
Under review as a conference paper at ICLR 2024

LEVERAGING HUMAN REVISIONS FOR IMPROVING
TEXT-TO-LAYOUT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from human feedback has shown success in aligning large, pretrained
models with human values. However, prior works have mostly focused on using
high-level labels, such as preferences between pairs of model outputs. On the
other hand, many domains could benefit from more involved, detailed feedback,
such as revisions, explanations, and reasoning of human users. Our work proposes
using nuanced feedback through the form of human revisions for stronger align-
ment. In this paper, we ask expert designers to fix layouts generated from a gen-
erative layout model that is pretrained on a large-scale dataset of mobile screens1.
Then, we train a reward model based on how human designers revise these gen-
erated layouts. With the learned reward model, we optimize our model with rein-
forcement learning from human feedback (RLHF). Our method, Revision-Aware
Reward Models (RARE), allows a generative text-to-layout model to produce
more modern, designer-aligned layouts, showing the potential for utilizing human
revisions and stronger forms of feedback in improving generative models.

1 INTRODUCTION

Large, pretrained models have shown impressive results in many domains, including natural lan-
guage and text-to-image generation. However, because these models are typically trained on large-
scale, unfiltered data, they may not be aligned with human values. To ensure positive usage of these
models. it is important to address the issue of unsafe, inaccurate, or outdated generations.

A developing area of study attempts to address the misalignment problem by learning from human
feedback. Lee et al. (2023) and Liu et al. (2023) use binary human preferences to align text-to-image
diffusion models and large language models respectively. Scheurer et al. (2023) augments preference
feedback with language feedback to finetune large language models. While these methods have
improved alignment, it still remains unclear what type of feedback to collect, and how to best utilize
it.

Prior works have primarily focused on using high-level labels of human feedback, e.g., preferences
between pairs of model outputs such as images or languages. However, in the real world, we would
learn better when relying on detailed corrections, explanations, and reasoning. We hypothesize that
learning from human revisions is more effective for a model to adapt to produce human preferred
results. Compared to preferences or language feedback, which is previously used for human feed-
back, revisions, as a type of feedback, not only indicate human preferences on the end results but
also provide nuances in how to align model outputs with human expectations.

In this paper, we investigate this approach in the domain of text-to-layout generation in which a
model is trained to generate a layout given a text input. The task has gained increasing interest from
the field as it can significantly reduce the effort of designers in creating a layout. To do so, we first
ask professional designers to improve layouts generated from PLay (Cheng et al., 2023), a gener-
ative layout model that is trained on a large-scale dataset of mobile screens—the dataset reflects
earlier generations of Android UIs. Designers perform these revisions in Figma, a popular design
tool, and our plugin records detailed, step-by-step edits that designers perform in revision a layout
towards their satisfaction. Based on these revision sequences, we train a reward model, which is then
used to optimize the generative model, using reinforcement learning from human feedback (RLHF).

1Our design revision dataset will be released on the GitHub.
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Figure 1: RARE Method Overview Our method consists of three parts: (a) Collection human
revision sequences, (b) training our reward model on sequence data, and (c) using the reward model
in an RLHF framework.

Based on our experiments, our method, Revision-Aware Reward Models (RARE), significantly out-
performs the baseline method that directly fine-tunes a generative model with a supervised approach.
Our experiments also showed that reward signals that are designed based on revision sequences lead
to more desirable outcomes than using preferences alone. By analyzing the outputs acquired by our
method, we found our method leads to more modern, designer-aligned layouts, even though the base
model was trained on a dataset with old-fashioned Android designs. These show the potential for
utilizing human revisions and stronger forms of feedback in improving text-to-layout models.

Contributions We highlight our contributions as follows:

• We collect a high-quality, detailed dataset from experienced designers, producing over
2,000 sequences of revisions from the generated layout to the human-revised layout.

• We propose a method, RARE, for learning from human revisions of layout design, and
examine three variants of RARE, including Keystroke, Chamfer, and Preference.

• Our experiments and analysis show that reward models that use human improvement-
specific data can be used in RLHF to effectively finetune the base text-to-layout model
for qualitative and quantitative improvements.

2 RELATED WORK

Human priors have been used to guide language model alignment (Liu et al., 2023; Ouyang et al.,
2022), text-to-image models (Lee et al., 2023; Fan et al., 2023; Black et al., 2023), and behaviors
(Hejna & Sadigh, 2022; Lee et al., 2021). These human priors can be represented through a variety of
manners, including (1) Extracting rewards from pretrained foundation models like Stable Diffusion
(Rombach et al., 2022b; Jain et al., 2022) or R3M (Nair et al., 2022; Adeniji et al., 2023); (2)
Curating high quality, human-aligned datasets for finetuning (Ouyang et al., 2022); (3) Explicitly
learning reward functions from human feedback (Xu et al., 2023; Lee et al., 2023; Bai et al., 2022;
Stiennon et al., 2022). Our work utilizes human feedback for alignment.

Types of Human Feedback The most informative types of human feedback is still an open area
of research. Prior works in generative models have primarily used binary human preferences or
comparisons (Bai et al., 2022; Liu et al., 2023; Lee et al., 2023), scalar ratings (Stiennon et al.,
2022). To our knowledge, there are no works that actively leverage human revisions to the generated
outputs of generative models, which is a stronger and more involved form of human feedback that
we propose.

Notably, correctional feedback has been used in robotics applications (Li et al., 2021; Losey et al.,
2021; Bajcsy et al., 2018; Ross et al., 2011). However, these robotics-focused works focus on
improving a trajectory or a sequence of actions, which is a multi-step bandit problem. Our work
focuses on improving generative samples, which is a one-step bandit problem.

Learning from Human Feedback Given human-annotated data, a popular approach is reinforce-
ment learning from human feedback (RLHF). RLHF consists of a two-stage process: (1) Training a
reward model on human feedback and (2) Optimizing a reinforcement learning objective. This has
shown success in language modelling (Casper et al., 2023), text-to-image models (Lee et al., 2023;
Black et al., 2023), and more.
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Reinforcement learning-free methods can also learn from human feedback. A traditional method is
supervised finetuning on the curated dataset (Ouyang et al., 2022). Recent papers have proposed new
supervised objectives, such as Chain of Hindsight (Liu et al., 2023) and Direct Policy Optimization
(Rafailov et al., 2023), to align large language models with human feedback.

Layout Generation For generation tasks such as layout design, layouts are saved in a vector graphic
format, so that designers can easily edit and use them for downstream purposes. This modality is
amenable for collecting human revisions. Recent studies on layout generation use sequential models
like Transformers (Vaswani et al., 2017) to output the layout elements as sequences (Gupta et al.,
2021; Arroyo et al., 2021; Kong et al., 2022; Kikuchi et al., 2021). LayoutDM and PLay (Inoue
et al., 2023; Cheng et al., 2023) show results in conditional layout generation. We choose PLay
as our backbone model based on its flexibility to inject different types of conditions using latent
diffusion(Rombach et al., 2022a) and classifier-free guidance (Ho & Salimans, 2022).

3 BACKGROUND

3.1 DIFFUSION MODELS

Diffusion models are a popular class of generative models that learns a denoising processing from a
known Gaussian prior to the data distribution. During training, the diffusion model learns to reverse
a single noising step, which reduces to the following training objective:

LDDPM (φ, z) = Et,ε[w(t)||εφ(αtz+ σtε)− ε||2] (1)

φ are the learned parameters, z is a real data sample, ε is the added noise, t is a scalar time step that
schedules noise values αt, σt.

To sample from the diffusion model, the diffusion model iteratively denoises the initial sample zT
from the known priorN(0, 1), where T is the number of denoising steps, and x0 is the final sampled
data point. Denoising steps are modelled as Gaussian distributions:

pφ(zt−1|zt) = N(zt−1|εφ(zt, t), σ2
t I) (2)

Diffusion models can be conditioned on additional context c, whether it is text (Rombach et al.,
2022b), guidelines (Cheng et al., 2023), or more. Furthermore, to reduce computational costs, dif-
fusion models are often trained in latent space.

3.2 GENERATIVE LAYOUT MODELS

Layout designs are used by engineers and designers to produce vectorized arrangements and models.
There are several commonly used datasets for layout modeling, including PublayNet (Zhong et al.,
2019), CLAY (Li et al., 2021), and RICO-Semantic (Sunkara et al., 2022). In this paper, we focus
on UI layouts, which consist of a collection of UI elements. Each UI element has a class type such
as Button or Checkbox, and a bounding box that specifies the position and size of the element.
In particular, we look at the task of generating UI Layouts based on text input, which is useful for
assisting UI designers to create design mockups. Previously, PLay (Cheng et al., 2023), a conditional
latent diffusion model, generates layouts based on a given set of guidelines. In this work, we train
PLay to generate a UI layout based on a text input, such as “a login screen”. We condition on text
prompts instead of guidelines because text inputs give designers more context for the layout design,
aiding them in generating meaningful revisions. To obtain the paired text prompts for CLAY, we
define a screen summary task and feed the view hierarchy of each layout to a pre-trained large
language models, PaLM (Chowdhery et al., 2022).

4 METHOD

Our objective is to better align a generative layout model such as PLay (Cheng et al., 2023) with
human preferences. First, we collect a dataset of how human improvements, where experienced
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Figure 2: Layouts Visualizations We use CLAY (left) as our pretraining dataset. PLay (middle) is
a generative, text-conditioned layout model. We ask designers to edit layouts generated by PLay,
leading to more modern, cohesive layouts (right).

designers are asked to improve UI layouts generated by human designers. Next, we learn a re-
ward model from the human revision dataset. Finally, we use reinforcement learning from human
feedback (RLHF) to improve our base model, using various designs of reward signals.

4.1 HUMAN REVISION DATA COLLECTION

Figma Plugin To facilitate data collection, we use Figma2, a design tool commonly used by design-
ers. Our Figma plugin visualizes mock-ups generated by PLay and its corresponding text condition.
The plugin uses text boxes and elements from Material 3 design library3 to represent the various
classes. Our plugin records all the operations performed by the designer as well as corresponding
layout states in the process of revising a layout.

Figure 3: Figma Plugin Our Figma plu-
gin renders a PLay layout with the cor-
responding text description. Designers
are asked to revise the layout by adding,
modifying, and deleting elements.

Human Revisions We recruit 4 professional designers to
revise layouts generated from PLay. Designers are asked
to modify the layout to be more aesthetic and coherent.
For instance, we expect designers to fix misaligned ele-
ments or change the format of the page according to the
text description.

Designers are able to move, scale, and change classes of
elements. Designers may add or remove elements as nec-
essary. We conducted the study asynchronously without
time restrictions. After the designer completes the task,
we save the sequence of edits and the final layout.

Our final dataset Dhuman consists of revision sequences
{{bji , l

j
i }Mj=0, di}Ni=0. At each revision step i, bji and lji are

the bounding boxes and class labels for the M elements
in layout. di is the time duration starting from the ith
revision to completing the revision sequence, which reflects how much effort it takes the designer
to transform the layout at the step into its final form. Finally, N is the number of total revisions the
designer makes.

4.2 REWARD LEARNING

To maximally leverage the revision data, we propose Revision-Aware Reward Models (RARE).
RARE predicts the amount of effort needed to improve the layout. Unlike preference or binary
ratings, RARE produces a scalar value roughly corresponding to the quality of the data point: low
revision effort implies a strong layout, and high revision effort implies a poor layout.

2https://www.figma.com/
3https://m3.material.io/
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In practice, we define the effort as the amount of time needed for the designer to complete the
revision of the layout. At each revision step of our revision sequence, we have time d, the amount of
time needed to complete revision of the layout, and the layout, which we encode to get latent vector
z, obtained by using PLay’s first stage latent autoencoder. From this, we construct a supervised
learning problem for our reward model rθ:

LRARE = E(z,t)∼Dhuman [(rθ(z)− d)
2] (3)

Because our revision dataset is limited, we first pretrain our reward model on the CLAY dataset.
We procedurally perturb the layout by randomly revising, adding and dropping elements from the
original sequences. For the revised elements, we randomly resize them to between 0.5 to 2.0 times
of their original widths and heights, and we randomly move the elements uniformly between one
width and height lower than its original position, and one width and height higher than its original
position, bounded by the edges of the layouts. We randomly drop and add generated elements up
to 1.5 times the original numbers of elements in the original sequences. Then, for each dropped
element, we assign a cost of 1 time step to it, and 2 time step for each revised element, and 3 time
step for each added element. We normalize procedurally generated time durations and dataset time
durations to minimize discrepancies. After pre-training the reward model on this synthetic dataset,
we can efficiently finetune our reward model from Dhuman.

4.3 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Finally, to align our model with human feedback, we use RLHF. Following Black et al. (2023),
we treat the learned denoising process as a Markov Decision Process, where the environment is
represented as the following.

st , (c, t, zt) π(t|st) , pφ(zt−1|zt, c) P (st+1|st, t) , (δc, δt−1, δzt−1)

at , zt−1 ρ0 , (p(c), δT ,N (0, I)) R(st, at) ,
{
rθ(x0, c) if t = 0
0 otherwise

(4)

c is the conditioned text prompt, π is our policy, ρ0 is the initial state distribution, δ is the Dirac delta
distribution, T is the number of DDPM sampling steps, and rθ(x0, c) is our reward RARE.

We optimize for the reward by using DDPO with importance sampling. The DDPO algorithm is
based on Proximal Policy Optimization (Schulman et al., 2017), which clips importance sampling
weights to constraint update steps.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Base Model We use a variation of the PLay model, which is conditioned on text input instead of grid-
based guidelines in the original paper. We pretrain the text-conditioned PLay, as our base model,
on CLAY (Li et al., 2022), a public dataset, and corresponding text labels from CLAY screens
are generated by PaLM (Chowdhery et al., 2022), an LLM. The CLAY dataset is derived from
RICO (Deka et al., 2017), a popular mobile corpus that consists of UI screens of early Android
verions. The hyperparameters for training text-conditioned PLay are included in the Appendix.

Dataset We use a dataset of 836 revised UI Layouts from designers. The average revision sequence
length is 88.9, leading to a total of 8,694 unique layout revision sequences. We split the dataset into
645 train examples and 191 evaluation examples. Statistics on edit time and types of revisions are
included in Figure 7, and distribution shifts in element classes are presented in Figure 5.

Baselines We evaluate the following methods:

1. Supervised Finetuning (SFT): We directly finetune PLay on the final revisions.
2. Preference Reward + RLHF: We train a preference reward model on pairs extracted from

the revision sequences. We assume that the final revision is the most optimal, so all other
intermediate revisions are considered negatives.
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Figure 4: Result Comparison We compare layouts generated by a PLay model, a supervised fine-
tuned model, and a model trained with RLHF with RARE. In these examples, RLHF w/ RARE
produces the most cohesive and aligned layouts.
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Figure 5: Element Distribution The element distribution from PLay samples (left) becomes more
diverse after designer revisions (right). Designers add more elements (mean number of elements
increases from 11.02 to 13.05 after revisions), particularly images and labels.

FID Score (↓) DocSim (↑)
Dataset CLAY Dataset 73.4 ± 4.5 0.14 ± 0.01

Revision Dataset 63.1 ± 3.0 0.16 ± 0.01
PLay Samples 76.6 ± 0.3 0.31 ± 0.002

Finetuning Supervised FT 68.9 ± 0.6 0.26 ± 0.01

RLHF RARE Keystroke 70.1 ± 0.8 0.27 ± 0.03
RARE Preference 72.4 ± 2.6 0.31 ± 0.02
RARE Chamfer 68.8 ± 0.5 0.28 ± 0.01

Table 1: We evaluate the FID Score and DocSim with a held-out batch of human revisions. We find
that RARE Keystroke exceeds Supervisied Finetuning in DocSim and matches Supervised Finetun-
ing in FID score.

3. RARE Chamfer Distance + RLHF: We learn the Chamfer Distance from an intermediate
layout to the final layout and utilize the negative distance as the reward. The Chamfer
distance is a geometric distance that is revision-aware (RARE).

4. RARE Keystroke + RLHF: We learn the time difference from an intermediate layout to the
final layout and utilize the negative predicted time as the reward. This time-based metric is
revision-aware (RARE).

All rewards are normalized for more efficient RL training. For our RLHF methods, because our
object is to lightly finetune our model, we use a standard DDPM sampler, but we only optimize
the DDPO objective on the last 10 timesteps of the denoising diffusion model. We find that further
optimization for early steps of the denoising process leads to mode collapse and reward exploitation.
For additional hyperparameters, please refer to the Appendix.

5.2 QUANTITATIVE RESULTS

To evaluate the alignment of our finetuned model with the human revision dataset, we report the
FID scores with the final revisions in Table 1. We also report the DocSim score Patil et al. (2019), a
popular measure of similarity across documents. Notably, the FID score between the CLAY dataset
and the human-revised layouts is high, suggesting that there is a large distribution shift between the
types of layotus collected in CLay and those that are preferred by and created by designers.

In our results, we find that RARE Chamfer the lowest FID scores. This supports our hypothesis that
revision sequences are informative and effective for specifying human preferences.

Supervised Finetuning is less effective for finetuning, with a lower DocSim score. The FID score is
much higher than RARE RLHF, and we hypothesize that this may be because our dataset is rather
limited, and finetuning the entire model is ineffective for alignment.

Finally, we find that using the Chamfer Distance is far less effective than RARE Keystroke. This
result is interesting, because both the Chamfer Distance and Keystroke seek to quantify the amount
of human effort needed to fully revise the layout. We hypothesize that this may be because the
Chamfer Distance is much harder to learn, especially on a limited dataset.
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Figure 6: RLHF with Different Reward Models We compare the effect of using different reward
models. We find that RARE Keystroke and RARE Chamfer lead to more consistent and coherent
samples. For instance, in the first row, the RARE Chamfer and RARE Keystroke samples may
resemble forum discussions more. In the second example, RARE Chamfer and Keystroke samples
are well-aligned. In the last example, we find that RARE Keystroke generates a large image, which
is typically unseen in the pretraining data, suggesting successful alignment with human revisions.
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Figure 7: Revision Statistics We plot the distribution of natural log of the edit times (left) and the
distribution of types of revisions (right). The median time is 503.4 seconds for a designer to complete
a full revision. The overall distribution is skewed by a couple of outliers that took an extremely long
time, and when taking the natural log of the edit time, it resembles a normal distribution.

5.3 QUALITATIVE COMPARISONS

We show qualitative examples of how RARE may better align layouts with user preferences. In
Figure 4, we compare layouts from PLay (the base model), PLay + Supervised Finetuning, and PLay
+ RLHF w/ RARE. We find that samples from the Supervised FT model differ greatly from the base
model and are inconsistent in quality. However, RLHF w/ RARE stays close to the base model
samples, slightly improving it based on the learned design principles. This supports our hypothesis
that RARE provides informative feedback and can guide the layouts to be more human-preferred.

Next, we compare how different reward models trained on the revision sequences affect the quality
of the generated outputs. In Figure 6, we compare RARE, preference modelling, and Chamfer
distance. Although RLHF with preference reward models achieves a similar FID score to RARE,
qualitatively, we notice qualitative differences in alignment and overall layout, described further in
detail in Figure 6.

5.4 DATASET ANALYSIS

We provide additional insight to how designers are revising layouts in Figures 7. Designers take
a median time of 503.4 seconds per full revision. The mean number of elements before is 10.4
(standard deviation 7.9), and the mean number of elements after revision is 15.8 (standard deviation
9.0).

In addition, we plot the element class distributions from before and after revisions in Figure 5. From
the revision data and designer feedback, we find that the base PLay generations are not optimal for
most use cases. The shift in element class distributions and the amount of time spent revising the
layouts suggests that many elements are misplaced or of the wrong class. This may be partially due
to the fact that the base model PLay was trained on an older dataset of UI screens, motivating the
need for human alignment.

6 CONCLUSIONS

In this work, we present a method for leveraging detailed human feedback through the form of re-
vision sequences. We ask designers to revise layouts generated a text-conditioned generative layout
model. Using the revision data, our method, RARE, predicts the amount of time between an in-
termediate and the final revision. RARE is easily incorporated into existing RLHF algorithms and
successfully finetunes the pretrianed model. We compare against different reward functions trained
on the revision sequences, and we find that RARE has strong quantitative and qualitative results,
leading to layouts that are well-aligned, cohesive, and more aligned with human preferences.

Limitations RARE faces certain limitations. For example, collecting revisions can be time-
consuming, especially for high-dimensional domains like images. Within layout generation works,
our work makes certain assumptions, such as the types of available elements. Future work in en-
abling for incorporating new assets that designers may find relevant may address this.
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A APPENDIX

A.1 HYPERPARAMETERS

A.1.1 PLAY PRETRAINING

We train a text-conditioned PLay model. We remove the guideline condition and replace it with a
text condition, which uses text embedding features from a BERT model with 12 layers, 12 attention
heads, and hidden size 768. We inject text conditions through element-wise condition on pooled text
embeddings and cross attention with the full text embedding.

The rest of the hyperameters that we used are equivalent to those in Cheng et al. (2023). We train
the model on 8 Google Cloud TPU v4 cores for 40,000 steps with batch size 1024.

A.1.2 REWARD MODEL TRAINING

We include the hyperparameters for training in Table 2.

Reward Model Pretraining Finetuning
Method CLAY Pretrain Steps Dhuman Train Steps Optim. Steps
Supervised Finetuning x x 1,000
RARE Keystroke 2,000 200 1,000
RARE Preference 2,000 1,00 800
RARE Chamfer 2,000 400 1,00

Table 2: Reward Model Training Hyperparameters.

RARE and the Preference Reward Model have the same architecture as the denoising diffusion
model used in PLay, with the exception that there is no time embedding, and there is an additional
MLP layer that reshapes the output features and projects it to a scalar prediction. For the Chamfer
Reward Model, we reduce the number of layers to 2, number of heads to 4, and key, query and value
dimensions to 256 to prevent overfitting.

A.2 RLHF HYPERPARAMETERS

We train with sample batches of 256. In accordance with DDPO, we compute losses for a single
timestep across denoising timesteps together. We set the PPO clip range to 1e-2. We use a batch
size of 64 on 8 Google Cloud TPU v4 cores.

A.3 PLAY COLOR LEGEND

We use the same color legend as in Cheng et al. (2023) to visualize the layouts. Colors for popular
class elements are rendered in Figure 8.

Figure 8: Visualization Colors
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A.4 ADDITIONAL DATASET STATISTICS

A.4.1 CLAY

PLay is trained on CLAY, a large-scale dataset of 59,555 mobile screen layouts. The average number
of elements for the original version of CLAY is 19.6, and it contains 24 element classes, including
compound class types such as list items and container. To reduce the complexity of editing sequences
and increase the number of revised designs we can collect given the limited time and budget, we
select 10 classes to simplify the layouts, and the updated mean number of elements per layout is
11.4 (standard deviation 9.0). The distribution of element classes we train on is shown in Figure 9.

A.4.2 REVISION DATASET

Across the revision dataset, designers make on average 889.3 (standard deviation 612.5) edits. Be-
cause the logs are extremely verbose, we condense the sequence of revisions to be every 10 logged
steps. Excluding extraneous logs that are not reflected in the PLay layouts (e.g. color or font of
an element does not affect the vectorized layout), 89.7% of edits involve rearranging elements and
10.3% involve resizing elements. This is reasonable, as precisely aligning elements and organizing
the layout is a more tedious and common part of revision than resizing elements.

Figure 9: CLAY Dataset Element Distribution

In addition, we provide a histogram of the natural log of the number of edits in Figure 10.

Figure 10: Distribution of Number of Edits per Layout

A.5 ADDITIONAL SAMPLES
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Figure 11: Non-cherrypicked samples from RLHF w/ RARE Keystroke
.

Figure 12: Non-cherrypicked samples from RLHF w/ a preference-based reward model.
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Figure 13: Non-cherrypicked samples from RLHF w/ a RARE Chamfer distance reward model.

Figure 14: Non-cherrypicked samples from the Supervised Finetuning model.
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