
Interpretable Reward Learning
via Differentiable Decision Trees

Akansha Kalra, Daniel S. Brown
University of Utah

akanshak@cs.utah.edu, dsbrown@cs.utah.edu

Abstract

There is an increasing interest in learning rewards and models of human intent
from human feedback. However, many methods use blackbox learning meth-
ods that, while expressive, are hard to interpret. We propose a novel method for
learning expressive and interpretable reward functions from preference feedback
using differentiable decision trees. We test our algorithm on two test domains,
demonstrating the ability to learn interpretable reward functions from both low-
and high-dimensional visual state inputs. Furthermore, we provide preliminary evi-
dence that the tree structure of our learned reward functions is useful in determining
the extent to which a reward function is aligned with human preferences.

1 Introduction

We consider the problem of AI-alignment via reward learning [14]. While neural networks are highly
capable of learning reward functions for a variety of tasks, the representations they learn are often
uninterpretable beyond the first few layers. This inherently begs the question of how we can trust
what our neural network has learned if we can not comprehend and infer the representations it has
learned. If we can not understand the objective that a robot or AI system has learned, then it is
difficult to know if the AI’s behavior will be aligned with what we want it to do. This is particularly
significant in tasks where human safety is on the line, for example in autonomous navigation systems
and assistive robots.

We propose a novel method for learning interpretable reward functions by using pairwise preferences
to learn a differentiable decision tree model of a reward function. This enables us to learn an
expressive reward function that is still interpretable and can be explained via a discrete number of
decisions. We evaluate our approach on two different domains and the results show that our approach
enables interpretability for low-dimensional as well as high dimensional state and action space.

To train our tree we leverage human feedback in the form of pairwise preference labels over trajecto-
ries. It is often easier for someone to qualitatively rank two or more behaviors than to demonstrate
a good behavior. Learning from pairwise preferences over trajectories is a common approach to
learning reward functions and corresponding RL policies [19, 6]. It has been shown that preference
learning allows generalizing to various domains even when provided sub-optimal demonstrations
without any explicit preferences and can achieve better-than-demonstrator performance [4]. De-
spite requiring pairwise preferences, prior work has shown that other forms of feedback, such as
demonstrations [5], e-stops [10], and corrections [15], can all be represented in terms of preferences,
enabling our approach to be applied, even when pairwise preference labels are not explicitly available.
Prior works on learning reward functions from preferences typically either assumes access to a set of
hand-designed reward features [17, 2] or uses deep convolutional or fully connected networks for
reward learning [6, 4, 13]. In contrast to prior work, we seek to learn expressive, but also interpretable
reward functions from preferences via Differential Decision Trees [9].

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Differential Decision Trees (DDTs), also referred to as Soft Decision Trees [9, 11] seek to combine the
flexibility of neural networks with the interpretable structure of decision trees. Differentiable decision
trees have previously mainly been applied to classification tasks. Recent work has investigated
using DDTs for reinforcement learning tasks [18, 7] or used classical (non-differentiable) decision
trees to explain a given reward function in an MDP [16]; however, none of these previous methods
explore using decision trees for reward function learning. To the best of our knowledge, the only
prior work on learning reward functions using decision trees is recent work by Bewley et al. [1].
Similar to our approach, Bewley et al. propose to learn a decision tree given preferences over
trajectories. However, their approach is not differentiable and thus requires an indirect, multi-stage
optimization approach. Furthermore, internal nodes in their approach have the form (s, a)d ≥ c for
each dimension d of the state-action space and threshold c. This approach divides the state-action
space into axis aligned hyperrectangles, which works for lower-dimensional spaces, but does not
scale to higher-dimensional state and action spaces. By contrast, our proposed approach is fully
differentiable enabling us to learn reward functions directly from preferences via gradient descent.
Additionally, our internal nodes contain learnable parameters, enabling us to learn reward functions
over both high- and low-dimensional state and action spaces while still retaining the interpretability
of a decision tree.

2 Differential Decision Trees for Reward Learning from Preferences

We first define the the most essential parts constituting a decision tree individually and then show
how to combine them to form the actual differential decision tree.

Figure 1: Routing Probability of an in-
ternal node

Internal Nodes Each non-leaf node i has a linear layer
with learned parameters wi and a bias term b upon which
sigmoid activation function, σ, is applied to derive the
routing probability given an input x. For a given node i the
probability of going to the leftmost branch is thus defined
as

pi(x) = σ(β(xwi + b)). (1)

In this way, each internal node depends directly on the
input (Figure 1). The differentiable decision tree learns a
hierarchy of decision boundaries that determine the routing
probabilities for each input. An inverse temperature, β, is
included to above the equation for controlling the degree
of soft decisions.

Leaf Nodes Because each leaf node now has a probability associated with it, we can think of the
DDT as a hierarchical mixture of experts [12]. Following Frosst et al. [9] we model each leaf node
as a softmax distribution over the number of output classes c. So a leaf node l has a parameter ϕl is
vector of dimension 1× c where each element of the leaf distribution is sampled randomly from a
uniform distribution and the probability distribution of a leaf is given by Ql is defined by

Ql
c =

eϕ
l
c∑

c′ ϕ
l
c′

(2)

Reward Predictions We now describe how to use a soft decision tree for reward learning. We
assume that the user can specify a range of possible reward values suitable for the task (note that
optimal policies are invariant to reward scale, so, in practice, choosing the range [0,1] or [-1,1]
will usually suffice). We then discretize this space and define a discrete vector of reward values
R = (r0, r1, . . . , rc−1), where c denotes the number of classes for the DDT, where each class index i
is assigned reward value ri. To ensure differentiability, we require soft reward estimates, rather than
having the DDT output a single discrete prediction based on a single path through the tree.

We accomplish this as follows. First, the tree of depth d is built by 2(d− 1) + 1 internal nodes and
2d leaves. Given an input x , the path probability from root node to a leaf ℓ is denoted by P ℓ(x) and
the reward of the tree is sum over all leaves of path probability of reaching that leaf P ℓ multiplied

2



(a) A pair of trajectories that both reach
the terminal state (green border). The
blue trajectory (which visits more 1’s)
is preferred over the red trajectory.

(b) DDT of depth 1 with heatmap at the root node illustrating the
difference in routing probability of each pixel when it is on versus
off. The bar graphs depict the probability distribution of reward
outputs at each leaf node.

Figure 2: MNIST Gridworld

with dot product of probability distribution at that leaf Qℓ with R.

rθ(x) =
∑
ℓ

P ℓ(x)(Qℓ · R) (3)

Note that this gives us a weighted soft reward that can be used when learning from preference labels.
At test-time, we can output a single reward prediction by simply returning the maximum probability
reward that corresponds to the leaf node with maximum routing probability.

Training via Trajectory Preference Labels Given preferences over trajectories of the form τi ≺ τj ,
where τ = (s1, s2, ...sT ), we can train our entire differentiable decision tree via the following cross
entropy loss that results from the Bradley Terry model of preference labels [3]:

L(θ) ≈ −
∑
τi≺τj

log

exp
∑
s∈τj

rθ(s)

exp
∑
s∈τi

rθ(s) + exp
∑
s∈τj

rθ(s)
. (4)

3 Experiments and Results

We evaluate the interpretablility of the learned reward function on two domains: MNIST Gridworld
Environment and OpenAI gym’s Cartpole environment. In both the environments the DDT is trained
using preference learning—the DDT has no access to the actual ground truth reward.

3.1 MNIST Gridworld Environments

For our first experiment, we examine whether we can learn rewards from pairwise preference labels
over sequences of high-dimensional visual observations. To test this setting, we construct a visual
gridworld using MNIST digits as the reward features for each grid cell. We begin by randomly
sampling trajectories of variable length from MNIST where each trajectory is a sequence of states
and each 28× 28 greyscale input image is treated as an individual state. Given two such sequences
of trajectories of equal length, the preference label is assigned based on comparison between the sum
of ground truth labels of each input image comprising the respective trajectories. To test whether the
DDT can learn interpretable routing features at the internal nodes, we train a DDT of depth 1 as in the
simplest soft decision tree with 1 root node and 2 leaf nodes on pairs of preference demonstrations
over trajectories consisting of images of zeros and ones (see Figure 2a for an example pairwise

3



Figure 3: Visualization of the learned Cartpole reward DDT of depth 2 with heatmaps on internal
nodes depicting the learned routing probability and with bar graphs on leaves depicting probability
distribution of the reward outputs

trajectory comparison). We set R = (0.0, 1.0). For this experiment, we use a learning rate of 0.001,
weight decay of 0.05, and the Adam optimizer. After training the reward DDT, we construct a
heatmap by toggling each pixel in a greyscale image and taking the difference in routing probabilities
at the root node. The resulting heatmap demonstrates the fact that DDT learns to branch based on
features that visually correspond to a 0 (routes left) and 1 (routes right).

3.2 Cartpole

For our second experiment, we use the classic Cartpole environment from OpenAI Gym. Each state
in the cartpole environment has 4 values corresponding to cart position, cart velocity, pole angle and
pole velocity. For simplicity, we consider the reward features to be comprised of only cart position
and pole angle. We generate a wide variety of trajectories by simply running a random policy in
the environment for 200 steps for each trajectory. Since we assume no access to a reward function,
we also do not have access to any kind of terminal or done flag (since this would leak significant
information about the true reward [8]). Thus, we ignore the done flag in the cartpole environment and
keep accumulating states in the trajectory for 200 timesteps, even if the pole falls over. We design a
synthetic preference labeler that assigns the reward of +1 only if the cart position x ∈ [−2.4, 2.4]
and the pole angle θ ∈ [−12◦,+12◦] and a 0 otherwise.Pairwise preferences are assigned based on
comparison between the cumulative rewards that each trajectory in the pair scores. Given pairwise
preference labels over these suboptimal trajectories, we train a DDT of depth 2: the tree has 3 internal
nodes and 4 leaf nodes. We use R = (0.0, 1.0). We use a learning rate and weight decay both equal
to 0.001 and the Adam optimizer.

We note that even though the ground truth preferences are based on both cart position and pole
angle, it is usually the case that the pole falls past the desirable range long before the cart leaves the
desirable range. Thus, our dataset is biased and we hope to be able to pickup on this bias, and the
corresponding misaligned reward function by inspecting the learned reward DDT.

To interpret the learned reward DDT, we visualize the heatmap of routing probability at each internal
node (as a function of cart position and pole angle) along with plots of the leaf distribution over output
classes. Figure 3 shows the learned reward DDT. It is clear that the learned reward is misaligned: the
reward DDT has learned to approximate the preferences over pole angle, but pays much less attention
to the pole angle when predicting rewards.

4



4 Conclusion and Future Work

We formulate a novel approach for learning an expressive and interpretable reward function using
preference learning that can scale to high dimensions. Future work include applying our framework
to real-world complicated tasks and leveraging more sophisticated techniques for understanding the
decisions made within the reward DDT. We are also interested in testing our approach on tasks with
more complex reward functions that may require more than two reward classes and trees with larger
depth. Another interesting area of future work is to take a reward function that has already been
trained by a neural network and distill it into an interpretable differentiable decision tree.

References
[1] Tom Bewley and Freddy Lecue. Interpretable preference-based reinforcement learning with

tree-structured reward functions. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, pages 118–126, 2022.

[2] Erdem Biyik, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, Dorsa Sadigh, et al.
Asking easy questions: A user-friendly approach to active reward learning. In Conference on
Robot Learning, pages 1177–1190. PMLR, 2020.

[3] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[4] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[5] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[6] Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In NIPS, 2017.

[7] Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber,
and Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees.
In Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pages 1–6,
2019.

[8] Pedro Freire, Adam Gleave, Sam Toyer, and Stuart Russell. Derail: Diagnostic environments
for reward and imitation learning. arXiv preprint arXiv:2012.01365, 2020.

[9] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

[10] Gaurav R Ghosal, Matthew Zurek, Daniel S Brown, and Anca D Dragan. The effect of
modeling human rationality level on learning rewards from multiple feedback types. arXiv
preprint arXiv:2208.10687, 2022.

[11] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference
on Machine Learning, pages 4138–4148. PMLR, 2020.

[12] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

[13] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

[14] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

5



[15] Shaunak A Mehta and Dylan P Losey. Unified learning from demonstrations, corrections, and
preferences during physical human-robot interaction. arXiv preprint arXiv:2207.03395, 2022.

[16] Jacob Russell and Eugene Santos. Explaining reward functions in markov decision processes.
In The Thirty-Second International Flairs Conference, 2019.

[17] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems, 2017.

[18] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-
timization methods for interpretable differentiable decision trees applied to reinforcement
learning. In International conference on artificial intelligence and statistics, pages 1855–1865.
PMLR, 2020.

[19] Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. Model-free preference-based
reinforcement learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

6


	Introduction
	Differential Decision Trees for Reward Learning from Preferences
	Experiments and Results
	 MNIST Gridworld Environments
	Cartpole

	Conclusion and Future Work

