
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFGED: COMPUTING GRAPH EDIT DISTANCE VIA
DIFFUSION-BASED GRAPH MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Edit Distance (GED), which aims to find an edit path with minimum num-
ber of edit operations to transform one graph into another, is a fundamental NP-
hard problem and a widely used graph similarity measure. Recent matching-based
hybrid approaches have demonstrated better scalability than A* search-based hy-
brids by reformulating GED as a graph matching problem. In these methods, a
neural network predicts a single deterministic node matching matrix, from which
top-k node mappings are extracted iteratively to derive candidate edit paths. How-
ever, these methods often suffer from highly correlated candidates that easily lead
to suboptimal solutions, while the iterative extraction becomes inefficient for large
k. In this paper, we propose DiffGED, the first generative approach for GED
computation. Specifically, we formulate the graph matching problem as a gener-
ative task, and employ a diffusion-based model to generate multiple diverse node
matching matrices simultaneously, from which diverse node mappings can be effi-
ciently extracted. The generative diversity introduced by the diffusion process en-
ables DiffGED to avoid suboptimal solutions and achieve superior solution quality
close to the exact solution. Experiments on real-world datasets show that DiffGED
generates multiple diverse edit paths with accuracy comparable to exact solutions,
while running faster than existing hybrid approaches. The source code is available
at https://anonymous.4open.science/r/DiffGED-DF86.

1 INTRODUCTION

Graph Edit Distance (GED) is one of the most widely used similarity measures for graphs (Gouda
& Arafa, 2015; Liang & Zhao, 2017; Bunke, 1997), with broad applications across computer vi-
sion and pattern recognition (Chen et al., 2020; Cho et al., 2013; Maergner et al., 2019). GED is
defined as the minimum number of edit operations required to transform one graph into another.
For instance, in Figure 1, transforming G into G′ requires at least four edit operations, yielding
GED(G,G′) = 4. However, due to its NP-hard nature, traditional A* search methods (Neuhaus
et al., 2006; Blumenthal & Gamper, 2020; Chang et al., 2020) struggle to scale even to graphs with
only a few nodes, as the search space grows exponentially with the number of nodes (Blumenthal &
Gamper, 2020). In contrast, matching-based methods (Riesen & Bunke, 2009; Bunke et al., 2011)
formulate GED computation as a bipartite graph matching problem and can be solved in polynomial
time, but they often yield solutions of unsatisfactory quality.

In recent years, there has been growing interest in combining deep learning with traditional methods
to compute GED more effectively and efficiently. Current state-of-the-art methods (Piao et al., 2023;
Cheng et al., 2025) adopt a class of hybrid approaches that aim to enhance the solution quality of
matching-based methods. Specifically, given a pair of graphs, a neural network (e.g., GNNs) is
trained to predict a single node matching matrix. From this matrix, the top-k node mappings with
maximum matching weights are then extracted iteratively as shown in Figure 2, where each extracted
mapping corresponds to a candidate edit path, and the candidate edit path with the minimum number

Edge
deletion

Node
Relabeling

Edge
Insertion

Node
Insertion

G G'

Figure 1: An optimal edit path for transforming G to G′. GED(G,G′) = 4.

1

https://anonymous.4open.science/r/DiffGED-DF86

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

1

2

4

3 5

G

0

1

2

4

3 5

6

G'

GNN

0.01 0.01 0.01 0.01 0.010.010.99

0.01 0.01 0.01 0.01 0.010.990.01

0.01 0.01 0.01 0.01 0.990.010.01

0.01 0.01 0.01 0.99 0.010.010.01
0.01 0.01 0.99 0.01 0.010.010.01

0.01 0.99 0.01 0.01 0.010.010.01

Predicted Matching Matrix

Biased

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

Top 1:
Matching weight = 5.94

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

Top 2:
Matching weight = 4.96

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

Top 3:
Matching weight = 4.96

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

Ground-truth Matching Matrix

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0
0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0
Top 5:

Matching weight = 4.96

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

Top 6:
Matching weight = 4.96

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

Top 4:
Matching weight = 4.96

Figure 2: An example of existing matching-based hybrid approach that iteratively extracts top-k
maximum weight node mappings from a single deterministic node matching matrix predicted by
GNN.

of edit operations is selected as the final solution. However, this approach is deterministic (i.e., for
the same pair of graphs, it always produces the same deterministic output node matching matrix),
and the extracted top-k node mappings depend solely on a single predicted node matching matrix,
with each mapping is extracted by searching on the previously extracted ones, leading to strong
correlations among them. Thus, the following limitations could arise: (1) Highly correlated top-k
node mappings might easily fall into the local sub-optimal if the predicted node matching matrix
is biased (i.e., significantly deviates from the correct matching). Consider the simple example of
a biased predicted node matching matrix shown in Figure 2. It is clear to see that the top-6 node
mappings extracted from the predicted matching matrix are highly correlated, and unfortunately,
they are all sub-optimal with the derived GED significantly larger than the ground-truth GED; (2)
Highly correlated node mappings limit the diversity of found edit paths, as multiple diverse edit
paths could exist with multimodal distribution for an optimal GED; (3) The iterative extraction of
top-k node mappings is time consuming for large k, and cannot be parallelized to reduce the running
time;

To address these limitations, we propose DiffGED, a novel generative approach that utilizes diffu-
sion model for highly accurate GED computation. DiffGED first formulates matching-based GED
computation as a generation task, then it generates k diverse and high-quality node matching ma-
trices in parallel from k randomly initialized matrices, using our generative diffusion-based graph
matching model DiffMatch. Next, k candidate edit paths can be derived by extracting top-1 node
mapping from each generated node matching matrix in parallel using a greedy algorithm. Therefore,
comparing to previous deterministic approach, our proposed generative approach DiffGED offers
the following advantages: (1) Each node mapping is extracted independently from a separate node
matching matrix. With the stochasticity introduced by the generative diffusion model, the correla-
tion between extracted node mappings is reduced, which enhances overall accuracy and decreases
the likelihood of the extracted candidate solutions being trapped in local optima; (2) The reduced
correlation further improves the diversity of the discovered edit paths; (3) Both the k node matching
matrices and their corresponding node mappings can be generated and extracted in parallel, which
greatly reduces runtime when k is large.

Contributions. To the best of our knowledge, we are the first to introduce a generative formulation
for solving graph matching and GED computation. We are also the first to leverage a generative dif-
fusion model for graph matching, namely DiffMatch. Extensive experiments on real-world datasets
demonstrate that our proposed DiffGED (1) has exceptionally high accuracy (around 95% on all
datasets) which outperforms the existing methods by a great margin, (2) can generate diverse edit
paths, and (3) has a shorter running time compared to other hybrid approaches.

2 RELATED WORK

Traditional approaches. Traditional approaches are often based on A* search (Neuhaus et al.,
2006; Blumenthal & Gamper, 2020; Chang et al., 2020), guided by carefully designed heuristics
to prune the unpromising search space. Unfortunately, these exact solvers are usually intractable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for large graphs due to the NP-hard nature of GED computation. To improve scalability, traditional
matching-based approaches proposed to construct a node edition cost matrix, then model GED as
a bipartite node matching problem and solve by either Hungarian (Riesen & Bunke, 2009) or VJ
(Bunke et al., 2011) algorithm in polynomial time. However, the solution quality of matching-based
methods are often poor.

Regression-based deep learning approaches. To address the limitations of traditional methods,
deep learning approaches leverage the success of Graph Neural Networks (GNNs) in modeling com-
plex graph structures. SimGNN (Bai et al., 2019) first formulated GED as a regression task with a
cross-graph module, enabling fast and accurate prediction and inspiring many follow-ups (Bai &
Zhao, 2021; Zhuo & Tan, 2022; Ling et al., 2021; Bai et al., 2020; Zhang et al., 2021; Qin et al.,
2021; Jain et al., 2024; Li et al., 2019). However, these methods are not trained to recover edit paths,
which are crucial in many applications (Wang et al., 2021), and their predictions may underestimate
GED without corresponding feasible edit paths.

Hybrid approaches. To recover the edit paths, hybrid approaches have been extensively studied,
combining traditional search-based methods with deep learning techniques. A well-studied line
of research focuses on guiding A* search with heuristics learned by a neural network (Yang &
Zou, 2021; Wang et al., 2021; Liu et al., 2023), aiming to improve the efficiency of the search
process. However, these methods often suffer from poor solution quality and inherit the scalability
limitations of A* search. To improve both efficiency and effectiveness, recent state-of-the-art hybrid
approaches such as GEDGNN (Piao et al., 2023) and GEDIOT (Cheng et al., 2025) have shifted
towards improving the solution quality of matching-based approaches. These methods work by
predicting a single node matching matrix via neural network, from which top-k node mappings can
be iteratively extracted to construct candidate edit paths. Compared with A* search-based hybrid
approaches, this class of methods is significantly more efficient. However, they are still ineffective,
since all candidate edit paths are derived from the same deterministic matching matrix, they exhibit
high correlation and are prone to local optima. Moreover, the iterative node mapping extraction
process is inherently sequential and cannot be parallelized, leading to inefficiency for large k. Taken
together, these challenges suggest substantial room for improvement in hybrid GED computation.
To this end, we introduce a novel generative perspective that overcomes the inherent limitations of
matching-based approaches and enables more effective and efficient GED computation.

3 PRELIMINARIES

In this paper, we focus on the computation of graph edit distance between a pair of undirected
labeled graphs G = (V,E, L) and G′ = (V ′, E′, L′), where G consists of a set of nodes V , a set of
edges E and a labeling function L that assigns each node a label.

Graph Edit Distance (GED).(Sanfeliu & Fu, 1983) Given a pair of graphs (G,G′), find an op-
timal edit path with minimum number of edit operations that transforms G to G′. An edit path is
a sequence of edit operations that transforms G to G′. Graph edit distance GED(G,G′) is defined
as the number of edit operations in the optimal edit path. Specifically, there are three types of edit
operations: (1) insert or delete a node; (2) insert or delete an edge; (3) replace the label of a node.

Edit path extraction. Suppose |V | ≤ |V ′|, an edit path of transforming G to G′ can be obtained
from an injective node mapping f from V to V ′ in linear time complexity O(|V ′| + |E| + |E′|)
(Piao et al., 2023), such that f(v) = v′, where v ∈ V and v′ ∈ V ′. The overall procedure can be
described as follows:

(1) For each mapped node pair f(v) = v′, if L(v) ̸= L′(v′), then replace the label of v with L′(v′);

(2) For the remaining unmapped nodes in V ′, insert |V ′| − |V | nodes into V . Each inserted node is
mapped to and has the same label as an unmapped node in V ′;

(3) For any two pairs of mapped nodes f(v) = v′ and f(u) = u′, if (u, v) ∈ E and (u′, v′) /∈ E′,
delete the edge (u, v) from E; if (u, v) /∈ E and (u′, v′) ∈ E′, insert the edge (u, v) into E.

Therefore, to find an optimal edit path with minimum number of edit operations, we only have to
find an optimal node mapping f∗. Due to the space limitation, the detailed algorithm can be found
in Appendix B.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 1

2

0 1

2 3

DiffMatch

DiffMatch

Greedy

Greedy

Edit operations = 4

G'

GED(G,G') = 4

Phase 2: Node Mappings & Edit Path Extraction

0 1 0 1

1 1 0 1

1 1 0 0

1 0 1 1

0 1 0 0

1 0 1 0

0.98 0.01 0.02 0.05

0.03 0.95 0.1 0

0.02 0.11 0.99 0.09

0.02 0.99 0.08 0.03

0.01 0.01 0.02 1

0.03 0.10 0.98 0.02

G

Phase 1: Node Matching
Matrices Generation

0

1

2

0

1

2

3

Edit Path
Edit operations = 4

0

1

2

0

1

2

3

Edit Path

Figure 3: An overview of DiffGED. In the first phase, DiffGED first samples k random initial node
matching matrices, then DiffMatch will denoise the sampled node matching matrices via diffusion
model. In the second phase, one node mapping will be extracted from each node matching matrix
in parallel, and edit paths will be derived from the node mappings.

4 PROPOSED APPROACH: DIFFGED

4.1 DIFFGED: OVERVIEW

As described in Section 3, the optimal edit path can be obtained from an optimal node mapping
f∗. To approximately find the optimal node mapping f∗, one simple and effective way is to predict
top-k node mappings f1, ..., fk, then select the one that results in the edit path with minimum edit
operations.

To obtain top-k node mappings, our DiffGED proposes a two-phase approach as shown in Figure
3. Specifically, in the first phase, given a graph pair (G,G′), instead of predicting a single node
matching matrix, we predict top-k node matching matrices M̂1, ..., M̂k simultaneously, where each
element in M̂i ∈ R|V |×|V ′| represents the matching weight of a pair of nodes. Then, in the second
phase, a simple greedy algorithm is used to extract top-1 node mapping independently from each
predicted node matching matrix M̂i in parallel, such that fi = Top1(M̂i). Comparing to existing
matching-based approaches, our approach yields the following benefits: (1) Phase 1 reduces the
correlation between each node mapping extracted in Phase 2, thus decreases the chances of falling
into sub-optimal; (2) The reduced correlation naturally improves the diversity of the extracted node
mappings; (3) Both the prediction of node matching matrices (Phase 1) and the extraction of node
mappings (Phase 2) can be fully parallelized, significantly reducing the overall running time.

However, the neural networks in existing matching-based approaches cannot be easily adapted to
Phase 1 of our approach. This is because they are deterministic and have limited capacity to predict
a flexible number of node matching matrices for a given input graph pair. Once trained, they can only
produce a fixed number of node matching matrices (often just one), and this requires a corresponding
number of prediction heads in the network architecture, which consequently increases the number
of unnecessary network parameters. Even worse, the node matching matrices predicted by different
heads often remain highly correlated, as they share the same inputs and deterministic backbone,
which inherently lack stochasticity.

To predict a flexible number of diverse node matching matrices, generative approach can be naturally
well-suited to this improved two-phase approach. For Phase 1, we propose DiffMatch, a generative
graph matching model that generates k diverse and high-quality node matching matrices in parallel.
As shown in Figure 3, unlike deterministic models that rely solely on the graph pair as input, our
generative model DiffMatch introduces stochasticity by taking a randomly initialized discrete node
matching matrix MT

i ∈ {0, 1}|V |×|V ′| as an additional input. It then denoises the sampled MT
i to

generate M̂i ∈ R|V |×|V ′|. This design enables the flexible generation of k distinct node matching
matrices in parallel by sampling k random initial node matching matrices MT

1 , ...,MT
k , with k

chosen arbitrarily at inference time and independent of the training phase. Therefore, it eliminates

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 0 1 1

0 1 0 0

1 0 1 0

0 1

2
G

0 1

2 3
G'

Denoising
network

Denoising
network

0.98 0.01 0.02 0.05

0.03 0.95 0.1 0

0.02 0.11 0.99 0.09

0 1 0 1

0 1 0 0

0 0 1 0

1 0 1 0

0 0 0 0

0 0 1 0

Phase 1: Node matching matrix generation via DiffMatch

Figure 4: Reverse process of diffusion-based node matching model DiffMatch during inference.

the need for multiple prediction heads. Moreover, this generative formulation is also motivated by
the fact that multiple optimal node mappings could exist with multimodal distribution for a given
graph pair. Thus, different initial random node matching matrices can be mapped to different optima,
consequently reducing the correlation among the generated node matching matrices.

To further enhance the generation of high-quality and diverse node matching matrices, our Diff-
Match leverages the generative diffusion model (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-
Dickstein et al., 2015; Song & Ermon, 2019) to denoise each MT

i , which has demonstrated im-
pressive success in image generation tasks, but has not yet been explored in the context of graph
matching. The main strength of diffusion model over other generative models is that it enables the
generation of node matching matrices through an iterative refinement process, breaking down the
complex generation task into simpler steps. Each step makes minor adjustments, progressively im-
proving the quality of the matching matrices. Furthermore, each refinement step introduces stochas-
ticity, which further reduces the correlation between generated node matching matrices and enhances
the model’s ability to produce diverse node matching matrices. To handle discrete data, we adopt
discrete diffusion (Haefeli et al., 2022; Vignac et al., 2022; Austin et al., 2021) for DiffMatch.

4.2 PHASE 1: DIFFMATCH

In this section, we introduce our DiffMatch in detail based on a single discrete node matching matrix
M ∈ {0, 1}|V |×|V ′|.

Diffusion model overview. Diffusion models are generative models that consist of a forward pro-
cess and a reverse process. Given a ground-truth node matching matrix M0 (transformed from
the ground-truth node mapping), the forward process q(M1:T |M0) =

∏T
t=1 q(M

t|M t−1) progres-
sively corrupts M0 to a sequence of increasingly noisy latent variables M1:T = M1,M2, ...,MT .
Then, the reverse process learns to reconstruct M t−1 from M t using a denoising network. Dur-
ing inference, the learned reverse process progressively denoises the latent variables towards the
desired distribution, starting from a randomly sampled noise MT , such that: pθ(M

0:T |G,G′) =

p(MT)
∏T

t=1 pθ(M
t−1|M t, G,G′).

Forward process. Let M̃ t ∈ {0, 1}|V |×|V ′|×2 be the one-hot encoding of the node matching
matrix M t at time step t ∈ [0, T]. The forward process adds noise to M t−1 and samples M t from
the following Categorical distribution: q(M t|M t−1) = Cat(M t|p = M̃ t−1Qt), with the transition

probability matrix Qt =

[
1− βt βt

βt 1− βt

]
, where βt is the probability of switching node matching

state.

In practice, to sample the noisy matching matrix M t efficiently during training, we can compute the
t-step marginal from M0, such that: q(M t|M0) = Cat(M t|p = M̃0Qt), with Qt = Q1Q2...Qt.
Then, the denoising network is trained to predict node matching probabilities pθ(M̃

0|M t, G,G′)
that reconstructs M0 from M t by minimizing the binary cross-entropy loss (BCE):

L =
1

|V ||V ′|
∑
v∈V

∑
v′∈V ′

(M
0
[v][v

′
] log (pθ(M̃

0|Mt
, G,G

′
)[v][v

′
]))+(1−M

0
[v][v

′
]) log (1 − pθ(M̃

0|Mt
, G,G

′
)[v][v

′
]))

(1)

Due to the space limitation, the training procedure of the denoising network can be found in Ap-
pendix B.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

 Time Step t

GIN

AGNN

MLP

GIN

Sinusoidal

GIN

GIN

AGNN

GIN

GIN

AGNN

Share
weights

Share
weights

Share
weights

0.98 0.03 0.01 0.06

0.02 0.85 0.05 0.06

0.02 0.03 0.90 0.05

Sigmoid Activation

Sinusoidal

Sinusoidal

1 0 1

0 1 0

1 0 1

1 0 0

T

MLP

Share
weights

0 1

2

0 1

2 3

Element-wise Sum T Transpose

1 0 1 1

0 1 0 0

1 0 1 0

G'

G

Figure 5: An overview of the denoising network. The blue area denotes the network input, the yellow
area denotes the architecture of the denoising network, and the pink area denotes the network output.

Reverse process. With the denoising network, each step t of the reverse process can then denoise
M t to M t−1 as follows:

M t−1 ∼ pθ(M
t−1|M t, G,G′) =

∑
M̃

q(M t−1|M t, M̃0)pθ(M̃
0|M t, G,G′) (2)

q(M t−1|M t,M0) =
q(M t|M t−1,M0)q(M t−1|M0)

q(M t|M0)
= Cat(M t−1; p =

M̄ tQ⊤
t ⊙ M̄0Qt−1

M̄0Qt(M̄
t)⊤

) (3)

where q(M t−1|M t,M0) denotes the posterior, with M̄ ∈ {0, 1}|V ||V ′|×2 obtained by reshaping
M̃ ∈ {0, 1}|V |×|V ′|×2. During inference, starting from a random noisy discrete node matching
matrix MT , each Mt−1 can be sampled from pθ(M

t−1|M t, G,G′) via Bernoulli sampling. And
note that, for the last reverse step (i.e., t − 1 = 0), we directly use M̂ = pθ(M

t−1|M t, G,G′) as
the input of the node mapping extraction in phase 2.

Accelerating reverse process during Inference. During training, the forward process typically
employs a large number of steps T (e.g., T = 1000), and performing T reverse steps during in-
ference can be computationally expensive. To accelerate DiffMatch’s inference, we apply DDIM
(Song et al., 2020) to the reverse process. The key idea of DDIM is that, instead of performing T
reverse steps over the entire sequence [T, ..., 1], we perform only S reverse steps on a sub-sequence
[τS , ..., τ1] of [T, ..., 1], where S < T and τS = T . We substitute t and t − 1 in Equation 2 with τi
and τi−1, and we rewritten the posterior as follows:

q(Mτi−1 |Mτi ,M0) =
q(Mτi |Mτi−1 ,M0)q(Mτi−1 |M0)

q(Mτi |M0)
= Cat(Mτi−1 ; p =

M̄τiQ
⊤
τi−1,τi

⊙ M̄0Qτi−1

M̄0Qτi
(M̄τi)⊤

)

(4)
where Qτi−1,τi = Qτi−1+1Qτi−1+2...Qτi . The overall inference procedure of DiffMatch is pre-
sented in Figure 4, and a formal inference algorithm can be found in Appendix B.3.

Denoising network. An example of a 3-layer denoising network is shown in Figure 5. The net-
work takes as input the graph pair (G,G′), the noisy node matching matrix M t along with its
transpose M t⊤, and the corresponding time step t. Intuitively, it then works by directly com-
puting the embeddings of each node matching pair, and predicting the node matching probabili-
ties pθ(M̃

0|M t, G,G′) based on these embeddings to reconstruct M0. Note that, GED(G,G′) =
GED(G′, G), we assume symmetry in node matching: if node v ∈ V matches with node v′ ∈ V ′,
then v′ also matches with v. Therefore, we only sample M t ∈ R|V |×|V ′| during both training and
inference, then use both M t and M t⊤ as inputs to the denoising network.

For more details, let hl
v and hl

v′ denote the embedding of node v ∈ V and v′ ∈ V ′ at layer l, hl
vv′

and hl
v′v denote the embedding of node matching pair (v, v′) and (v′, v) at layer l. For initialization,

the node embeddings h0
v and h0

v′ are initialized as the one-hot node labels, the node matching pair
embeddings h0

vv′ and h0
v′v are initialized as the sinusoidal embeddings (Vaswani et al., 2017) of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

corresponding values in M t and M t⊤, and the time step embedding ht is initialized as the sinusodial
embedding of t.

For each layer l, the denoising network first updates the node embeddings of each graph to ĥl
v and

ĥl
v′ , independently using their respective graph structures (intra-graph) via GIN (Xu et al., 2018).

Then, the denoising network further refines the embeddings to hl
v and hl

v′ , while also updating
the node matching pair embeddings to hl

vv′ and hl
v′v , by incorporating noisy interactions between

node matching pairs (inter-graph) and the time step t through Anisotropic Graph Neural Network
(AGNN) (Joshi et al., 2020; Sun & Yang, 2023; Qiu et al., 2022). The key advantage of AGNN
is its ability to directly updating embeddings for node matching pairs, enabling more expressive
representations for cross-graph tasks. In contrast, traditional GNNs such as GIN are specifically
designed for computing node embeddings only, making them less suited for capturing relationships
between node pairs across graphs. Due to the space limitation, more details about AGNN can be
found in Appendix B.4.

Finally, the denoising network computes the matching values of each node pair via multi-layer
perceptron (MLP), and sums the matching values for corresponding pairs (v, v′) and (v′, v), then
applies sigmoid activation to obtain the node matching probabilities pθ(M̃0|M t, G,G′).

4.3 PHASE 2: NODE MAPPING EXTRACTION

After sampling k noisy node matching matrices MT
1 , ...,MT

k and denoising to M̂1, ..., M̂k, we adopt
the greedy algorithm based on matching weights to extract one node mapping from each node match-
ing matrix. Specifically, assuming |V | ≤ |V ′|, the greedy node mapping extraction starts by select-
ing the node pair with the highest matching probability. Once a node pair is selected, all matching
probabilities involving either of the selected nodes are set to −∞ to prevent them from being se-
lected again. This process is repeated iteratively |V | times until every node in V is assigned to
a corresponding node in V ′. Due to the space limitation, the detailed algorithm can be found in
Appendix B.5.

Note that, the above greedy algorithm does not guarantee the extraction of optimal node mappings
from the node matching matrices, but it has a time complexity of O(|V |2|V ′|) slightly faster than
the exact Hungarian algorithm (Kuhn, 1955) with time complexity of O(|V ′|3). It can also be easily
parallelized by GPU to extract k node mappings from k node matching matrices simultaneously
to reduce the running time, especially for large k. It will be demonstrated in Appendix D.2 that
DiffGED with the above greedy algorithm is sufficient to achieve excellent performance.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments over three popular real-world GED datasets: AIDS700 (Bai
et al., 2019), Linux (Wang et al., 2012; Bai et al., 2019) and IMDB (Bai et al., 2019; Yanardag &
Vishwanathan, 2015). For each dataset, we split 60%, 20%, and 20% of all the graphs as training
set, validation set, and testing set, respectively. To form training/validation/testing graph pairs, as
well as their corresponding ground-truth labels, we follow the same strategy described in Piao et al.
(2023). Due to space limitations, more details about datasets can be found in Appendix C.1.

Baselines. For traditional approximation methods, we compare our DiffGED with Hungarian
(Riesen & Bunke, 2009) and VJ (Bunke et al., 2011). For A* search-based hybrid methods, we com-
pare with: Noah (Yang & Zou, 2021), GENN-A* (Wang et al., 2021), MATA* (Liu et al., 2023). For
matching-based hybrid methods, we compare with: GEDGNN (Piao et al., 2023), GEDIOT(Cheng
et al., 2025). Due to the space limitation, details of each baseline can be found in Appendix C.2.

Evaluation metrics. We evaluate our DiffGED against other baseline methods based on the fol-
lowing metrics: (1) Mean Absolute Error (MAE) measures the average absolute difference between
the predicted GED and the ground-truth GED; (2) Accuracy measures the ratio of the testing graph
pairs with predicted GED equals to the ground-truth GED; (3) Spearman’s Rank Correlation Co-
efficient (ρ), and (4) Kendall’s Rank Correlation Coefficient (τ), both measure the matching ratio
between the ranking results of graphs based on their predicted GEDs and the ground-truth GEDs

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Overall performance on testing graph pairs. Methods with a running time exceeding 24
hours are marked with -.

Datasets Models MAE ↓ Accuracy ↑ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ Time(s) ↓

AIDS700

Hungarian 8.247 1.1% 0.547 0.431 52.8% 59.9% 0.00011
VJ 14.085 0.6% 0.372 0.284 41.9% 52% 0.00017

Noah 3.057 6.6% 0.751 0.629 74.1% 76.9% 0.6158
GENN-A* 0.632 61.5% 0.903 0.815 85.6% 88% 2.98919
GEDGNN 1.098 52.5% 0.845 0.752 89.1% 88.3% 0.39448
GEDIOT 1.188 53.5% 0.825 0.73 88.6% 86.7% 0.39357
MATA* 0.838 58.7% 0.8 0.718 73.6% 77.6% 0.00487

DiffGED (ours) 0.022 98% 0.996 0.992 99.8% 99.7% 0.0763

Linux

Hungarian 5.35 7.4% 0.696 0.605 74.8% 79.6% 0.00009
VJ 11.123 0.4% 0.594 0.5 72.8% 76% 0.00013

Noah 1.596 9% 0.9 0.834 92.6% 96% 0.24457
GENN-A* 0.213 89.4% 0.954 0.905 99.1% 98.1% 0.68176
GEDGNN 0.094 96.6% 0.979 0.969 98.9% 99.3% 0.12863
GEDIOT 0.117 95.3% 0.978 0.966 98.8% 99% 0.13535
MATA* 0.18 92.3% 0.937 0.893 88.5% 91.8% 0.00464

DiffGED (ours) 0.0 100% 1.0 1.0 100% 100% 0.06982

IMDB

Hungarian 21.673 45.1% 0.778 0.716 83.8% 81.9% 0.0001
VJ 44.078 26.5% 0.4 0.359 60.1% 62% 0.00038

Noah - - - - - - -
GENN-A* - - - - - - -
GEDGNN 2.469 85.5% 0.898 0.879 92.4% 92.1% 0.42428
GEDIOT 2.822 84.5% 0.9 0.878 92.3% 92.7% 0.41959
MATA* - - - - - - -

DiffGED (ours) 0.937 94.6% 0.982 0.973 97.5% 98.3% 0.15105

for each query testing graph; (5) Precision at top-10/20 (p@10/20) measure the ratio of predicted
top-10/20 similar graphs within the ground-truth top-10/20 similar graphs for each query testing
graph; (6) Time(s) measures the average running time over all testing graph pairs.

Implementation details. Due to the space limitation, please refer to Appendix C.3.

5.2 MAIN RESULTS

Table 1 presents the overall performance of all methods on the test pairs. Across all datasets, Dif-
fGED demonstrates exceptionally high solution quality in terms of MAE, accuracy, and all ranking
metrics. For the AIDS700 dataset, the accuracy of DiffGED is nearly double that of other hybrid
approaches. DiffGED consistently shows shorter running times than most hybrid approaches across
all datasets, although it is slower than MATA* on smaller datasets. Note that, all A*-based hybrid
approaches fail to complete evaluations (on IMDB) within a reasonable time due to the scalability
issues inherent in A* search.

Specifically, both MATA* and DiffGED need to predict node matching matrices and then extract
top-k candidate results. However, they differ in key aspects: (1) MATA* predicts only two node
matching matrices in a single step, whereas DiffGED generates k node matching matrices in parallel
over 10 denoising steps. This results in faster node matching matrix prediction for MATA*; (2)
MATA* extracts the top-k candidate matching nodes in G′ for each node in G, limiting the valid
range of k to |V ′| and typically selecting a small k to reduce the A* search space. In contrast,
DiffGED extracts the top-k global maximum weight node mappings, allowing k to be arbitrarily
large. As a result, MATA* achieves shorter running times on smaller datasets. However, on larger
datasets, MATA* suffers from the exponential growth of the A* search space, whereas DiffGED
remains unaffected by this limitation.

Moreover, while GEDGNN and GEDIOT can scale to large graphs, they are both slower and per-
form worse across all datasets for several reasons. GEDGNN and GEDIOT iteratively extract top-k
candidate node mappings from a single predicted node matching matrix, resulting in highly corre-
lated mappings. In contrast, DiffGED extracts top-k candidate node mappings from k different node
matching matrices in parallel, generating diverse mappings. This diversity reduces the likelihood of
falling into local sub-optimal solutions, even if some generated node matching matrices are biased.
Additionally, the parallelization of node mapping extraction significantly reduces runtime.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 10 20 30 40 50 60 70 80 90 100

0.5

0.6

0.7

0.8

0.9

1.0

DiffGED-single
DiffGED

(a) AIDS - Accuracy vs. k

1 10 20 30 40 50 60 70 80 90 100
0.850

0.875

0.900

0.925

0.950

0.975

1.000

DiffGED-single
DiffGED

(b) Linux - Accuracy vs. k

1 10 20 30 40 50 60 70 80 90 100

0.800

0.825

0.850

0.875

0.900

0.925

0.950

DiffGED-single
DiffGED

(c) IMDB - Accuracy vs. k

1 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4 DiffGED-single
DiffGED

(d) AIDS - Time (sec) vs. k

1 10 20 30 40 50 60 70 80 90 100

0.06

0.08

0.10

0.12

0.14

0.16 DiffGED-single
DiffGED

(e) Linux - Time (sec) vs. k

1 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5 DiffGED-single
DiffGED

(f) IMDB - Time (sec) vs. k

Figure 6: Effectiveness and Efficiency of Top-k Approaches with Varying k.

5.3 ABLATION STUDY

Generative top-k approach. To better evaluate the effectiveness, efficiency, and edit-path diver-
sity of our generative top-k approach, which extracts k diverse node mappings from k matching
matrices, we compare it with the iterative approach commonly used in existing matching-based
frameworks (e.g., GEDGNN, GEDIOT), which extracts highly correlated node mappings from a
single node matching matrix. Specifically, we create a variant model, DiffGED-single, which gener-
ates only one node matching matrix using DiffMatch and then applies the iterative top-k extraction.

As shown in Figure 6(a)-(c), our top-k approach (DiffGED) performs slightly worse than
DiffGED-single when k = 1. This is because DiffGED-single obtains the top-1 node
mapping using the exact Hungarian algorithm, whereas DiffGED derives the top-1 map-
ping from the same node matching matrix via an approximate greedy algorithm. How-
ever, as k increases, this initial disadvantage diminishes, with DiffGED rapidly converg-
ing to near-optimal accuracy, even with its approximate greedy algorithm. In contrast,
DiffGED-single, despite using an exact extraction algorithm, converges to sub-optimal accuracy.

AIDS700 Linux IMDB0

20

40

60

80

Di

st
in

ct
 P

at
hs

DiffGED
DiffGED-single

(a) GT-GED

AIDS700 Linux IMDB0

20

40

60

80

Di

st
in

ct
 P

at
hs

DiffGED
DiffGED-single

(b) Pred-GED

Figure 8: Evaluation of
found edit path diversity.
Pred-GED refers to aver-
age number of distinct edit
paths with predicted mini-
mum GED. GT-GED refers
to average number of dis-
tinct edit paths with ground-
truth GED.

Notably, for simpler datasets like Linux, DiffGED achieves opti-
mal solution quality with a small value of k = 10. The key rea-
son behind this is that our generative approach generates a more
diverse set of node mappings, which helps avoid sub-optimal solu-
tions, whereas DiffGED-single’s mappings tend to be highly corre-
lated, leading to sub-optimal results. Moreover, even with iterative
top-k approach, it is interesting to note that DiffGED-single with
k = 100 still achieves higher accuracy across all datasets compared
to the results of GEDGNN and GEDIOT in Table 1, which highlights
the effectiveness of our diffusion-based graph matching model Diff-
Match. Furthermore, as shown in Figure 6(d)-(f), the running time of
DiffGED-single increases significantly faster than that of DiffGED as
k grows. This disparity arises from DiffGED-single’s iterative top-k
node mapping strategy, whereas DiffGED benefits from parallelized
node matching matrix generation and parallel node mapping extrac-
tion. Since both processes in DiffGED are parallelized, the impact
of increasing k on its running time remains minimal, underscoring its
superior efficiency for larger k values.

Lastly, since multiple optimal edit paths often exist under a multi-
modal distribution, we evaluate edit paths diversity by computing the
average number of distinct edit paths found per graph pair, where the
number of edit operations is equal to the predicted minimum GED
and the ground-truth GED, respectively, using k = 100. As demon-
strated in Figure 8, our generative approach is capable of generating
multiple distinct edit paths for both the predicted minimum GED and
the ground-truth GED, while the iterative top-k approach used in ex-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

isting matching-based approaches is limited to generating only a few. This further evident that our
generative approach can generate diverse top-k mappings, which enables us to effectively capture the
multimodal distribution and avoid getting trapped in local optima. In contrast, the iterative approach
used by existing frameworks produces highly correlated node mappings towards one mode, which
limits its ability to capture the range of possible edit paths, thus could easily fall into sub-optimal
results.

Due to the space limitation, more experimental results can be found in Appendix D.

6 CONCLUSION

This paper presents DiffGED, a novel generative framework for GED computation and edit path
generation. Our generative approach works by generating k diverse node-matching matrices simul-
taneously through our diffusion-based graph matching model, DiffMatch, and then extracting the
top-k node mappings in parallel using a greedy algorithm. Extensive experiments on real-world
datasets demonstrate that our generative method outperforms all existing approaches by generating
diverse, high-quality edit paths with accuracy close to 100%, all within a short running time.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Jiyang Bai and Peixiang Zhao. Tagsim: Type-aware graph similarity learning and computation.
Proceedings of the VLDB Endowment, 15(2), 2021.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 3219–3226, 2020.

David B Blumenthal and Johann Gamper. On the exact computation of the graph edit distance.
Pattern Recognition Letters, 134:46–57, 2020.

Horst Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern
recognition letters, 18(8):689–694, 1997.

Horst Bunke, Kaspar Riesen, and Stefan Fankhauser. Speeding up graph edit distance computation
through fast bipartite matching. 2011.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204–1215. PMLR, 2021.

Lijun Chang, Xing Feng, Xuemin Lin, Lu Qin, Wenjie Zhang, and Dian Ouyang. Speeding up ged
verification for graph similarity search. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pp. 793–804. IEEE, 2020.

Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu,
and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 627–636,
2019.

Lichang Chen, Guosheng Lin, Shijie Wang, and Qingyao Wu. Graph edit distance reward: Learning
to edit scene graph. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XIX 16, pp. 539–554. Springer, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qihao Cheng, Da Yan, Tianhao Wu, Zhongyi Huang, and Qin Zhang. Computing approximate graph
edit distance via optimal transport. Proceedings of the ACM on Management of Data, 3(1):1–26,
2025.

Minsu Cho, Karteek Alahari, and Jean Ponce. Learning graphs to match. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 25–32, 2013.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Karam Gouda and Mona Arafa. An improved global lower bound for graph edit similarity search.
Pattern Recognition Letters, 58:8–14, 2015.

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Dif-
fusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Eeshaan Jain, Indradyumna Roy, Saswat Meher, Soumen Chakrabarti, and Abir De. Graph edit dis-
tance with general costs using neural set divergence. Advances in Neural Information Processing
Systems, 37:73399–73438, 2024.

Bo Jiang, Pengfei Sun, and Bin Luo. Glmnet: Graph learning-matching convolutional networks for
feature matching. Pattern Recogn., 121(C), January 2022a. ISSN 0031-3203. doi: 10.1016/j.
patcog.2021.108167. URL https://doi.org/10.1016/j.patcog.2021.108167.

Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue Black, and Bryan M Williams. Graph-
context attention networks for size-varied deep graph matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2343–2352, 2022b.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing the travelling salesperson problem requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In International conference on
machine learning, pp. 3835–3845. PMLR, 2019.

Yongjiang Liang and Peixiang Zhao. Similarity search in graph databases: A multi-layered indexing
approach. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 783–
794. IEEE, 2017.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Tengfei Ma, Fangli Xu, Alex X Liu, Chunming Wu, and
Shouling Ji. Multilevel graph matching networks for deep graph similarity learning. IEEE Trans-
actions on Neural Networks and Learning Systems, 34(2):799–813, 2021.

Junfeng Liu, Min Zhou, Shuai Ma, and Lujia Pan. Mata*: Combining learnable node matching with
a* algorithm for approximate graph edit distance computation. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pp. 1503–1512, 2023.

Paul Maergner, Vinaychandran Pondenkandath, Michele Alberti, Marcus Liwicki, Kaspar Riesen,
Rolf Ingold, and Andreas Fischer. Combining graph edit distance and triplet networks for offline
signature verification. Pattern Recognition Letters, 125:527–533, 2019.

11

https://doi.org/10.1016/j.patcog.2021.108167

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michel Neuhaus, Kaspar Riesen, and Horst Bunke. Fast suboptimal algorithms for the computation
of graph edit distance. In Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR
International Workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17-19, 2006.
Proceedings, pp. 163–172. Springer, 2006.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
graph edit distance via neural graph matching. Proceedings of the VLDB Endowment, 16(8):
1817–1829, 2023.

Can Qin, Handong Zhao, Lichen Wang, Huan Wang, Yulun Zhang, and Yun Fu. Slow learning and
fast inference: Efficient graph similarity computation via knowledge distillation. Advances in
Neural Information Processing Systems, 34:14110–14121, 2021.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image and Vision computing, 27(7):950–959, 2009.

Indradyumna Roy, Saswat Meher, Eeshaan Jain, Soumen Chakrabarti, and Abir De. Position: Graph
matching systems deserve better benchmarks. In Forty-second International Conference on Ma-
chine Learning Position Paper Track.

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE transactions on systems, man, and cybernetics, (3):353–362, 1983.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang. Combinatorial learn-
ing of graph edit distance via dynamic embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5241–5250, 2021.

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of
partial graph matching via differentiable top-k. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6272–6281, 2023.

Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. An efficient graph
indexing method. In 2012 IEEE 28th International Conference on Data Engineering, pp. 210–
221. IEEE, 2012.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374,
2015.

Lei Yang and Lei Zou. Noah: Neural-optimized a* search algorithm for graph edit distance compu-
tation. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 576–587.
IEEE, 2021.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn:
Graph similarity learning with hierarchical hypergraph matching networks. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 2274–2284, 2021.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

A ADDITIONAL RELATED WORK

Graph matching. Graph matching is a problem closely related to GED and deep-learning based
graph matching has garnered significant attention across various domains, particularly in image fea-
ture matching (Jiang et al., 2022b; Wang et al., 2023; Chen et al., 2019; Jiang et al., 2022a). However,
a fundamental distinction between the two problems lies in the nature of their ground truth. In graph
matching, the ground truth is typically unique and application-specific, whereas in GED, multiple
valid ground truths may exist due to different possible edit paths leading to the same graph trans-
formation. Additionally, while graph matching focuses on maximizing node correspondence with
respect to a predefined ground truth, GED aims to determine the minimal sequence of edit opera-
tions required to transform one graph into another. Another key difference lies in the characteristics
of the input graphs. In graph matching, the input graphs are often structurally similar, whereas in
GED, they can differ significantly. As a result, existing graph matching methods struggle to perform
well in GED computation.

Diffusion model. Diffusion models have emerged as a powerful class of generative models,
achieving remarkable success in image generation and setting new benchmarks for high-quality im-
age synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song & Ermon,
2019). These models progressively refine random noise into structured outputs through a learned
denoising process, demonstrating superior performance over traditional generative approaches such
as GANs and VAEs. The success of diffusion models in continuous domains has inspired exten-
sions to discrete data, leading to the development of discrete diffusion models for structured tasks,
such as text generation (Austin et al., 2021). Building on these advancements, discrete diffusion
has been extensively applied to graph generation (Vignac et al., 2022; Haefeli et al., 2022; Sun &
Yang, 2023), where it has shown great potential in downstream tasks such as molecule generation
and combinatorial optimization. This success further motivates the exploration of diffusion-based
methods for a broader range of graph-related problems beyond generation.

B DETAILED METHOD

B.1 EDIT PATH EXTRACTION

The detailed algorithm for edit path extraction with linear time complexity O(|V ′|+ |E|+ |E′|) is
illustrated in Algorithm 1.

B.2 TRAINING OF DIFFMATCH

The training procedure of the denoising network in our DiffMatch is outlined in Algorithm 2. For
a given graph pair (G,G′) sampled from the training data with its ground-truth matching matrix
M0, we first sample a time step t from a uniform distribution. Next, we sample a noisy matching
matrix M t from the t-step marginal. Finally, the denoising network is trained to minimize the binary
cross-entropy loss between the predicted matching matrix pθ(M̃

0|M t, G,G′) and the ground-truth
node matching matrix M̃0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Edit Path Generation

Input: G = (V,E, L), G′ = (V ′, E′, L′), node mapping f ;
1: EditCost← 0;
2: for each v ∈ V do
3: if L(v) ̸= L′(f(v)) then
4: L(v)← L′(v′);
5: EditCost← EditCost+ 1;
6: end if
7: end for
8: for each v′ ∈ V ′ \ {f(v) | v ∈ V } do
9: Create a new v;

10: f(v)← v′ and L(v)← L′(v′);
11: V ← V ∪ {v};
12: EditCost← EditCost+ 1;
13: end for
14: for each (v, u) ∈ E do
15: if (f(v), f(u)) ∈ E′ then
16: E ← E \ {(v, u)};
17: EditCost← EditCost+ 1;
18: end if
19: end for
20: for each (v′, u′) ∈ E′ do
21: if (f−1(v), f−1(u)) /∈ E then
22: E ← E ∪ {(f−1(v), f−1(u))};
23: EditCost← EditCost+ 1;
24: end if
25: end for
26: return EditCost;

Algorithm 2 DiffMatch Training Procedure

Input: Graph pair (G,G′), Ground-truth node matching matrix M0;
1: Sample t ∼ Uniform(1, ..., T);
2: Sample M t ∼ q(M t|M0);
3: Take gradient step on BCELoss(pθ(M̃

0|M t, G,G′),M0) via Equation 1;

B.3 INFERENCE OF DIFFMATCH

Algorithm 3 illustrates the reverse process of DiffMatch during inference. During inference, starting
from a noisy discrete node matching matrix MT randomly sampled from the Bernoulli distribution,
each Mτi−1 can be obtained from pθ(M

τi−1 |Mτi , G,G′) via Bernoulli sampling. And for the last
reverse step (i.e., τi = τ1), we directly use M̂ = pθ(M

0|Mτ1 , G,G′) as the input of the node
mapping extraction in phase 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 Sampling from DiffMatch

Input: Graph pair (G,G′), Random node matching matrix MT ;
1: for τi = τS to τ1 do
2: if τi ̸= τ1 then
3: Mτi−1 ∼ pθ(M

τi−1 |Mτi , G,G′);
4: else
5: M̂ ← pθ(M

0|Mτ1 , G,G′);
6: end if
7: end for
8: return M̂ ;

Algorithm 4 Greedy Node Mapping Extraction

Input: i-th node matching matrix M̂i ∈ R|V |×|V ′|;
Output: i-th node mapping fi;
1: Initialize fi ← ∅ ;
2: for n← 1 to |V | do
3: select (v, v′) with the maximum value in M̂i;
4: fi ← fi ∪ {(v, v′)};
5: set all elements in v-th row of M̂i to −∞;
6: set all elements in v′-th column of M̂i to −∞;
7: end for
8: return fi;

B.4 ANISOTROPIC GRAPH NEURAL NETWORK

For each layer l of our denoising network, the Anisotropic Graph Neural Network (AGNN) can be
represented as follows:

ĥl
vv′ = W l

1h
l−1
vv′ , ĥl

v′v = W l
1h

l−1
v′v

h̃l
vv′ = W l

2ĥ
l
vv′ +W l

3ĥ
l
v +W l

4ĥ
l
v′

h̃l
v′v = W l

2ĥ
l
v′v +W l

3ĥ
l
v′ +W l

4ĥ
l
v

hl
vv′ = ĥl

vv′ + MLPl(ReLU(GNMM⊤(h̃l
vv′)) +W l

5ht)

hl
v′v = ĥl

v′v + MLPl(ReLU(GNMM⊤(h̃l
v′v)) +W l

5ht)

hl
v = ĥl

v + ReLU(GNGG′(W l
6ĥ

l
v +

∑
v′∈V ′

W l
7ĥ

l
v′ ⊙ σ(h̃l

vv′)))

hl
v′ = ĥl

v′ + ReLU(GNGG′(W l
6ĥ

l
v′ +

∑
v∈V

W l
7ĥ

l
v ⊙ σ(h̃l

v′v)))

(5)

where W l
1,W

l
2,W

l
3,W

l
4,W

l
5,W

l
6,W

l
7 are learnable parameters at layer l, MLPl denotes multi-

layer perceptron at layer l, GNMM⊤ is the graph normalization (Cai et al., 2021) over all node
matching pairs in both M t and M t⊤, GNGG′ is the graph normalization over all nodes in both G
and G′, and σ is the sigmoid activation.

B.5 PHASE 2: NODE MAPPING EXTRACTION

Given a predicted node matching matrix M̂i, Algorithm 4 outlines the overall greedy procedure to
extract top-1 node mapping from M̂i.

C DETAILED EXPERIMENTAL SETTINGS

C.1 DATASETS

We conduct experiments over three popular real-world GED datasets: AIDS700 (Bai et al., 2019),
Linux (Wang et al., 2012; Bai et al., 2019) and IMDB (Bai et al., 2019; Yanardag & Vishwanathan,
2015). Each graph in AIDS700 is labeled, while each graph in Linux and IMDB is unlabeled.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Dataset description.

Dataset # Graphs Avg |V | Avg |E| Max |V | Max |E| Number of Labels
AIDS700 700 8.9 8.8 10 14 29

Linux 1000 7.6 6.9 10 13 1
IMDB 1500 13 65.9 89 1467 1

The statistics of datasets are summarized in Table 2. We obtain the ground-truth edit path (node
mappings) from Piao et al. (2023). However, the ground-truth GED and edit paths are often com-
putationally expensive to obtain for graph pairs with at least one graph has more than 10 nodes.
To handle this, we follow the same strategy as described in Piao et al. (2023) to generate synthetic
graphs for IMDB dataset. Specifically, for each graph G with more than 10 nodes, synthetic graphs
are generated by randomly applying ∆ edit operations to G, these random edit operations are used
as an approximation of the ground-truth edit path and ∆ is used as an approximate of ground-truth
GED. For graphs with more than 20 nodes, ∆ is randomly distributed in [1, 10], for graphs with
more than 10 nodes and less than 20 nodes, ∆ is randomly distributed in [1, 5].

For each dataset, we split 60%, 20%, and 20% of all the graphs as training set, validation set, and
testing set, respectively. To form training pairs, each training graph with no more than 10 nodes
is paired with all other training graphs with no more than 10 nodes, each training graph with more
than 10 nodes is paired with 100 synthetic graphs. In the validation and testing sets, each graph with
no more than 10 nodes is paired with 100 random training graphs with no more than 10 nodes, and
each graph with more than 10 nodes is paired with 100 synthetic graphs.

C.2 DETAILS OF BASELINE METHODS

We compare our DiffGED with the following hybrid frameworks: (1) Noah (Yang & Zou, 2021)
proposed using a pre-trained Graph Path Network (GPN) as the heuristic for A* beam search; (2)
GENN-A* (Wang et al., 2021) introduced a Graph Edit Neural Network (GENN) to guide A* search
by dynamically predicting the edit costs of unmatched subgraphs; (3) MATA* (Liu et al., 2023)
proposed to prune the search space of A* search by extracting top-k candidate matches for each
node from two predicted node matching matrices; (4) GEDGNN (Piao et al., 2023) predicts a single
deterministic node matching matrix, then iteratively extracts top-k node mappings and edit paths;
(5) GEDIOT(Cheng et al., 2025) follows the same approach as GEDGNN and further improves the
prediction of node matching matrix via optimal transport.

C.3 IMPLEMENTATION DETAILS

During training of our DiffMatch, we set the number of time steps T to 1, 000 with linear noise
schedule, where β0 = 10−4 and βT = 0.02. For the reverse denoising process during testing, we
set the number of time steps S to 10 with linear denoising schedule, and we generate k = 100 node
matching matrices in parallel for each testing graph pair.

For our denoising network, we set the number of layers to 6, the output dimension of each layer is
128, 64, 32, 32, 32, 32, respectively. We train it for 200 epochs with batch size of 128, we adopt
Adam optimizer (Kingma, 2014) with learning rate of 0.001 and weight decay of 5× 10−4.

All experiments are conducted using Nvidia Geforce RTX3090 24GB and Intel i9-12900K with
128GB RAM.

D MORE EXPERIMENTAL RESULTS

D.1 GENERALIZATION ABILITY

Generalization on unseen graph pairs. To evaluate the generalization ability to unseen graphs
of our DiffGED, instead of pairing each testing graph with 100 graphs from the training set, we
pair each testing graph with 100 unseen graphs from the testing set. Table 3 presents the overall
performance of all methods on these unseen testing graph pairs. Compared to the results in Table 1,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: Overall performance on unseen testing graph pairs. Methods with a running time exceeding
24 hours are marked with -.

Datasets Models MAE ↓ Accuracy ↑ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ Time(s) ↓

AIDS700

Hungarian 8.237 1.5% 0.527 0.416 54.3% 60.3% 0.0001
VJ 14.171 0.9% 0.391 0.302 44.9% 52.9% 0.00016

Noah 3.174 6.8% 0.735 0.617 77.8% 76.4% 0.5765
GENN-A* 0.508 67.1% 0.917 0.836 87.1% 90.6% 3.44326
GEDGNN 1.155 50.5% 0.838 0.746 89.1% 87.6% 0.39344
GEDIOT 1.348 47.4% 0.81 0.71 88.4% 86.9% 0.39707
MATA* 0.885 56.6% 0.77 0.689 73.2% 76.6% 0.00486

DiffGED (ours) 0.024 96.4% 0.993 0.986 99.7% 99.7% 0.07546

Linux

Hungarian 5.423 7.5% 0.725 0.623 75% 77% 0.00008
VJ 11.174 0.4% 0.613 0.512 70.6% 74.5% 0.00013

Noah 1.879 8% 0.872 0.796 84.3% 92.2% 0.25712
GENN-A* 0.142 92.9% 0.976 0.94 99.6% 99.6% 1.17702
GEDGNN 0.105 96.2% 0.979 0.968 98.6% 98.5% 0.12169
GEDIOT 0.14 94.8% 0.973 0.959 98.1% 98.3% 0.12826
MATA* 0.201 91.5% 0.948 0.903 86.2% 90.2% 0.00464

DiffGED (ours) 0.0 100% 1.0 1.0 100% 100% 0.06901

IMDB

Hungarian 21.156 45.9% 0.776 0.717 84.2% 82.1% 0.00012
VJ 44.072 26.6% 0.4 0.359 60.1% 63.1% 0.00037

Noah - - - - - - -
GENN-A* - - - - - - -
GEDGNN 2.484 85.5% 0.895 0.876 92.3% 91.7% 0.42662
GEDIOT 2.83 84.4% 0.989 0.876 92.5% 92.4% 0.42269
MATA* - - - - - - -

DiffGED (ours) 0.932 94.6% 0.982 0.974 97.5% 98.4% 0.15107

Table 4: Overall Performance on IMDB testing graph pairs. IMDB-small refers to training set that
only contains real small graph pairs. IMDB-mix refers to training set that contains a combination of
real small graph pairs and synthetic large graph pairs.

Training set Models MAE ↓ Accuracy ↑ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ Time(s) ↓

IMDB-small
GEDGNN 7.943 77.1% 0.844 0.815 88.2% 87.6% 0.48253
GEDIOT 7.761 76.8% 0.86 0.827 90.5% 89.9% 0.473
DiffGED 5.789 83% 0.892 0.874 90.1% 90.8% 0.14923

IMDB-mix
GEDGNN 2.469 85.5% 0.898 0.879 92.4% 92.1% 0.42428
GEDIOT 2.822 84.5% 0.9 0.878 92.3% 92.7% 0.41959
DiffGED 0.937 94.6% 0.982 0.973 97.5% 98.3% 0.15105

it demonstrates that DiffGED can still achieve superior performance without losing accuracy, even
with more challenging unseen testing graph pairs.

Generalization on large graphs. Moreover, in real-world scenarios, obtaining ground-truth node
mappings for large graph pairs is often impractical. To evaluate the generalization ability of Dif-
fGED under such conditions, we modify the training setup. Instead of training each method on a
combination of real small graph pairs and synthetic large graph pairs from IMDB, we train each
method exclusively on real small graph pairs from IMDB. However, the testing set still consists of
a combination of real small graph pairs and synthetic large graph pairs. Table 4 presents the over-
all performance of DiffGED, GEDGNN and GEDIOT when trained on real small graph pairs. As
observed, the accuracy of both DiffGED, GEDGNN and GEDIOT degrades, primarily because the
testing graph pairs differ from the training graph pairs not only in graph size but also in distribu-
tion, due to the presence of synthetic graph pairs in the testing set, as these synthetic graphs differ
from real graph pairs. Despite this challenge, DiffGED still outperforms GEDGNN and GEDIOT,
achieving higher accuracy.

Generalization on datasets without structural train–test leakage. In addition, the AIDS, Linux,
and IMDB datasets have recently been shown to suffer from structural train–test leakage (Roy et al.),
meaning that a significant proportion of graphs in these datasets are isomorphic. This leakage may
cause the reported results to overestimate the true generalization ability of each method. To address
this concern, we follow the procedure described in (Roy et al.) to remove all isomorphic graphs
to obtain unique graphs, and then form training and testing pairs using only these unique graphs.
Table 5 shows the results of each method on datasets without structural train-test leakage. It is clear
to see that after removing train-test leakage, our DiffGED can still achieve near-optimal performance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Overall performance without structural train-test leakage.

Datasets Setting Models MAE ↓ Accuracy ↑ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ Time(s) ↓

AIDS700

Cross-train-test
GEDGNN 1.148 51.8% 0.836 0.742 88.9% 88.2% 0.39227
GEDIOT 1.159 53.8% 0.832 0.737 89.6% 89% 0.39381

DiffGED (ours) 0.046 96% 0.992 0.983 99.8% 99.6% 0.07431

Intra-test
GEDGNN 1.235 48.7% 0.824 0.729 90.1% 88.4% 0.39079
GEDIOT 1.349 46.5% 0.8 0.701 88.1% 86.9% 0.39263

DiffGED (ours) 0.064 94.4% 0.987 0.975 99.5% 99.5% 0.07438

Linux

Cross-train-test
GEDGNN 0.935 65.1% 0.809 0.722 85.8% 87.4% 0.27418
GEDIOT 1.009 65.3% 0.788 0.706 87.9% 85% 0.27556

DiffGED (ours) 0.165 92.4% 0.958 0.931 93.7% 95.3% 0.07277

Intra-test
GEDGNN 1.335 57.6% 0.755 0.664 85.3% 100% 0.28935
GEDIOT 1.435 52.6% 0.772 0.686 86.3% 100% 0.29775

DiffGED (ours) 0.305 86.1% 0.896 0.857 92.1% 100% 0.07694

IMDB

Cross-train-test
GEDGNN 4.799 73.1% 0.817 0.783 85.2% 85.5% 0.75584
GEDIOT 4.679 74.9% 0.826 0.794 87.6% 86.8% 0.73493

DiffGED (ours) 1.12 94% 0.973 0.963 97.1% 97.1% 0.22247

Intra-test
GEDGNN 4.822 73.1% 0.822 0.789 85.9% 86.1% 0.75577
GEDIOT 4.689 74.8% 0.829 0.797 87.9% 87% 0.74122

DiffGED (ours) 1.141 93.8% 0.971 0.961 97% 97.2% 0.22315

on all datasets, whereas the performance of other baseline methods downgrades significantly. This
again demonstrates the strong generalization ability of our DiffGED.

D.2 ABLATION STUDIES

Table 6: Ablation study on testing graph pairs.

Datasets Models MAE ↓ Accuracy ↑ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ Time(s) ↓

AIDS700

DiffGED 0.022 98% 0.996 0.992 99.8% 99.7% 0.0763
DiffGED(w/o diffusion) 1.618 46.7% 0.732 0.629 82.4% 81.1% 0.01179

GEDGNN 1.098 52.5% 0.845 0.752 89.1% 88.3% 0.39448
GEDGNN(AGNN) 0.736 66.7% 0.884 0.812 94% 93.1% 0.39112

Linux

DiffGED 0.0 100% 1.0 1.0 100% 100% 0.06982
DiffGED(w/o diffusion) 0.743 74.7% 0.887 0.839 96.4% 95.8% 0.01117

GEDGNN 0.094 96.6% 0.979 0.969 98.9% 99.3% 0.12863
GEDGNN(AGNN) 0.061 97.4% 0.992 0.987 99.6% 99.5% 0.13164

IMDB

DiffGED 0.937 94.6% 0.982 0.973 97.5% 98.3% 0.15105
DiffGED(w/o diffusion) 0.832 93.3% 0.942 0.93 98.6% 96.8% 0.01944

GEDGNN 2.469 85.5% 0.898 0.879 92.4% 92.1% 0.42428
GEDGNN(AGNN) 1.766 89.1% 0.903 0.89 93.9% 92.8% 0.41387

Do we really need diffusion? The core idea of the proposed framework is to generate diverse,
high-quality node matching matrices through an iterative reverse process of the diffusion model. To
assess the effectiveness of the diffusion model in DiffMatch, we introduce a one-shot generative
variant model, DiffGED(w/o diffusion), which takes a graph pair and a randomly initialized node
matching matrix as input and directly predicts the clean node matching matrix, followed by greedy
node mapping extraction. In this setup, we remove the time step component from the denoising
network. During training, DiffGED(w/o diffusion) is also provided with a random node matching
matrix instead of a noisy node matching matrix sampled from the forward diffusion process.

Table 6 presents the overall performance of DiffGED(w/o diffusion). Notably, DiffGED(w/o diffu-
sion) performs poorly, and its performance is even worse than GEDGNN and GEDIOT on the AIDS
and Linux datasets.

From a solution quality perspective, DiffGED(w/o diffusion) attempts to generate a high-quality
node matching matrix in a single step from random noise, making the learning task extremely chal-
lenging. In contrast, the diffusion model decomposes this complex generation task into simpler,
iterative refinements. The reverse diffusion process gradually denoises the random node match-
ing matrix step by step, ensuring that each step only requires minor corrections. This progressive
refinement leads to higher-quality node matching matrices.

From a solution diversity perspective, DiffGED introduces stochasticity at each reverse step during
inference, whereas the stochasticity in DiffGED(w/o diffusion) comes solely from the random noise
input. As a result, DiffGED is more likely to generate diverse node matching matrices. Furthermore,
in diffusion models, the training input consists of a ground-truth node matching matrix corrupted by
the forward diffusion process, rather than pure noise, and noisy matching matrix is only mapped to
the ground-truth matching matrix. However, in DiffGED(w/o diffusion), the training input is pure

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

20 10 5 4 3 2 1

0.6

0.7

0.8

0.9

1.0

AIDS
Linux
IMDB

(a) Accuracy vs. Denoising Steps

20 10 5 4 3 2 1
0.0

0.2

0.4

0.6

0.8

1.0

AIDS
Linux
IMDB

(b) MAE vs. Denoising Steps

20 10 5 4 3 2 1
0.00

0.05

0.10

0.15

0.20

0.25

0.30
AIDS
Linux
IMDB

(c) Time (s) vs. Denoising Steps

Figure 9: Performance comparison across different reverse denoising steps during inference

noise, requiring a single random noise to map to multiple ground-truth matching matrices. This
one-to-many mapping increases the likelihood of mode collapse, reducing the model’s ability to
generate diverse solutions. Therefore, diffusion model is necessary for our DiffGED to generate
high quality and diverse node matching matrices. But it is interesting to note that the running time
of DiffGED(w/o diffusion) is much shorter than DiffGED since it generates node matching matrices
in one-shot without iteration.

Anisotropic Graph Neural Network. Instead of computing only node embeddings and then us-
ing their inner product to predict node matching probabilities, our denoising network leverages the
Anisotropic Graph Neural Network (AGNN) to directly compute node pair embeddings, enabling a
more expressive prediction of node matching probabilities.

To evaluate the effectiveness of AGNN, we create a variant of GEDGNN, GEDGNN(AGNN), that
replaces its Cross Matrix Module with AGNN (without time steps). Moreover, we initialize a fixed
node matching matrix filled with ones as input of GEDGNN(AGNN). We choose to create a vari-
ant of GEDGNN rather than creating a variant of DiffMatch by replacing AGNN with the Cross
Matrix Module. This is because DiffMatch requires a noisy node matching matrix as input, but
the Cross Matrix Module of GEDGNN (MLP([h⊤

v W1hv′ , ..., h⊤
v Wchv′])) cannot incorporate such

noisy information when computing node matching probabilities. This limitation makes Cross Ma-
trix Module unsuitable for direct integration into DiffMatch, leading us to use GEDGNN(AGNN)
as the evaluation model for AGNN instead.

The overall performance of GEDGNN(AGNN) is presented in Table 6. The performance of
GEDGNN increased significantly by incorporating AGNN, demonstrating that AGNN effectively
enhances the model’s ability to predict node matching probabilities by directly computing expres-
sive node pair embeddings.

Varying Reverse Denoising Steps during Inference. During inference, DiffMatch denoises
noisy node matching matrices through S reverse steps. To assess the impact of the number of
reverse denoising steps on DiffGED’s performance, we evaluate DiffGED using different values of
S, specifically S = [20, 10, 5, 4, 3, 2, 1]. Figure 9 presents the performance comparison across dif-
ferent values of S. The results indicate that when S > 2, the accuracy and MAE of DiffGED do not
vary a lot. However, when S ≤ 2, accuracy drops significantly while MAE increases. In particular,
at S = 1, DiffGED becomes a one-shot model, suffering from the same limitations as DiffGED(w/o
diffusion), leading to similarly poor performance. Moreover, when S is doubled, the running time
of DiffGED almost doubles as well, as the majority of its computational cost comes from denoising
the node matching matrix at each reverse step.

Greedy vs. Exact Node Mapping Extraction. To evaluate the effectiveness and efficiency of
greedy node mapping extraction, we introduce a variant model, DiffGED(Hungarian), which re-
places the greedy extraction method with the exact Hungarian algorithm (Kuhn, 1955). As shown
in Table 7, DiffGED with greedy node mapping extraction achieves nearly identical accuracy and
MAE to DiffGED(Hungarian) across all datasets, while significantly reducing the computational
cost of node mapping extraction. This improvement stems from the fact that DiffMatch generates a
high-quality sparse node matching matrix, where most elements in each row and column are close
to 0, with only a few elements close to 1. This sparsity enables the greedy extraction method to
retrieve node mappings comparable to those obtained by the exact Hungarian algorithm while being
much faster. To better illustrate this, we show a simple example graph pair in Figure 10, where M̂

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Evaluation on Node Mapping Extrac-
tion Strategy

Datasets Models MAE ↓ Accuracy ↑ Extraction Time(s) ↓

AIDS700 DiffGED 0.022 98% 0.00043
DiffGED(Hungarian) 0.021 98.1% 0.0035

Linux DiffGED 0.0 100% 0.00036
DiffGED(Hungarian) 0.0 100% 0.00345

IMDB DiffGED 0.937 94.6% 0.00068
DiffGED(Hungarian) 0.918 94.7% 0.00367

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 0 1

9.99e-01 1.27e-06 2.44e-08 4.11e-07

1.98e-08 3.48e-04 9.34e-01 1.58e-02

4.20e-08 1.46e-01 1.86e-02 8.89e-01

0 1

2

G
0 1

2 3

G'

Greedy Extraction Exact Extraction

Figure 10: Greedy vs. Exact Node Mapping Ex-
traction

represents the node matching matrix predicted by DiffMatch. We can see that the predicted M̂ is
both high-quality and sparse, leading to identical extracted node mappings under both the greedy
and Hungarian strategies, resulting in GED(G,G′) = 3.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs are used solely for polishing the writing.

20

	Introduction
	Related Work
	Preliminaries
	Proposed Approach: DiffGED
	DiffGED: Overview
	Phase 1: DiffMatch
	Phase 2: Node Mapping Extraction

	Experiments
	Experimental Settings
	Main Results
	Ablation Study

	Conclusion
	Additional Related Work
	Detailed Method
	Edit Path Extraction
	Training of DiffMatch
	Inference of DiffMatch
	Anisotropic Graph Neural Network
	Phase 2: Node Mapping Extraction

	Detailed Experimental Settings
	Datasets
	Details of Baseline methods
	Implementation Details

	More Experimental Results
	Generalization Ability
	Ablation Studies

	The Use of Large Language Models (LLMs)

