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Abstract
Unsupervised extractive document summariza-001
tion aims to extract salient sentences from a002
document without requiring a labelled corpus.003
In existing graph-based methods, vertex and004
edge weights are mostly created by calculat-005
ing sentence similarities. In this paper, we006
develop a Graph-Based Unsupervised Summa-007
rization method for extractive text summariza-008
tion. We revive traditional graph ranking algo-009
rithms with recent sentence embedding models010
and sentence features and modify how sentence011
centrality is computed. We first use Sentence-012
BERT, a state-of-the-art method for obtaining013
sentence embeddings to better capture the sen-014
tence meaning. In this way, we define edges015
of a graph where semantic similarities are rep-016
resented. Then, we create an undirected graph017
in which the calculated sentence feature scores018
of each sentence are represented in the vertices.019
In the last stage, we determine the most impor-020
tant sentences in the document with the ranking021
method we suggested on the graph created. Ex-022
periments on CNN/Daily Mail and New York023
Times datasets show our approach achieves024
high performance on unsupervised graph-based025
summarization when evaluated both automati-026
cally and by humans.027

1 Introduction028

A single-document summary is the task of creating029

a shorter version of a document while preserving030

its most important content. Researchers examined031

various summarization models, with extractive032

and abstractive summarizing being the most com-033

mon (Nenkova et al., 2011). Extractive summa-034

rization creates summaries by extracting text from035

source documents, whereas abstractive summariza-036

tion rewrites documents by paraphrasing or delet-037

ing some words or phrases.038

Modern text summarization approaches focus039

more on supervised neural networks, which adapt040

sequence-to-sequence translation, reinforcement041

learning and large-scale pre-training techniques.042

These approaches have accomplished favourable 043

results thanks to the availability of large-scale 044

datasets (Nallapati et al., 2016; Cheng and Lap- 045

ata, 2016; Gehrmann et al., 2018; Liu and Lapata, 046

2019; Wang et al., 2020). Nevertheless, a major 047

limitation of those supervised methods is that their 048

success strongly is reliant on the availability of 049

large training corpora with human-generated high- 050

quality summaries which are both expensive to 051

produce and difficult to obtain. We focus on un- 052

supervised summarization in this study, where we 053

simply need unlabeled documents. 054

The fundamental issue with unsupervised sum- 055

marizing is determining which sentences in a doc- 056

ument are important. Graph-based algorithms, in 057

which each vertex is a sentence and the weights 058

of the edges are measured by sentence similarity, 059

are the most prevalent approaches among these 060

studies. The relevance of each sentence is then esti- 061

mated using a graph ranking approach. A vertex’s 062

centrality is often measured using graph-based 063

ranking algorithms such as PageRank (Brin and 064

Page, 1998) to decide which sentence to include in 065

the summary. 066

We suggest in this study that the centrality mea- 067

sure can be enhanced in two significant ways. First, 068

we use Sentence-BERT (Reimers and Gurevych, 069

2019) which is a modification of the pre-trained 070

BERT (Devlin et al., 2019) network that uses 071

Siamese and triplet network structures to derive 072

semantically meaningful sentence embeddings to 073

better capture the sentence meaning and calculate 074

sentence similarity. Second, we define an initial 075

score that specifies the properties of the sentence 076

that each vertex represents. 077

In this paper, we propose a novel ap- 078

proach, GUSUM (as shorthand for Graph-Based 079

Unsupervised Summarization) which is a simple 080

and powerful approach to improving graph-based 081

unsupervised extractive text summarization. We 082

evaluate the GUSUM on the CNN/Daily Mail and 083
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New York Times datasets summarization datasets.084

Experiments on these datasets reveal that our model085

performs well on unsupervised summarization. For086

graph-based summarization tasks, our approach087

highlights the availability of pre-trained embed-088

dings. Pre-trained embeddings are generally used089

only for measuring sentence similarities in graph-090

based summarization systems. However, this sit-091

uation causes the importance of the sentences in092

the document to be ignored. In our approach, we093

applied a ranking method that combines sentence094

similarities and sentence features to calculate sen-095

tence centrality. Our experiments show that better096

results are obtained by creating weighted graphs097

in which the main features of the sentence are rep-098

resented in the ordering stage based on sentence099

centrality. Our code is available at anonymised.100

2 Related Work101

The proposed method is based on graph-based,102

unsupervised extractive text summarization tech-103

niques. In this section, we introduce work on graph-104

based summarization, unsupervised summarization105

and pre-training.106

Graph-Based Unsupervised Summarization The107

majority of summarization methods rely on la-108

beled datasets containing documents that match109

pre-prepared summaries. Compared to supervised110

models, unsupervised models only need unlabeled111

documents during training. Most unsupervised ex-112

tractive models are graph-based (Carbonell and113

Goldstein, 1998; Erkan and Radev, 2004; Mihalcea114

and Tarau, 2004; Zheng and Lapata, 2019; Xu et al.,115

2020; Liang et al., 2021; Liu et al., 2021). Among116

the representative examples of early work in infer-117

ential summarization, the study by Carbonell and118

Goldstein (1998) includes the Maximum-Marginal119

Relevance (MMR) principle of selecting sentences120

based on both the relevance and diversity of the121

selected sentences and the PageRank (Brin and122

Page, 1998) scores of the sentences in sentence sim-123

ilarity graphs. TEXTRANK (Mihalcea and Tarau,124

2004) interprets sentences in a document as nodes125

in an undirected graph, with edge weights based126

on sentence occurrence similarity. The final rank-127

ing scores for sentences are then determined using128

graph-based ranking algorithms such as PageRank.129

Similarly, Erkan and Radev (2004) provided ex-130

tractive summaries by scoring sentences with the131

LEXRANK approach, they calculated the impor-132

tance of sentences in representative graphs based133

on the measurement of eigenvector centrality (node 134

centrality-based). 135

Recently, researchers have continued to develop 136

graph-based methods. Zheng and Lapata (2019) 137

created a directed graph using BERT (Devlin et al., 138

2019) to calculate sentence similarities. The impor- 139

tance score of a sentence is the weighted sum of 140

all its out edges, where weights for edges between 141

the current sentence and preceding sentences are 142

negative. Thus, leading sentences tend to obtain 143

high scores. Xu et al. (2020) design two summa- 144

rization tasks related to pre-training tasks to im- 145

prove sentence representation. Then they proposed 146

a rank method that combines attention weight with 147

reconstruction loss to measure the centrality of 148

sentences. Liang et al. (2021) proposed a facet- 149

sensitive centrality-based model. It aims to mea- 150

sure the relationship between the summary and the 151

document by calculating a similarity score between 152

the summary sentences and the document for each 153

candidate summary. Liu et al. (2021) published a 154

graph-based single-document unsupervised extrac- 155

tive method that constructs a Distance-Augmented 156

Sentence Graph from a document that enables the 157

model to perform more fine-grained modeling of 158

sentences and better characterize the original docu- 159

ment structures. 160

Pre-training Pre-trained language models have 161

been shown to make significant progress in a vari- 162

ety of Natural Language Processing tasks. These 163

models are based on the concept of word embed- 164

dings (Pennington et al., 2014), but they go even 165

further by pre-training a sentence encoder on a 166

large unlabeled corpus with language modelling 167

aims. Bidirectional Encoder Representations from 168

Transformers (BERT) (Devlin et al., 2019), one of 169

the state-of-art language models, is trained with 170

a masked language model and a next-sentence- 171

predicting task. Pre-trained language models have 172

recently become popular for improving perfor- 173

mance in language comprehension tasks. Recent 174

research (Liu and Lapata, 2019; Bae et al., 2019) 175

has shown that using pre-trained language mod- 176

els to extractive summarization models, such as 177

BERT, is quite advantageous. As for the extrac- 178

tive summarization task, it provides the powerful 179

sentence embeddings and the contextualized in- 180

formation among sentences (Zhong et al., 2019), 181

which have been proven to be critical to extractive 182

summarization. 183
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Figure 1: The complete pipeline of the proposed method.

3 Methodology184

In this section, we describe our unsupervised sum-185

marization method GUSUM. The system is com-186

posed of three main steps: first, we use Sentence-187

BERT to produce sentence embeddings for every188

sentence in the document to summarize; next, we189

create a graph by comparing all the pairs of sen-190

tence embeddings obtained and calculating sen-191

tence features for defining vertex weight; finally,192

we rank the sentences by their degree centrality in193

this graph. Figure 1 gives an overview of the whole194

proposed method.195

3.1 Computing Sentence Embeddings196

The first step in our pipeline is to generate a list197

of sentences from the compilation text. After198

extracting the sentences, the next step is to pro-199

duce the sentence embedding of each sentence200

using Sentence-BERT (Reimers and Gurevych,201

2019) which is Transformer-based (Vaswani et al.,202

2017). Sentence-BERT is a modification of the pre-203

trained BERT (Devlin et al., 2019) network that use204

Siamese and triplet network structures to derive se-205

mantically meaningful sentence embeddings that206

can be compared using vector similarity methods.207

The proposed approach uses Sentence-BERT1208

embedding to represent sentences as fixed-size vec-209

tors. Thus, the combination of salient sentences210

and the source is mapped in the same semantic211

space and taken as input to the system.212

1https://www.sbert.net/

3.2 Computing Sentence Features 213

In traditional embedding-based systems, sentence 214

features are used in vector representation through 215

some statistical methods. These features are at- 216

tributes that attempt to represent the data used for 217

their task (Suanmali et al., 2009). 218

Unlike traditional methods, GUSUM uses sen- 219

tence features to determine the initial rank of ver- 220

tex in the generated graphs rather than vectorizing 221

them. GUSUM focus on four features for each sen- 222

tence based on Shirwandhar and Kulkarni (2018). 223

After the scores for each sentence were determined, 224

the average of the scores was assigned by taking 225

the weight of the vertex representing the sentence. 226

Sentence length: This feature is useful for fil- 227

tering out short phrases commonly found in news 228

articles, such as dates and author names. Short sen- 229

tences are not expected to belong to the summary, 230

and very short sentences do not contain much infor- 231

mation. We use normalized sentence length, which 232

is the ratio of the number of words in the sentence 233

to the number of words in the longest sentence of 234

the document.To find the important sentence based 235

on its length, the feature score is calculated using 236

1: 237

Scoref1(Si) =
No.Word inSi

No.Word inLongest Sentence
(1) 238

Sentence position: On the basis of sentence 239

location, its relevance is known. The first and the 240

last sentence of a document are typically important 241

and hold maximum information. Position feature 242

is calculated using 2: 243

Scoref2(Si) =

{
1 if the first or last sentence
N−P
N

if others

(2) 244
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where, N is the total number of sentences and P is245

the location of the sentence.246

Proper nouns: Usually, the sentence that con-247

tains more proper nouns is an important one and248

it is most probably included in the document sum-249

mary. The score for this feature is calculated as the250

ratio of the number of proper nouns in a sentence251

over the sentence length using a POS tagger.252

Scoref3(Si) =
No. Proper Noun inSi

LengthSi
(3)253

Numerical token: Numerical tokens are the254

total numeric values in a sentence. In a sentence255

containing numeric data, the number of numeric256

data is important and is probably included in the257

document summary and is calculated with 4:258

Scoref4(Si) =
num_numerici

LengthSi
(4)259

where, num_numerici is the total number of260

numerical tokens in sentence i.261

3.3 Generation of the sentence graph262

In unsupervised graph-based extractive summariza-263

tion, the document is represented as a graph, where264

each node represents a sentence in the input docu-265

ment.266

Given a document D, it contains a set of sen-267

tences (s1, s2, ..., sn). Graph-based algorithms268

treats D as a graph G = (V ;E). V =269

(v1, v2, ..., vn) is the vertex set where vi is the rep-270

resentation of sentence si. E is the edge set, which271

is an nxn matrix. Each = ei,j ∈ E denotes the272

weight between vertex vi and vj .273

In graph-based summarization methods, central-274

ity is used to select the most salient sentence to275

construct summaries through ranking. Centrality276

of a node measures its importance within a graph.277

The key idea of graph-based ranking is to calcu-278

late the centrality score of each sentence (or ver-279

tex). Traditionally, this score is measured by degree280

or ranking algorithms (Mihalcea and Tarau, 2004;281

Erkan and Radev, 2004) based on PageRank (Brin282

and Page, 1998). Then the sentences with the top283

score are extracted as a summary. The undirected284

graph algorithm computes the sentence centrality285

score as follows:286

Centrality(si) =
N∑

j=1

eji (5)287

After obtaining the centrality score for each sen-288

tence, sentences are sorted in reverse order and the289

top ranked are included in the summary. GUSUM 290

includes the vertex weights of the sentence graph 291

in the calculation of the centrality. Thus, as a first 292

step, the initial rank values of the sentence graph 293

are determined. 294

The second step to build the sentence graph is to 295

generate the edges that represent semantic sentence 296

similarities. Cosine similarity can be used as a 297

measure to find similarity between sentences of 298

the graph. In this step, all the pairwise Cosine 299

similarities are gathered in a matrix. It can be 300

defined as: 301

Cosine Similarity =

∑N
i=1 AiBi√∑N

i=1 A
2
i

√∑N
i=1 B

2
i

(6) 302

(where Ai and Bi are the components of vector A 303

and B respectively) 304

Let D = (s1; s2; ...; sn) be a document. We 305

produced using sentence feature scores, V = 306

(v1, v2, ..., vn) is the vertex set where vi is the rep- 307

resentation of sentence si. 308

Using Sentence-BERT, we produce a sequence 309

of vectors (e1; e2; ...; en), where ei is the sentence 310

embedding of si. Its edges are weighted accord- 311

ing to the cosine similarities of the corresponding 312

sentence embeddings. Then, we can compute the 313

matrix A with 7: 314

A[i, j] = Cosine Similarity(ei; ej) (7) 315

Thus, matrix A can be interpreted as the adja- 316

cency matrix of an undirected weighted complete 317

graph. 318

3.4 Ranking and Summary Selection 319

We propose a variation of weighted undirected 320

graph-based ranking in this section. Based on the 321

idea that the most important sentence in a docu- 322

ment is the sentence most similar to the others, we 323

modify Equation 5 to include the vertex weights. 324

As a consequence, we define the importance rank 325

for each sentence as follows: 326

Rank(si) = v[i] ∗
n∑

j=1

A[i, j] (8) 327

where v is the corresponding feature score for 328

si, ei and ej are the corresponding Sentence-BERT 329

sentence embedding for si and sj . 330

We finally rank and select sentences with Equa- 331

tion 9. 332

summary = topK({Rank(si))}i=1,...,n (9) 333
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where the top-ranked k sentences will be ex-334

tracted as summary and k is pre-defined with the335

average length of summary in training data.336

4 Experimental Setup337

In this section we assess the performance of338

GUSUM on the document summarization task. We339

first introduce the datasets that we used, then give340

our pre-processing and implementation details.341

4.1 Summarization Datasets342

We introduce the datasets used in our experiments343

in this section. We evaluate GUSUM on the most344

common single-document summarization datasets,345

namely the CNN/DailyMail dataset (CNN/DM)346

and the New York Times (NYT) dataset.347

CNN/DM dataset contains 93k articles from348

CNN, and 220k articles from Daily Mail news-349

papers, which uses their associated highlights as350

reference summaries (Hermann et al., 2015). We351

use test set which includes 11490 documents pro-352

vided by hugging face version 3.0.02 (See et al.,353

2017).354

NYT dataset contains over 1.8 million articles355

written and published by the New York Times be-356

tween January 1, 1987 and June 19, 2007 and357

summaries are written by library scientists. Dif-358

ferent from CNN/DM, salient sentences are dis-359

tributed evenly in each article. We use The New360

York Times Annotated Corpus provided by Lin-361

guistic Data Consortium3 (Sandhaus, 2008). We362

filter out documents whose summaries are between363

January 1, 2007 and June 19, 2007. On the other364

hand, some summaries are exceedingly brief, mak-365

ing them unsuitable for evaluating extractive sum-366

marising algorithms. Following Zheng and Lapata367

(2019) , we filter out documents whose length of368

summaries are shorter than 50 tokens and finally369

retain 6508 documents.370

4.2 Implementation Details371

In GUSUM, during the pre-processing stage,372

NLTK (Natural Language Toolkit)(Bird and Loper,373

2004) was used to collect corpus statistics and374

process documents using methods such as sen-375

tence segmentation, word tokenization, Part of376

Speech (POS) tagging and using regular expres-377

sions to remove parenthesis and some characters.378

2https://huggingface.co/datasets/cnn_
dailymail

3https://catalog.ldc.upenn.edu/
LDC2008T19

Furthermore, we tokenize sentences using NLTK 379

sent_tokenize function into the graph representa- 380

tion based on calculated sentences similarity val- 381

ues. 382

In the process of creating the graph, we first 383

applied Equations 1, 2, 3 and 4 to calculate sen- 384

tence feature scores and defined the sums of the 385

obtained values as vertex weights. Next, we cal- 386

culated the edge weights representing the sentence 387

similarities. For each dataset, we used the publicly 388

released Sentence-BERT model roberta-base-nli- 389

stsb-mean-tokens 4 to initialize our sentence embed- 390

dings. The model maps sentences and paragraphs 391

to a 768 dimensional dense vector space. In the 392

study, Cosine distance , Euclidean distance, Man- 393

hattan distance and Minkowski distance (p=3) were 394

used to measure the distances between sentence 395

embedding vectors. However, it was observed that 396

the highest performance with Sentence-BERT was 397

obtained with the Cosine similarity method. The 398

scores obtained as a result of similarity measure 399

were assigned as the edge weight of the graph. 400

In the last stage, we ranked the sentences us- 401

ing Equation 5 and determined the three most im- 402

portant sentences that should be included in the 403

summary. 404

GUSUM has three parameters for creating sum- 405

maries. In our experiments we used the best para- 406

maters (modelName= roberta-base-nli-stsb-mean- 407

tokens, similarityMeasureMethod=cosine, summa- 408

rySentenceNumber=3) but these parameters can be 409

updated easily for further studies. List of parame- 410

ters is published on Github5. 411

5 Results 412

5.1 Automated evaluation 413

ROUGE (Lin and Hovy, 2003) was used to as- 414

sess the quality of summaries from different mod- 415

els. We report the full length F1 based ROUGE-1, 416

ROUGE-2, ROUGE-L on both CNN/DM and NYT 417

datasets. The py-rouge package 6 is used to calcu- 418

late these ROUGE scores. 419

Table 1 summarizes our results on the CNN/DM 420

and NYT. The first block present the results 421

of strong unsupervised baselines LEAD-3, TEX- 422

TRANK (Mihalcea and Tarau, 2004)), LEXRANK 423

4https://huggingface.
co/sentence-transformers/
roberta-base-nli-stsb-mean-tokens

5anonymised
6https://pypi.org/project/py-rouge/
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CNN/DM NYT
Method R-1 R-2 R-L R-1 R-2 R-L
LEAD-3 40.49 17.66 36.75 35.50 17.20 32.00
TEXTRANK (Mihalcea and Tarau, 2004) 33.85 13.61 30.14 33.24 14.74 29.92
LEXRANK (Erkan and Radev, 2004) 34.68 12.82 31.12 30.75 10.49 26.58
PACSUM (Zheng and Lapata, 2019) 40.70 17.80 36.90 41.40 21.70 37.50
FAR (Liang et al., 2021) 40.83 17.85 36.91 41.61 21.88 37.59
STAS (Xu et al., 2020) 40.90 18.02 37.21 41.46 21.80 37.57
Liu et al. (Liu et al., 2021) 41.60 18.50 37.80 42.20 21.80 38.20
GUSUM 43.40 17.02 42.38 43.64 22.01 37.9

Table 1: Test set results on the CNN/DM and NYT datasets using ROUGE F1 (R-1 and R-2 are shorthands for
unigram and bigram overlap, R-L is the longest common subsequence).Results are taken from (Liang et al., 2021)

(Erkan and Radev, 2004) previous unsupervised424

graph-based methods. LEAD-3 simply selects the425

first three sentences as the summary for each doc-426

ument. TEXTRANK (Mihalcea and Tarau, 2004)427

displays a document as a graph with sentences as428

nodes and edge weights using sentence similarity429

and bases PageRank (Brin and Page, 1998) when430

selecting the best scores. LEXRANK (Erkan and431

Radev, 2004) also calculates the significance of sen-432

tences in representative graphs based on a measure433

of eigenvector centrality (based on node centrality).434

The second block includes three recent state-of-435

the-art unsupervised graph-based methods for doc-436

ument summarization. PACSUM (Zheng and La-437

pata, 2019) is graph-based extractive model using438

BERT as sentence features. Sentences are ranked439

according to their centrality. A novel facet-aware440

centrality-based ranking mechanism was developed441

in the FAR (Liang et al., 2021) model. STAS (Xu442

et al., 2020) uses only unlabeled documents to443

pre-train a hierarchical transformer model. The444

paper then suggests a method for sequencing sen-445

tences based on sentence-level self-attentions and446

pre-training objectives. Liu et al. (2021) applied447

an unsupervised approach to extractive text sum-448

marization, which selects significant sentences to449

summarise based on both similarities and relative450

distances in the neighborhood of each sentence us-451

ing an automatically produced sentence graph from452

each document.453

The third block in Table 1 reports results of454

our method, GUSUM. As can be seen in Table455

1, GUSUM achieves the highest ROUGE F1 score,456

compared to all other graph-based unsupervised457

methods on both CNN/DM and NYT datasets.458

From the results, we can see that our method out-459

performs all strong baselines in the first block. Fur-460

Method CNN/DM NYT
Score % Score %

LEAD-3 54.75 77.11 42.00 71.19
TEXTRANK 56.38 79.40 39.50 66.95
GUSUM 57.00 80.28 46.25 78.39

Table 2: Results of QA-based evaluation on CNN/DM,
NYT. We compute a system’s final score as the average
of all question scores.

thermore, our method achieves better results than 461

PACSUM and FAR on both datasets. When we 462

compare our method with STAS, our method pro- 463

duces better results, except for the F-1 R2 met- 464

ric on CNN/DM. The success of GUSUM can be 465

seen when the latest state-of-the-art unsupervised 466

graph-based method by Liu et al. and GUSUM is 467

compared. 468

5.2 Human evaluation 469

In addition to the Rouge metric, we also evaluated 470

the system output via human judgments. In the ex- 471

periment, we evaluated the extent to which our ap- 472

proach retained important information in the docu- 473

ment, following a question-answer (QA) paradigm 474

used to evaluate the summary quality and text com- 475

pression (Narayan et al., 2018). 476

We created a set of questions based on the as- 477

sumption that gold-standard summaries highlight 478

the most important content of the document. Then, 479

we examined whether participants could answer 480

these questions simply by reading the system sum- 481

maries without accessing the article. We created 482

71 questions from 20 randomly selected docu- 483

ments for the CNN/DM datasets and 59 questions 484

from 18 randomly selected documents for the NYT 485

dataset. We wrote multiple fact-based question- 486
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Gold-standard Reference
Food and Drug Administration has not found rat poison in pet food that has been killing cats and dogs, but it has found
melamine, chemical commonly used to make plastic cutlery that is also used in fertilizer. Mationwide pet food recall
, which has involved wet foods all manufactured by Menu Foods and sold under variety of brand names is expanded to
include one brand of dry cat food made by Hills Pet Nutrition. brand was found to have been made with batch of wheat
gluten shipped to US from China that FDA says was laced with melamine
GUSUM
The Food and Drug Administration said yesterday that it had not found rat poison in pet food that has been killing animals,
but that it had found melamine, a chemical commonly used to make plastic cutlery that is also used in fertilizer. Scientists
found melamine, which is used as a slow-release fertilizer in Asia, in the urine of cats sickened by the recalled pet foods
made by Menu Foods, officials said at a news conferenceThe recalled pet food has been blamed for at least 16 deaths of
pets. Additionally, F. D. A. officials said that they did not believe the contaminated wheat gluten had entered the human
food supply, but that they were testing all wheat gluten imported from China for melamine.
Questions
1. What did the Food and Drug Administration find in pet food? Melamine
2. What did not the Food and Drug Administration find in pet food?Rat Poison
3. Normally, why is Melamine used? commonly used to make plastic cutlery that is also used in fertilizer

Table 3: An example summary come from NYT dataset with golden reference and corresponding questions. Words
highlighted in red are answers to those questions.

answer pairs for each gold summary. Example487

questions and answers are shown in Table 3.488

We compared GUSUM against LEAD-3 and489

TEXTRANK on CNN/DM and NYT. We used the490

same scoring mechanism from Ziheng and Lapata491

(2019), a correct answer was marked with a score492

of one, partially correct answers with a score of 0.5,493

and zero otherwise. The final score for a system494

is the average of all its question scores. Four flu-495

ently English speakers answered questions for each496

summary as a participant. The participants were497

chosen from the university volunteers to contribute498

to the study.499

The results of our QA evaluation are shown in500

Table 2. Based on summaries generated by LEAD-501

3 participants can answer 77.11% and 71.19% re-502

spectively CNN/DM and NYT of questions cor-503

rectly. Summaries produced by TEXTRANK have504

79.40% and 66.95% scores. When the scores of505

GUSUM are compared with the scores of the other506

two systems, the high performance of GUSUM507

is seen. The main reason for GUSUM’s slightly508

higher performance in CNN/DM dataset compared509

to NYT is thought to be the use of human-generated510

gold summaries in NYT. Another reason is that the511

summaries created from the CNN/DM dataset are512

shorter and users can focus more. It is thought513

that the participants are distracted because of the514

longer summaries in the NYT dataset compared to515

CNN/DM.516

6 Discussion517

There are two basic stages in document summary:518

(1) Identification of the most salient sentences in519

the document, (2) removal of similar sentences520

from the summary. Generally in graph-based ap- 521

proaches, graphs are created based on sentence 522

similarity, and then the most salient sentences are 523

selected. 524

GUSUM started from the idea that the most im- 525

portant sentence in a document is the sentence most 526

similar to the others. However, it has been ob- 527

served that the results obtained when proceeding 528

only through the concept of similarity are not sat- 529

isfactory. For this reason, we advocate that sen- 530

tences should be defined in their importance in 531

the document and that this defined value should 532

be integrated with similarity. The performance of 533

GUSUM, which is a simple but effective summa- 534

rization method, is presented. 535

As seen in the experimental results, GUSUM 536

showed very high performance in short documents. 537

However, the limitation of GUSUM is that it does 538

not have the same performance on long documents. 539

The main reason for this situation is that the rank- 540

ing algorithm we use in long documents produces 541

results that are very close to each other. For this 542

reason, we argue that for long documents, more 543

methods should be applied and more specific fea- 544

tures should be determined in the calculation of 545

sentence feature score, which indicates the impor- 546

tance of sentences in the document. In addition, 547

we believe that GUSUM will also show high per- 548

formance in long documents with a more effective 549

ranking method that can be applied. 550

The most difficult part of this study is the evalu- 551

ation stage. Evaluating the performance of summa- 552

tion systems poses a problem for many researchers 553

(Schluter, 2017). The results and limits of the 554

commonly used methods for automatic evaluation 555
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methods are a matter of debate. In addition, it is556

a known fact by researchers that human evalua-557

tion is the best summary performance evaluation558

method. For this reason, we included human eval-559

uation as a performance evaluation method in our560

study. However, what we noticed in our study is561

that the questions used for human evaluation based562

on the QA paradigm in other studies published to563

date have not been shared by the researchers. As564

a result of this situation, researchers prepare their565

own questions in human-based evaluations and the566

results cannot be compared with the literature. As567

a solution to this problem, we publish the questions568

and answers that we prepared from the CNN/DM569

and NYT datasets based on the QA paradigm for570

use in future studies. Our Question and Answer set571

is available at anonymised.572

7 Conclusions and Future Works573

In this paper we have proposed a graph-based574

single-document unsupervised extractive method.575

We revisited traditional graph-based ranking al-576

gorithms and refined how sentence centrality is577

computed. We employed Sentence-BERT to better578

capture sentence similarity and built graphs with579

undirected edges and we defined values indicating580

the importance of the sentences in the document581

for the node weights in the graphs.582

Experimental results on two summarization583

benchmark datasets demonstrated that our method584

outperforms other recently proposed extractive585

graph-based unsupervised methods, which shows586

the effectiveness of our method.587

In the future, we would like to explore some588

of the ideas introduced in this paper that can en-589

hance performance in multi-document summariza-590

tion such as including more parameters specifying591

sentence features.592
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