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ABSTRACT

While explainable AI (XAI) has developed numerous attribution mechanisms to
enhance model transparency, existing post-hoc methods remain limited to improv-
ing attribution faithfulness. In contrast, attribution invariance and rationality stem
from the model’s internal parameters, requiring specialized constraints during
training for improvement. Current training strategies, on the one hand, supervised
rationality-enhancing methods depend on manual annotations that incorporate hu-
man priors may conflict with the model’s intrinsic decision reasoning. On the
other hand, self-supervised invariance regularization methods rely on gradient-
based attribution methods (e.g., Grad-CAM) with low faithfulness, resulting in
misaligned explanations with the actual logic. Such not only hinders attribution
refinement but also adversely affects task performance. To overcome these chal-
lenges, we introduce a training framework grounded in high-faithfulness submod-
ular attribution, which enables the extraction of compact, discriminative pseudo-
ground-truth regions without manual supervision. By integrating spatial con-
straints and high-confidence sample filtering, our approach effectively suppresses
irrelevant areas and supplies high-quality attribution targets that positively guide
model training. However, submodular attribution encounters non-differentiable
and path-dependent issues of black-box attribution searches. We propose a novel
submodular ranking loss that enforces search path consistency and termination
alignment under geometric transformations, enabling differentiable optimization
of the greedy search process. Extensive evaluation across classification accuracy,
attribution stability, faithfulness, rationality, and precision shows that our method
significantly enhances attribution quality with minimal effect on task performance.

1 INTRODUCTION

The rapid advances and successes of deep learning technologies in domains such as image recog-
nition and natural language processing heavily rely on increasingly complex and high-dimensional
parameter configurations. However, this expansion has also led to growing challenges regarding
model explainability, which significantly limits the broad application of deep learning in high-stakes
fields, such as medical diagnosis (Tjoa & Guan, 2021), legal decision-making (Vale et al., 2022),
and autonomous driving (Kuznietsov et al., 2024; Nie et al., 2024), where the reliability and inter-
pretability of decisions are critically required.

A considerable number of studies in Explainable Artificial Intelligence (XAI) (Zhao et al., 2024;
Sundararajan et al., 2017; Zhuo & Ge, 2024; Zhang et al., 2024) aim to enhance model transparency
and interpretability by developing more sophisticated attribution techniques, thereby rendering the
decision-making process more comprehensible to humans. However, existing attribution mecha-
nisms predominantly focus on improving attribution faithfulness (Chen et al., 2025), which evaluates
whether an explanation accurately reflects the true causal relationship between the input data and the
model’s inference outcome. The lack of robustness and semantic rational in attributions stems from
the weak or unstable association between the features learned by the model and the discriminative
semantic cues (Karimi et al., 2023). For instance, when geometric transformations (Pillai et al.,
2022; Crabbé & van der Schaar, 2023) are applied to the input, the resulting attribution may exhibit
significant inconsistency (see Fig. 1), suggesting that the model fails to capture semantically invari-
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Figure 1: Comparison of attribution between the pre-trained and the regularized model. We visual-
ize the attribution maps obtained via submodular search, along with the corresponding recognition
heatmaps and Insertion AUC curves, before and after flipping of the input image. Both the pre-
trained and regularized models can correctly identify the object with high confidence. However, the
pre-trained model exhibits inconsistent focus regions after flipping, whereas the regularized model
maintains perceptual consistency under transformation. Moreover, the regularized model produces
more compact attribution regions and achieves higher Insertion AUC scores.

ant representations under transformation (Ruan et al.). This highlights the necessity of introducing
explicit supervision and regularization constraints on attribution behavior during model training to
improve both the rationality and robustness of attributions (Gao et al., 2024).

So far, improving the attribution rationality and invariance typically follows two distinct routes. A
common method to enhance attribution rationality is to introduce human annotations (e.g., bounding
boxes) as constraints to align attribution results with prior knowledge (Ross et al., 2017; Selvaraju
et al., 2019; Yang et al., 2023). However, using human annotations as the criterion for correct attri-
butions, in effect, forces the model’s decision logic to align with human priors. This risks distorting
the model’s inherent reasoning mechanism and leading to erroneous attributions. Improving attri-
bution invariance is generally achieved through self-supervised regularization strategies that enforce
consistency of attributions under input transformations (Pillai & Pirsiavash, 2021; Pillai et al., 2022;
Li et al., 2023). Most current methods rely on gradient-based attribution techniques (e.g., Grad-
CAM (Selvaraju et al., 2020)) for parameter updates. However, such methods are known to suffer
from low faithfulness that the explanations they produce may significantly deviate from the actual
causal reasoning of the model. Enforcing these unreliable attributions as constraints during training
could adversely affect model performance.

Based on the aforementioned issues, we choose a novel and highly faithful method, Submodular
Subset Selection-based Attribution (SMDL) (Chen et al., 2024), to generate an explanation for the
attribution consistency constraint. This approach predefines a set of submodular functions to evalu-
ate attribution scores, modeling the attribution process as a continuous subset search procedure. By
leveraging submodular functions and external constraints (including filtering high-confidence posi-
tive samples and limiting the area of attribution regions), it effectively excludes numerous decision-
irrelevant areas. This allows the acquisition of high-quality, highly reliable attribution results without
manual annotation, thereby avoiding the adverse effects of invalid attribution regions during training.

However, directly using the searched results as constraints faces two major challenges: First, as
a black-box method, SMDL produces non-differentiable attributions, making it impossible to op-
timize model parameters directly via gradient updates. Second, although the final search results
faithfully reflect the model’s decision basis, they are generated through multi-step sequential itera-
tions. Using only the final result as a constraint cannot guarantee the reproduction through the same
path, thereby hindering effective enforcement of attribution consistency. To address this, we design
a novel Submodular Ranking Loss based on the greedy search process of submodular selection. This
loss utilizes the submodular function values as optimization response and employs a pairwise rank-
ing loss to enforce that the corresponding transformed regions are selected in the order of the search
path. Additionally, an extra constraint is imposed on the search termination, requiring that the con-
sistency score of the last selected region exceeds a predefined stopping threshold. This guarantees
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that the search process terminates at the same stage. The integration of these two components ul-
timately enables differentiable optimization of the black-box greedy search process. We conducted
experimental validation across multiple dimensions, including task performance, attribution stabil-
ity, faithfulness, rationality, and precision. The results demonstrate that using high-quality, highly
faithful attribution results as regularization constraints significantly improves the model’s attribution
quality while minimizing the impact on task performance. The main contributions are as follows:

• We propose a self-supervised submodular searching regularization method. It constructs
high-quality ground-truth through a high-faithfulness attribution mechanism and strict sam-
ple selection, enforcing geometric transformation consistency, thereby enhancing attribu-
tion rationality and stability.

• we propose a submodular ranking loss based on the greedy search process, which resolves
non-differentiable and path-dependent issues encountered by submodular attribution, en-
suring highly consistent final attribution results.

• Comprehensive evaluation across multiple metrics, including task performance, attribution
stability, precision, faithfulness, and rationality, shows the proposed method significantly
enhances attribution quality with minimal performance impact.

2 RELATED WORK

2.1 SEARCH-BASED ATTRIBUTION METHODS

The core idea is to generate high-precision attribution maps by executing an intelligent search strat-
egy across the input space to locate the most critical local regions for the model prediction, opti-
mized through an evaluation function. For example, SAGs (Karimi et al., 2023) employs a beam
search algorithm to systematically explore multiple high-confidence local regions within an input
image, thereby moving beyond the limitation of traditional saliency maps, which can only generate
a single explanation. MoXI (Sumiyasu et al., 2024), a game theory-based attribution method, lever-
ages Shapley values to identify critical pixel groups by quantifying their synergistic interactions,
rather than evaluating each pixel contribution in isolation, thereby revealing the basis for model
decisions with greater accuracy. SMDL (Chen et al., 2024) is an attribution method based on sub-
modular optimization. It employs a search strategy to filter the most representative key regions from
sparsified image patches according to multiple scoring criteria, thereby generating concise and in-
terpretable attribution maps. VPS (Chen et al., 2025) is a novel attribution method based on visual
precision search, specifically designed to interpret multimodal foundation models (e.g., Grounding
DINO (Liu et al., 2024) and Florence-2 (Xiao et al., 2024)). By partitioning input images into sparse
sub-regions and leveraging submodular functions for region selection, it generates highly precise at-
tribution maps.

2.2 ATTRIBUTION REGULARIZATION

Attribution regularization (Gao et al., 2024) enhances model training by applying constraints directly
to attribution maps, guiding the model to minimize reliance on noise and irrelevant features. This
encourages the model to focus on meaningful patterns in the data, significantly improving the ratio-
nality and reliability of attribution results. Consistency is a core objective of attribution regulariza-
tion, ensuring that the model’s attribution results remain stable even when the input data distribution
undergoes significant changes. Several methods have now been proposed to enhance the consis-
tency of attribution regularization. For example, Pillai et al. (Pillai & Pirsiavash, 2021) proposed
improving the consistency of model explanations by incorporating consistency constraints during
training, resulting in more coherent and reliable explanations under a given attribution method. Li
et al. proposed the DRE framework (Li et al., 2023), which leverages the differences between
data distributions as a self-supervised signal to guide the model toward producing consistent and
stable explanations for the same input, even under distribution shifts or environmental variations.
This approach significantly enhances the robustness and reliability of model attributions in out-
of-distribution (OOD) scenarios. Liu et al. proposed the ICEL (Liu et al., 2023) method, which
introduces an Inconsistent Explanation Loss as its core component. This loss function optimizes
the model by measuring the differences between explanation heatmaps corresponding to different
predictions for the same image.
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Figure 2: The complete computation of the Submodular Rank Loss with two stages. In the query
stage, the original image is searched to obtain a decision region set Rsel, stopping when its con-
sistency score meets a predefined threshold τ . The sequence Rsel serves as the supervision target.
During training, a selection ranking loss LSelR ensures each element in the path is properly selected
from candidates, while an additional selection truncation loss LSelT applied to the final element
enforces consistent search termination.

3 METHOD

3.1 PRELIMINARY

In this section, we provide a brief introduction to the attribution method based on submodular subset
selection, details are provided in the appendix B. The attribution search process could be reformu-
lated as maximizing a submodular function Ψ(S,F) measuring the interpretability of a selected
subset of regions (Chen et al., 2024). A simple greedy algorithm is capable of identifying a near-
optimal result as long as Ψ is monotone non-decreasing. In this work, such a submodular function
was proposed with three scoring components:

Consistency score. Ensuring that the semantic features of the selected region S are consistent with
the entire image X , which is denoted as:

Ψcons(Sk,F) = F(Sk)ȳ, (1)

where F represents the classification model to be explained, ȳ is the predicted category, and the
selected Sk is derived by merging subsets of the currently selected regions Rsel = {r∗1 , . . . , r∗k},
denoted as Sk = SUM(Rsel).

Confidence score. Ensuring that the selected region S enables the model to make predictions with
a very high level of confidence, which is denoted as:

Ψconf(Sk,F) = 1− C∑C
i=1(exp(F(Sk)i) + 1)

. (2)

Collaboration score. Ensuring that upon covering the selected region S, the features of the remain-
ing image parts are dissimilar to the entire image, which is denoted as:

Ψcolla(Sk, X,F) = 1−Ψcons(X − Sk,F). (3)
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The overall submodular function is calculated as:

Ψ = λ1 ·Ψcons + λ2 ·Ψconf + λ3 ·Ψcolla. (4)

3.2 SUBMODULAR RANKING LOSS

Conventional attribution methods generate results in one step, whereas search-based methods pro-
duce explanations through a sequential decision process. Therefore, to enforce attribution invariance
under geometric transformations, we must ensure that the greedy search path (i.e., the sequence of
selected regions) remains consistent between original and transformed images, ultimately leading to
identical final results. Motivated by this, we employ submodular function Ψ(S,F) that measures the
relevance of a region set R to the parameters θ of model F . Based on the greedy search trajectory,
we propose a novel Submodular Ranking Loss that constraints the order of region selection to be
invariant across transformations. The overall pipeline is illustrated in Fig. 3.

Given a training image and label (X, y), we first obtain the attribution region query sequence for the
image. The image is partitioned into n sub-regions to form a candidate set Rcan = {r1, · · · , rn}We
then employ the SMDL method to perform attribution region search. The process terminates when
the consistency score Ψcons(Sk,F) of the currently selected subset reaches a predefined threshold
τcons (set to τcons = 0.7 in experiments). Sk is taken as the final result, and the corresponding
attribution region sequence Rsel = {r∗1 , · · · , r∗k} is used as the supervision ground truth during
training.

During the training phase, we constrain the model to ensure that the attribution search sequence
under geometric transformations remains consistent with the query set Rsel. We adopt horizontal
flipping to first obtain the flipped candidate region set R̃can = {r̃1, · · · , r̃n} and the query region set
R̃sel = {r̃∗1 , · · · , r̃∗k}. At step i of the search, given the current selected subset R̃i = {r̃1, · · · , r̃i−1}
and the candidate set R̃can\R̃i, we enforce that the region r̃∗i should be chosen from the candidate set.
This implies that the submodular function value of the new attribution region S̃i = SUM(R̃i) + r̃∗i
should be higher than that of any other candidate region. Since we only require that the region r̃∗i
achieves the highest score rather than a strict total ordering, we formulate this Selection Ranking
loss between r̃∗i and other candidate region r̃ ∈ R̃can\R̃i using a pairwise ranking loss, i.e. Relu(·):

LSelR =

k∑
i=1

n−i∑
j=1

ReLU(Ψ(Si−1 + r̃j)−Ψ(Si−1 + r̃∗i ) + δ)

(2n− k − 1) · k/2
. (5)

Here, δ is a parameter that controls the score margin between the selected region r̃∗i and other
candidate regions r̃. When i = 1, R̃0 = {∅} and S̃0 serves as an all-zero starting point for the
search. During the search process, we also set τcons as a stopping condition. Therefore, after the
image is flipped, we require not only that the search trajectory remains consistent, but also that the
stopping point remains the same, ensuring consistent explanation results. Thus, at the final step
of the search, the consistency score of the selected region r̃∗k should exceed τcons, ensuring that the
attribution search process on the flipped image stops at this point. We define a Selection Truncation
loss as follows:

LSelT = ReLU(τcons −Ψcons(Si−1 + r̃∗k,F) + δ) (6)

Based on the above content, we have constructed the final Submodular Ranking loss:

LSubR = LSelR + LSelT. (7)

3.3 SUBMODULAR SEARCHING REGULARIZATION

We adopt a fine-tuning strategy based on pre-trained models to implement submodular searching
regularization. This design is motivated by two key considerations: first, attribution search requires
the model to already possess stable decision-making capabilities in order to effectively adjust its
behavior based on attribution patterns; second, since the training process is self-supervised regular-
ization learning, the quality of the query set Rsel directly influences the final training outcome.

To ensure the quality of Rsel, we implement a two-tier strategy: first, regularization constraints are
applied only to high-confidence correctly classified samples. Our objective is to enhance attribution

5
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Algorithm 1: Submodular Searching Regularization
Input: Pretrained model F with parameter θ, training set D, searching truncation threshold

τcons, regularization strength λ, classification confidence threshold τconf , searching
area threshold τa, learning rate α.

Output: Finetuned Model F∗ .
1 for Epoch=1...N do
2 for training sample (X, y) ∈ D do
3 Acquire the model prediction z ← Fθ(X);
4 Divide image X into region set R = {r1, · · · , rn};
5 Acquire attribution region sequence Rsel = {r∗1 , . . . , r∗k} ← SMDL(F , R, τcons);
6 Calculate classification loss Lcls ← CE(z, y);
7 if argmax(z) = y and max(z) > τconf and Area(S) < τa then

// Leveraging reliable sample for regularization

8 (X̃, R̃sel)← HorizontalFlip(X,Rsel);
9 Calculate regularization based on 7 Lreg ← LSubR(F , X̃, R̃sel);

10 L ← Lcls + λ · Lreg;
11 else

// Maintaining task constraints on unreliable sample
12 L ← Lcls;
13 end
14 Update model parameters θ ← θ − η · ∂θL
15 end
16 end

quality with minimal impact on task performance, as erroneous patterns in misclassified samples
may adversely affect training. Second, we observe that directly applying SMDL attribution to pre-
trained models often includes excessive irrelevant regions (manifested as an overly large attribution
area Area(S), frequently exceeding two-thirds of the total image area). Since ideal attributions
should be more focused and discriminative, we introduce an area threshold τa to select samples with
more concentrated attributions for regularization training. The complete regularization workflow is
summarized in Algorithm 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

4.1.1 EXPERIMENT SETUP

We conducted experiments using both ViT-Base/16 and ViT-Large/16 architectures on the
ImageNet-100 dataset (Tian et al., 2020) to evaluate model performance. ImageNet100 is a subset
of ImageNet-1K, comprising 100 selected categories. We utilize all training and validation images
within these categories. Our approach was compared with the attribution regularization methods
Grad-CAM Consistency (GC) (Pillai & Pirsiavash, 2021) and Contrastive Grad-CAM (CGC) (Pillai
et al., 2022). We first fine-tuned the pre-trained model on the ImageNet100 dataset for 5 epochs to
establish a baseline model. Both the GC and CGC methods were directly fine-tuned from the pre-
trained model for 10 epochs. In contrast, our method involved an additional 5 epochs of fine-tuning
on top of the baseline model.

4.1.2 EVALUATION METRIC

We adopt a comprehensive set of metrics to evaluate both task performance and attribution quality.
Classification performance is measured by Top-1 accuracy (Acc). Attribution quality is evaluated
with several metrics. Stability is a modified Intersection-over-Union (IoU) that measures the over-
lap between attribution regions before and after image flipping, with an additional penalty term to
account for excessively large attribution regions. Attribution Area (Attr. Area) quantifies the frac-
tion of image pixels highlighted by the attribution map, reflecting the precision of explanations. We

6
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Figure 3: Comparison of attribution results and corresponding saliency maps before and after image
flipping using different methods. The model employed is ViT-Base. (Best viewed when zoomed in.)

Table 1: Task performance and attribution quality metrics of across different methods. Faithfulness
metrics PG are calculated via SDML.

Model Method Acc (↑) Stability (↑) Insertion (↑) Deletion (↓) Attr. Area (↓)

ViT-B/16

Baseline 0.9360 0.14 0.4496 0.1363 55.01%
GC 0.9194 0.14 0.4259 0.1002 58.99%
CGC 0.9260 0.13 0.4095 0.3127 59.49%
Ours 0.9332 0.27 0.6840 0.0515 24.48%

ViT-L/16

Baseline 0.9218 0.15 0.4308 0.1396 56.92%
GC 0.8978 0.15 0.3910 0.0855 62.47%
CGC 0.9008 0.13 0.3859 0.1264 61.01%
Ours 0.9118 0.23 0.5494 0.0214 37.03%

also report Insertion and Deletion scores (Wang & Wang, 2024) to evaluate attribution faithfulness,
where Insertion measures the increase in model confidence when the most relevant pixels are grad-
ually inserted, and Deletion measures the decrease in confidence when the most relevant pixels are
removed. Finally, Pointing Game (PG) (Nguyen et al., 2023) and Enhanced Pointing Game (EPG)
(Gairola et al., 2025) are adopted to evaluate the spatial alignment between attribution maps and
ground-truth object locations.

4.2 STABILITY

Table 1 reports the classification accuracy (Acc) and attribution stability of different models. We
observe that both GC and CGC lead to non-trivial degradation in classification performance, with
up to 2–3% accuracy drops compared to the baseline. In contrast, our method preserves the classi-
fication accuracy almost intact: on ViT-B/16, the accuracy decreases only marginally from 0.9360
(Baseline) to 0.9332, and on ViT-L/16 from 0.9218 to 0.9118, demonstrating that the primary task
performance is largely unaffected. Meanwhile, our method yields substantial gains in Stability. For
instance, on ViT-B/16, Stability nearly doubles from 0.14 (Baseline) to 0.27, while GC and CGC
remain almost unchanged at 0.14 and 0.13, respectively. Similar improvements are observed for
ViT-L/16, where Stability increases from 0.15 to 0.23. These results highlight that our submodular
regularization enforces much stronger invariance of attribution maps under image transformations,
without sacrificing classification accuracy.

7
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Table 2: Rationality metrics of attribution for different methods. We evaluated both the black-box
attribution method SMDL and the white-box attribution method Grad-Eclip. The best results in each
column are highlighted in bold.

Method ViT-B/16 ViT-L/16

PGSMDL EPGSMDL PGEclip EPGEclip PGSMDL EPGSMDL PGEclip EPGEclip

Baseline 0.8244 0.5508 0.8664 0.7400 0.8338 0.5553 0.4906 0.4479
GC 0.8246 0.5442 0.8840 0.7133 0.8392 0.5406 0.4982 0.4701
CGC 0.8278 0.5338 0.8544 0.6401 0.7990 0.5319 0.5630 0.5060
Ours 0.8906 0.6829 0.8638 0.7497 0.8626 0.6691 0.5594 0.5053

4.3 FAITHFULNESS

We next examine the faithfulness of attribution maps using the Insertion and Deletion metrics. Ta-
ble 1 shows that our method consistently achieves the best trade-off between these two complemen-
tary measures. For ViT-B/16, the Insertion score increases from 0.4496 (Baseline) to 0.6840, while
the Deletion score drops sharply from 0.1363 to 0.0515. Similar improvements are observed on ViT-
L/16, where Insertion rises from 0.4308 to 0.5494 and Deletion decreases from 0.1396 to 0.0214. In
comparison, existing regularization approaches (GC, CGC) often fail to deliver consistent gains. For
example, CGC reduces Insertion to 0.4095 on ViT-B/16 and increases Deletion to 0.3127, suggest-
ing that these methods may over-regularize and suppress informative features. Overall,the marked
reduction in Deletion and the significant boost in Insertion highlight that our attributions are not
only more compact but also more faithful to the decision-making process, yielding explanations that
better align with human intuition.

4.4 RATIONALITY

We further assess rationality from two complementary perspectives: the compactness of attribution
regions (Attr. Area) and the semantic alignment with target objects (PG/EPG). On Attr. Area, our
method produces substantially more compact explanations. For instance, on ViT-B/16, the attribu-
tion area is reduced from 55.01% (Baseline) to 24.48%, and on ViT-L/16, from 56.92% to 37.03%.
This demonstrates that our approach avoids covering irrelevant regions and instead focuses attribu-
tion on the most discriminative evidence. On PG and EPG, our method consistently outperforms all
baselines. Specifically, on ViT-B/16, PGSMDL improves from 0.8244 to 0.8906, and EPGSMDL from
0.5508 to 0.6829. Similar gains are observed on ViT-L/16, where PGSMDL increases from 0.8338
to 0.8626, and EPGSMDL from 0.5553 to 0.6691. These results indicate that our attributions not
only remain compact but also align more accurately with semantically meaningful object regions.
In contrast, existing regularization baselines (GC, CGC) exhibit instability: while sometimes im-
proving one metric, they often lead to enlarged attribution regions (e.g., CGC exceeding 59% area
on ViT-B/16) and degraded PG/EPG performance. Our method, achieves improvements on both
compactness and semantic rationality simultaneously, yielding more interpretable explanations.

4.5 ABLATION STUDY

4.5.1 SUBMODULAR FUNCTION

We conduct ablation study to verify the impact of different submodular scores or combinations of
submodular scores on model performance and attribution quality by ablating different terms of the
submodular function. The experiments were conducted on the ViT-B model. During training with
different ablated terms, the weights of all submodular score terms were set to 1.0. The experimental
results are shown in Table 4.5.1. As can be seen from the results, the model achieves the best
performance across all evaluation metrics when all three submodular scores are used for training.
The second tier of methods includes the combination of Conf. + Colla. and Confidence alone,
which perform close to the best, even surpassing the full version by 0.0308 in terms of attribution
rationality (Conf. + Colla.). Following these are Cons. + Colla. and Collaboration alone, which
show attribution metrics similar to those of the pre-trained model but with a decrease in accuracy.
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Table 3: Task performance and attribution quality metrics of ViT-B model under different combina-
tions of submodular function components. Location metrics PG are calculated via SDML.

Submodular Function Acc. (↑) Stab. (↑) Area (↓) Insert. (↑) PG (↑)
Conf. Score Cons. Score Colla. Score

" % % 0.9320 0.25 55.02% 0.4620 0.8366
% " % 0.9318 0.09 74.00% 0.2778 0.9124
% % " 0.9306 0.12 58.04% 0.4001 0.8730
" " % 0.9332 0.05 80.78% 0.2064 0.9220
" % " 0.9288 0.26 32.85% 0.6661 0.9214
% " " 0.9252 0.16 46.79% 0.4543 0.8360
" " " 0.9332 0.27 37.03% 0.6840 0.8906

Table 4: Task performance and attribution quality metrics of ViT-B model under different weights
of attribution regularization constraints. Location metrics PG and EPG are calculated via SDML.

Reg. Weight λ Acc (↑) Stab. (↑) Inser. (↑) Delet. (↓) Area (↓) PG (↑) EPG (↑)
0 0.9360 0.14 0.4496 0.1363 55.01% 0.8244 0.5508

0.01 0.9346 0.29 0.7050 0.0496 24.31% 0.8744 0.6788
0.10 0.9332 0.27 0.6840 0.0515 24.48% 0.8906 0.6829
0.50 0.9316 0.27 0.6409 0.0229 29.88% 0.8840 0.6641
1.00 0.9282 0.34 0.7063 0.1580 28.99% 0.9172 0.7104

4.5.2 REGULARIZATION STRENGTH λ

We systematically evaluate the impact of the attribution regularization weight (λ) on the task perfor-
mance and attribution quality of the ViT-B model, as reported in Table 4. When λ increases from 0
to 1.00, classification accuracy (Acc) experiences only a marginal decrease from 0.9360 to 0.9282,
confirming that the primary task performance is well-maintained. In contrast, attribution metrics
show substantial improvements. Most notably, the Deletion (↓) score plunges from 0.1363 (λ = 0)
to 0.0229 (λ = 0.50), indicating that the explanations become far more faithful by focusing on truly
relevant features. The Insertion (↑) score also improves significantly, from 0.4496 to over 0.7063 for
λ ≥ 0.01. The weight λ = 0.10 appears to be a favorable balance point, where attribution quality
metrics like PG (↑) and EPG (↑) see significant gains (e.g., PG: 0.8244→ 0.8906) with a negligible
accuracy drop (less than 0.003). Excessively high weights (e.g., λ = 1.00) may improve stability
but can introduce instability in other metrics. The results validate that the choice of λ provides a
tunable knob to balance between task accuracy and explanation quality, with an intermediate range
(λ = 0.01 ∼ 0.50) offering the most favorable trade-off.

5 CONCLUSION

This paper proposed a training framework based on high-fidelity submodular attribution to enhance
the stability and rationality of model attributions. To improve attribution rationality, the proposed
method leverages high-fidelity submodular attribution to automatically extract compact and discrim-
inative pseudo-ground-truth regions, providing high-quality, annotation-free supervision for train-
ing. To address the non-differentiability and path-dependency of submodular search, a submodular
ranking loss is proposed, which enforces consistency in search paths and alignment of their termi-
nation under geometric transformations, thereby achieving differentiable optimization of the greedy
search procedure. Results across five key dimensions (classification accuracy, attribution stability,
faithfulness, rationality, precision) verify that the framework enables models to learn more reliable
and consistent explanations without human supervision.
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A APPENDIX

A.1 USE OF LLM

Declaration: The use of DeepSeek in the preparation of this manuscript was strictly limited to
grammatical improvements and text polishing.

B INTRODUCTION OF SUBMODULAR SELECTION

A submodular function is a set function with the property of diminishing marginal returns. A sub-
modular function is a set function defined on a finite set S, denoted as Ψ : 2S → R. For any subsets
Sa ⊆ Sb ⊆ S any elements s ∈ S \ Sb, it satisfies the following condition:

Ψ(Sa ∪ {s})−Ψ(Sa) ≥ Ψ(Sb ∪ {s})−Ψ(Sb). (8)

This property is also described as the characteristic of ”diminishing marginal returns”. We then
review the process of attribution region search. We aim to identify the most critical regions that sup-
port the model’s decision from the set of subregions partitioned from the image. This means that the
initial search results should have a higher contribution to the model’s decision, whereas the marginal
contribution of regions added later diminishes. Therefore, the attribution search process inherently
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aligns with the property of submodular function and could be reformulated as maximizing a sub-
modular function Ψ(S) measuring the interpretability of a selected subset of regions. The primary
advantage of this approach lies in the fact that, provided a monotone non-decreasing submodular
function can be constructed, a simple greedy algorithm is capable of identifying a near-optimal
subset within a large search space (Nemhauser et al., 1978).
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