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ABSTRACT

Various machine learning techniques have been developed to classify patients for
disease diagnosis using medical tabular data. Due to the presence of missing val-
ues in the medical tabular data, these techniques commonly impute the missing
values before applying classifiers. However, most existing techniques classify pa-
tients solely based on each patient’s individual features, overlooking the potential
benefits of using similarities among patients to improve both imputation and clas-
sification. To address this limitation, we introduce Graph-based Feature-Attentive
Classifier under Missingness (G-FACM), a novel framework for classification on
medical tabular data. G-FACM constructs feature-attentive k-nearest neighbor
(kNN) graphs to seamlessly integrate graph data imputation methods with medi-
cal tabular classification. The key idea is to construct a kNN graph among patients
by prioritizing features that are most important for classification. Our extensive
experimental results demonstrate that G-FACM successfully bridges the gap be-
tween graph data imputation methods and medical tabular classification, achieving
state-of-the-art performance across various medical tabular datasets.

1 INTRODUCTION

Recent progress in machine learning technology has led to substantial strides in the medical do-
main (Kononenko, 2001; Giger, 2018; Shehab et al., 2022; Joshi et al., 2024). Among various types
of data in the medical domain, tabular data is one of the most widely used forms, comprising nu-
merical and categorical features for each patient. Many researchers have utilized machine learning
frameworks on medical tabular data to classify patients for disease diagnosis (Rahman & Davis,
2013; Liu et al., 2023). The main challenge in handling medical tabular data is that it often contains
missing values due to various factors, such as privacy concerns or incomplete data collection. In this
paper, we tackle the classification of patients on medical tabular data with missing values.

To classify patients in medical tabular data containing missing values, imputation techniques are
necessary to fill in the missing values. This is because most classifiers assume fully observed input
data. Traditionally, simple imputation techniques, such as zero and mean imputation, have been
widely used for medical tabular data (Graham et al., 1997; Schafer & Graham, 2002). Recently,
deep learning-based imputation techniques (Mattei & Frellsen, 2019; You et al., 2020; Zhong et al.,
2023) have demonstrated powerful performance on tabular data, making them an effective approach
for medical tabular data. After filling in missing values through the imputation methods, a Multi-
Layer Perceptron (MLP) is commonly employed to classify each patient based on the complete
data (Sivasankari et al., 2022; Levin et al., 2022).

Medical tabular data typically contains two types of features (Remeseiro & Bolon-Canedo, 2019):
(1) class-discriminative features that differentiate among classes and (2) non-discriminative features
that have the same distribution regardless of class. For instance, in Alzheimer’s disease data (Pe-
tersen et al., 2010), the score of a logical memory test or a standard clinical rating can serve as a key
discriminative feature for identifying the disease, while many non-discriminative features, such as
the years from the first measurement and the site where data was collected, also exist. Specifically,
patients with a particular disease tend to exhibit similar class-discriminative features. Therefore,
the classification of a patient can be aided by considering patients who have class-discriminative
features similar to those of the patient in question.
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Meanwhile, imputation methods developed for graph-structured data (Taguchi et al., 2021; Rossi
et al., 2022; Um et al., 2023) have garnered significant attention due to their remarkable effec-
tiveness in classification, even in the presence of high rates of missing values. These graph data
imputation methods incorporate graph neural networks (GNNs) within their frameworks to perform
classification tasks. In many real-world graph-structured datasets, there is homophily, which refers
to the tendency for nodes to be connected when they belong to the same class or have similar feature
values. Based on homophily (McPherson et al., 2001), graph data imputation methods leverage the
valuable information in each node’s neighbors, leading to outstanding performance in downstream
tasks. Although tabular medical data does not have predefined connectivity among patients, con-
necting patients with similar class-discriminative features can promote homophily, where connected
patients are more likely to belong to the same class.

To this end, we propose a novel framework called Graph-based Feature-Attentive Classifier under
Missingness (G-FACM) for classification on medical tabular data. G-FACM constructs a kNN graph
on medical tabular data with a focus on class-discriminative features. G-FACM first trains a feature-
wise attention network to infer the influence of each feature value on classification. Using the trained
network, it then computes the importance of each feature across all patients. Based on the resulting
feature importance, G-FACM constructs a kNN graph tailored to the classification task. Finally,
by introducing the constructed graph into graph data imputation methods, we enable effective clas-
sification on medical tabular data. Despite its simplicity, this feature-attentive graph construction
significantly improves classification performance over existing kNN graph construction methods,
demonstrating the seamless integration of graph data imputation and medical tabular classification.

The main contributions of our work are summarized as: (1) To the best of our knowledge, this work
is the first attempt to apply graph data imputation methods to tabular data. (2) Based on the nature
of medical tabular data, our G-FACM builds a kNN graph that is attentive to class-discriminative
features, bridging graph data imputation methods and medical tabular data. (3) We demonstrate that
our G-FACM using feature-attentive kNN graphs significantly outperform existing state-of-the-art
methods in medical tabular classification and G-FACM can also provide valuable medical insights.

2 RELATED WORK

2.1 TABULAR DATA IMPUTATION

Since missing data is a pervasive problem across various domains, handling missing data has long
been a prominent area of research in machine learning (Allison, 2009; Lin & Tsai, 2020). For miss-
ing data imputation on tabular data, simple imputation methods such as zero imputation (Schafer &
Graham, 2002), mean imputation (Graham et al., 1997), and kNN imputation (Troyanskaya et al.,
2001), as well as statistical methods (Van Buuren & Groothuis-Oudshoorn, 2011), have been widely
used. With the advancement of deep learning models, deep learning-based approaches have gained
popularity due to their effectiveness for accurate imputation. GAIN (Yoon et al., 2018) adopts a
Generative Adversarial Nets (GAN) (Goodfellow et al., 2014) framework to generate missing values
in tabular datasets. MIWAE (Mattei & Frellsen, 2019) is a framework that enhances Importance-
Weighted AutoEncoder (IWAE) (Burda et al., 2015) by introducing a lower bound on the likelihood
of observed data to the original objective of IWAE. Recently, graph-based imputation methods, in-
cluding GRAPE (You et al., 2020) and IGRM (Zhong et al., 2023), have been proposed. These
graph-based methods transform a given tabular dataset into a bipartite graph, where nodes consist
of sample nodes and feature nodes. By predicting the edge weight between a sample node and a
feature node on this bipartite graph, the graph-based methods estimate missing values in the tabular
dataset. To perform classification tasks after imputation processes, sample-level classifiers, such as
an MLP classifier, are commonly applied to the data completed by various imputation techniques.
However, sample-level classifiers cannot leverage the relationships among samples, which can play
a crucial role in classification tasks.

2.2 GRAPH DATA IMPUTATION

Several methods tackle the reconstruction of missing values in graph-structured data by minimiz-
ing the reconstruction error between the observed values and their reconstructed values (Monti et al.,
2017; Chen et al., 2020). However, since node classification is a primary task in graph learning (Xiao
et al., 2022), many approaches have been developed to address node classification with missing val-
ues rather than focusing on the accurate reconstruction of missing values. These approaches can
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Figure 1: A brief overview of G-FACM: In the preliminary training stage, gθ, an MLP classifier with
an attention mechanism, is first trained using supervised learning. In the graph construction stage,
we utilize the trained gθ to compute t, which represents feature-wise importance. Using t, this stage
constructs a kNN graph that focuses on class-discriminative features. Finally, A, the adjacency
matrix of the kNN graph, is provided to the final training stage, enabling graph data imputation
methods to be trained and to perform a classification task.

be categorized into propagation-based methods and GNN architecture-based methods. Propagation-
based methods, including FP (Rossi et al., 2022) and PCFI (Um et al., 2023), impute missing values
through the iterative propagation of observed values on a graph. While preserving the observed val-
ues, these methods update missing values by repeatedly aggregating values from neighboring nodes.
After imputation, propagation-based methods, employ GNN to perform node classification tasks.
As for GNN architecture-based methods, such as GCNMF (Taguchi et al., 2021) and PaGNN (Jiang
& Zhang, 2020), these approaches introduce new GNN architectures to learn from graph-structured
data with partially observed feature values. These methods can be regarded as integrating imputa-
tion and classification within a unified GNN architecture. Thus, in this paper, we collectively refer
to both propagation-based and GNN architecture-based approaches as graph data imputation meth-
ods. While all graph data imputation methods require predefined connectivity among samples, our
G-FACM enables these algorithms to operate on tabular data classification by constructing a new
graph primarily based on class-discriminative features.

3 PROPOSED METHOD

3.1 PROBLEM SETUP

We consider a medical tabular dataset containing missing feature values. We let Xog ∈ RN×Fog

be the feature matrix of the given medical tabular dataset, where N and Fog denote the number of
samples (patients) and the number of features, respectively. Mog ∈ {0, 1}N×Fog denotes a binary
mask where values of 1 indicate the location of missing values. These features consist of numerical
and categorical features. To employ imputation techniques, we convert each categorical feature
into its dummy variables. This process yields X ∈ RN×F and M ∈ {0, 1}N×F from Xog and
Mog , respectively, where F represents the sum of the number of given numerical features and the
number of dummy variables. Let Y = [y1, . . . , yN ]⊤ be the labels of samples and yi ∈ {1, . . . , C},
where yi denotes the disease-related class label of the i-th sample and C denotes the number of
classes. We assume that labels are given for only a subset of the samples (i.e., the training samples).
The remaining samples, which are not used for training, are unlabeled (i.e., the validation and test
samples). The goal of medical classification is to predict the classes of the test samples based on X,
which contains missing values and the partially available labels for the training samples.
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3.2 OVERVIEW OF G-FACM

We propose a novel approach called Graph-based Feature-Attentive Classifier under Missingness
(G-FACM), designed to adapt graph data imputation techniques for medical tabular data contain-
ing missing values. While graph data imputation methods require predefined connectivity among
data points, medical tabular data typically lacks inherent connectivity. To transfer the powerful
performance of graph data imputation to the medical tabular domain, G-FACM constructs the con-
nectivity among patients. G-FACM is designed to construct this graph structure mainly based on
class-discriminative features to assist graph data imputation methods in performing classification.

Figure 1 provides a brief overview of G-FACM. G-FACM consists of three stages: a preliminary
training stage, a graph construction stage, and a final training stage. In the preliminary training
stage, gθ, an MLP classifier with an attention mechanism, is trained using supervised learning. After
training, all samples are passed through the trained gθ to obtain the feature-wise attention weights
for each sample. These attention weights are then summed across the samples in a feature-wise
manner, producing feature-wise attention weights. In the graph construction stage, a kNN graph is
built using weighted cosine similarity based on the feature-wise attention weights, making the kNN
graph attentive to class-discriminative features. In the final training stage, using this kNN graph,
graph data imputation models are trained utilizing GNN-based frameworks to classify samples.

3.3 PRELIMINARY TRAINING STAGE

Given X ∈ RN×F , the feature matrix of a medical tabular dataset, we first produce X ∈ RN×F

from X by imputing missing values with zeros. Using X, the preliminary training stage then trains
gθ, an MLP classifier with an attention mechanism. Specifically, we compute attention weights
T ∈ RN×F as follows:

Ti,j =
exp

(
((Xi,:)Watt)j

)∑F
k=1 exp

(
((Xi,:)Watt)k

) , (1)

where Watt ∈ RF×F is a trainable weight matrix and Xi,: denotes the i-th row of X. Here, Ti,j rep-
resents the attention weight for the j-th feature of the i-th sample, and the softmax function ensures
that the sum of attention weights across all features for each sample equals 1 (i.e.,

∑F
j=1 Ti,j = 1).

We then apply the attention weights T to X as follows:

X
att

= X⊙T, (2)

where ⊙ denotes element-wise multiplication.

gθ, consisting of L layers, then processes the attention-weighted feature matrix X
att

through a series
of fully connected layers in a sample-wise manner, applying linear transformations followed by
non-linear activations such as ReLU. Formally,

H(l) = σ(H(l−1)W(l) + b(l)), l = 1, . . . , L− 1 (3)

where H(l) represents the output of the l-th layer, W(l) ∈ Rdl−1×dl and b(l) ∈ Rdl are the weight
matrix and bias vector of the l-th layer, respectively, and σ(·) denotes the activation function (e.g.,
ReLU). Here, H(0) = X

att
, the input to the first layer, with d0 = F .

This process continues through all the hidden layers until the final layer, where the output logits
Ŷ ∈ RN×C are computed as:

Ŷ = H(L−1)W(L) + b(L), (4)
where W(L) ∈ RdL−1×C and b(L) ∈ RC are the weight matrix and bias vector of the output layer,
respectively. Finally, a softmax function is applied to the logits for each sample to produce the
predicted class probabilities. gθ is trained using cross-entropy loss, computed between the one-hot
encoded labels from the training sample labels Y and the predicted probabilities from Ŷ.

3.4 GRAPH CONSTRUCTION STAGE

After gθ is trained through the training stage, T can provide the importance of each feature for
each sample. Thus, we feed X into the trained gθ and obtain the attention weights T. Since G-
FACM requires feature-wise importance representing the degree to which each feature contributes
to classifying the classes, we calculate the feature-wise importance t ∈ RF by summing T across
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the samples as tj =
∑N

i=1 Ti,j . This feature-wise importance t reflects the degree to which each
feature is class-discriminative.

To construct a kNN graph using t, we first normalize each sample in X and weight the features
according to t as follows:

X̃i,j = (tj)
α · Xi,j

∥Xi,:∥2
, for i = 1, . . . , N, (5)

where X̃ ∈ RN×F , α > 0 is a hyperparameter that controls the influence of feature importance, and
∥Xi,:∥2 is the L2 norm of the i-th row of X.

Given an arbitrary matrix B ∈ Ra×b, we define kNN(·) : Ra×b → {0, 1}a×a as a function that
generates an adjacency matrix of the row-wise kNN graph (i.e., the kNN graph among rows) based
on cosine similarity. We build the kNN graph among samples by

A = kNN(X̃), (6)
where A ∈ {0, 1}N×N denotes the connections among samples, with values of 1 indicating con-
nected samples. Since X̃ is calculated using t, A can be constructed with a primary focus on
class-discriminative features rather than non-discriminative ones.

3.5 FINAL TRAINING STAGE

Although the given medical dataset does not have any predefined connectivity, G-FACM can provide
A to graph data imputation methods that require the connectivity among samples as well as a feature
matrix X and a mask M indicating the location of missing values. Thus, A, the output of the graph
construction stage, enables the use of graph data imputation methods on medical tabular data. Graph
data imputation methods incorporate GNN frameworks. Specifically, while GCNMF (Taguchi et al.,
2021) and PaGNN (Jiang & Zhang, 2020) are GNN architectures, propagation-based methods, in-
cluding FP (Rossi et al., 2022) and PCFI (Um et al., 2023), use downstream GNNs to perform
classification tasks. For patient classification, GNN models in graph data imputation methods are
trained using A to classify samples, thereby transferring their powerful performance from the graph
domain to the medical tabular domain.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on six medical tabular datasets, all of which initially contain missing
data, as follows: Echocardiogram (Asuncion et al., 2007), Duke Breast Cancer (Saha et al., 2018),
ABIDE (Di Martino et al., 2014), ADNI QT-PAD (Petersen et al., 2010), ADNI TADPOLE (Petersen
et al., 2010), and Diabetes 130-US (Asuncion et al., 2007). The datasets have missing data rates of
2.59%, 11.94%, 52.52%, 22.29%, 27.31%, and 4.03%, respectively. In addition, we use Diabetes
CDC (Asuncion et al., 2007), a large-scale dataset with 253,680 samples. Detailed information on
these datasets is provided in Appendix A.1.

4.2 COMPARED METHODS

We compare G-FACM with seven tabular data imputation methods on medical tabular datasets.
These methods are categorized into two groups: (1) conventional methods: zero imputation (Schafer
& Graham, 2002), mean imputation using the feature-wise mean (Graham et al., 1997), and
kNN imputation (Troyanskaya et al., 2001); and (2) state-of-the-art deep learning-based methods:
GAIN (Yoon et al., 2018), MIWAE (Mattei & Frellsen, 2019), GRAPE (You et al., 2020), and
IGRM (Zhong et al., 2023). For graph data imputation methods, we employ GCNMF (Taguchi
et al., 2021), PaGNN (Jiang & Zhang, 2020), FP (Rossi et al., 2022), and PCFI (Um et al., 2023).
As the default setting for G-FACM, FP is utilized as a graph data imputation method. That is, unless
otherwise specified, we use FP as the graph data imputation method for G-FACM. We provide URL
links for all compared methods in Appendix C.

4.3 EXPERIMENTAL SETUP

To evaluate the performance of imputation methods in medical classification with missing data, we
compare classification performance on medical tabular data containing missing values. We generate
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Table 1: Classification results measured by Micro-F1 score (%). Standard deviation errors are given.
OOM denotes an out-of-memory error.

Method Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes 130-US

Zero 75.33±3.06 74.80±3.91 91.30±0.54 78.22±0.99 77.94±1.24 53.66±0.77

Mean 73.00±4.88 72.76±7.02 68.43±2.13 78.35±1.53 76.89±1.49 53.76±0.33

kNN 77.00±3.71 76.53±0.82 90.45±1.17 80.39±1.30 76.68±1.07 53.92±0.86

GAIN 68.67±4.99 76.31±1.32 89.30±1.81 77.46±1.22 75.46±1.22 53.58±0.59

MIWAE 69.43±6.25 OOM 64.33±0.93 OOM OOM OOM
GRAPE 75.00±0.81 75.90±1.35 91.61±0.89 79.72±1.80 77.46±1.81 53.70±0.95

IGRM 69.33±8.21 75.13±1.58 66.38±1.85 78.60±1.44 76.80±1.59 53.49±0.74

G-FACM (ours) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

Table 2: Comparison of feature-attentive kNN graph construction and typical graph construction
algorithms in terms of Micro-F1 score for medical classification. FC, SIM FC, kNN, and ATT kNN
represent an unweighted fully connected graph, a fully connected graph with feature similarity
weights, a typical kNN graph, and our feature-attentive kNN graph. G-FACM models with different
graph construction algorithms are evaluated. Improvement (%) denotes the improvement percent-
age, representing the percentage improvement of ATT kNN over kNN.

Dataset Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes 130-US

G-FACM with FC 67.67±1.33 77.08±0.70 49.62±1.80 32.34±0.14 28.96±0.57 OOM
G-FACM with SIM FC 67.67±1.33 77.08±0.70 49.62±1.80 32.34±0.14 28.96±0.57 OOM
G-FACM with kNN 85.67±4.67 75.38±2.82 90.65±1.51 83.31±1.25 78.90±0.94 53.03±0.85

G-FACM with ATT kNN (ours) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

Improvement +3.89% +1.64% +1.14% +0.53% +1.41% +3.05%

five random splits for training, validation, and test samples with proportions of 0.1, 0.1, and 0.8,
respectively. To evaluate classification performance, we measure the average Micro-F1 score across
the five splits. For the six tabular data imputation methods except for GRAPE, we employ MLP
classifiers on the imputed feature matrices to perform classification. Since GRAPE has an inte-
grated version that includes a classifier, we use that version for classification. Graph data imputation
methods are categorized into two approaches: (1) single-stage, including GCNMF and PaGNN, and
(2) two-stage, including FP and PCFI. While the single-stage methods perform imputation and clas-
sification within a single framework, we utilize GCNs (Kipf & Welling, 2016) as downstream GNNs
for the two-stage methods. For G-FACM, we employ grid search to tune α in Eq. (5) and k in the
kNN graph construction in Eq. (6). k and α are searched within {1, 3, 5, 10} and {0.25, 0.5, 0.75, 1},
respectively, using the validation sets. We provide further details on experiments in Appendix A.2.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

On medical tabular datasets containing initially missing values, we compare the classification perfor-
mance of G-FACM against tabular data imputation methods. Table 1 demonstrates the classification
performance comparison among the methods, measured by Micro-F1 score (%). As shown in the ta-
ble, G-FACM achieves state-of-the-art performance across all datasets. Moreover, the performance
gains of our best method over the previous state-of-the-art methods are significant. For example, on
Echocardiogram, Alzheimer’s Disease Neuroimaging Initiative (ADNI) QT-PAD, and ADNI TAD-
POLE, the gains are 15.58%, 4.18%, and 2.66%, respectively. Furthermore, we observe that deep
learning-based tabular imputation methods, except for GAIN, suffer from out-of-memory errors,
indicating poor scalability. In contrast, our method does not suffer from out-of-memory errors,
demonstrating the memory efficiency of G-FACM.

4.5 COMPARISON OF FEATURE-ATTENTIVE KNN GRAPH CONSTRUCTION AND EXISTING
GRAPH CONSTRUCTION ALGORITHMS

To investigate the source of G-FACM’s outstanding performance, we conduct experiments com-
paring G-FACM with feature-attentive kNN graph construction to G-FACM with typical graph
construction algorithms, including an unweighted fully connected graph (denoted as FC), a fully
connected graph with feature similarity weights (denoted as SIM FC), and a typical kNN graph.
Table 2 presents the comparison results. As shown in the table, feature-attentive kNN graph con-
struction (denoted as ATT kNN) significantly improves the performance of G-FACM compared to
its use with typical graph construction algorithms. Notably, ATT kNN consistently outperforms
typical graph construction algorithms across all datasets. This indicates that feature-attentive kNN
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Table 3: Classification performance for varying label rates, measured by Micro-F1 score (%). OOM
denotes an out-of-memory error.

Dataset Echocardiogram Duke Breast Cancer ABIDE

Label rate 5% 10% 20% 5% 10% 20% 5% 10% 20%

Zero 67.50±10.15 75.33±3.06 78.11±2.82 75.57±1.29 74.80±3.91 77.48±0.80 88.67±0.74 91.30±0.54 91.17±0.75

Mean 65.00±4.90 73.00±4.88 73.21±6.13 75.39±2.38 72.76±7.02 76.82±1.40 62.96±4.02 68.43±2.13 71.63±1.62

kNN 71.56±13.67 77.00±3.71 76.98±8.72 75.54±2.02 76.53±0.82 77.42±0.68 88.25±0.75 90.45±1.17 91.04±0.65

GAIN 66.25±9.09 68.67±4.99 75.85±4.37 75.28±1.44 76.31±1.32 77.48±0.97 86.32±1.28 89.30±1.81 91.50±0.48

MIWAE 65.94±7.68 69.43±6.25 71.70±3.38 OOM OOM OOM 61.14±1.81 64.33±0.93 66.11±0.65

GRAPE 66.88±3.75 75.00±0.81 54.72±15.42 75.50±1.98 75.90±1.35 77.55±1.82 91.80±0.41 91.61±0.89 84.57±18.75

IGRM 68.13±7.10 69.33±8.21 72.08±3.85 75.30±2.37 75.13±1.58 77.04±0.85 62.30±4.17 66.38±1.85 72.07±1.83

G-FACM 81.56±4.57 89.00±2.71 84.91±4.13 76.30±1.00 76.62±0.67 77.70±3.04 89.73±2.32 91.69±1.14 91.78±0.74

Dataset ADNI QT-PAD ADNI TADPOLE Diabetes 130-US

Label rate 5% 10% 20% 5% 10% 20% 5% 10% 20%

Zero 78.15±1.27 78.22±0.99 79.74±2.21 72.93±2.28 77.94±1.24 80.42±1.44 50.50±3.32 53.66±0.77 53.77±0.98

Mean 78.53±1.65 78.35±1.53 79.08±2.61 71.94±3.22 76.89±1.49 79.44±2.00 52.37±2.11 53.76±0.33 53.81±0.67

kNN 79.17±1.20 80.39±1.30 80.77±1.53 72.36±1.80 76.68±1.07 79.42±0.97 51.65±2.74 53.92±0.86 54.42±0.28

GAIN 78.76±1.46 77.46±1.22 79.00±1.03 73.07±0.94 75.46±1.22 80.67±1.16 50.60±3.37 53.58±0.59 53.94±0.74

MIWAE OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRAPE 79.60±1.85 79.72±1.80 80.11±1.46 74.06±3.09 77.46±1.81 81.04±1.20 51.84±3.57 53.70±0.95 54.02±0.90

IGRM 78.45±2.11 78.60±1.44 79.59±2.52 73.61±1.10 76.80±1.59 79.93±1.38 50.79±3.05 53.49±0.74 53.96±0.67

G-FACM 83.87±0.58 83.75±0.99 85.39±0.90 77.75±1.68 80.01±1.22 81.77±0.92 53.85±0.50 54.65±1.11 54.54±1.84

Table 4: Classification performance measured by Micro-F1 score (%). Standard deviation errors are
given.

Method Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes 130-US

G-FACM using GCNMF 88.33±2.11 76.89±0.94 81.08±14.91 83.31±1.35 78.58±0.67 53.40±1.61

G-FACM using PaGNN 88.33±1.83 77.17±1.69 90.97±2.01 83.85±0.61 80.13±1.18 54.41±1.05

G-FACM using PCFI 87.00±1.94 76.29±1.13 91.19±1.31 83.52±0.65 80.68±1.48 52.63±0.96

G-FACM using FP (default) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

graph construction has greatly contributed to adapting graph data imputation methods to medical
tabular data, leading to their remarkable performance. Furthermore, it suggests that the superior
performance of these methods arises not from simply using a kNN graph, but specifically from
utilizing our feature-attentive kNN graph.

4.6 EFFECT OF LABEL RATE ON PERFORMANCE

Since the preliminary training stage, which affects the graph construction stage, utilizes the labels
of training samples, the performance of G-FACM may be influenced by the proportion of labeled
training samples. Therefore, we compare the average Micro-F1 score of G-FACM and other methods
by varying the label rates. Table 3 presents the comparison results for varying label rates. As shown
in the table, in all cases except for the ABIDE dataset at a label rate of 5%, G-FACM consistently
achieves state-of-the-art performance over tabular imputation methods. These results validate the
robustness of G-FACM against varying label rates.

4.7 G-FACM USING OTHER GRAPH DATA IMPUTATION METHODS

As mentioned in Sec. 4.2, we utilize FP as the default setting for the graph data imputation method in
G-FACM. However, other graph data imputation methods, including GCNMF, PaGNN, and PCFI,
can also be employed as the graph data imputation method in G-FACM. To demonstrate that G-
FACM using graph data imputation methods other than FP is also effective in medical classification
on tabular datasets, we conduct comparative experiments using G-FACM with different graph data
imputation methods. Table 4 presents the results of the comparative experiments. As shown in the
table, G-FACM models with different graph data imputation methods exhibit competitive classifica-
tion performance when compared to each other across datasets. The graph data imputation method
that achieves the best performance varies depending on the dataset, with each method performing
best on a specific dataset. This implies that the outstanding performance of G-FACM does not stem
from the use of FP as a graph data imputation method, and other imputation methods can be used in
its place. We select FP as the default graph data imputation method in G-FACM because G-FACM
using PCFI shows good performance across datasets. However, G-FACM using other graph data
imputation methods also generally achieves state-of-the-art performance when compared to the re-
sults of existing tabular data imputation methods presented in Table 1. Thus, replacing FP with other
graph data imputation methods does not significantly affect the superiority of G-FACM.
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4.8 TIME COMPLEXITY ANALYSIS

Table 5: Running times (seconds). ATT kNN de-
notes feature-attentive kNN graph construction.

Dataset Echocardiogram ABIDE

Method ATT kNN Total ATT kNN Total

Zero - 4.2 - 4.6
Mean - 4.3 - 4.8
kNN - 4.2 - 4.6
GAIN - 8.5 - 13.2
MIWAE - 6.4 - 20.4
GRAPE - 200.1 - 721.6
IGRM - 1683.3 - 1718.4

G-FACM using GCNMF 1.3 7.2 1.4 10.9
G-FACM using PaGNN 1.3 5.7 1.4 6.9
G-FACM using PCFI 1.3 11.2 1.4 12.7
G-FACM using FP (default) 1.3 5.8 1.4 7.5

Here we discuss the time complexity of
G-FACM. The time complexity of feature-
attentive kNN graph construction consisting
of the two stages, the preliminary training
stage and the graph construction stage, is
O
(
N · (F 2 +

∑L
l=1 dl−1 · dl) +N2 · F

)
.

We then determine the duration of feature-
attentive kNN graph construction by
measuring running times. Table 5 shows
a comparison of the running times among
all the methods compared in this paper.
We select the Echocardiogram and ABIDE
datasets since deep learning-based tabular
data imputation methods lead to out-of-memory errors on the other datasets. We observe that
feature-attentive kNN graph construction occupies a relatively small portion of the running times
in G-FACM. Additionally, we confirm that G-FACM generally take less time compared to deep
learning-based tabular imputation methods. In summary, feature-attentive kNN graph construction
is a fast algorithm, avoiding any significant time burden on graph data imputation methods.
Furthermore, we confirm that G-FACM are more efficient on medical tabular data compared to
existing state-of-the-art methods, as shown in Table 1.

4.9 MEMORY COMPLEXITY ANALYSIS

Table 6: Memory usage of G-FACM for dif-
ferent datasets, measured in gigabytes (GB).

Dataset Graph Construction Total

Echocardiogram 0.001 1.192
Duke Breast Cancer 0.506 1.338

ABIDE 0.054 1.251
ADNI QT-PAD 0.734 1.572

ADNI TADPOLE 0.628 1.495
Diabetes 1.326 2.213

In the process of feature-attentive kNN graph con-
struction, the memory is utilized for training the
model gθ and constructing the kNN graph. To miti-
gate the heavy memory usage during kNN graph con-
struction, we leverage a batch-wise kNN graph con-
struction strategy. When constructing kNN graphs
among samples, we divide batches with batchsize B,
and calculate k-nearest neighbors for each batch. This
strategy reduces the memory requirement because it
avoids the need to store distances between all samples
in the entire dataset at once. Specifically, in terms of memory complexity, batch-wise kNN graph
construction changes the typical O(N2 ·F ) complexity to O(B ·N ·F ). Therefore, the memory com-
plexity of the feature-attentive kNN graph construction process is O(θ) + O(B ·N · F ) +O(N2),
where O(N2) is required for A. We further measure the memory usage in the feature-attentive
kNN graph construction process for each dataset. Table 6 shows the results of the measurement.
As shown in the table, feature-attentive kNN graph construction requires only a small amount of
memory. Furthermore, we can confirm that the entire process of G-FACM, including training GNN
models in the final training stage, operates with the reasonable memory usage.

4.10 SCALABILITY OF G-FACM

Table 7: Classification performance
on Diabetes CDC (%). OOM denotes
an out-of-memory error.

Method Micro-F1

Zero 80.84±6.44

Mean 84.07±0.04

kNN 84.06±0.07

GAIN 84.08±0.08

MIWAE OOM
GRAPE OOM
IGRM OOM

G-FACM 84.26±0.02

To demonstrate G-FACM’s scalability, we conduct addi-
tional experiments on Diabetes CDC, a large-scale dataset
containing 253,680 samples. Since this dataset does not
contain missing values initially, we randomly mask 30%
of the feature entries to simulate missingness. As shown
Table 7, state-of-the-art graph-based imputation methods,
including MIWAE, GRAPE, and IGRM, encounter out-of-
memory (OOM) issues on this dataset due to their high
memory demands. In contrast, G-FACM successfully op-
erates on this large dataset without any memory issues and
achieves the best performance among all methods. These
results demonstrate that G-FACM is not only effective but
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also scalable to large tabular datasets, highlighting G-FACM’s practical applicability in real-world
settings involving large-scale medical data.

4.11 DOES FEATURE-WISE IMPORTANCE REALLY CAPTURE CLASS-DISCRIMINATIVE
FEATURES?

Table 8: Mean and standard Deviation of the
two features with the highest values in t across
different classes. “Std.” denotes standard devi-
ation.

Feature CDRSB bl LDELTOTAL BL

Class Mean Std. Mean Std.

CN 0.003 0.012 0.578 0.146
SMC 0.005 0.015 0.565 0.145
EMCI 0.127 0.076 0.391 0.081
LMCI 0.164 0.091 0.169 0.115
AD 0.443 0.165 0.060 0.082

To confirm that the feature-wise importance t of
G-FACM effectively captures class-discriminative
features, we conduct an in-depth analysis of t. We
extract the two features with the highest values in
t on the ADNI TADPOLE dataset. The features
identified are CDRSB bl and LDELTOTAL BL,
which represent the total score of Clinical Demen-
tia Rating (CDR) and the Logical Memory II De-
layed Recall test, respectively, the latter being part
of the Wechsler Memory Scale. To verify that
these features are class-discriminative features, we
calculate the mean and standard deviation of each
feature across classes. Each sample in the ADNI
TADPOLE dataset belongs to one of five classes related to cognitive impairment: Cognitively Nor-
mal (CN), Significant Memory Concern (SMC), Early Mild Cognitive Impairment (EMCI), Late
Mild Cognitive Impairment (LMCI), and Alzheimer’s Disease (AD). These classes are ordered ac-
cording to the increasing severity of cognitive impairment, with AD being the most severe.

Table 9: Mean and standard Deviation of
the two features with the lowest values in t
across different classes. “Std.” denotes stan-
dard deviation.

Feature Years bl SITE

Class Mean Std. Mean Std.

CN 0.122 0.215 0.101 0.186
SMC 0.072 0.137 0.067 0.055
EMCI 0.184 0.236 0.079 0.118
LMCI 0.107 0.189 0.117 0.211
AD 0.090 0.141 0.089 0.124

Table 8 shows the distribution of the two features
with the highest values in t. As the severity
of cognitive impairment increases, CDRSB bl in-
creases while LDELTOTAL BL decreases. This in-
dicates that the values of CDRSB bl and LDELTO-
TAL BL can significantly aid in distinguishing be-
tween classes. Furthermore, t can provide medical
insights into which features are critical for disease
diagnosis. Conversely, we examine the two features
with the smallest values in t. The features found are
Years bl and SITE, which represent the years from
the first measurement and an indicator that denotes
the specific clinical site where each participant was
enrolled, respectively. Table 9 shows the distribution of these two features. We observe that it
is difficult to identify trends related to the severity of cognitive impairment in these two features.
In summary, the feature-attentive kNN graph constructed in G-FACM effectively captures class-
discriminative features with t and makes the generated kNN graph attentive to class-discriminative
features.

Appendix B provides additional experiments, including hyperparameter sensitivity (Appendix B.1),
the statistical significance of ATT kNN over kNN (Appendix B.2), feature selection using feature-
importance scores (Appendix B.3), analysis of zero initialization (Appendix B.4), and the robustness
of ATT kNN to feature noise (Appendix B.5).

5 CONCLUSION

In this paper, we introduce G-FACM, a novel framework for medical tabular data, which seamlessly
integrate graph data imputation methods with medical tabular data. While graph data imputation
methods have not been considered in the tabular domain, G-FACM provides kNN graphs tailored
to these imputation methods. By using G-FACM, these methods transfer their outstanding perfor-
mance in the graph domain to the medical domain, leading to remarkable performance gains over
existing tabular imputation methods. Our work demonstrates the potential for graph data imputation
methods to be extended to non-graph-structured data. Furthermore, we believe that our work will
contribute to machine learning-based disease diagnosis by significantly improving patient classifi-
cation performance, thereby supporting more reliable AI-driven healthcare applications.
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REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure the reproducibility of our work. Specifically, Sec. 4.3 de-
scribes the experimental setup, including training/validation/testing splits, the downstream model,
and the hyperparameter search range. Detailed descriptions of the datasets, including download
sources, are provided in Appendix A.1, while implementation details are presented in Appendix A.2.
In addition, Appendix C includes URL links to all baseline implementations. The complete source
code will be made publicly available upon publication.
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A EXPERIMENTAL DETAILS

Table 10: Dataset Statistics. N and F denote the number of samples and features, respectively.
Fnum and Fcat represent the number of numerical features and categorical features, respectively.
We transform numerical features by scaling them to a fixed range between 0 and 1. We utilize one-
hot encoding for categorical features. While C represents the number of classes, rm denotes the
missing rate of features in a given dataset.

Dataset N F Fnum Fcat C rm

Echocardiogram 74 12 3 9 2 2.59%
Duke Breast Cancer 907 93 34 59 2 11.94%
ABIDE 1112 104 85 19 2 52.52%
ADNI QT-PAD 1737 96 76 20 5 22.29%
ADNI TADPOLE 2132 110 89 21 5 27.31%
Diabetes 130-US 10177 47 11 36 3 4.03%
Diabetes CDC 253680 21 21 0 3 30.00%

Table 11: Hyperparameter settings of G-FACM for each graph data imputation method across dif-
ferent datasets.

Method Hyperparameter Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes 130-US Diabetes CDC

GCNMF k 10 5 10 10 5 5 -
α 1 0.25 1 0.75 0.5 1 -

PaGNN k 10 10 1 1 10 1 -
α 1 1 0.5 0.5 0.25 1 -

PCFI k 10 10 1 10 10 1 -
α 1 0.5 0.5 0.75 0.75 1 -

FP (default) k 10 3 1 1 5 5 10
α 0.5 0.25 0.5 0.5 0.25 1 0.5

A.1 DATASET DETAILS

We conduct experiments on seven benchmark datasets, including Echocardiogram, Duke Breast
Cancer, ABIDE, ADNI QT-PAD, ADNI TADPOLE, Diabetes 130-US, and Diabetes CDC. Table 10
presents the statistics of the datasets used in this paper.

A.1.1 ECHOCARDIOGRAM

The Echocardiogram dataset is a medical tabular dataset related to heart attacks, which can be down-
loaded from the UCI Machine Learning Repository (Asuncion et al., 2007). The ‘alive-at-1’ feature,
a binary variable, is used as the class label. In this label, 0 indicates that the patient either died within
one year or was followed for less than one year, while 1 indicates that the patient was alive at one
year. The goal of the classification problem using the Echocardiogram dataset is to predict whether
patients will survive for at least one year after a heart attack.

A.1.2 DUKE BREAST CANCER

The Duke Breast dataset is a medical tabular dataset related to breast cancer, available for download
from The Cancer Imaging Archive (TCIA) (Saha et al., 2018). The ‘Tumor Grade’ feature, which
can be one of {1, 2, 3}, is used as the class label.

A.1.3 ABIDE

The Autism Brain Imaging Data Exchange (ABIDE) dataset is a medical tabular dataset related
to autism spectrum disorder, available for download from the ABIDE webpage (Di Martino et al.,
2014). The ‘DX GROUP’ feature, where 1 and 2 represent autism and control, respectively, is used
as the class label.

A.1.4 ADNI QT-PAD AND ADNI TADPOLE

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is a medical tabular dataset used to
study the progression of Alzheimer’s disease (AD), which can be downloaded from the ADNI web-
page (Petersen et al., 2010). We use the ‘DB bl’ feature as the class label, which can be one of five
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(a) GCNMF (b) PaGNN

(c) PCFI (d) FP

Figure 2: Classification performance of G-FACM for different k and α on the ADNI QT-PAD
dataset, measured by Micro-F1 score (%).

cognitive impairment levels: Cognitively Normal (CN), Significant Memory Concern (SMC), Early
Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer’s
Disease (AD). These classes are ordered by increasing severity of cognitive impairment, with AD
being the most severe. ‘ADNI QT-PAD’ and ‘ADNI TADPOLE’ are located in the tadpole challenge
folder and ADNI QT-PAD, respectively.

A.1.5 DIABETES 130-US

The Diabetes 130-US dataset represents the records of hospitalized patients diagnosed with diabetes,
which can be downloaded from the UCI Machine Learning Repository (Asuncion et al., 2007). The
readmitted feature is the class label, which can be one of the following: 1) ‘<30’: if the patient was
readmitted in less than 30 days; 2) ‘>30’: if the patient was readmitted in more than 30 days; 3)
‘No’: if there was no record of readmission. The goal is to determine whether the patient will be
readmitted within 30 days of discharge.

A.1.6 DIABETES CDC

The Diabetes CDC dataset contains healthcare statistics and lifestyle survey information about the
general population, along with diabetes diagnoses, which can be downloaded from the UCI Ma-
chine Learning Repository (Asuncion et al., 2007). The target variable for classification indicates
whether a patient has diabetes, is pre-diabetic, or is healthy, corresponding to class labels 0, 1, and
2, respectively.
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Table 12: p-values comparing our ATT kNN to kNN on each dataset.
Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes 130-US

kNN 83.26±4.66 74.90±2.58 90.17±1.56 82.81±1.18 79.15±0.98 52.98±1.15

ATT kNN 86.49±4.11 76.28±1.18 91.31±0.91 83.26±1.01 80.65±1.10 54.38±1.33

Improvement +3.88% +1.84% +1.26% +0.54% +1.90% +2.64%
p-value 1.77× 10−5 3.46× 10−4 7.09× 10−7 3.60× 10−6 1.60× 10−10 9.33× 10−6

Table 13: Classification performance with different proportions of features selected by G-FACM’s
feature importance on ADNI TADPOLE, measured by Micro-F1 score (%).

Feature Selection (%) 0.1% 1% 5% 10% 25% 50% 75% no feature selection

# features 2 29 146 293 733 1466 2199 2932
Micro-F1 65.33±5.67 80.82±1.76 80.98±0.73 80.42±1.04 80.57±0.89 80.50±0.98 80.48±1.18 80.01±1.22

A.2 IMPLEMENTATION DETAILS

We conduct all experiments on a single NVIDIA GeForce RTX 2080 Ti GPU with 11GB of memory
and an Intel Core i5-10500 CPU at 3.10GHz. Across all baselines, we adhere to the hyperparameter
tuning strategies and settings described in their respective papers. For training graph data imputation
methods used in G-FACM, we follow (Rossi et al., 2022). We utilize the Adam optimizer (Kingma
& Ba, 2014) and set the maximum number of epochs to 10,000. We employ an early stopping
strategy based on validation accuracy, with a patience of 200 epochs. Dropout (Srivastava et al.,
2014) is applied with a drop probability p, where p is searched within {0, 0.5}. We consistently
set the number of GNN layers and the hidden dimension of graph data imputation methods to 2
and 64, respectively. Table 11 shows the hyperparamter settings of G-FACM for graph data impu-
tation methods across different datasets. For MLP models, the number of layers is set to 2, with
hidden dimensions searched within {16, 64, 256}, respectively. Learning rates are selected within
{0.0005, 0.005, 0.05} based on validation sets.

B ADDITIONAL EXPERIMENTS

B.1 HYPERPARAMETER SENSITIVITY

To investigate the impact of the two hyperparameters of G-FACM, α and k, we measure the clas-
sification performance of G-FACM using graph data imputation methods by varying α and k on
the ADNI QT-PAD dataeset. According to our search ranges for k and α, we vary k and α within
{1, 3, 5, 10} and {0.25, 0.5, 0.75, 1.0}, respectively. Figure 2a, Figure 2b, Figure 2c, and Figure 2d
demonstrate the classification performance of G-FACM using graph data imputation methods for
different k and α, measured by Micro-F1 score (%). As shown in the figures, the methods gener-
ally demonstrate robustness against variations in k and α. Considering the previous state-of-the-art
performance of kNN is 80.39%, G-FACM using graph data imputation methods achieve the state-of-
the-art performance with most combinations of (k, α) within the respective search ranges. For ex-
ample, G-FACM using PaGNN consistently outperforms the previous state-of-the-art performance,
regardless the values of k and α.

B.2 STATISTICAL SIGNIFICANCE OF ATT KNN OVER KNN

As shown in Table 2, when used as a graph construction method in G-FACM, ATT kNN achieves
notable performance gains in Micro-F1 score over simple kNN. To evaluate the statistical signif-
icance of these improvements, we conduct paired t-tests across 50 random splits for each dataset.
The results are summarized in Table 12, and all resulting p-values are far smaller than the commonly
used threshold of p < 0.01, confirming that the gains are statistically significant across all datasets.

B.3 CAN FEATURE IMPORTANCE BE USED FOR FEATURE SELECTION?

We investigate how the feature-wise importance scores produced by G-FACM can be utilized to
support clinical decision-making through feature selection. To this end, we conduct additional ex-
periments in which only the top of features with the highest values are retained, and classification
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Table 14: Performance comparison of G-FACM with different initialization strategies, measured by
Micro-F1 score (%).

Dataset ABIDE ADNI TADPOLE

Initialization Zero (used) Mean Zero (used) Mean

G-FACM using GCNMF 81.08±14.91 78.47±14.84 78.58±0.67 71.99±9.05

G-FACM using PaGNN 90.97±2.01 75.21±10.95 80.13±1.18 80.01±1.50

G-FACM using PCFI 91.19±1.31 81.96±3.96 80.68±1.48 80.13±1.59

G-FACM using FP 91.69±1.14 75.80±11.05 80.01±1.22 79.55±1.89

Table 15: Performance comparison of graph construction methods in G-FACM under different fea-
ture noise levels, measured by Micro-F1 score (%).

Dataset ABIDE ADNI TADPOLE

σ FC SIM FC kNN ATT kNN FC SIM FC kNN ATT kNN

0 49.62±1.80 49.62±1.80 90.65±1.51 91.69±1.14 28.96±0.57 28.96±0.57 78.90±0.94 80.01±1.22

10−1 49.62±1.80 49.62±1.80 90.65±1.51 91.69±1.14 28.96±0.57 28.96±0.57 78.90±0.94 79.25±1.10

10−0.5 49.62±1.80 49.62±1.80 88.65±2.30 89.80±1.38 28.96±0.57 28.96±0.57 70.67±2.16 72.66±0.90

1 49.62±1.80 49.62±1.80 75.33±2.29 80.97±4.21 28.96±0.57 28.96±0.57 32.06±4.64 37.17±1.53

performance is evaluated using these selected features. Table 13 presents the results of this feature
selection experiment on ADNI TADPOLE. As shown in the table, using only the top 1% of fea-
tures (29 out of 2932) already achieves a Micro-F1 score of 80.82 ± 1.76, which outperforms the
full-feature case (80.01 ± 1.22). This indicates that G-FACM effectively identifies a small subset
of highly informative features, and that these importance scores can be leveraged for compact and
interpretable feature selection. This capability holds strong potential for clinical decision support,
where focusing on a few key biomarkers is often critical. Although our primary focus is not on
feature selection, these results clearly demonstrate the potential of G-FACM to be utilized for this
purpose in clinical decision support.

B.4 WHY IS ZERO INITIALIZATION USED FOR MISSING VALUES?

In the graph construction stage of G-FACM, we use X, obtained from X by imputing missing
values with zeros, i.e., we use zero initialization. To justify this initialization strategy, we conduct
comparative experiments using a different initialization strategy. We select mean imputation as
the comparison strategy, which is a commonly used strategy for initializing missing values. Mean
imputation fills in missing values with the mean of observed values. Table 14 shows the results on the
ABIDE and ADNI TADPOLE datasets. As shown in the table, G-FACM using zero initialization
consistently outperforms that using mean initialization across the graph data imputation methods
on both datasets. These performance gains with zero initialization are attributed to the inherent
characteristics of medical tabular data, which often contains many zero values. For instance, among
the observed values in the ABIDE and ADNI TADPOLE datasets, 68.10% and 94.78%, respectively,
are zeros. This prevalence of zero values makes zero initialization effective in the graph construction
stage of G-FACM on medical tabular datasets.

B.5 ROBUSTNESS OF ATT KNN TO FEATURE NOISE

To evaluate the robustness of the feature-attentive kNN graph against feature-level noise, we
conduct additional experiments where Gaussian noise with varying standard deviations (σ ∈
{0, 10−1, 10−0.5, 1}) is injected into input features. We compare the performance of G-FACM un-
der different construction methods (fully-connected (FC), similarity-weighted FC (SIM FC), vanilla
kNN, and ATT kNN). As shown Table 15, G-FACM using ATT-kNN consistently outperforms the
other graph construction methods across all noise levels, showing significantly smaller degradation
in classification performance as σ increases. This confirms that the feature-attentive kNN graph is
more robust to input noise compared to the other methods.
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C LICENSES AND REPOSITORIES OF BASELINE METHODS

Table 16: URL links and license information for the baseline methods used in our experiments.

Baseline URL link License

GAIN https://github.com/vanderschaarlab/hyperimpute/blob/main/src/hyperimpute/plugins/imputers/plugin gain.py MIT
MIWAE https://github.com/vanderschaarlab/hyperimpute/blob/main/src/hyperimpute/plugins/imputers/plugin miwae.py MIT
GRAPE https://github.com/maxiaoba/GRAPE MIT
IGRM https://github.com/G-AILab/IGRM Not specified
GCNMF https://github.com/marblet/GCNmf MIT
PaGNN https://github.com/twitter-research/feature-propagation Apache-2.0
FP https://github.com/twitter-research/feature-propagation Apache-2.0
PCFI https://github.com/daehoum1/pcfi Apache-2.0
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