they were provided with a list of ground truth differences, and asked
to match each one to a predicted difference from a list, or to suggest no match. We calculated inter-
rater agreement across annotators and the automated LLM system. The results are in table[9} We can
see semantic matching proved to be challenging for humans — the mean of pairwise rater agreement
from each human to the other humans was 75.7%. Meanwhile, the mean agreement between our
automated system and human annotators was 73.9%. Therefore, our LLM-based approach is on par
with human annotators, while being completely automatic.

Details of Prompt for LLM Evaluation The LLM prompt was carefully developed using a
prompt engineering workflow. We selected a set of four evaluation samples, covering two actions
and two models, and iteratively refined the prompt based on performance in individual runs. For
example, we added the instruction: ”Only match entries if their description strings are visually sim-
ilar, even if the word choices differ.” This adjustment was necessary because the LLM struggled
to match equivalent descriptions phrased differently (e.g., “the feet stance is wider” vs. “the legs
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Table 9: Agreement rate of LLM and human predictions for the evaluation matching.
LLM Humanl Human2 Human3

LLM 72.4 74.0 70.1
Human 1 72.4 75.0 78.2
Human 2 74.0 75.0 73.9
Human 3 70.1 78.2 73.9

Average 72.2 75.2 74.3 74.0

are spread wider apart”). While this approach achieved satisfactory results, we acknowledge that
the prompt could be further optimized using more systematic methods, such as DSPy |[Khattab et al.
(2024). Exploring such techniques is a promising direction for future work.

G RESULTS: MORE ANALYSES

G.1 RESULTS: ACTION-LEVEL MODEL COMPARISON

We have performed a more thorough comparison of the different state-of-the-art LMMs on VidDIff-
Bench, added a small subsection to the results, and a discussion in appendix. Specifically we look
at each action, and compare the different LMMs.

First, we show the correlations in the per-action scores between models in table

Table 10: Correlations between models where the data is the action-level accuracy.
GPT Gemini Claude LLava-Video Qwen2-VL

GPT-40 0.152 0.375 0.243 0.273
Gemini-1.5-Pro 0.152 0.215 0.111 0.223
Claude-3.5-Sonnet  0.375 0.215 0.261 0.220
LLaVA-Video 0.243 0.111 0.261 0.376
Qwen2-VL-7b 0.273 0.223 0.220 0.376

The correlations are generally low, but there are 3 clusters of models. LLaVA-Video and Qwen-2-
VL are in a cluster; they are both open-source, and have the same LLM backbone. Then GPT-40
and Claude-Sonnet cluster together, and Gemini is not similar to any other model. We can speculate
that for video data, Claude and GPT have similar training strategies, while Gemini’s is different.

Next we compare model performance within one action, and this is two large tables. table[I]is the
action-level performance of each model. Then table [I2]is the ‘relative performance’: the difference
between the model score on that action compared to the mean score across all models for the action.
The most significant results in the benchmark are on the easy split. Here, the improvement in score
is uniform for all models. The models generally close perform similarly each other. The relative
performance is usually less than 10 points — when it is higher, the sample size is very small.

By comparing models at the level of actions, we are considering smaller sample sizes than in the
main results, which compare models at the level of easy/medium/hard splits. There is therefore
lower statistical power to identify significant result differences, so the results are less certain. We
elected not to compare model performance at the level of action differences, because here the sample
sizes are very small, so any correlations would not meet significance thresholds.

G.2 DETAILED DIFFERENCE ANALYSIS

In Section we discuss an analysis of the accuracy at the difference level. The vary long table
[I4] gives the per-difference accuracies and p-values compared for the accuracy against a random
guessing baselines. Each difference is associated with an action key, whose description is in table
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Table 11: Action-level scores for each model, and their differences compared to the average model
score for that action. The model names are abbreviated and the full model names are GPT-4o,
Gemini-1.5-Pro, Claude-3.5-Sonnet, LLaVA-Video-7B, Qwen2-VL-7B

Split Action Action Name Count  Scores
GPT Gemini Claude LLaVA-Vid Qwen2  Avg

easy fitness_0 Hip circle - 129 56.6 s8.1 56.6 51.9 450 536
anticlockwise

easy fitness_3 lucky cat 62 53.2 58.1 435 58.1 452 516

easy fitness_4 Squat Knee Raise 43 65.1 69.8 372 69.8 558 595
side view

easy fitness_6 Hip circle clockwise 123 58.5 76.4 69.9 56.1 52.8 62.8

medium  ballsports.0  02sketball 9% 552 573 52.1 573 615 567
jump shot

medium  ballsports.l  Cosketball 148 56.8 493 46.6 514 56.1 520
mikan layup

medium  ballsports 2 22skethall 125 464 552 49.6 44.0 504 49.1
reverse layup

medium  ballsports 3 05T 70 514 60.0 57.1 70.0 543 586
penalty kick

medium  diving_0 diving 240 538 52.1 533 50.8 542 528

medium  fitness_1 Opening and closing step 186 575 54.8 527 51.1 516 535
left side first

medium fitness_2 car deadlift 137 55.5 62.8 62.0 47.4 54.0 56.4

medium  fitness_5 Squat Knee Raise 70 35.7 329 38.6 62.9 443 429
diagonal view

medium  fitness_7 Opening and closing 155 529 529 63.2 497 529 543
step right side first

hard music_0 piano 94 51.1 51.1 58.5 51.1 521 528

hard music_1 guitar 20 55.0 40.0 450 50.0 650 510

hard surgery_0 Knot Tying 237 47.7 43.5 435 46.4 443 451

hard surgery_l Suturing 309 489 515 482 476 502 493

hard surgery 2 Needle Passing 211 51.7 46.9 49.8 48.8 502 495

Table 12: Action-level difference scores for each model relative to the mean model score on that
action. This is the difference with respect to the table[IT} The model names are abbreviated and the
full model names are GPT-40, Gemini-1.5-Pro, Claude-3.5-Sonnet, LLaVA-Video-7B, Qwen2-VL-
7B

Split Action Action Name Count  Differences
GPT Gemini Claude LLaVA-Vid Qwen2

casy fitness-0 Hip circle 129 2.9 45 29 -17 -8.7
anticlockwise

easy fitness_3 lucky cat 62 1.6 6.5 -8.1 6.5 -6.5

easy fitness 4 Squat Knee Raise 43 5.6 102 223 102 3.7
side view

easy fitness_6 Hip circle clockwise 123 -4.2 13.7 7.2 -6.7 9.9

medium  ballsports 0 Dasketball 96 -15 0.6 4.6 0.6 48
jump shot

medium  ballsports_1  asketbal 148 47 2.7 -5.4 -0.7 4.1
mikan layup

medium  ballsports 2 osketball 125 2.7 6.1 0.5 -5.1 13
reverse layup

. soccer

medium  ballsports_3 penalty kick 70 -7.1 1.4 -1.4 11.4 -4.3

medium  diving-0 diving 240 0.9 -0.8 0.5 -2.0 13

medium  fitness_1 Opening and closing step 186 40 13 0.9 25 1.9
left side first

medium  fitness_2 car deadlift 137 -0.9 6.4 5.7 -8.9 2.3

medium  fitness_5 Squat Knee Raise 70 .1 -10.0 43 200 1.4
diagonal view

medium  fitness_7 Opening and closing 155 -1.4 -1.4 8.9 4.6 -14
step right side first

hard music_0 piano 94 -1.7 -1.7 5.7 -1.7 -0.6

hard music_1 guitar 20 4.0 -11.0 -6.0 -1.0 14.0

hard surgery_0 Knot Tying 237 2.6 -1.6 -1.6 14 -0.8

hard surgery-_1 Suturing 309 -0.4 22 -1.0 -1.7 0.9

hard surgery 2 Needle Passing 211 22 -2.6 0.3 -0.7 0.8
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Table 13: Actions keys and their descriptions

Action Action description

ballsports_0 a person is doing a basketball mid-range jump shot, starting with the ball in
their hand, no defense, practice only

ballsports_1 a person does the Basketball drill called the Mikan layup where they start under
the basket, do a layup with the right hand and catch it, do a left hand layup and
catch it, no defense, practice only

ballsports_2 a person playing basketball does a reverse layup starting from the left side of
the basket and lays it up with their right hand on the right hand side, no defense,
practice only

ballsports_3 a person does a soccer drill where they do a single penalty kick, practice only,
no defense, no goalie

diving_0 competitive diving from 10m

fitness_0 fitness exercise called standing hip circle with hands on hips, one rotation anti-
clockwise

fitness_1 fitness exercise called opening and closing step on left side and then opening
and closing step on right side

fitness_2 a single free weight deadlift without any weight

fitness_3 fitness exercise called two arm standing lucky cat starting with arms up, one
repetition

fitness_4 squat without weights, then knee raise on left side

fitness_5 a squat then a knee raise on left side

fitness_6 fitness exercise called standing hip circle with hands on hips, one rotation clock-
wise

fitness_7 fitness exercise called opening and closing step on right side and then opening
and closing step on left side

music_0 a person is playing scales on the piano

music_1 a person is playing scales on the guitar

surgery_0 The subject picks up one end of a suture tied to a flexible tube attached at its
ends to the surface of the bench-top model, and ties a single loop knot.

surgery-1 The subject picks up needle, proceeds to the incision (designated as a vertical
line on the bench-top model), and passes the needle through the fake tissue,
entering at the dot marked on one side of the incision and exiting at the cor-
responding dot marked on the other side of the incision. After the first needle
pass, the subject extracts the needle out of the tissue, passes it to the right hand
and repeats the needle pass three more times.

surgery-2 The subject picks up the needle (in some cases not captured in the video) and
passes it through four small metal hoops from right to left. The hoops are at-
tached at a small height above the surface of the bench-top model.
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Table 14: Difference-level accuracy scores for VidDiff. The ‘action’ values can be looked up at tablem The grayed
columns indicate a p-value < 0.05 for the two-tailed binomial significance test

Split Action Difference Description Mean Num p-value
score Sam-
ples
easy fitness_6 the head remains more vertical during the rotation 1 13 0
medium fitness_2 the gaze is forward at the bottom of the deadlift 1 7 0.016
medium ballsports_2 they gather the ball with both hands 1 2 0.5
hard music_1 The player uses a plectrum. 1 4 0.125
medium fitness_7 the motion is faster 0.93 14 0.011
medium ballsports_1 uses the non-shooting hand (the guide hand) for stabilizing the ball during the shot in the 1st shot 0.9 10 0.02
medium fitness_2 the knees bend less at the bottom of the deadlift 0.89 19 0.004
easy fitness_6 the toes are more pointed out 0.88 16 0.004
medium ballsports_1 they jump higher on the first shot 0.83 12 0.107
easy fitness_6 the feet stance is wider 0.83 24 0.005
medium fitness_2 the feet stance is wider 0.8 15 0.028
easy fitness_3 the feet stance is wider 0.8 5 0.313
easy fitness_0 the feet stance is wider 0.8 25 0.003
medium ballsports_1 uses the non-shooting hand (the guide hand) for stabilizing the ball during the shot in the 2nd shot 0.8 10 0.088
medium ballsports_0 the shooter’s arm is more extended towards the basket 0.79 14 0.122
medium fitness_7 the arms are elevated in an uneven way on the first step 0.75 20 0.03
hard surgery._1 The left graser supports the right grasper, by pressing down on the tissue. 0.75 4 0.5
medium ballsports_0 as the shooter begins extending the elbow to shoot, the non-shooting hand (the guide hand) is on the side of 0.75 12 0.107
the ball and does not influence the balls trajectory
medium ballsports_3 they kick the ball harder 0.75 12 0.107
medium ballsports_2 the non-jumping leg has a more elevated knee 0.73 15 0.183
medium fitness 2 the gaze is forward at the start of the motion 0.73 11 0.322
hard surgery-2 The instrument tips are never out of view (occluded by instruments, or out of frame) 0.73 11 0.322
medium fitness_7 the arms reach higher on the first step 0.71 17 0.189
hard surgery_2 The second grasper is used to stabalize the target. 0.69 26 0.093
medium fitness_2 the hands are lower at the bottom of the deadlift 0.68 19 0.192
easy fitness_3 the upper arms are parallel to the ground at the start of the motion 0.68 19 0.192
medium fitness_1 the torso moves out further closer to the foot during the second step out 0.67 21 0.194
easy fitness_6 the range of motion in the hips is larger 0.67 24 0.156
easy fitness_6 The upper body rocks more in a forward-backward way 0.67 9 0.492
medium fitness_2 the body is more locked out at the top of the deadlift 0.67 6 0.625
medium fitness_1 the arms reach higher on the first step 0.67 18 0.243
medium ballsports_2 the ball is closer to the corner of the square on the backboard 0.67 9 0.492
easy fitness_0 The upper body rocks more in a forward-backward way 0.67 18 0.243
medium ballsports_3 they rotate their hips more during the strike 0.67 18 0.243
medium ballsports_3 the head is facing the ball leading up to the strike 0.67 6 0.625
hard music_0 Rhythmic consistency is better maintained in Video A than in Video B. 0.67 12 0.387
easy fitness_0 the toes are more pointed out 0.65 17 0.297
medium diving_0 The size and volume of the splash created upon entry is larger for video A than video B. 0.65 48 0.052
easy fitness_6 the speed of hip rotation is faster 0.64 25 0.122
medium ballsports_1 they jump with two feet on the Ist shot 0.64 11 0.451
medium diving 0 Diver enters the water at an angle closer to 90 degrees in video A than in video B. 0.63 30 0.161
medium fitness_1 the arms are elevated in an uneven way on the second step 0.63 19 0.192
easy fitness_0 the range of motion in the hips is larger 0.63 19 0.192
hard surgery -0 The tube in Video A moves more than in Video B. 0.63 27 0.194
easy fitness_4 the squat is deeper, measured by angle of the thigh to the ground 0.63 16 0.244
easy fitness_3 the toes are more pointed out 0.63 8 0.438
medium fitness.7 the toes are more pointed outwards on the first step out 0.63 8 0.438
hard music_0 Forearm movement is more controlled and minimal in Video A than in Video B. 0.62 13 0.419
medium fitness_1 the second step out is wider 0.62 13 0.419
medium fitness_1 the arms reach higher on the second step 0.61 18 0.334
easy fitness_0 the head remains more vertical during the rotation 0.61 18 0.334
medium ballsports_1 the non-jumping leg has a more elevated knee in the 2nd shot 0.6 5 0.625
medium ballsports_0 the shooter’s jump is more vertical than forward 0.6 5 0.625
medium ballsports_2 the gaze is more up and forward instead of down on the 2nd last step 0.6 10 0.41
medium ballsports_1 the arm is more fully extended towards the basket in the follow through in the 2nd shot 0.6 15 0.305
medium ballsports_0 the shooter’s feet stance is wider when starting the shooting motion 0.6 10 0.41
medium ballsports_1 the body moves more forward during the 2nd shot, rather than up or back 0.6 10 0.41
medium ballsports_3 the non-kicking foot is planted closer to the ball 0.6 10 0.41
hard surgery 0 The tension on the suturing material and the tissue is better controlled in Video A than in Video B. 0.59 32 0.162
easy fitness_6 the hand position is higher on the body 0.58 12 0.451
medium ballsports_3 the non-kicking foot is planted more next to the ball and less behind the ball 0.58 12 0.451
medium ballsports_1 they catch the ball in a higher position on the 1st shot 0.58 12 0.451
casy fitness_0 the hand position is higher on the body 0.58 12 0.451
hard music_0 The speed of playing is higher in Video A than in Video B. 0.58 19 0.352
hard surgery-1 The instrument tips are never out of view (occluded by instruments, or out of frame) 0.58 19 0.352
hard surgery-1 The suturing speed is higher in Video A than in Video B 0.58 52 0.157
hard surgery_2 The movement of the needle through the hoop is more radial in Video A than in Video B. 0.58 26 0.288
hard surgery-1 The tension on the suturing thread is lower in Video A than in Video B. 0.57 28 0.279
medium fitness_7 the arms are elevated in an uneven way on the second step 0.56 16 0.349
medium fitness_1 the arms are elevated in an uneven way on the first step 0.56 16 0.349
hard surgery_2 The number of movements to arrange the needle before threading is lower in Video A than in Video B. 0.56 41 0.223
hard surgery-1 The movement is more fluid in Video A than in Video B. 0.56 43 0.218
hard surgery-1 The grasper in Video A is more quickly positioned on the needle than in Video B. 0.56 43 0.218
medium fitness_7 the toes are more pointed outwards on the second step out 0.56 9 0.492
medium diving_0 Diver rotates forward relative to themselves. 0.56 27 0.299
medium ballsports_2 they get deeper knee bend before jumping 0.56 9 0.492
easy fitness_0 the speed of hip rotation is faster 0.55 20 0.32
medium ballsports_1 they jump higher on the second shot 0.55 11 0.451
easy fitness_4 the toes are more pointed out 0.54 13 0.419
medium ballsports_0 the shooter’s feet position are more staggered, meaning the feet are at a different distance from the basket 0.54 13 0.419
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medium diving 0 Duration from jump off the board to water entry in longer in video A than in video B. 0.54 39 0.251
medium ballsports_0 the shooter’s knees are more bent before taking the shot 0.54 13 0.419
medium ballsports_2 they use the non-shooting hand (the guide hand) for stabilizing the ball during the shot 0.53 17 0.371
medium fitness_5 the squat is deeper, measured by angle of the thigh to the ground 0.53 17 0.371
hard surgery-2 The needle is grasped closer to the tip in Video A than in video B. 0.52 21 0.336
hard surgery-2 The force on the target is lower in Video A than in Video B 0.51 37 0.257
medium diving_0 Diver’s body is more straight in video A than in video B. 0.51 39 0.251
medium ballsports_1 they have better balance when landing on the 1st shot 0.5 2 1
medium diving_0 Speed at which divers rotate during the dive in larger in video A than in video B. 0.5 38 0.257
medium fitness_7 the arms reach higher on the second step 0.5 14 0.419
medium ballsports_1 they have better balance when landing on the 2nd shot 0.5 2 1
hard music_l Smooth transitions between strings with minimal disruption to the rhythm or tempo. Transitions in Video 0.5 2 1
A are smoother than in Video B.
hard music_1 Guiatrist uses finger vibrato. 0.5 2 1
medium ballsports_3 the body (or torso) is more facing the net, or more "square’ to the net 0.5 12 0.451
medium fitness_7 the first step out is wider 0.47 17 0.297
hard surgery -0 The movements in Video A are more precise than in Video B. 0.47 34 0.216
easy fitness_3 the speed of the arms is faster 0.47 17 0.297
medium ballsports_2 they land on two feet 0.47 17 0.297
medium ballsports_2 they follow through more and towards the basket 0.47 15 0.305
medium fitness_2 the toes are more pointed out 0.47 15 0.305
medium fitness_2 there is a pause at the bottom of the deadlift 0.47 15 0.305
medium fitness_7 the second step out is wider 0.46 13 0.314
hard surgery-1 The needle is inserted in the fabric more perpendicular to the incision. 0.46 13 0.314
medium fitness_1 the toes are more pointed outwards on the first step out 0.46 13 0314
hard music_() The smoothness of thumb crossing is more evident in Video A than in Video B. 0.46 13 0.314
easy fitness_3 the upper arms more stable through the entire motion 0.46 13 0.314
medium ballsports_1 they jump off the right foot for right-hand shot (the 2nd shot) 0.45 11 0.322
medium ballsports_2 before raising the ball to shoot, the ball is more to the right side of the hip 0.45 11 0.322
hard surgery_1 The force is applied in a more radial way in Video A than in Video B. 0.45 31 0.192
medium fitness.7 the torso moves out further closer to the foot during the first step out 0.44 18 0.243
medium fitness_2 the arms are in front of the body at the bottom of the deadlift 0.44 9 0.328
hard surgery_2 The passage of the needle between two hands is more fluid in Video A than in Video B. 0.44 25 0.266
medium fitness_5 the feet stance is wider 0.44 16 0.349
hard music.0 The wrist should be straight and not dipped or raised, facilitating fluid motion and avoiding strain. The 0.43 14 0.244
wrist position is more appropriate in Video A than in Video B.
medium fitness_2 the entire motion is faster 0.43 21 0.194
hard surgery -0 The movements in Videos A are faster than in Video B. 0.43 42 0.116
hard surgery 0 More errors are corrected in Video A than in Video B. 0.42 31 0.131
hard surgery-2 The thread is more efficiently managed in Video A than in Video B. 0.42 24 0.156
medium fitness_1 the toes are more pointed outwards on the second step out 0.41 17 0.189
hard surgery._1 The instrument applies more force to the tissue and needle in Video A than in Video B 0.41 44 0.078
hard surgery -0 The movements in Video A are more efficient than in Video B. 0.4 42 0.076
medium ballsports_1 the body moves more forward during the Ist shot, rather than up or back 0.4 5 0.625
medium ballsports_0 the shooter’s feet are oriented more square to the basket when starting the shooting motion, meaning the 0.38 13 0.175
feet point more forward
medium ballsports_0 as the shooter begins extending the elbow to shoot, the ball is more in front of the body, rather than behind 0.38 16 0.244
the head
hard surgery-1 The dot is more accurately hit in Video A than in Video B 0.36 14 0.122
hard music.0 The body is closer to the piano in Video A than in Video B. 0.35 17 0.094
medium fitness_S the speed of the whole motion is faster 0.35 17 0.094
medium ballsports_2 they release the ball at a higher position 0.35 20 0.148
medium ballsports_1 the non-jumping leg has a more elevated knee in the 1st shot 0.33 9 0.141
hard surgery-0 Both graspers are used efficiently. 0.33 9 0.141
hard surgery 0 The surgeon in Video A stops more often to plan next steps than the surgeon in Video B. 0.33 3 0.25
hard music_0 There are more wrong note corrections in Video A than in Video B. 0.33 6 0.188
medium fitness_1 the motion is faster 0.33 18 0.065
medium ballsports_1 they have more fluid motion in moving between the shots 0.33 12 0.107
hard music_l The left fingers in Video A are more curved / less collapsed than in video B. 0.33 3 0.25
medium fitness_7 the torso moves out further closer to the foot during the second step out 0.33 9 0.141
medium diving_0 Diver faces the water at jump off. 0.32 19 0.044
medium fitness_1 the first step out is wider 0.31 16 0.133
medium fitness_5 during the squat descent, the knees cave inwards, instead of tracking over the feet 0.3 20 0.074
medium fitness_1 the torso moves out further closer to the foot during the first step out 0.29 17 0.036
hard surgery 1 The grasper grasps the needle approximately 2/3 from the needle tip. The needle is grasped more precisely 0.29 34 0.006
in Video A than in Video B.
easy fitness_4 the feet stance is wider 0.29 14 0.044
hard music_1 The unused left finger tips in Video A stay closer to the board than in video B. 0.25 4 0.5
hard surgery-0 The suturing thread tangles. 0.24 17 0.01
medium ballsports_1 the arm is more fully extended towards the basket in the follow through in the 1st shot 0.18 11 0.011
hard music_l Fingers should press strings at the center of the frets, avoiding the metal fret bars for clear sound production. 0 2 0.5
Video A shows more accurate finger placement on the fretboard than Video B.
hard music_1 Only one finger of the left hands rests on a string at a time. 0 3 0.25
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Table 15: Evaluating ‘easy’ split with variable video fps for three models. Our evaluation protocol
chooses 4fps.

1fps 2fps 4fps 8fps average

GPT-40 58.0 594 588 59.10 58.8
Gemini-1.5-Pro 59.7 669 658  66.9 64.8
Claude-3.5-Sonnet 58.1 585 56.6 529 56.5

G.3 RESULTS: DEPENDENCE ON FPS

The frame sampling rate, fps, is an important consideration for evaluating fine-grained actions.
While typical video benchmarks like Video-MME [Fu et al.| (2024) sample videos at 1fps, we have
sampled at a higher rate depending on category. The categories with shorter videos were sampled
at a higher rate: 4fps for ‘fitness’, 5fps for ‘ballsports’, and 6fps for ‘diving’ (they are slightly dif-
ferent so they can be compatible with fps in the source dataset). We chose this relatively higher rate
because we are interested in more fine-grained differences, while prior benchmarks are more coarse-
grained; however we did not sample at even higher due to practical cost constraints of processing
too many frames. The longer videos ‘surgery’ and ‘music’ were sampled at 1fps: these are longer
videos where differences are discernible at lower sampling rates, and where the longer videos make
high-fps sampling impractical.

To show that our fps is reasonable, we tested the three closed-source models on a range of fps
levels on the ‘easy’ subset of closed evaluation. We chose this set because this is where statistically
significant differences were clear. The results are in table[T5]

Across all models, the sampling rate that we use, 4 fps, has reasonable scores, either at or above the
average over the other fps values. For all models, the variability is low: GPT’s scores are within 0.8
points of the average; all other models have scores within 2.1 points of the average (except for the
low sampling rate of 1fps in Gemini, where it degrades by 5.2 points). Moreover, the optimal fps is
different for different models.

To help explain the results, we refer to the qualitative examples in the main results sections. The only
‘success cases’ for all our models were those having easy localization, and coarse differences. We
hypothesize that fps is not important for these cases. Where fps is likely important -— fine-grained
multiframe reasoning — the current LMMs cannot perform better than random. So although 2fps
currently has good performance, we believe that as LMMs improve, they will perform better on
subtle motions and using a higher fps will be important.

G.4 RESULTS: QWEN2-VL OPEN EVALUATION

Qwen2-VL performs especially poorly in open evaluation, which we investigate here. The key issue
is that Qwen2-VL-7b was failing to follow the evaluation prompt, while the other compared models
did follow it. We sampled 3 video pairs for each action and manually inspected Qwen’s responses,
identifying multiple key issues. Below, we list each issue, and provide a quantitative estimate for
the prevalence of each issue.

* (45% of differences) Proposing differences not relevant to *how* to perform actions, but
instead are visual things like “The person in video a is wearing a blue jacket, while the
person in video b is wearing a plaid shirt.” We estimated prevalence by using a gpt-4o
query that we manually prompt engineered.

* (26% of differences) Proposing a difference that is actually not a difference, e.g. “The
person in video a is performing the exercise with their arms out to the sides, while the
person in video b is performing the exercise with their arms out to the sides.” We estimated
prevalence by using a gpt-4o query that we manually prompt engineered.

* (56% of differences) are repeated, meaning when trying to propose multiple differences,
it proposes the same difference multiple times. We could directly measure this prevalence
exactly.
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* (23% of actions) Proposing only a small number of differences — less then half as many as
what is prompted for. We could directly measure this prevalence exactly.

* (<5% of differences) Proposing vague differences that are harder to interpret visually like
“The player in video a has a more versatile and adaptable skill set than the player in video
b”. We estimated prevalence by using a gpt-4o query that we manually prompt engineered.

Overall, only 31.9% of proposed differences by Qwen did not suffer from any of these errors. (Note
that some differences suffered from multiple errors at the same time)

G.5 NO MULTIPLE CHOICE BIAS IN CLOSED EVALUATION

In multiple choice benchmarking, models may be biased towards one particular option, which can
impact evaluation robustness. We find no evidence of this. Firstly, in closed evaluation, the A/B
ratio is 0.493/0.507. Second, we test the impact of video order on GPT-4o for the ‘fitness’ category,
which has samples in the easy and medium subsets(sample size 193). We test flipping the order
of videos which flips the A/B answer. The performance is 54.8% in the original evaluation, and
reversing the order of videos gives performance of 55.5%, showing a 0.7% difference. This result
suggests that the performance on VidDiffBench is not significantly sensitive to video order.

G.6 EXPERIMENT ON DUPLICATING VIDEO

One idea to validate the reasonable-ness of the benchmark is to check what happens when passing an
identical video as A and B to the system — we should expect that in closed evaluation, the predictions
should be A/B 50% of the time. We did this experiment on the closed setting, for the ‘easy’ subset
for GPT-40. Over two random seeds, the results were 49.3 and 50.2. This is an interesting validation
check that the benchmark passes.

G.7 NO MULTIPLE CHOICE BIAS IN CLOSED EVALUATION

In multiple choice benchmarking, models may be biased towards one particular option, which can
impact evaluation robustness. We find no evidence of this. Firstly, in closed evaluation, the A/B
ratio is 0.493/0.507. Second, we test the impact of video order on GPT-40 for the ‘fitness’ category,
which has samples in the easy and medium subsets(sample size 193). We test flipping the order
of videos which flips the A/B answer. The performance is 54.8% in the original evaluation, and
reversing the order of videos gives performance of 55.5%, showing a 0.7% difference. This result
suggests that the performance on VidDiffBench is not significantly sensitive to video order.

G.8 SAMPLE RETRIEVALS

In our methods, we leverage a frame localizer to find either a single frame or a small sequence of
frames. These localized frames are then passed to the next stage. In fig. 4} we show a few examples
of predictions vs ground truth for some frames

H VIDDIFF METHOD

The code for VidDiff method is available at this GitHub repo https://github.com/jmhb0/viddiff.

Here we show the prompts used in the different components.

Proposer stage Part 1 chooses candidate differences (Open setting only):

I have two videos of an action with the following description: "{action}".
Propose a set of 'differences’ in how this action may be performed between the two
videos.

For each difference, give a 'name’, ’'descriptiorY, ’"query string , and 'num frames' .

The 'name’ is a very short name that can be used as a key.
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“the arms reach higher on the first step” “there is a longer pause at the bottom”
Prediction . GT

Prediction

“the release the ball higher with their right hand”

Prediction GT

“diver faces the water at jump off”
Prediction GT

Figure 4: Sample frame localizations: prediction vs ground truth.

The ’'description’ is a slightly longer description of the difference.

The 'query_string is the same as ’descriptiorn’ .

The descriptions should be visual and about how the action is performed. For example ’

the jump is higher’, or ’'the arm is more straight’.

The difference descriptions should not refer to a specific video. For example you would
not say ’‘the jump in video B is higher’.

Instead, the ’'descriptiony would be ’'the jump is higher’, and the statemet could be more
true of one video or the other.

Now suppose you had to judge whether the difference was stronger in one video, but you

could only look at individual frames.

— What’s the smallest number of frames you need, assuming the frame is well-chosen? Put
the answer in 'num frames' . The answer should be ’1’ or 'gt_1’ (meaning ’greater
than 1) .

— Once you have the frames to compare, create a 'query_string that is a simple
statement about this difference that is more true in one video vs the other video
(based on the frames only). For example "the left leg is higher" or "movement is
faster".

List {n_differences} differences.
Return a json like this, where the differences keys are stringified ints starting from
0.
{
’ OI . {

llnaInell . " e ",
"description" : "...",
"query_string" : "..."
"num_ frames": "1l|gt_1",

}

’

}

Proposer part 2 estimates sub-action stages:

I have two videos of an action with the following description: "{action}".

Provide a ’stage transcript/ as a list. These are sub-actions that make up that action.
Give 5 steps or fewer in the action transcript.

For each stage, give a 'name’ for the stage, and a ’description’ of that stage.

For each stage, give a list of ’retrieval strings' .
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These are strings that describe what is visible in the frame.

Only describe the visual features. Only describe what is visible in a single frame.
Focus on appearance. Focus on pose. Do not use the name of the action. Start each
string with something similar to "A photo of a ...".

Give at least {n_retrieval keys} retrieval strings per stage.

Return a json like this:
{
"stages" : [
{
"Halne . n ",
"description" : "...",
"retrieval strings" : ["A photoof a ...", ...1,

b

1}

And proposer part 3 does linking between those stages

I have two videos of an action with the following description: "{action}".

Here are a list of stages or subactions that make up that action:
{stages}

We also have differences in how this action may be performed between the two videos.
The differences are specific statements that are more true in one video vs another.
Here they are:

{differences}

Now we need to match each differences to a stage.
Return a list of the stages using their names.
If a difference is relevant to a particular stage, put its name in the ’'difference’ list

It’s okay for a 'difference’ to be visible in multiple stages.
It’s okay for some stages to have no difference.
Refer to stages and differences by their 'name’ attribute.

Return a json like this:

[

"<stage_name(>" : ["<difference name(>", "<difference_namel>", ...],
"<stage_namel>" : [],
"<stage_name2>" : ["<difference namel>", "<difference_name2>", ...],

]

Please be careful. Every difference must appear at least once

Frame Differencer The prompt also takes the image frames.

I have two videos of people performing an action with description: "{action}".

The first {num frames} frames are from video A and the last {num frames} frames are from
video B.

For each video, the frames are very close together in the video: they are {time_diff}
seconds apart.

Which one shows more of the variation with this description: "{query_ string}"?

(a) video 1, (b) video 2, (c) similar or can’t tell.

Answer in json: {’answer_detailed : "...", ’"answer’ :"alb|c"}""",

I COMPUTATIONAL COSTS FOR VIDDIFF METHOD

Our method’s runtime is less than one minute per video pair using an A6000 GPU for running CLIP
inference Radford et al.| (2021). Additionally, we utilize the GPT API at an average cost of $0.2

32




Published as a conference paper at ICLR 2025

per sample |Achiam et al| (2023). Notably, over 95% of the GPT cost arises from verbose VLM
responses. Attempts to prompt for shorter responses resulted in degraded performance.

Methodologically, we rely on pre-trained zero-shot models, which limits their applicability in spe-
cialized domains, as discussed in our results. For evaluation, the Open setting formulation neces-
sitates an LLM in the evaluation pipeline. One challenge is the subjectivity in annotations: deter-
mining which differences are relevant and what magnitude of difference is significant, though we
thoroughly discuss this problem and mitigations.
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