GUSUM: Graph-Based Unsupervised Summarization using Sentence-BERT and Sentence Features

Anonymous NAACL-HLT 2021 submission

Abstract

Unsupervised extractive document summarization aims to extract salient sentences from a document without requiring a labelled corpus. In existing graph-based methods, vertex and edge weights are mostly created by calculating sentence similarities. In this paper, we develop a Graph-Based Unsupervised Summarization method for extractive text summarization. We revive traditional graph ranking algorithms with recent sentence embedding models and sentence features and modify how sentence centrality is computed. We first use Sentence-BERT, a state-of-the-art method for obtaining sentence embeddings to better capture the sentence meaning. In this way, we define edges of a graph where semantic similarities are represented. Then, we create an undirected graph in which the calculated sentence feature scores of each sentence are represented in the vertices. In the last stage, we determine the most important sentences in the document with the ranking method we suggested on the graph created. Experiments on CNN/Daily Mail and New York Times datasets show our approach achieves high performance on unsupervised graph-based summarization when evaluated both automatically and by humans.

1 Introduction

A single-document summary is the task of creating a shorter version of a document while preserving its most important content. Researchers examined various summarization models, with extractive and abstractive summarizing being the most common (Nenkova et al., 2011). Extractive summarization creates summaries by extracting text from source documents, whereas abstractive summarization rewrites documents by paraphrasing or deleting some words or phrases.

Modern text summarization approaches focus more on supervised neural networks, which adapt sequence-to-sequence translation, reinforcement learning and large-scale pre-training techniques. These approaches have accomplished favourable results thanks to the availability of large-scale datasets (Nallapati et al., 2016; Cheng and Lapata, 2016; Gehrmann et al., 2018; Liu and Lapata, 2019; Wang et al., 2020). Nevertheless, a major limitation of those supervised methods is that their success strongly is reliant on the availability of large training corpora with human-generated high-quality summaries which are both expensive to produce and difficult to obtain. We focus on unsupervised summarization in this study, where we simply need unlabeled documents.

The fundamental issue with unsupervised summarizing is determining which sentences in a document are important. Graph-based algorithms, in which each vertex is a sentence and the weights of the edges are measured by sentence similarity, are the most prevalent approaches among these studies. The relevance of each sentence is then estimated using a graph ranking approach. A vertex’s centrality is often measured using graph-based ranking algorithms such as PageRank (Brin and Page, 1998) to decide which sentence to include in the summary.

We suggest in this study that the centrality measure can be enhanced in two significant ways. First, we use Sentence-BERT (Reimers and Gurevych, 2019) which is a modification of the pre-trained BERT (Devlin et al., 2019) network that uses Siamese and triplet network structures to derive semantically meaningful sentence embeddings to better capture the sentence meaning and calculate sentence similarity. Second, we define an initial score that specifies the properties of the sentence that each vertex represents.

In this paper, we propose a novel approach, GUSUM (as shorthand for Graph-Based Unsupervised Summarization) which is a simple and powerful approach to improving graph-based unsupervised extractive text summarization. We evaluate the GUSUM on the CNN/Daily Mail and
New York Times datasets summarization datasets. Experiments on these datasets reveal that our model performs well on unsupervised summarization. For graph-based summarization tasks, our approach highlights the availability of pre-trained embeddings. Pre-trained embeddings are generally used only for measuring sentence similarities in graph-based summarization systems. However, this situation causes the importance of the sentences in the document to be ignored. In our approach, we applied a ranking method that combines sentence similarities and sentence features to calculate sentence centrality. Our experiments show that better results are obtained by creating weighted graphs in which the main features of the sentence are represented in the ordering stage based on sentence centrality. Our code is available at an anonymised.

2 Related Work

The proposed method is based on graph-based, unsupervised extractive text summarization techniques. In this section, we introduce work on graph-based summarization, unsupervised summarization and pre-training.

Graph-Based Unsupervised Summarization

The majority of summarization methods rely on labeled datasets containing documents that match pre-prepared summaries. Compared to supervised models, unsupervised models only need unlabeled documents during training. Most unsupervised extractive models are graph-based (Carbonell and Goldstein, 1998; Erkan and Radev, 2004; Mihalcea and Tarau, 2004; Zheng and Lapata, 2019; Xu et al., 2020; Liang et al., 2021; Liu et al., 2021). Among the representative examples of early work in inferential summarization, the study by Carbonell and Goldstein (1998) includes the Maximum-Marginal Relevance (MMR) principle of selecting sentences based on both the relevance and diversity of the selected sentences and the PageRank (Brin and Page, 1998) scores of the sentences in sentence similarity graphs. TEXTRANK (Mihalcea and Tarau, 2004) interprets sentences in a document as nodes in an undirected graph, with edge weights based on sentence occurrence similarity. The final ranking scores for sentences are then determined using graph-based ranking algorithms such as PageRank. Similarly, Erkan and Radev (2004) provided extractive summaries by scoring sentences with the LEXRANK approach, they calculated the importance of sentences in representative graphs based on the measurement of eigenvector centrality (node centrality-based).

Recently, researchers have continued to develop graph-based methods. Zheng and Lapata (2019) created a directed graph using BERT (Devlin et al., 2019) to calculate sentence similarities. The importance score of a sentence is the weighted sum of all its out edges, where weights for edges between the current sentence and preceding sentences are negative. Thus, leading sentences tend to obtain high scores. Xu et al. (2020) design two summarization tasks related to pre-training tasks to improve sentence representation. Then they proposed a rank method that combines attention weight with reconstruction loss to measure the centrality of sentences. Liang et al. (2021) proposed a facet-sensitive centrality-based model. It aims to measure the relationship between the summary and the document by calculating a similarity score between the summary sentences and the document for each candidate summary. Liu et al. (2021) published a graph-based single-document unsupervised extractive method that constructs a Distance-Augmented Sentence Graph from a document that enables the model to perform more fine-grained modeling of sentences and better characterize the original document structures.

Pre-training

Pre-trained language models have been shown to make significant progress in a variety of Natural Language Processing tasks. These models are based on the concept of word embeddings (Pennington et al., 2014), but they go even further by pre-training a sentence encoder on a large unlabeled corpus with language modelling aims. Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019), one of the state-of-art language models, is trained with a masked language model and a next-sentence-predicting task. Pre-trained language models have recently become popular for improving performance in language comprehension tasks. Recent research (Liu and Lapata, 2019; Bae et al., 2019) has shown that using pre-trained language models to extractive summarization models, such as BERT, is quite advantageous. As for the extractive summarization task, it provides the powerful sentence embeddings and the contextualized information among sentences (Zhong et al., 2019), which have been proven to be critical to extractive summarization.
3 Methodology

In this section, we describe our unsupervised summarization method GUSUM. The system is composed of three main steps: first, we use Sentence-BERT to produce sentence embeddings for every sentence in the document to summarize; next, we create a graph by comparing all the pairs of sentence embeddings obtained and calculating sentence features for defining vertex weight; finally, we rank the sentences by their degree centrality in this graph. Figure 1 gives an overview of the whole proposed method.

3.1 Computing Sentence Embeddings

The first step in our pipeline is to generate a list of sentences from the compilation text. After extracting the sentences, the next step is to produce the sentence embedding of each sentence using Sentence-BERT (Reimers and Gurevych, 2019) which is Transformer-based (Vaswani et al., 2017). Sentence-BERT is a modification of the pre-trained BERT (Devlin et al., 2019) network that use Siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using vector similarity methods.

The proposed approach uses Sentence-BERT\(^1\) embedding to represent sentences as fixed-size vectors. Thus, the combination of salient sentences and the source is mapped in the same semantic space and taken as input to the system.

\(^1\)https://www.sbert.net/

3.2 Computing Sentence Features

In traditional embedding-based systems, sentence features are used in vector representation through some statistical methods. These features are attributes that attempt to represent the data used for their task (Suanmali et al., 2009).

Unlike traditional methods, GUSUM uses sentence features to determine the initial rank of vertex in the generated graphs rather than vectorizing them. GUSUM focus on four features for each sentence based on Shirwandhar and Kulkarni (2018). After the scores for each sentence were determined, the average of the scores was assigned by taking the weight of the vertex representing the sentence.

Sentence length: This feature is useful for filtering out short phrases commonly found in news articles, such as dates and author names. Short sentences are not expected to belong to the summary, and very short sentences do not contain much information. We use normalized sentence length, which is the ratio of the number of words in the sentence to the number of words in the longest sentence of the document. To find the important sentence based on its length, the feature score is calculated using 1:

\[
Score_{f1}(S_i) = \frac{\text{No. Word in } S_i}{\text{No. Word in Longest Sentence}}
\]

Sentence position: On the basis of sentence location, its relevance is known. The first and the last sentence of a document are typically important and hold maximum information. Position feature is calculated using 2:

\[
Score_{f2}(S_i) = \begin{cases}
1 & \text{if the first or last sentence} \\
\frac{N - P}{N} & \text{if others}
\end{cases}
\]

Figure 1: The complete pipeline of the proposed method.
where, N is the total number of sentences and P is the location of the sentence.

Proper nouns: Usually, the sentence contains more proper nouns is an important one and it is most probably included in the document summary. The score for this feature is calculated as the ratio of the number of proper nouns in a sentence over the sentence length using a POS tagger.

$$\text{Score}_{fs}(s_i) = \frac{\text{No. Proper Noun in } S_i}{\text{Length } S_i} \quad (3)$$

Numerical token: Numerical tokens are the total numeric values in a sentence. In a sentence containing numeric data, the number of numeric data is important and is probably included in the document summary and is calculated with 4:

$$\text{Score}_{f4}(s_i) = \frac{\text{num_numeric}_i}{\text{Length } S_i} \quad (4)$$

where, num_numeric_i is the total number of numerical tokens in sentence i.

3.3 Generation of the sentence graph

In unsupervised graph-based extractive summarization, the document is represented as a graph, where each node represents a sentence in the input document.

Given a document D, it contains a set of sentences (s_1, s_2, \ldots, s_n). Graph-based algorithms treat D as a graph $G = (V; E)$. $V = (v_1, v_2, \ldots, v_n)$ is the vertex set where v_i is the representation of sentence s_i. E is the edge set, which is an $n \times n$ matrix. Each $e_{ij} \in E$ denotes the weight between vertex v_i and v_j.

In graph-based summarization methods, centrality is used to select the most salient sentence to construct summaries through ranking. Centrality of a node measures its importance within a graph. The key idea of graph-based ranking is to calculate the centrality score of each sentence (or vertex). Traditionally, this score is measured by degree or ranking algorithms (Mihalcea and Tarau, 2004; Erkan and Radev, 2004) based on PageRank (Brin and Page, 1998). Then the sentences with the top score are extracted as a summary. The undirected graph algorithm computes the sentence centrality score as follows:

$$\text{Centrality}(s_i) = \sum_{j=1}^{N} e_{ji} \quad (5)$$

After obtaining the centrality score for each sentence, sentences are sorted in reverse order and the top ranked are included in the summary. GUSUM includes the vertex weights of the sentence graph in the calculation of the centrality. Thus, as a first step, the initial rank values of the sentence graph are determined.

The second step to build the sentence graph is to generate the edges that represent semantic sentence similarities. Cosine similarity can be used as a measure to find similarity between sentences of the graph. In this step, all the pairwise Cosine similarities are gathered in a matrix. It can be defined as:

$$\text{Cosine Similarity} = \frac{\sum_{i=1}^{N} A_i B_i}{\sqrt{\sum_{i=1}^{N} A_i^2} \sqrt{\sum_{i=1}^{N} B_i^2}} \quad (6)$$

(where A_i and B_i are the components of vector A and B respectively)

Let $D = (s_1; s_2; \ldots; s_n)$ be a document. We produced using sentence feature scores, $V = (v_1, v_2, \ldots, v_n)$ is the vertex set where v_i is the representation of sentence s_i.

Using Sentence-BERT, we produce a sequence of vectors $(e_1; e_2; \ldots; e_n)$, where e_i is the sentence embedding of s_i. Its edges are weighted according to the cosine similarities of the corresponding sentence embeddings. Then, we can compute the matrix A with 7:

$$A[i, j] = \text{Cosine Similarity}(e_i; e_j) \quad (7)$$

Thus, matrix A can be interpreted as the adjacency matrix of an undirected weighted complete graph.

3.4 Ranking and Summary Selection

We propose a variation of weighted undirected graph-based ranking in this section. Based on the idea that the most important sentence in a document is the sentence most similar to the others, we modify Equation 5 to include the vertex weights.

As a consequence, we define the importance rank for each sentence as follows:

$$\text{Rank}(s_i) = v[i] + \sum_{j=1}^{n} A[i, j] \quad (8)$$

where v is the corresponding feature score for s_i, e_i and e_j are the corresponding Sentence-BERT sentence embedding for s_i and s_j.

We finally rank and select sentences with Equation 9.

$$\text{summary} = \text{topK}(|\text{Rank}(s_i)|)_{i=1,\ldots,n} \quad (9)$$
where the top-ranked k sentences will be extracted as summary and k is pre-defined with the average length of summary in training data.

4 Experimental Setup

In this section we assess the performance of GUSUM on the document summarization task. We first introduce the datasets that we used, then give our pre-processing and implementation details.

4.1 Summarization Datasets

We introduce the datasets used in our experiments in this section. We evaluate GUSUM on the most common single-document summarization datasets, namely the CNN/DailyMail dataset (CNN/DM) and the New York Times (NYT) dataset.

CNN/DM dataset contains 93k articles from CNN, and 220k articles from Daily Mail newspapers, which uses their associated highlights as reference summaries (Hermann et al., 2015). We use test set which includes 11490 documents provided by hugging face version 3.0.02 (See et al., 2017).

NYT dataset contains over 1.8 million articles written and published by the New York Times between January 1, 1987 and June 19, 2007 and summaries are written by library scientists. Different from CNN/DM, salient sentences are distributed evenly in each article. We use The New York Times Annotated Corpus provided by Linguistic Data Consortium3 (Sandhaus, 2008). We filter out documents whose summaries are between January 1, 2007 and June 19, 2007. On the other hand, some summaries are exceedingly brief, making them unsuitable for evaluating extractive summarising algorithms. Following Zheng and Lapata (2019), we filter out documents whose length of summaries are shorter than 50 tokens and finally retain 6508 documents.

4.2 Implementation Details

In GUSUM, during the pre-processing stage, NLTK (Natural Language Toolkit)(Bird and Loper, 2004) was used to collect corpus statistics and process documents using methods such as sentence segmentation, word tokenization, Part of Speech (POS) tagging and using regular expressions to remove parenthesis and some characters. Furthermore, we tokenize sentences using NLTK send_tokenize function into the graph representation based on calculated sentences similarity values.

In the process of creating the graph, we first applied Equations 1, 2, 3 and 4 to calculate sentence feature scores and defined the sums of the obtained values as vertex weights. Next, we calculated the edge weights representing the sentence similarities. For each dataset, we used the publicly released Sentence-BERT model roberta-base-nli-stsb-mean-tokens4 to initialize our sentence embeddings. The model maps sentences and paragraphs to a 768 dimensional dense vector space. In the study, Cosine distance, Euclidean distance, Manhattan distance and Minkowski distance ($p=3$) were used to measure the distances between sentence embedding vectors. However, it was observed that the highest performance with Sentence-BERT was obtained with the Cosine similarity method. The scores obtained as a result of similarity measure were assigned as the edge weight of the graph.

In the last stage, we ranked the sentences using Equation 5 and determined the three most important sentences that should be included in the summary.

GUSUM has three parameters for creating summaries. In our experiments we used the best parameters (modelName= roberta-base-nli-stsb-mean-tokens, similarityMeasureMethod=cosine, summarySentenceNumber=3) but these parameters can be updated easily for further studies. List of parameters is published on Github5.

5 Results

5.1 Automated evaluation

ROUGE (Lin and Hovy, 2003) was used to assess the quality of summaries from different models. We report the full length F1 based ROUGE-1, ROUGE-2, ROUGE-L on both CNN/DM and NYT datasets. The py-rouge package 6 is used to calculate these ROUGE scores.

Table 1 summarizes our results on the CNN/DM and NYT. The first block present the results of strong unsupervised baselines LEAD-3, TEXTRANK (Mihalcea and Tarau, 2004), LEXRANK

2https://huggingface.co/datasets/cnn_dailymail

3https://catalog.ldc.upenn.edu/LDC2008T19

4https://huggingface.co/sentence-transformers/roberta-base-nli-stsb-mean-tokens

5anonymised

6https://pypi.org/project/py-rouge/
Table 1: Test set results on the CNN/DM and NYT datasets using ROUGE F1 (R-1 and R-2 are shorthands for unigram and bigram overlap, R-L is the longest common subsequence). Results are taken from (Liang et al., 2021)

<table>
<thead>
<tr>
<th>Method</th>
<th>CNN/DM</th>
<th>NYT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-1</td>
<td>R-2</td>
</tr>
<tr>
<td>LEAD-3</td>
<td>40.49</td>
<td>17.66</td>
</tr>
<tr>
<td>TEXTRANK (Mihalcea and Tarau, 2004)</td>
<td>33.85</td>
<td>13.61</td>
</tr>
<tr>
<td>LEXRANK (Erkan and Radev, 2004)</td>
<td>34.68</td>
<td>12.82</td>
</tr>
<tr>
<td>PACSUM (Zheng and Lapata, 2019)</td>
<td>40.70</td>
<td>17.80</td>
</tr>
<tr>
<td>FAR (Liang et al., 2021)</td>
<td>40.83</td>
<td>17.85</td>
</tr>
<tr>
<td>STAS (Xu et al., 2020)</td>
<td>40.90</td>
<td>18.02</td>
</tr>
<tr>
<td>Liu et al. (Liu et al., 2021)</td>
<td>41.60</td>
<td>18.50</td>
</tr>
<tr>
<td>GUSUM</td>
<td>43.40</td>
<td>17.02</td>
</tr>
</tbody>
</table>

Table 2: Results of QA-based evaluation on CNN/DM, NYT. We compute a system’s final score as the average of all question scores.

<table>
<thead>
<tr>
<th>Method</th>
<th>CNN/DM Score</th>
<th>CNN/DM %</th>
<th>NYT Score</th>
<th>NYT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD-3</td>
<td>54.75</td>
<td>77.11</td>
<td>42.00</td>
<td>71.19</td>
</tr>
<tr>
<td>TEXTRANK</td>
<td>56.38</td>
<td>79.40</td>
<td>39.50</td>
<td>66.95</td>
</tr>
<tr>
<td>GUSUM</td>
<td>57.00</td>
<td>80.28</td>
<td>46.25</td>
<td>78.39</td>
</tr>
</tbody>
</table>

5.2 Human evaluation

In addition to the Rouge metric, we also evaluated the system output via human judgments. In the experiment, we evaluated the extent to which our approach retained important information in the document, following a question-answer (QA) paradigm used to evaluate the summary quality and text compression (Narayan et al., 2018).

We created a set of questions based on the assumption that gold-standard summaries highlight the most important content of the document. Then, we examined whether participants could answer these questions simply by reading the system summaries without accessing the article. We created 71 questions from 20 randomly selected documents for the CNN/DM datasets and 59 questions from 18 randomly selected documents for the NYT dataset. We wrote multiple fact-based question-
answer pairs for each gold summary. Example questions and answers are shown in Table 3.

We compared GUSUM against LEAD-3 and TEXTRANK on CNN/DM and NYT. We used the same scoring mechanism from Ziheng and Lapata (2019), a correct answer was marked with a score of one, partially correct answers with a score of 0.5, and zero otherwise. The final score for a system is the average of all its question scores. Four fluently English speakers answered questions for each summary as a participant. The participants were chosen from the university volunteers to contribute to the study.

The results of our QA evaluation are shown in Table 2. Based on summaries generated by LEAD-3 participants can answer 77.11% and 71.19% respectively CNN/DM and NYT of questions correctly. Summaries produced by TEXTRANK have 79.40% and 66.95% scores. When the scores of GUSUM are compared with the scores of the other two systems, the high performance of GUSUM is seen. The main reason for GUSUM’s slightly higher performance in CNN/DM dataset compared to NYT is thought to be the use of human-generated gold summaries in NYT. Another reason is that the summaries created from the CNN/DM dataset are shorter and users can focus more. It is thought that the participants are distracted because of the longer summaries in the NYT dataset compared to CNN/DM.

6 Discussion

There are two basic stages in document summary: (1) Identification of the most salient sentences in the document, (2) removal of similar sentences from the summary. Generally in graph-based approaches, graphs are created based on sentence similarity, and then the most salient sentences are selected.

GUSUM started from the idea that the most important sentence in a document is the sentence most similar to the others. However, it has been observed that the results obtained when proceeding only through the concept of similarity are not satisfactory. For this reason, we advocate that sentences should be defined in their importance in the document and that this defined value should be integrated with similarity. The performance of GUSUM, which is a simple but effective summarization method, is presented.

As seen in the experimental results, GUSUM showed very high performance in short documents. However, the limitation of GUSUM is that it does not have the same performance on long documents. The main reason for this situation is that the ranking algorithm we use in long documents produces results that are very close to each other. For this reason, we argue that for long documents, more methods should be applied and more specific features should be determined in the calculation of sentence feature score, which indicates the importance of sentences in the document. In addition, we believe that GUSUM will also show high performance in long documents with a more effective ranking method that can be applied.

The most difficult part of this study is the evaluation stage. Evaluating the performance of summarization systems poses a problem for many researchers (Schluter, 2017). The results and limits of the commonly used methods for automatic evaluation...
methods are a matter of debate. In addition, it is a known fact by researchers that human evaluation is the best summary performance evaluation method. For this reason, we included human evaluation as a performance evaluation method in our study. However, what we noticed in our study is that the questions used for human evaluation based on the QA paradigm in other studies published to date have not been shared by the researchers. As a result of this situation, researchers prepare their own questions in human-based evaluations and the results cannot be compared with the literature. As a solution to this problem, we publish the questions and answers that we prepared from the CNN/DM and NYT datasets based on the QA paradigm for use in future studies. Our Question and Answer set is available at anonymised.

7 Conclusions and Future Works

In this paper we have proposed a graph-based single-document unsupervised extractive method. We revisited traditional graph-based ranking algorithms and refined how sentence centrality is computed. We employed Sentence-BERT to better capture sentence similarity and built graphs with unidirected edges and we defined values indicating the importance of the sentences in the document for the node weights in the graphs.

Experimental results on two summarization benchmark datasets demonstrated that our method outperforms other recently proposed extractive graph-based unsupervised methods, which shows the effectiveness of our method.

In the future, we would like to explore some of the ideas introduced in this paper that can enhance performance in multi-document summarization such as including more parameters specifying sentence features.

References

