

000 001 002 003 004 005 DIFFGED: COMPUTING GRAPH EDIT DISTANCE VIA 006 DIFFUSION-BASED GRAPH MATCHING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

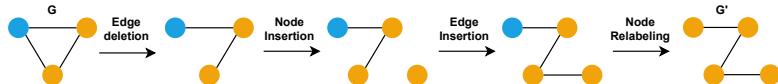
ABSTRACT

029
030 Graph Edit Distance (GED), which aims to find an edit path with minimum num-
031 ber of edit operations to transform one graph into another, is a fundamental NP-
032 hard problem and a widely used graph similarity measure. Recent matching-based
033 hybrid approaches have demonstrated better scalability than A* search-based hy-
034 brids by reformulating GED as a graph matching problem. In these methods, a
035 neural network predicts a single deterministic node matching matrix, from which
036 top- k node mappings are extracted iteratively to derive candidate edit paths. How-
037 ever, these methods often suffer from highly correlated candidates that easily lead
038 to suboptimal solutions, while the iterative extraction becomes inefficient for large
039 k . In this paper, we propose DiffGED, the first generative approach for GED
040 computation. Specifically, we formulate the graph matching problem as a gener-
041 ative task, and employ a diffusion-based model to generate multiple diverse node
042 matching matrices simultaneously, from which diverse node mappings can be effi-
043 ciently extracted. The generative diversity introduced by the diffusion process en-
044 ables DiffGED to avoid suboptimal solutions and achieve superior solution quality
045 close to the exact solution. Experiments on real-world datasets show that DiffGED
046 generates multiple diverse edit paths with accuracy comparable to exact solutions,
047 while running faster than existing hybrid approaches. The source code is available
048 at <https://anonymous.4open.science/r/DiffGED-DF86>.
049

1 INTRODUCTION

050 Graph Edit Distance (GED) is one of the most widely used similarity measures for graphs (Gouda
051 & Arafa, 2015; Liang & Zhao, 2017; Bunke, 1997), with broad applications across computer vi-
052 sion and pattern recognition (Chen et al., 2020; Cho et al., 2013; Maergner et al., 2019). GED is
053 defined as the minimum number of edit operations required to transform one graph into another.
054 For instance, in Figure 1, transforming G into G' requires at least four edit operations, yielding
055 $GED(G, G') = 4$. However, due to its NP-hard nature, traditional A* search methods (Neuhaus
056 et al., 2006; Blumenthal & Gamper, 2020; Chang et al., 2020) struggle to scale even to graphs with
057 only a few nodes, as the search space grows exponentially with the number of nodes (Blumenthal &
058 Gamper, 2020). In contrast, matching-based methods (Riesen & Bunke, 2009; Bunke et al., 2011)
059 formulate GED computation as a bipartite graph matching problem and can be solved in polynomial
060 time, but they often yield solutions of unsatisfactory quality.
061

062 In recent years, there has been growing interest in combining deep learning with traditional methods
063 to compute GED more effectively and efficiently. Current state-of-the-art methods (Piao et al., 2023;
064 Cheng et al., 2025) adopt a class of hybrid approaches that aim to enhance the solution quality of
065 matching-based methods. Specifically, given a pair of graphs, a neural network (e.g., GNNs) is
066 trained to predict a single node matching matrix. From this matrix, the top- k node mappings with
067 maximum matching weights are then extracted iteratively as shown in Figure 2, where each extracted
068 mapping corresponds to a candidate edit path, and the candidate edit path with the minimum number
069



070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325

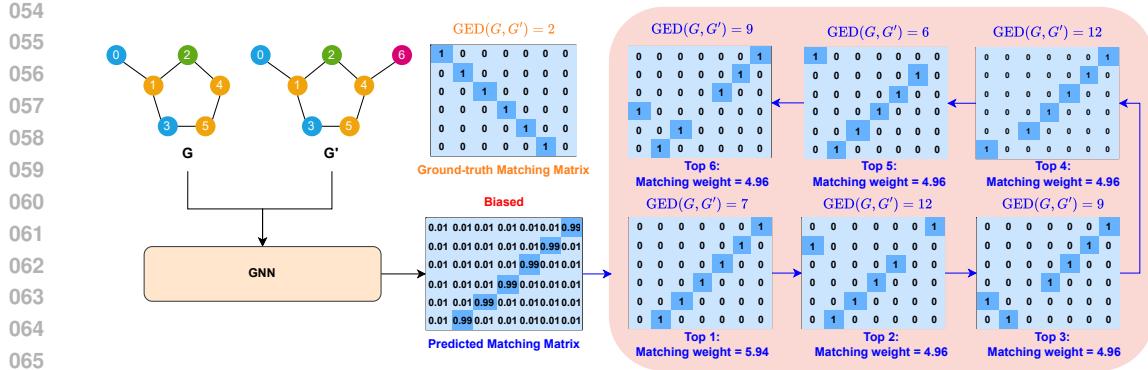


Figure 2: An example of existing matching-based hybrid approach that iteratively extracts top- k maximum weight node mappings from a single deterministic node matching matrix predicted by GNN.

of edit operations is selected as the final solution. However, this approach is deterministic (i.e., for the same pair of graphs, it always produces the same deterministic output node matching matrix), and the extracted top- k node mappings depend solely on a single predicted node matching matrix, with each mapping is extracted by searching on the previously extracted ones, leading to strong correlations among them. Thus, the following limitations could arise: (1) Highly correlated top- k node mappings might easily fall into the local sub-optimal if the predicted node matching matrix is biased (i.e., significantly deviates from the correct matching). Consider the simple example of a biased predicted node matching matrix shown in Figure 2. It is clear to see that the top-6 node mappings extracted from the predicted matching matrix are highly correlated, and unfortunately, they are all sub-optimal with the derived GED significantly larger than the ground-truth GED; (2) Highly correlated node mappings limit the diversity of found edit paths, as multiple diverse edit paths could exist with multimodal distribution for an optimal GED; (3) The iterative extraction of top- k node mappings is time consuming for large k , and cannot be parallelized to reduce the running time;

To address these limitations, we propose DiffGED, a novel generative approach that utilizes diffusion model for highly accurate GED computation. DiffGED first formulates matching-based GED computation as a generation task, then it generates k diverse and high-quality node matching matrices in parallel from k randomly initialized matrices, using our generative diffusion-based graph matching model DiffMatch. Next, k candidate edit paths can be derived by extracting top-1 node mapping from each generated node matching matrix in parallel using a greedy algorithm. Therefore, comparing to previous deterministic approach, our proposed generative approach DiffGED offers the following advantages: (1) Each node mapping is extracted independently from a separate node matching matrix. With the stochasticity introduced by the generative diffusion model, the correlation between extracted node mappings is reduced, which enhances overall accuracy and decreases the likelihood of the extracted candidate solutions being trapped in local optima; (2) The reduced correlation further improves the diversity of the discovered edit paths; (3) Both the k node matching matrices and their corresponding node mappings can be generated and extracted in parallel, which greatly reduces runtime when k is large.

Contributions. To the best of our knowledge, we are the first to introduce a generative formulation for solving graph matching and GED computation. We are also the first to leverage a generative diffusion model for graph matching, namely DiffMatch. Extensive experiments on real-world datasets demonstrate that our proposed DiffGED (1) has exceptionally high accuracy (around 95% on all datasets) which outperforms the existing methods by a great margin, (2) can generate diverse edit paths, and (3) has a shorter running time compared to other hybrid approaches.

2 RELATED WORK

Traditional approaches. Traditional approaches are often based on A* search (Neuhaus et al., 2006; Blumenthal & Gamper, 2020; Chang et al., 2020), guided by carefully designed heuristics to prune the unpromising search space. Unfortunately, these exact solvers are usually intractable

108 for large graphs due to the NP-hard nature of GED computation. To improve scalability, traditional
 109 matching-based approaches proposed to construct a node edition cost matrix, then model GED as
 110 a bipartite node matching problem and solve by either Hungarian (Riesen & Bunke, 2009) or VJ
 111 (Bunke et al., 2011) algorithm in polynomial time. However, the solution quality of matching-based
 112 methods are often poor.

113 **Regression-based deep learning approaches.** To address the limitations of traditional methods,
 114 deep learning approaches leverage the success of Graph Neural Networks (GNNs) in modeling com-
 115 plex graph structures. SimGNN (Bai et al., 2019) first formulated GED as a regression task with a
 116 cross-graph module, enabling fast and accurate prediction and inspiring many follow-ups (Bai &
 117 Zhao, 2021; Zhuo & Tan, 2022; Ling et al., 2021; Bai et al., 2020; Zhang et al., 2021; Qin et al.,
 118 2021; Jain et al., 2024; Li et al., 2019). However, these methods are not trained to recover edit paths,
 119 which are crucial in many applications (Wang et al., 2021), and their predictions may underestimate
 120 GED without corresponding feasible edit paths.

121 **Hybrid approaches.** To recover the edit paths, hybrid approaches have been extensively studied,
 122 combining traditional search-based methods with deep learning techniques. A well-studied line
 123 of research focuses on guiding A* search with heuristics learned by a neural network (Yang &
 124 Zou, 2021; Wang et al., 2021; Liu et al., 2023), aiming to improve the efficiency of the search
 125 process. However, these methods often suffer from poor solution quality and inherit the scalability
 126 limitations of A* search. To improve both efficiency and effectiveness, recent state-of-the-art hybrid
 127 approaches such as GEDGNN (Piao et al., 2023) and GEDIOT (Cheng et al., 2025) have shifted
 128 towards improving the solution quality of matching-based approaches. These methods work by
 129 predicting a single node matching matrix via neural network, from which top- k node mappings can
 130 be iteratively extracted to construct candidate edit paths. Compared with A* search-based hybrid
 131 approaches, this class of methods is significantly more efficient. However, they are still ineffective,
 132 since all candidate edit paths are derived from the same deterministic matching matrix, they exhibit
 133 high correlation and are prone to local optima. Moreover, the iterative node mapping extraction
 134 process is inherently sequential and cannot be parallelized, leading to inefficiency for large k . Taken
 135 together, these challenges suggest substantial room for improvement in hybrid GED computation.
 136 To this end, we introduce a novel generative perspective that overcomes the inherent limitations of
 137 matching-based approaches and enables more effective and efficient GED computation.

138 3 PRELIMINARIES

141 In this paper, we focus on the computation of graph edit distance between a pair of undirected
 142 labeled graphs $G = (V, E, L)$ and $G' = (V', E', L')$, where G consists of a set of nodes V , a set of
 143 edges E and a labeling function L that assigns each node a label.

144 **Graph Edit Distance (GED).** (Sanfeliu & Fu, 1983) Given a pair of graphs (G, G') , find an op-
 145 timal edit path with minimum number of edit operations that transforms G to G' . An edit path is
 146 a sequence of edit operations that transforms G to G' . Graph edit distance $\text{GED}(G, G')$ is defined
 147 as the number of edit operations in the optimal edit path. Specifically, there are three types of edit
 148 operations: (1) insert or delete a node; (2) insert or delete an edge; (3) replace the label of a node.

149 **Edit path extraction.** Suppose $|V| \leq |V'|$, an edit path of transforming G to G' can be obtained
 150 from an injective node mapping f from V to V' in linear time complexity $O(|V'| + |E| + |E'|)$
 151 (Piao et al., 2023), such that $f(v) = v'$, where $v \in V$ and $v' \in V'$. The overall procedure can be
 152 described as follows:

- 153 (1) For each mapped node pair $f(v) = v'$, if $L(v) \neq L'(v')$, then replace the label of v with $L'(v')$;
- 154 (2) For the remaining unmapped nodes in V' , insert $|V'| - |V|$ nodes into V . Each inserted node is
 155 mapped to and has the same label as an unmapped node in V' ;
- 156 (3) For any two pairs of mapped nodes $f(v) = v'$ and $f(u) = u'$, if $(u, v) \in E$ and $(u', v') \notin E'$,
 157 delete the edge (u, v) from E ; if $(u, v) \notin E$ and $(u', v') \in E'$, insert the edge (u, v) into E .

158 Therefore, to find an optimal edit path with minimum number of edit operations, we only have to
 159 find an optimal node mapping f^* . Due to the space limitation, the detailed algorithm can be found
 160 in Appendix B.1.

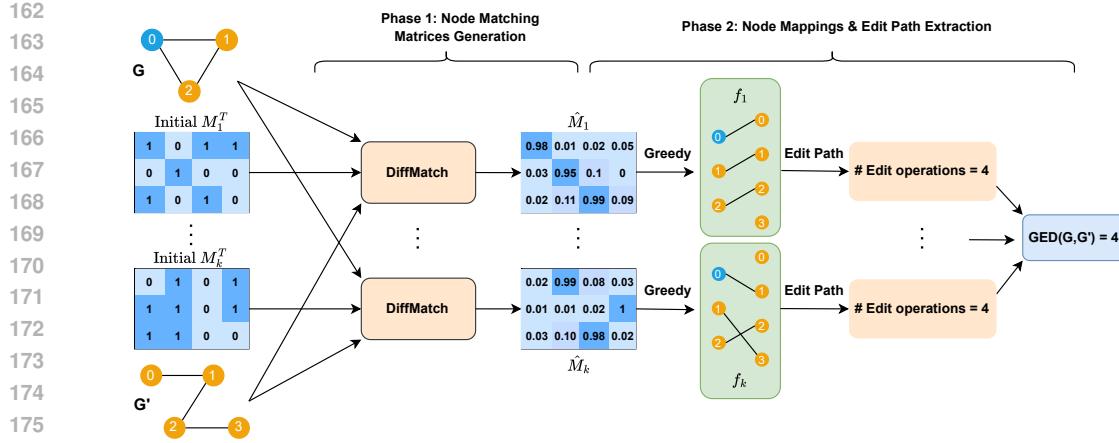


Figure 3: An overview of DiffGED. In the first phase, DiffGED first samples k random initial node matching matrices, then DiffMatch will denoise the sampled node matching matrices via diffusion model. In the second phase, one node mapping will be extracted from each node matching matrix in parallel, and edit paths will be derived from the node mappings.

4 PROPOSED APPROACH: DIFFGED

4.1 DIFFGED: OVERVIEW

As described in Section 3, the optimal edit path can be obtained from an optimal node mapping f^* . To approximately find the optimal node mapping f^* , one simple and effective way is to predict top- k node mappings f_1, \dots, f_k , then select the one that results in the edit path with minimum edit operations.

To obtain top- k node mappings, our DiffGED proposes a two-phase approach as shown in Figure 3. Specifically, in the first phase, given a graph pair (G, G') , instead of predicting a single node matching matrix, we predict top- k node matching matrices $\hat{M}_1, \dots, \hat{M}_k$ simultaneously, where each element in $\hat{M}_i \in \mathbb{R}^{|V| \times |V'|}$ represents the matching weight of a pair of nodes. Then, in the second phase, a simple greedy algorithm is used to extract top-1 node mapping independently from each predicted node matching matrix \hat{M}_i in parallel, such that $f_i = \text{Top1}(\hat{M}_i)$. Comparing to existing matching-based approaches, our approach yields the following benefits: (1) Phase 1 reduces the correlation between each node mapping extracted in Phase 2, thus decreases the chances of falling into sub-optimal; (2) The reduced correlation naturally improves the diversity of the extracted node mappings; (3) Both the prediction of node matching matrices (Phase 1) and the extraction of node mappings (Phase 2) can be fully parallelized, significantly reducing the overall running time.

However, the neural networks in existing matching-based approaches cannot be easily adapted to Phase 1 of our approach. This is because they are deterministic and have limited capacity to predict a flexible number of node matching matrices for a given input graph pair. Once trained, they can only produce a fixed number of node matching matrices (often just one), and this requires a corresponding number of prediction heads in the network architecture, which consequently increases the number of unnecessary network parameters. Even worse, the node matching matrices predicted by different heads often remain highly correlated, as they share the same inputs and deterministic backbone, which inherently lack stochasticity.

To predict a flexible number of diverse node matching matrices, generative approach can be naturally well-suited to this improved two-phase approach. For Phase 1, we propose DiffMatch, a generative graph matching model that generates k diverse and high-quality node matching matrices in parallel. As shown in Figure 3, unlike deterministic models that rely solely on the graph pair as input, our generative model DiffMatch introduces stochasticity by taking a randomly initialized discrete node matching matrix $M_i^T \in \{0, 1\}^{|V| \times |V'|}$ as an additional input. It then denoises the sampled M_i^T to generate $\hat{M}_i \in \mathbb{R}^{|V| \times |V'|}$. This design enables the flexible generation of k distinct node matching matrices in parallel by sampling k random initial node matching matrices M_1^T, \dots, M_k^T , with k chosen arbitrarily at inference time and independent of the training phase. Therefore, it eliminates

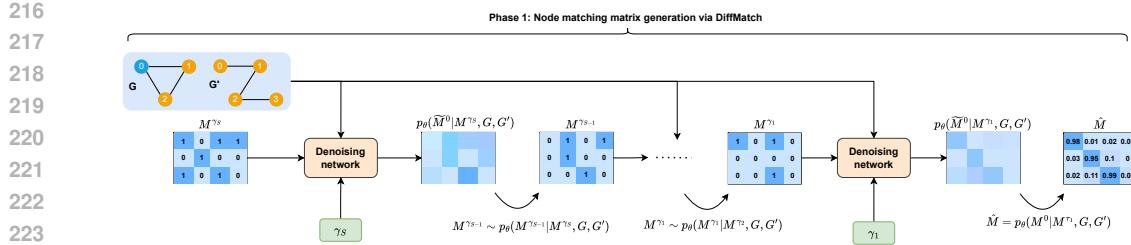


Figure 4: Reverse process of diffusion-based node matching model DiffMatch during inference.

the need for multiple prediction heads. Moreover, this generative formulation is also motivated by the fact that multiple optimal node mappings could exist with multimodal distribution for a given graph pair. Thus, different initial random node matching matrices can be mapped to different optima, consequently reducing the correlation among the generated node matching matrices.

To further enhance the generation of high-quality and diverse node matching matrices, our DiffMatch leverages the generative diffusion model (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song & Ermon, 2019) to denoise each M_i^T , which has demonstrated impressive success in image generation tasks, but has not yet been explored in the context of graph matching. The main strength of diffusion model over other generative models is that it enables the generation of node matching matrices through an iterative refinement process, breaking down the complex generation task into simpler steps. Each step makes minor adjustments, progressively improving the quality of the matching matrices. Furthermore, each refinement step introduces stochasticity, which further reduces the correlation between generated node matching matrices and enhances the model’s ability to produce diverse node matching matrices. To handle discrete data, we adopt discrete diffusion (Haefeli et al., 2022; Vignac et al., 2022; Austin et al., 2021) for DiffMatch.

4.2 PHASE 1: DIFFMATCH

In this section, we introduce our DiffMatch in detail based on a single discrete node matching matrix $M \in \{0, 1\}^{|V| \times |V'|}$.

Diffusion model overview. Diffusion models are generative models that consist of a forward process and a reverse process. Given a ground-truth node matching matrix M^0 (transformed from the ground-truth node mapping), the forward process $q(M^{1:T} | M^0) = \prod_{t=1}^T q(M^t | M^{t-1})$ progressively corrupts M^0 to a sequence of increasingly noisy latent variables $M^{1:T} = M^1, M^2, \dots, M^T$. Then, the reverse process learns to reconstruct M^{t-1} from M^t using a denoising network. During inference, the learned reverse process progressively denoises the latent variables towards the desired distribution, starting from a randomly sampled noise M^T , such that: $p_\theta(M^{0:T} | G, G') = p(M^T) \prod_{t=1}^T p_\theta(M^{t-1} | M^t, G, G')$.

Forward process. Let $\tilde{M}^t \in \{0, 1\}^{|V| \times |V'| \times 2}$ be the one-hot encoding of the node matching matrix M^t at time step $t \in [0, T]$. The forward process adds noise to M^{t-1} and samples M^t from the following Categorical distribution: $q(M^t | M^{t-1}) = \text{Cat}(M^t | p = \tilde{M}^{t-1} Q_t)$, with the transition probability matrix $Q_t = \begin{bmatrix} 1 - \beta_t & \beta_t \\ \beta_t & 1 - \beta_t \end{bmatrix}$, where β_t is the probability of switching node matching state.

In practice, to sample the noisy matching matrix M^t efficiently during training, we can compute the t -step marginal from M^0 , such that: $q(M^t | M^0) = \text{Cat}(M^t | p = \tilde{M}^0 \bar{Q}_t)$, with $\bar{Q}_t = Q_1 Q_2 \dots Q_t$. Then, the denoising network is trained to predict node matching probabilities $p_\theta(\tilde{M}^0 | M^t, G, G')$ that reconstructs M^0 from M^t by minimizing the binary cross-entropy loss (BCE):

$$\mathcal{L} = \frac{1}{|V||V'|} \sum_{v \in V} \sum_{v' \in V'} (M^0[v][v'] \log(p_\theta(\tilde{M}^0 | M^t, G, G')[v][v'])) + (1 - M^0[v][v']) \log(1 - p_\theta(\tilde{M}^0 | M^t, G, G')[v][v']) \quad (1)$$

Due to the space limitation, the training procedure of the denoising network can be found in Appendix B.2.

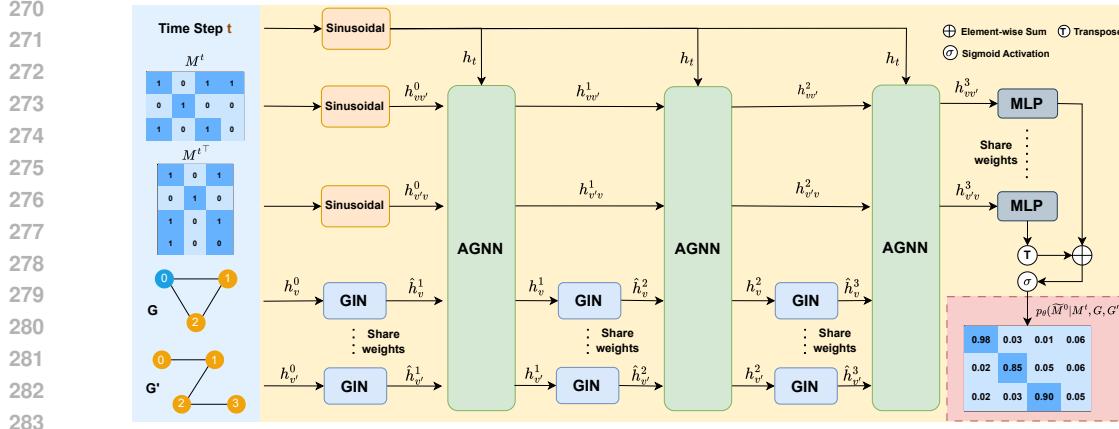


Figure 5: An overview of the denoising network. The blue area denotes the network input, the yellow area denotes the architecture of the denoising network, and the pink area denotes the network output.

Reverse process. With the denoising network, each step t of the reverse process can then denoise M^t to M^{t-1} as follows:

$$M^{t-1} \sim p_\theta(M^{t-1} | M^t, G, G') = \sum_{\tilde{M}} q(M^{t-1} | M^t, \tilde{M}^0) p_\theta(\tilde{M}^0 | M^t, G, G') \quad (2)$$

$$q(M^{t-1} | M^t, M^0) = \frac{q(M^t | M^{t-1}, M^0) q(M^{t-1} | M^0)}{q(M^t | M^0)} = \text{Cat}(M^{t-1}; p = \frac{\bar{M}^t Q_t^\top \odot \bar{M}^0 \bar{Q}_{t-1}}{\bar{M}^0 \bar{Q}_t (\bar{M}^t)^\top}) \quad (3)$$

where $q(M^{t-1} | M^t, M^0)$ denotes the posterior, with $\bar{M} \in \{0, 1\}^{|V||V'| \times 2}$ obtained by reshaping $\tilde{M} \in \{0, 1\}^{|V| \times |V'| \times 2}$. During inference, starting from a random noisy discrete node matching matrix M^T , each M_{t-1} can be sampled from $p_\theta(M^{t-1} | M^t, G, G')$ via Bernoulli sampling. And note that, for the last reverse step (i.e., $t-1=0$), we directly use $\hat{M} = p_\theta(M^{t-1} | M^t, G, G')$ as the input of the node mapping extraction in phase 2.

Accelerating reverse process during Inference. During training, the forward process typically employs a large number of steps T (e.g., $T=1000$), and performing T reverse steps during inference can be computationally expensive. To accelerate DiffMatch’s inference, we apply DDIM (Song et al., 2020) to the reverse process. The key idea of DDIM is that, instead of performing T reverse steps over the entire sequence $[T, \dots, 1]$, we perform only S reverse steps on a sub-sequence $[\tau_S, \dots, \tau_1]$ of $[T, \dots, 1]$, where $S < T$ and $\tau_S = T$. We substitute t and $t-1$ in Equation 2 with τ_i and τ_{i-1} , and we rewritten the posterior as follows:

$$q(M^{\tau_{i-1}} | M^{\tau_i}, M^0) = \frac{q(M^{\tau_i} | M^{\tau_{i-1}}, M^0) q(M^{\tau_{i-1}} | M^0)}{q(M^{\tau_i} | M^0)} = \text{Cat}(M^{\tau_{i-1}}; p = \frac{\bar{M}^{\tau_i} \bar{Q}_{\tau_{i-1}, \tau_i}^\top \odot \bar{M}^0 \bar{Q}_{\tau_{i-1}}}{\bar{M}^0 \bar{Q}_{\tau_i} (\bar{M}^{\tau_i})^\top}) \quad (4)$$

where $\bar{Q}_{\tau_{i-1}, \tau_i} = Q_{\tau_{i-1}+1} Q_{\tau_{i-1}+2} \dots Q_{\tau_i}$. The overall inference procedure of DiffMatch is presented in Figure 4, and a formal inference algorithm can be found in Appendix B.3.

Denoising network. An example of a 3-layer denoising network is shown in Figure 5. The network takes as input the graph pair (G, G') , the noisy node matching matrix M^t along with its transpose $M^{t\top}$, and the corresponding time step t . Intuitively, it then works by directly computing the embeddings of each node matching pair, and predicting the node matching probabilities $p_\theta(\tilde{M}^0 | M^t, G, G')$ based on these embeddings to reconstruct M^0 . Note that, $\text{GED}(G, G') = \text{GED}(G', G)$, we assume symmetry in node matching: if node $v \in V$ matches with node $v' \in V'$, then v' also matches with v . Therefore, we only sample $M^t \in \mathbb{R}^{|V| \times |V'|}$ during both training and inference, then use both M^t and $M^{t\top}$ as inputs to the denoising network.

For more details, let \mathbf{h}_v^l and $\mathbf{h}_{v'}^l$ denote the embedding of node $v \in V$ and $v' \in V'$ at layer l , $\mathbf{h}_{vv'}^l$ and $\mathbf{h}_{v'v}^l$ denote the embedding of node matching pair (v, v') and (v', v) at layer l . For initialization, the node embeddings \mathbf{h}_v^0 and $\mathbf{h}_{v'}^0$ are initialized as the one-hot node labels, the node matching pair embeddings $\mathbf{h}_{vv'}^0$ and $\mathbf{h}_{v'v}^0$ are initialized as the sinusoidal embeddings (Vaswani et al., 2017) of

324 corresponding values in M^t and M^{t^\top} , and the time step embedding \mathbf{h}_t is initialized as the sinusodial
 325 embedding of t .

326 For each layer l , the denoising network first updates the node embeddings of each graph to $\hat{\mathbf{h}}_v^l$ and
 327 $\hat{\mathbf{h}}_{v'}^l$, independently using their respective graph structures (intra-graph) via GIN (Xu et al., 2018).
 328 Then, the denoising network further refines the embeddings to \mathbf{h}_v^l and $\mathbf{h}_{v'}^l$, while also updating
 329 the node matching pair embeddings to $\mathbf{h}_{vv'}^l$ and $\mathbf{h}_{v'v}^l$, by incorporating noisy interactions between
 330 node matching pairs (inter-graph) and the time step t through Anisotropic Graph Neural Network
 331 (AGNN) (Joshi et al., 2020; Sun & Yang, 2023; Qiu et al., 2022). The key advantage of AGNN
 332 is its ability to directly updating embeddings for node matching pairs, enabling more expressive
 333 representations for cross-graph tasks. In contrast, traditional GNNs such as GIN are specifically
 334 designed for computing node embeddings only, making them less suited for capturing relationships
 335 between node pairs across graphs. Due to the space limitation, more details about AGNN can be
 336 found in Appendix B.4.

337 Finally, the denoising network computes the matching values of each node pair via multi-layer
 338 perceptron (MLP), and sums the matching values for corresponding pairs (v, v') and (v', v) , then
 339 applies sigmoid activation to obtain the node matching probabilities $p_\theta(\tilde{M}^0 | M^t, G, G')$.

341 4.3 PHASE 2: NODE MAPPING EXTRACTION

342 After sampling k noisy node matching matrices M_1^T, \dots, M_k^T and denoising to $\hat{M}_1, \dots, \hat{M}_k$, we adopt
 343 the greedy algorithm based on matching weights to extract one node mapping from each node matching
 344 matrix. Specifically, assuming $|V| \leq |V'|$, the greedy node mapping extraction starts by selecting
 345 the node pair with the highest matching probability. Once a node pair is selected, all matching
 346 probabilities involving either of the selected nodes are set to $-\infty$ to prevent them from being selected
 347 again. This process is repeated iteratively $|V|$ times until every node in V is assigned to a corresponding node in V' . Due to the space limitation, the detailed algorithm can be found in
 348 Appendix B.5.

349 Note that, the above greedy algorithm does not guarantee the extraction of optimal node mappings
 350 from the node matching matrices, but it has a time complexity of $O(|V|^2|V'|)$ slightly faster than
 351 the exact Hungarian algorithm (Kuhn, 1955) with time complexity of $O(|V'|^3)$. It can also be easily
 352 parallelized by GPU to extract k node mappings from k node matching matrices simultaneously
 353 to reduce the running time, especially for large k . It will be demonstrated in Appendix D.2 that
 354 DiffGED with the above greedy algorithm is sufficient to achieve excellent performance.

358 5 EXPERIMENTS

359 5.1 EXPERIMENTAL SETTINGS

360 **Datasets.** We conduct experiments over three popular real-world GED datasets: AIDS700 (Bai
 361 et al., 2019), Linux (Wang et al., 2012; Bai et al., 2019) and IMDB (Bai et al., 2019; Yanardag &
 362 Vishwanathan, 2015). For each dataset, we split 60%, 20%, and 20% of all the graphs as training
 363 set, validation set, and testing set, respectively. To form training/validation/testing graph pairs, as
 364 well as their corresponding ground-truth labels, we follow the same strategy described in Piao et al.
 365 (2023). Due to space limitations, more details about datasets can be found in Appendix C.1.

366 **Baselines.** For traditional approximation methods, we compare our DiffGED with **Hungarian**
 367 (Riesen & Bunke, 2009) and **VJ** (Bunke et al., 2011). For A* search-based hybrid methods, we compare
 368 with: **Noah** (Yang & Zou, 2021), **GENN-A*** (Wang et al., 2021), **MATA*** (Liu et al., 2023). For
 369 matching-based hybrid methods, we compare with: **GEDGNN** (Piao et al., 2023), **GEDIOT** (Cheng
 370 et al., 2025). Due to the space limitation, details of each baseline can be found in Appendix C.2.

371 **Evaluation metrics.** We evaluate our DiffGED against other baseline methods based on the following
 372 metrics: (1) **Mean Absolute Error (MAE)** measures the average absolute difference between
 373 the predicted GED and the ground-truth GED; (2) **Accuracy** measures the ratio of the testing graph
 374 pairs with predicted GED equals to the ground-truth GED; (3) **Spearman's Rank Correlation Co-
 375 efficient (ρ)**, and (4) **Kendall's Rank Correlation Coefficient (τ)**, both measure the matching ratio
 376 between the ranking results of graphs based on their predicted GEDs and the ground-truth GEDs

378
379 Table 1: Overall performance on testing graph pairs. Methods with a running time exceeding 24
380 hours are marked with -. 381

Datasets	Models	MAE \downarrow	Accuracy \uparrow	$\rho \uparrow$	$\tau \uparrow$	p@10 \uparrow	p@20 \uparrow	Time(s) \downarrow
AIDS700	Hungarian	8.247	1.1%	0.547	0.431	52.8%	59.9%	0.00011
	VJ	14.085	0.6%	0.372	0.284	41.9%	52%	0.00017
	Noah	3.057	6.6%	0.751	0.629	74.1%	76.9%	0.6158
	GENN-A*	0.632	61.5%	0.903	0.815	85.6%	88%	2.98919
	GEDGNN	1.098	52.5%	0.845	0.752	89.1%	88.3%	0.39448
	GEDIOT	1.188	53.5%	0.825	0.73	88.6%	86.7%	0.39357
	MATA*	0.838	58.7%	0.8	0.718	73.6%	77.6%	0.00487
Linux	DiffGED (ours)	0.022	98%	0.996	0.992	99.8%	99.7%	0.0763
	Hungarian	5.35	7.4%	0.696	0.605	74.8%	79.6%	0.00009
	VJ	11.123	0.4%	0.594	0.5	72.8%	76%	0.00013
	Noah	1.596	9%	0.9	0.834	92.6%	96%	0.24457
	GENN-A*	0.213	89.4%	0.954	0.905	99.1%	98.1%	0.68176
	GEDGNN	0.094	96.6%	0.979	0.969	98.9%	99.3%	0.12863
	GEDIOT	0.117	95.3%	0.978	0.966	98.8%	99%	0.13535
IMDB	MATA*	0.18	92.3%	0.937	0.893	88.5%	91.8%	0.00464
	DiffGED (ours)	0.0	100%	1.0	1.0	100%	100%	0.06982
	Hungarian	21.673	45.1%	0.778	0.716	83.8%	81.9%	0.0001
	VJ	44.078	26.5%	0.4	0.359	60.1%	62%	0.00038
	Noah	-	-	-	-	-	-	-
	GENN-A*	-	-	-	-	-	-	-
	GEDGNN	2.469	85.5%	0.898	0.879	92.4%	92.1%	0.42428
400	GEDIOT	2.822	84.5%	0.9	0.878	92.3%	92.7%	0.41959
	MATA*	-	-	-	-	-	-	-
	DiffGED (ours)	0.937	94.6%	0.982	0.973	97.5%	98.3%	0.15105

401 for each query testing graph; (5) **Precision at top-10/20** (p@10/20) measure the ratio of predicted
402 top-10/20 similar graphs within the ground-truth top-10/20 similar graphs for each query testing
403 graph; (6) **Time(s)** measures the average running time over all testing graph pairs.

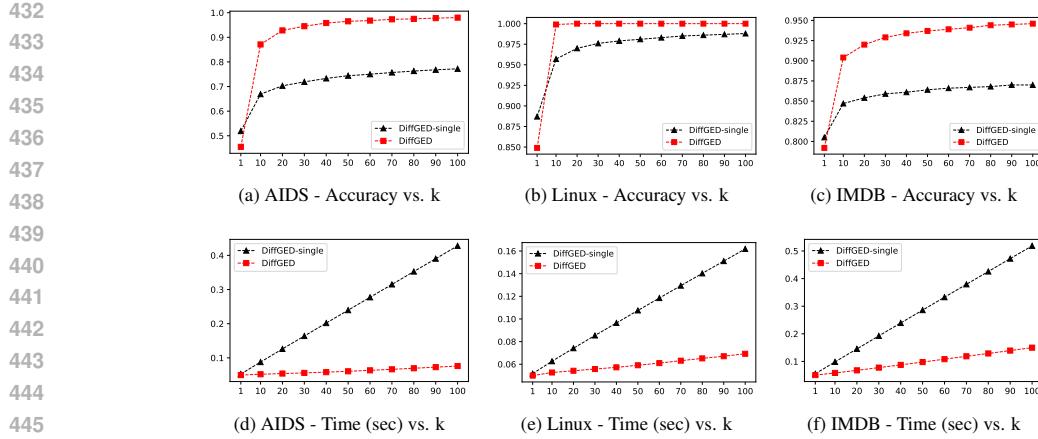
404 **Implementation details.** Due to the space limitation, please refer to Appendix C.3.

407 5.2 MAIN RESULTS

409 Table 1 presents the overall performance of all methods on the test pairs. Across all datasets, DiffGED
410 demonstrates exceptionally high solution quality in terms of MAE, accuracy, and all ranking
411 metrics. For the AIDS700 dataset, the accuracy of DiffGED is nearly double that of other hybrid
412 approaches. DiffGED consistently shows shorter running times than most hybrid approaches across
413 all datasets, although it is slower than MATA* on smaller datasets. Note that, all A*-based hybrid
414 approaches fail to complete evaluations (on IMDB) within a reasonable time due to the scalability
415 issues inherent in A* search.

416 Specifically, both MATA* and DiffGED need to predict node matching matrices and then extract
417 top- k candidate results. However, they differ in key aspects: (1) MATA* predicts only two node
418 matching matrices in a single step, whereas DiffGED generates k node matching matrices in parallel
419 over 10 denoising steps. This results in faster node matching matrix prediction for MATA*;
420 (2) MATA* extracts the top- k candidate matching nodes in G' for each node in G , limiting the valid
421 range of k to $|V'|$ and typically selecting a small k to reduce the A* search space. In contrast,
422 DiffGED extracts the top- k global maximum weight node mappings, allowing k to be arbitrarily
423 large. As a result, MATA* achieves shorter running times on smaller datasets. However, on larger
424 datasets, MATA* suffers from the exponential growth of the A* search space, whereas DiffGED
425 remains unaffected by this limitation.

426 Moreover, while GEDGNN and GEDIOT can scale to large graphs, they are both slower and per-
427 form worse across all datasets for several reasons. GEDGNN and GEDIOT iteratively extract top- k
428 candidate node mappings from a single predicted node matching matrix, resulting in highly corre-
429 lated mappings. In contrast, DiffGED extracts top- k candidate node mappings from k different node
430 matching matrices in parallel, generating diverse mappings. This diversity reduces the likelihood of
431 falling into local sub-optimal solutions, even if some generated node matching matrices are biased.
Additionally, the parallelization of node mapping extraction significantly reduces runtime.

Figure 6: Effectiveness and Efficiency of Top- k Approaches with Varying k .

5.3 ABLATION STUDY

Generative top- k approach. To better evaluate the effectiveness, efficiency, and edit-path diversity of our generative top- k approach, which extracts k diverse node mappings from k matching matrices, we compare it with the iterative approach commonly used in existing matching-based frameworks (e.g., GEDGNN, GEDIOT), which extracts highly correlated node mappings from a single node matching matrix. Specifically, we create a variant model, DiffGED-single, which generates only one node matching matrix using DiffMatch and then applies the iterative top- k extraction.

As shown in Figure 6(a)-(c), our top- k approach (DiffGED) performs slightly worse than DiffGED-single when $k = 1$. This is because DiffGED-single obtains the top-1 node mapping using the exact Hungarian algorithm, whereas DiffGED derives the top-1 mapping from the same node matching matrix via an approximate greedy algorithm. However, as k increases, this initial disadvantage diminishes, with DiffGED rapidly converging to near-optimal accuracy, even with its approximate greedy algorithm. In contrast, DiffGED-single, despite using an exact extraction algorithm, converges to sub-optimal accuracy. Notably, for simpler datasets like Linux, DiffGED achieves optimal solution quality with a small value of $k = 10$. The key reason behind this is that our generative approach generates a more diverse set of node mappings, which helps avoid sub-optimal solutions, whereas DiffGED-single’s mappings tend to be highly correlated, leading to sub-optimal results. Moreover, even with iterative top- k approach, it is interesting to note that DiffGED-single with $k = 100$ still achieves higher accuracy across all datasets compared to the results of GEDGNN and GEDIOT in Table 1, which highlights the effectiveness of our diffusion-based graph matching model DiffMatch. Furthermore, as shown in Figure 6(d)-(f), the running time of DiffGED-single increases significantly faster than that of DiffGED as k grows. This disparity arises from DiffGED-single’s iterative top- k node mapping strategy, whereas DiffGED benefits from parallelized node matching matrix generation and parallel node mapping extraction. Since both processes in DiffGED are parallelized, the impact of increasing k on its running time remains minimal, underscoring its superior efficiency for larger k values.

Lastly, since multiple optimal edit paths often exist under a multimodal distribution, we evaluate edit paths diversity by computing the average number of distinct edit paths found per graph pair, where the number of edit operations is equal to the predicted minimum GED and the ground-truth GED, respectively, using $k = 100$. As demonstrated in Figure 8, our generative approach is capable of generating multiple distinct edit paths for both the predicted minimum GED and the ground-truth GED, while the iterative top- k approach used in ex-

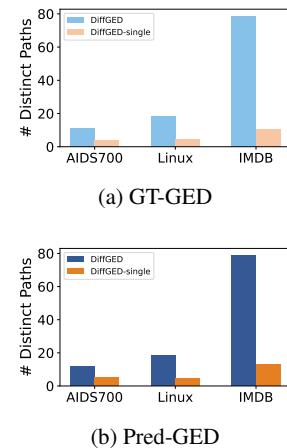


Figure 8: Evaluation of found edit path diversity. Pred-GED refers to average number of distinct edit paths with predicted minimum GED. GT-GED refers to average number of distinct edit paths with ground-truth GED.

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 196

540 Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, and Qin Zhang. Computing approximate graph
 541 edit distance via optimal transport. *Proceedings of the ACM on Management of Data*, 3(1):1–26,
 542 2025.

543

544 Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match. In *Proceedings of the*
 545 *IEEE International Conference on Computer Vision*, pp. 25–32, 2013.

546

547 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 548 *in neural information processing systems*, 34:8780–8794, 2021.

549

550 Karam Gouda and Mona Arafa. An improved global lower bound for graph edit similarity search.
 551 *Pattern Recognition Letters*, 58:8–14, 2015.

552

553 Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudeau, and Roger Wattenhofer. Dif-
 554 fusion models for graphs benefit from discrete state spaces. *arXiv preprint arXiv:2210.01549*,
 2022.

555

556 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 557 *neural information processing systems*, 33:6840–6851, 2020.

558

559 Eeshaan Jain, Indradymuna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph edit dis-
 560 tance with general costs using neural set divergence. *Advances in Neural Information Processing*
 Systems, 37:73399–73438, 2024.

561

562 Bo Jiang, Pengfei Sun, and Bin Luo. Glmnet: Graph learning-matching convolutional networks for
 563 feature matching. *Pattern Recogn.*, 121(C), January 2022a. ISSN 0031-3203. doi: 10.1016/j.
 564 patcog.2021.108167. URL <https://doi.org/10.1016/j.patcog.2021.108167>.

565

566 Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue Black, and Bryan M Williams. Graph-
 567 context attention networks for size-varied deep graph matching. In *Proceedings of the IEEE/CVF*
 568 *Conference on Computer Vision and Pattern Recognition*, pp. 2343–2352, 2022b.

569

570 Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
 571 the travelling salesperson problem requires rethinking generalization. *arXiv preprint arXiv:2006.07054*, 2020.

572

573 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 2014.

574

575 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics*
 576 *quarterly*, 2(1-2):83–97, 1955.

577

578 Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
 579 works for learning the similarity of graph structured objects. In *International conference on*
 580 *machine learning*, pp. 3835–3845. PMLR, 2019.

581

582 Yongjiang Liang and Peixiang Zhao. Similarity search in graph databases: A multi-layered indexing
 583 approach. In *2017 IEEE 33rd International Conference on Data Engineering (ICDE)*, pp. 783–
 794. IEEE, 2017.

584

585 Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming Wu, and
 586 Shouling Ji. Multilevel graph matching networks for deep graph similarity learning. *IEEE Trans-*
 587 *actions on Neural Networks and Learning Systems*, 34(2):799–813, 2021.

588

589 Junfeng Liu, Min Zhou, Shuai Ma, and Lujia Pan. Mata*: Combining learnable node matching with
 590 a* algorithm for approximate graph edit distance computation. In *Proceedings of the 32nd ACM*
 591 *International Conference on Information and Knowledge Management*, pp. 1503–1512, 2023.

592

593 Paul Maergner, Vinaychandran Pondenkandath, Michele Alberti, Marcus Liwicki, Kaspar Riesen,
 Rolf Ingold, and Andreas Fischer. Combining graph edit distance and triplet networks for offline
 signature verification. *Pattern Recognition Letters*, 125:527–533, 2019.

594 Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
 595 of graph edit distance. In *Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR*
 596 *International Workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17-19, 2006.*
 597 *Proceedings*, pp. 163–172. Springer, 2006.

598 Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
 599 graph edit distance via neural graph matching. *Proceedings of the VLDB Endowment*, 16(8):
 600 1817–1829, 2023.

602 Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learning and
 603 fast inference: Efficient graph similarity computation via knowledge distillation. *Advances in*
 604 *Neural Information Processing Systems*, 34:14110–14121, 2021.

606 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
 607 torial optimization problems. *Advances in Neural Information Processing Systems*, 35:25531–
 608 25546, 2022.

609 Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite
 610 graph matching. *Image and Vision computing*, 27(7):950–959, 2009.

612 Indradymna Roy, Saswat Meher, Eeshaan Jain, Soumen Chakrabarti, and Abir De. Position: Graph
 613 matching systems deserve better benchmarks. In *Forty-second International Conference on Ma-*
 614 *chine Learning Position Paper Track*.

615 Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
 616 pattern recognition. *IEEE transactions on systems, man, and cybernetics*, (3):353–362, 1983.

618 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 619 learning using nonequilibrium thermodynamics. In *International conference on machine learn-*
 620 *ing*, pp. 2256–2265. pmlr, 2015.

621 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 622 *preprint arXiv:2010.02502*, 2020.

624 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 625 *Advances in neural information processing systems*, 32, 2019.

627 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
 628 *tion*. *Advances in Neural Information Processing Systems*, 36:3706–3731, 2023.

629 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 630 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 631 *tion processing systems*, 30, 2017.

633 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
 634 cal Frossard. Digress: Discrete denoising diffusion for graph generation. *arXiv preprint*
 635 *arXiv:2209.14734*, 2022.

636 Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
 637 *ing* of graph edit distance via dynamic embedding. In *Proceedings of the IEEE/CVF Conference*
 638 *on Computer Vision and Pattern Recognition*, pp. 5241–5250, 2021.

640 Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of
 641 partial graph matching via differentiable top-k. In *Proceedings of the IEEE/CVF Conference on*
 642 *Computer Vision and Pattern Recognition*, pp. 6272–6281, 2023.

643 Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. An efficient graph
 644 indexing method. In *2012 IEEE 28th International Conference on Data Engineering*, pp. 210–
 645 221. IEEE, 2012.

647 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 648 networks? *arXiv preprint arXiv:1810.00826*, 2018.

648 Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In *Proceedings of the 21th ACM*
 649 *SIGKDD international conference on knowledge discovery and data mining*, pp. 1365–1374,
 650 2015.

651 Lei Yang and Lei Zou. Noah: Neural-optimized a* search algorithm for graph edit distance compu-
 652 tation. In *2021 IEEE 37th International Conference on Data Engineering (ICDE)*, pp. 576–587.
 653 IEEE, 2021.

654 Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn:
 655 Graph similarity learning with hierarchical hypergraph matching networks. In *Proceedings of the*
 656 *27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 2274–2284, 2021.

657 Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
 658 *Advances in Neural Information Processing Systems*, 35:30181–30193, 2022.

661 A ADDITIONAL RELATED WORK

662 **Graph matching.** Graph matching is a problem closely related to GED and deep-learning based
 663 graph matching has garnered significant attention across various domains, particularly in image fea-
 664 ture matching (Jiang et al., 2022b; Wang et al., 2023; Chen et al., 2019; Jiang et al., 2022a). However,
 665 a fundamental distinction between the two problems lies in the nature of their ground truth. In graph
 666 matching, the ground truth is typically unique and application-specific, whereas in GED, multiple
 667 valid ground truths may exist due to different possible edit paths leading to the same graph trans-
 668 formation. Additionally, while graph matching focuses on maximizing node correspondence with
 669 respect to a predefined ground truth, GED aims to determine the minimal sequence of edit opera-
 670 tions required to transform one graph into another. Another key difference lies in the characteristics
 671 of the input graphs. In graph matching, the input graphs are often structurally similar, whereas in
 672 GED, they can differ significantly. As a result, existing graph matching methods struggle to perform
 673 well in GED computation.

674 **Diffusion model.** Diffusion models have emerged as a powerful class of generative models,
 675 achieving remarkable success in image generation and setting new benchmarks for high-quality im-
 676 age synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song & Ermon,
 677 2019). These models progressively refine random noise into structured outputs through a learned
 678 denoising process, demonstrating superior performance over traditional generative approaches such
 679 as GANs and VAEs. The success of diffusion models in continuous domains has inspired exten-
 680 sions to discrete data, leading to the development of discrete diffusion models for structured tasks,
 681 such as text generation (Austin et al., 2021). Building on these advancements, discrete diffusion
 682 has been extensively applied to graph generation (Vignac et al., 2022; Haefeli et al., 2022; Sun &
 683 Yang, 2023), where it has shown great potential in downstream tasks such as molecule generation
 684 and combinatorial optimization. This success further motivates the exploration of diffusion-based
 685 methods for a broader range of graph-related problems beyond generation.

687 B DETAILED METHOD

688 B.1 EDIT PATH EXTRACTION

689 The detailed algorithm for edit path extraction with linear time complexity $O(|V'| + |E| + |E'|)$ is
 690 illustrated in Algorithm 1.

695 B.2 TRAINING OF DIFFMATCH

696 The training procedure of the denoising network in our DiffMatch is outlined in Algorithm 2. For
 697 a given graph pair (G, G') sampled from the training data with its ground-truth matching matrix
 698 M^0 , we first sample a time step t from a uniform distribution. Next, we sample a noisy matching
 699 matrix M^t from the t -step marginal. Finally, the denoising network is trained to minimize the binary
 700 cross-entropy loss between the predicted matching matrix $p_\theta(\widetilde{M}^0 | M^t, G, G')$ and the ground-truth
 701 node matching matrix \widetilde{M}^0 .

702 **Algorithm 1** Edit Path Generation

```

703 Input:  $G = (V, E, L)$ ,  $G' = (V', E', L')$ , node mapping  $f$ ;
704 1:  $EditCost \leftarrow 0$ ;
705 2: for each  $v \in V$  do
706 3:   if  $L(v) \neq L'(f(v))$  then
707 4:      $L(v) \leftarrow L'(f(v))$ ;
708 5:      $EditCost \leftarrow EditCost + 1$ ;
709 6:   end if
710 7: end for
711 8: for each  $v' \in V' \setminus \{f(v) \mid v \in V\}$  do
712 9:   Create a new  $v$ ;
713 10:   $f(v) \leftarrow v'$  and  $L(v) \leftarrow L'(v')$ ;
714 11:   $V \leftarrow V \cup \{v\}$ ;
715 12:   $EditCost \leftarrow EditCost + 1$ ;
716 13: end for
717 14: for each  $(v, u) \in E$  do
718 15:   if  $(f(v), f(u)) \in E'$  then
719 16:      $E \leftarrow E \setminus \{(v, u)\}$ ;
720 17:      $EditCost \leftarrow EditCost + 1$ ;
721 18:   end if
722 19: end for
723 20: for each  $(v', u') \in E'$  do
724 21:   if  $(f^{-1}(v'), f^{-1}(u')) \notin E$  then
725 22:      $E \leftarrow E \cup \{(f^{-1}(v'), f^{-1}(u'))\}$ ;
726 23:      $EditCost \leftarrow EditCost + 1$ ;
727 24:   end if
728 25: end for
729 26: return  $EditCost$ ;
730
731
732
733
734

```

735 **Algorithm 2** DiffMatch Training Procedure

```

736 Input: Graph pair  $(G, G')$ , Ground-truth node matching matrix  $M^0$ ;
737 1: Sample  $t \sim Uniform(1, \dots, T)$ ;
738 2: Sample  $M^t \sim q(M^t | M^0)$ ;
739 3: Take gradient step on  $BCELoss(p_\theta(\widetilde{M}^0 | M^t, G, G'), M^0)$  via Equation 1;
740
741
742
743
744
745
746
747

```

748 B.3 INFERENCE OF DIFFMATCH

749

750

751

752 Algorithm 3 illustrates the reverse process of DiffMatch during inference. During inference, starting

753 from a noisy discrete node matching matrix M^T randomly sampled from the Bernoulli distribution,

754 each $M^{\tau_{i-1}}$ can be obtained from $p_\theta(M^{\tau_{i-1}} | M^{\tau_i}, G, G')$ via Bernoulli sampling. And for the last

755 reverse step (i.e., $\tau_i = \tau_1$), we directly use $\hat{M} = p_\theta(M^0 | M^{\tau_1}, G, G')$ as the input of the node

mapping extraction in phase 2.

756 **Algorithm 3** Sampling from DiffMatch

757
Input: Graph pair (G, G') , Random node matching matrix M^T ;
 758 1: **for** $\tau_i = \tau_S$ to τ_1 **do**
 759 2: **if** $\tau_i \neq \tau_1$ **then**
 760 3: $M^{\tau_{i-1}} \sim p_\theta(M^{\tau_{i-1}} | M^{\tau_i}, G, G')$;
 761 4: **else**
 762 5: $\hat{M} \leftarrow p_\theta(M^0 | M^{\tau_1}, G, G')$;
 763 6: **end if**
 764 7: **end for**
 765 8: **return** \hat{M} ;

766 **Algorithm 4** Greedy Node Mapping Extraction

767
Input: i -th node matching matrix $\hat{M}_i \in \mathbb{R}^{|V| \times |V'|}$;
Output: i -th node mapping f_i ;
 768 1: Initialize $f_i \leftarrow \emptyset$;
 769 2: **for** $n \leftarrow 1$ to $|V|$ **do**
 770 3: select (v, v') with the maximum value in \hat{M}_i ;
 771 4: $f_i \leftarrow f_i \cup \{(v, v')\}$;
 772 5: set all elements in v -th row of \hat{M}_i to $-\infty$;
 773 6: set all elements in v' -th column of \hat{M}_i to $-\infty$;
 774 7: **end for**
 775 8: **return** f_i ;

776 B.4 ANISOTROPIC GRAPH NEURAL NETWORK

777
 778 For each layer l of our denoising network, the Anisotropic Graph Neural Network (AGNN) can be
 779 represented as follows:

$$\begin{aligned}
 780 \hat{h}_{vv'}^l &= \mathbf{W}_1^l \mathbf{h}_{vv'}^{l-1}, \quad \hat{h}_{v'v}^l = \mathbf{W}_1^l \mathbf{h}_{v'v}^{l-1} \\
 781 \tilde{h}_{vv'}^l &= \mathbf{W}_2^l \hat{h}_{vv'}^l + \mathbf{W}_3^l \hat{h}_v^l + \mathbf{W}_4^l \hat{h}_{v'}^l \\
 782 \tilde{h}_{v'v}^l &= \mathbf{W}_2^l \hat{h}_{v'v}^l + \mathbf{W}_3^l \hat{h}_{v'}^l + \mathbf{W}_4^l \hat{h}_v^l \\
 783 \mathbf{h}_{vv'}^l &= \hat{h}_{vv'}^l + \text{MLP}^l(\text{ReLU}(\text{GN}_{MM^\top}(\tilde{h}_{vv'}^l)) + \mathbf{W}_5^l \mathbf{h}_t) \\
 784 \mathbf{h}_{v'v}^l &= \hat{h}_{v'v}^l + \text{MLP}^l(\text{ReLU}(\text{GN}_{MM^\top}(\tilde{h}_{v'v}^l)) + \mathbf{W}_5^l \mathbf{h}_t) \\
 785 \mathbf{h}_v^l &= \hat{h}_v^l + \text{ReLU}(\text{GN}_{GG'}(\mathbf{W}_6^l \hat{h}_v^l + \sum_{v' \in V'} \mathbf{W}_7^l \hat{h}_{v'}^l \odot \sigma(\tilde{h}_{vv'}^l))) \\
 786 \mathbf{h}_{v'}^l &= \hat{h}_{v'}^l + \text{ReLU}(\text{GN}_{GG'}(\mathbf{W}_6^l \hat{h}_{v'}^l + \sum_{v \in V} \mathbf{W}_7^l \hat{h}_v^l \odot \sigma(\tilde{h}_{v'v}^l)))
 \end{aligned} \tag{5}$$

787 where $\mathbf{W}_1^l, \mathbf{W}_2^l, \mathbf{W}_3^l, \mathbf{W}_4^l, \mathbf{W}_5^l, \mathbf{W}_6^l, \mathbf{W}_7^l$ are learnable parameters at layer l , MLP^l denotes multi-
 788 layer perceptron at layer l , GN_{MM^\top} is the graph normalization (Cai et al., 2021) over all node
 789 matching pairs in both M^t and M^{t^\top} , $\text{GN}_{GG'}$ is the graph normalization over all nodes in both G
 790 and G' , and σ is the sigmoid activation.

791

792 B.5 PHASE 2: NODE MAPPING EXTRACTION

793 Given a predicted node matching matrix \hat{M}_i , Algorithm 4 outlines the overall greedy procedure to
 794 extract top-1 node mapping from \hat{M}_i .

795

796 C DETAILED EXPERIMENTAL SETTINGS

797

798 C.1 DATASETS

799

800 We conduct experiments over three popular real-world GED datasets: AIDS700 (Bai et al., 2019),
 801 Linux (Wang et al., 2012; Bai et al., 2019) and IMDB (Bai et al., 2019; Yanardag & Vishwanathan,
 802 2015). Each graph in AIDS700 is labeled, while each graph in Linux and IMDB is unlabeled.

810
811
812 Table 2: Dataset description.
813
814
815

Dataset	# Graphs	Avg $ V $	Avg $ E $	Max $ V $	Max $ E $	Number of Labels
AIDS700	700	8.9	8.8	10	14	29
Linux	1000	7.6	6.9	10	13	1
IMDB	1500	13	65.9	89	1467	1

816
817 The statistics of datasets are summarized in Table 2. We obtain the ground-truth edit path (node
818 mappings) from Piao et al. (2023). However, the ground-truth GED and edit paths are often
819 computationally expensive to obtain for graph pairs with at least one graph has more than 10 nodes.
820 To handle this, we follow the same strategy as described in Piao et al. (2023) to generate synthetic
821 graphs for IMDB dataset. Specifically, for each graph G with more than 10 nodes, synthetic graphs
822 are generated by randomly applying Δ edit operations to G , these random edit operations are used
823 as an approximation of the ground-truth edit path and Δ is used as an approximate of ground-truth
824 GED. For graphs with more than 20 nodes, Δ is randomly distributed in $[1, 10]$, for graphs with
825 more than 10 nodes and less than 20 nodes, Δ is randomly distributed in $[1, 5]$.
826

827 For each dataset, we split 60%, 20%, and 20% of all the graphs as training set, validation set, and
828 testing set, respectively. To form training pairs, each training graph with no more than 10 nodes
829 is paired with all other training graphs with no more than 10 nodes, each training graph with more
830 than 10 nodes is paired with 100 synthetic graphs. In the validation and testing sets, each graph with
831 no more than 10 nodes is paired with 100 random training graphs with no more than 10 nodes, and
832 each graph with more than 10 nodes is paired with 100 synthetic graphs.
833

C.2 DETAILS OF BASELINE METHODS

834 We compare our DiffGED with the following hybrid frameworks: (1) **Noah** (Yang & Zou, 2021)
835 proposed using a pre-trained Graph Path Network (GPN) as the heuristic for A* beam search; (2)
836 **GENN-A*** (Wang et al., 2021) introduced a Graph Edit Neural Network (GENN) to guide A* search
837 by dynamically predicting the edit costs of unmatched subgraphs; (3) **MATA*** (Liu et al., 2023)
838 proposed to prune the search space of A* search by extracting top- k candidate matches for each
839 node from two predicted node matching matrices; (4) **GEDGNN** (Piao et al., 2023) predicts a single
840 deterministic node matching matrix, then iteratively extracts top- k node mappings and edit paths;
841 (5) **GEDIOT** (Cheng et al., 2025) follows the same approach as GEDGNN and further improves the
842 prediction of node matching matrix via optimal transport.
843

C.3 IMPLEMENTATION DETAILS

844 During training of our DiffMatch, we set the number of time steps T to 1,000 with linear noise
845 schedule, where $\beta_0 = 10^{-4}$ and $\beta_T = 0.02$. For the reverse denoising process during testing, we
846 set the number of time steps S to 10 with linear denoising schedule, and we generate $k = 100$ node
847 matching matrices in parallel for each testing graph pair.
848

849 For our denoising network, we set the number of layers to 6, the output dimension of each layer is
850 128, 64, 32, 32, 32, 32, respectively. We train it for 200 epochs with batch size of 128, we adopt
851 Adam optimizer (Kingma, 2014) with learning rate of 0.001 and weight decay of 5×10^{-4} .
852

853 All experiments are conducted using Nvidia Geforce RTX3090 24GB and Intel i9-12900K with
854 128GB RAM.
855

D MORE EXPERIMENTAL RESULTS

D.1 GENERALIZATION ABILITY

856
857
858
859
860
861 **Generalization on unseen graph pairs.** To evaluate the generalization ability to unseen graphs
862 of our DiffGED, instead of pairing each testing graph with 100 graphs from the training set, we
863 pair each testing graph with 100 unseen graphs from the testing set. Table 3 presents the overall
864 performance of all methods on these unseen testing graph pairs. Compared to the results in Table 1,
865

864 Table 3: Overall performance on unseen testing graph pairs. Methods with a running time exceeding
 865 24 hours are marked with - .

Datasets	Models	MAE \downarrow	Accuracy \uparrow	$\rho \uparrow$	$\tau \uparrow$	p@10 \uparrow	p@20 \uparrow	Time(s) \downarrow
AIDS700	Hungarian	8.237	1.5%	0.527	0.416	54.3%	60.3%	0.0001
	VJ	14.171	0.9%	0.391	0.302	44.9%	52.9%	0.00016
	Noah	3.174	6.8%	0.735	0.617	77.8%	76.4%	0.5765
	GENN-A*	0.508	67.1%	0.917	0.836	87.1%	90.6%	3.44326
	GEDGNN	1.155	50.5%	0.838	0.746	89.1%	87.6%	0.39344
	GEDIOT	1.348	47.4%	0.81	0.71	88.4%	86.9%	0.39707
	MATA*	0.885	56.6%	0.77	0.689	73.2%	76.6%	0.00486
Linux	DiffGED (ours)	0.024	96.4%	0.993	0.986	99.7%	99.7%	0.07546
	Hungarian	5.423	7.5%	0.725	0.623	75%	77%	0.00008
	VJ	11.174	0.4%	0.613	0.512	70.6%	74.5%	0.00013
	Noah	1.879	8%	0.872	0.796	84.3%	92.2%	0.25712
	GENN-A*	0.142	92.9%	0.976	0.94	99.6%	99.6%	1.17702
	GEDGNN	0.105	96.2%	0.979	0.968	98.6%	98.5%	0.12169
	GEDIOT	0.14	94.8%	0.973	0.959	98.1%	98.3%	0.12826
IMDB	MATA*	0.201	91.5%	0.948	0.903	86.2%	90.2%	0.00464
	DiffGED (ours)	0.0	100%	1.0	1.0	100%	100%	0.06901
	Hungarian	21.156	45.9%	0.776	0.717	84.2%	82.1%	0.00012
	VJ	44.072	26.6%	0.4	0.359	60.1%	63.1%	0.00037
	Noah	-	-	-	-	-	-	-
	GENN-A*	-	-	-	-	-	-	-
	GEDGNN	2.484	85.5%	0.895	0.876	92.3%	91.7%	0.42662
IMDB	GEDIOT	2.83	84.4%	0.989	0.876	92.5%	92.4%	0.42269
	MATA*	-	-	-	-	-	-	-
	DiffGED (ours)	0.932	94.6%	0.982	0.974	97.5%	98.4%	0.15107

866 Table 4: Overall Performance on IMDB testing graph pairs. IMDB-small refers to training set that
 867 only contains real small graph pairs. IMDB-mix refers to training set that contains a combination of
 868 real small graph pairs and synthetic large graph pairs.

Training set	Models	MAE \downarrow	Accuracy \uparrow	$\rho \uparrow$	$\tau \uparrow$	p@10 \uparrow	p@20 \uparrow	Time(s) \downarrow
IMDB-small	GEDGNN	7.943	77.1%	0.844	0.815	88.2%	87.6%	0.48253
	GEDIOT	7.761	76.8%	0.86	0.827	90.5%	89.9%	0.473
	DiffGED	5.789	83%	0.892	0.874	90.1%	90.8%	0.14923
IMDB-mix	GEDGNN	2.469	85.5%	0.898	0.879	92.4%	92.1%	0.42428
	GEDIOT	2.822	84.5%	0.9	0.878	92.3%	92.7%	0.41959
	DiffGED	0.937	94.6%	0.982	0.973	97.5%	98.3%	0.15105

895
 896
 897 it demonstrates that DiffGED can still achieve superior performance without losing accuracy, even
 898 with more challenging unseen testing graph pairs.
 899

900 **Generalization on large graphs.** Moreover, in real-world scenarios, obtaining ground-truth node
 901 mappings for large graph pairs is often impractical. To evaluate the generalization ability of Dif-
 902 fGED under such conditions, we modify the training setup. Instead of training each method on a
 903 combination of real small graph pairs and synthetic large graph pairs from IMDB, we train each
 904 method exclusively on real small graph pairs from IMDB. However, the testing set still consists of
 905 a combination of real small graph pairs and synthetic large graph pairs. Table 4 presents the over-
 906 all performance of DiffGED, GEDGNN and GEDIOT when trained on real small graph pairs. As
 907 observed, the accuracy of both DiffGED, GEDGNN and GEDIOT degrades, primarily because the
 908 testing graph pairs differ from the training graph pairs not only in graph size but also in distribu-
 909 tion, due to the presence of synthetic graph pairs in the testing set, as these synthetic graphs differ
 910 from real graph pairs. Despite this challenge, DiffGED still outperforms GEDGNN and GEDIOT,
 911 achieving higher accuracy.

912 **Generalization on datasets without structural train–test leakage.** In addition, the AIDS, Linux,
 913 and IMDB datasets have recently been shown to suffer from structural train–test leakage (Roy et al.),
 914 meaning that a significant proportion of graphs in these datasets are isomorphic. This leakage may
 915 cause the reported results to overestimate the true generalization ability of each method. To address
 916 this concern, we follow the procedure described in (Roy et al.) to remove all isomorphic graphs
 917 to obtain unique graphs, and then form training and testing pairs using only these unique graphs.
 918 Table 5 shows the results of each method on datasets without structural train–test leakage. It is clear
 919 to see that after removing train–test leakage, our DiffGED can still achieve near-optimal performance

918
919
Table 5: Overall performance without structural train-test leakage.
920

Datasets	Setting	Models	MAE ↓	Accuracy ↑	ρ ↑	τ ↑	p@10 ↑	p@20 ↑	Time(s) ↓
AIDS700	Cross-train-test	GEDGNN	1.148	51.8%	0.836	0.742	88.9%	88.2%	0.39227
		GEDIOT	1.159	53.8%	0.832	0.737	89.6%	89%	0.39381
	Intra-test	DiffGED (ours)	0.046	96%	0.992	0.983	99.8%	99.6%	0.07431
		GEDGNN	1.235	48.7%	0.824	0.729	90.1%	88.4%	0.39079
Linux	Cross-train-test	GEDIOT	1.349	46.5%	0.8	0.701	88.1%	86.9%	0.39263
		DiffGED (ours)	0.064	94.4%	0.987	0.975	99.5%	99.5%	0.07438
	Intra-test	GEDGNN	1.335	57.6%	0.755	0.664	85.3%	100%	0.28935
		GEDIOT	1.435	52.6%	0.772	0.686	86.3%	100%	0.29775
IMDB	Cross-train-test	DiffGED (ours)	0.305	86.1%	0.896	0.857	92.1%	100%	0.07694
		GEDGNN	4.799	73.1%	0.817	0.783	85.2%	85.5%	0.75584
	Intra-test	GEDIOT	4.679	74.9%	0.826	0.794	87.6%	86.8%	0.73493
		DiffGED (ours)	1.12	94%	0.973	0.963	97.1%	97.1%	0.22247

933 on all datasets, whereas the performance of other baseline methods downgrades significantly. This
934 again demonstrates the strong generalization ability of our DiffGED.
935

936 D.2 ABLATION STUDIES

938
939
Table 6: Ablation study on testing graph pairs.

Datasets	Models	MAE ↓	Accuracy ↑	ρ ↑	τ ↑	p@10 ↑	p@20 ↑	Time(s) ↓
AIDS700	DiffGED	0.022	98%	0.996	0.992	99.8%	99.7%	0.0763
	DiffGED(w/o diffusion)	1.618	46.7%	0.732	0.629	82.4%	81.1%	0.01179
	GEDGNN	1.098	52.5%	0.845	0.752	89.1%	88.3%	0.39448
	GEDGNN(AGNN)	0.736	66.7%	0.884	0.812	94%	93.1%	0.39112
Linux	DiffGED	0.0	100%	1.0	1.0	100%	100%	0.06982
	DiffGED(w/o diffusion)	0.743	74.7%	0.887	0.839	96.4%	95.8%	0.01117
	GEDGNN	0.094	96.6%	0.979	0.969	98.9%	99.3%	0.12863
	GEDGNN(AGNN)	0.061	97.4%	0.992	0.987	99.6%	99.5%	0.13164
IMDB	DiffGED	0.937	94.6%	0.982	0.973	97.5%	98.3%	0.15105
	DiffGED(w/o diffusion)	0.832	93.3%	0.942	0.93	98.6%	96.8%	0.01944
	GEDGNN	2.469	85.5%	0.898	0.879	92.4%	92.1%	0.42428
	GEDGNN(AGNN)	1.766	89.1%	0.903	0.89	93.9%	92.8%	0.41387

950 **Do we really need diffusion?** The core idea of the proposed framework is to generate diverse,
951 high-quality node matching matrices through an iterative reverse process of the diffusion model. To
952 assess the effectiveness of the diffusion model in DiffMatch, we introduce a one-shot generative
953 variant model, DiffGED(w/o diffusion), which takes a graph pair and a randomly initialized node
954 matching matrix as input and directly predicts the clean node matching matrix, followed by greedy
955 node mapping extraction. In this setup, we remove the time step component from the denoising
956 network. During training, DiffGED(w/o diffusion) is also provided with a random node matching
957 matrix instead of a noisy node matching matrix sampled from the forward diffusion process.

958 Table 6 presents the overall performance of DiffGED(w/o diffusion). Notably, DiffGED(w/o diffusion)
959 performs poorly, and its performance is even worse than GEDGNN and GEDIOT on the AIDS
960 and Linux datasets.

961 From a solution quality perspective, DiffGED(w/o diffusion) attempts to generate a high-quality
962 node matching matrix in a single step from random noise, making the learning task extremely chal-
963 lenging. In contrast, the diffusion model decomposes this complex generation task into simpler,
964 iterative refinements. The reverse diffusion process gradually denoises the random node match-
965 ing matrix step by step, ensuring that each step only requires minor corrections. This progressive
966 refinement leads to higher-quality node matching matrices.

967 From a solution diversity perspective, DiffGED introduces stochasticity at each reverse step during
968 inference, whereas the stochasticity in DiffGED(w/o diffusion) comes solely from the random noise
969 input. As a result, DiffGED is more likely to generate diverse node matching matrices. Furthermore,
970 in diffusion models, the training input consists of a ground-truth node matching matrix corrupted by
971 the forward diffusion process, rather than pure noise, and noisy matching matrix is only mapped to
the ground-truth matching matrix. However, in DiffGED(w/o diffusion), the training input is pure

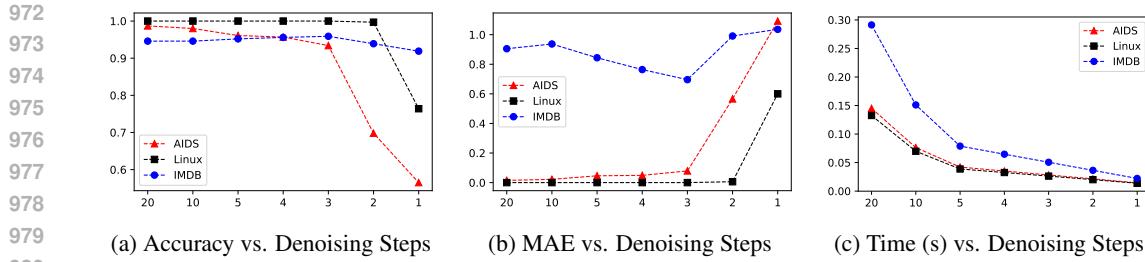


Figure 9: Performance comparison across different reverse denoising steps during inference

noise, requiring a single random noise to map to multiple ground-truth matching matrices. This one-to-many mapping increases the likelihood of mode collapse, reducing the model’s ability to generate diverse solutions. Therefore, diffusion model is necessary for our DiffGED to generate high quality and diverse node matching matrices. But it is interesting to note that the running time of DiffGED(w/o diffusion) is much shorter than DiffGED since it generates node matching matrices in one-shot without iteration.

Anisotropic Graph Neural Network. Instead of computing only node embeddings and then using their inner product to predict node matching probabilities, our denoising network leverages the Anisotropic Graph Neural Network (AGNN) to directly compute node pair embeddings, enabling a more expressive prediction of node matching probabilities.

To evaluate the effectiveness of AGNN, we create a variant of GEDGNN, GEDGNN(AGNN), that replaces its Cross Matrix Module with AGNN (without time steps). Moreover, we initialize a fixed node matching matrix filled with ones as input of GEDGNN(AGNN). We choose to create a variant of GEDGNN rather than creating a variant of DiffMatch by replacing AGNN with the Cross Matrix Module. This is because DiffMatch requires a noisy node matching matrix as input, but the Cross Matrix Module of GEDGNN ($\text{MLP}([h_v^\top W_1 h_{v'}, \dots, h_v^\top W_c h_{v'}])$) cannot incorporate such noisy information when computing node matching probabilities. This limitation makes Cross Matrix Module unsuitable for direct integration into DiffMatch, leading us to use GEDGNN(AGNN) as the evaluation model for AGNN instead.

The overall performance of GEDGNN(AGNN) is presented in Table 6. The performance of GEDGNN increased significantly by incorporating AGNN, demonstrating that AGNN effectively enhances the model’s ability to predict node matching probabilities by directly computing expressive node pair embeddings.

Varying Reverse Denoising Steps during Inference. During inference, DiffMatch denoises noisy node matching matrices through S reverse steps. To assess the impact of the number of reverse denoising steps on DiffGED’s performance, we evaluate DiffGED using different values of S , specifically $S = [20, 10, 5, 4, 3, 2, 1]$. Figure 9 presents the performance comparison across different values of S . The results indicate that when $S > 2$, the accuracy and MAE of DiffGED do not vary a lot. However, when $S \leq 2$, accuracy drops significantly while MAE increases. In particular, at $S = 1$, DiffGED becomes a one-shot model, suffering from the same limitations as DiffGED(w/o diffusion), leading to similarly poor performance. Moreover, when S is doubled, the running time of DiffGED almost doubles as well, as the majority of its computational cost comes from denoising the node matching matrix at each reverse step.

Greedy vs. Exact Node Mapping Extraction. To evaluate the effectiveness and efficiency of greedy node mapping extraction, we introduce a variant model, DiffGED(Hungarian), which replaces the greedy extraction method with the exact Hungarian algorithm (Kuhn, 1955). As shown in Table 7, DiffGED with greedy node mapping extraction achieves nearly identical accuracy and MAE to DiffGED(Hungarian) across all datasets, while significantly reducing the computational cost of node mapping extraction. This improvement stems from the fact that DiffMatch generates a high-quality sparse node matching matrix, where most elements in each row and column are close to 0, with only a few elements close to 1. This sparsity enables the greedy extraction method to retrieve node mappings comparable to those obtained by the exact Hungarian algorithm while being much faster. To better illustrate this, we show a simple example graph pair in Figure 10, where \hat{M}

1026
1027
1028
1029
1030
1031

Table 7: Evaluation on Node Mapping Extraction Strategy

Datasets	Models	MAE \downarrow	Accuracy \uparrow	Extraction Time(s) \downarrow
AIDS700	DiffGED	0.022	98%	0.00043
	DiffGED(Hungarian)	0.021	98.1%	0.0035
Linux	DiffGED	0.0	100%	0.00036
	DiffGED(Hungarian)	0.0	100%	0.00345
IMDB	DiffGED	0.937	94.6%	0.00068
	DiffGED(Hungarian)	0.918	94.7%	0.00367

1032
1033
1034
1035
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

represents the node matching matrix predicted by DiffMatch. We can see that the predicted \hat{M} is both high-quality and sparse, leading to identical extracted node mappings under both the greedy and Hungarian strategies, resulting in $GED(G, G') = 3$.

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

In this paper, LLMs are used solely for polishing the writing.

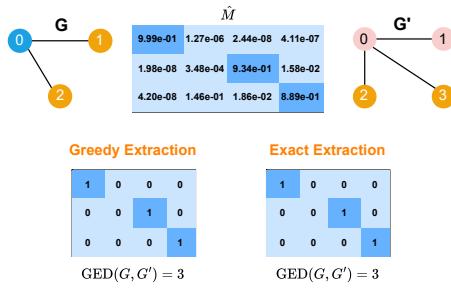


Figure 10: Greedy vs. Exact Node Mapping Extraction