

000 001 002 003 004 005 ROBUSTLIGHT++: A META-DIFFUSION FRAMEWORK 006 FOR ROBUST TRAFFIC SIGNAL CONTROL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Despite remarkable progress in Reinforcement Learning (RL) for Traffic Signal Control (TSC), existing methods largely lack the ability to generalize across cities, limiting their applicability in real deployments. The recent SoTA method RobustLight improves robustness but still exhibits weak transfer performance, high inference latency, and limited resistance to sensor failures. In this paper, we present RobustLight++, a meta-diffusion-based framework designed to explicitly learn transferable representations among heterogeneous urban environments. By theoretically linking DDIM with Reptile meta-learning, RobustLight++ enables a diffusion policy that supports both zero-shot deployment and few-shot adaptation in unseen cities, significantly reducing the cost of retraining and data collection in new domains. Comprehensive experiments on large-scale real-world benchmarks demonstrate superior cross-city transfer capability, with performance gains ranging from 7.41% to 52.13% under diverse noise conditions, and consistent improvements over all competing baselines in unseen environments. In addition, RobustLight++ achieves up to 91.9% reduction in inference latency, ensuring real-time applicability. The proposed framework delivers a practical solution toward scalable, transferable, and robust urban traffic control systems. Our code is available at <https://anonymous.4open.science/r/RobustLightPlus-E14F>.

1 INTRODUCTION

Traffic Signal Control (TSC) is a fundamental component of urban traffic management, aiming to alleviate congestion and improve mobility (Liang et al., 2018). While recent Reinforcement Learning (RL) based approaches have demonstrated promise in adaptive signal control (Wei et al., 2019c), their practical deployment is often hindered by critical challenges in generalization, efficiency, and robustness, particularly when faced with imperfect real-world sensor data. The recent state-of-the-art (SoTA), RobustLight (Li et al., 2025b;a), marks a significant step forward. However, several critical limitations still impede its large-scale, real-world application: 1) its per-city training paradigm, which requires a separate model for each environment, fundamentally restricts its ability to generalize and transfer knowledge across diverse urban settings; 2) its inference and adaptation processes are computationally intensive, resulting in high latency that is prohibitive for real-time control applications; and 3) although effective in controlled research settings, it falls short of meeting industrial-grade standards under the complex, dynamic, and noisy conditions of real-world traffic. These limitations underscore the urgent need for a more generalizable, efficient, and robust framework capable of adapting to new environments with minimal overhead.

To address the challenge of generalization, meta-learning frameworks have been proposed (Huang et al., 2021; Zang et al., 2020) to extract transferable knowledge across different cities. Concurrently, denoising diffusion models, such as Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020a), have emerged as exceptionally powerful generative tools. However, their potential for robust decision-making and meta-generalization in RL remains largely underexplored.

In this work, we bridge this gap by introducing **RobustLight++**, a novel meta-diffusion framework. We establish a key theoretical connection between the iterative sampling process of DDIM and the meta-update rule of Reptile (Nichol et al., 2018). Our core insight is that the DDIM sampling process naturally mirrors a gradient-based meta-optimization, where the learned noise predictor implicitly

054 guides the policy toward a robust solution space. Based on this connection, we propose a unified
 055 framework that recasts the diffusion model as a powerful meta-learner, enabling rapid and robust
 056 policy adaptation across cities with only a few fine-tuning steps.

057 This work significantly narrows the gap between academic research and the practical demands of
 058 industrial-scale traffic optimization. Our primary contributions are:
 059

- 060 • We establish a novel theoretical connection between the DDIM sampling process and the
 061 Reptile meta-learning, framing DDIM as a learnable and robust meta-optimizer for policy
 062 adaptation.
- 063 • We propose **RobustLight++**, a unified meta-diffusion framework that leverages this con-
 064 nection for cross-city TSC, enabling superior generalization and rapid adaptation with a
 065 single shared model.
- 066 • We validate the effectiveness of our approach on multiple real-world benchmarks, where
 067 it achieves SoTA performance, reduces inference latency by over 91.9%, and demonstrates
 068 industrial-grade availability.

070 2 RELATED WORKS

071 TSC has progressed from rule-based methods (Webster, 1958) to adaptive systems like SCOOT
 072 (Hunt et al., 1981), SCATS (Lowrie, 1990), and RHODES (Mirchandani & Head, 2001), which
 073 reduce delays dynamically. Control-theoretic methods such as Max Pressure (Varaiya, 2013) and
 074 Efficient Pressure (Wu et al., 2021) offer robustness but rely on simplified assumptions. Rein-
 075 forcement learning has become the dominant paradigm (Wei et al., 2021), with approaches like
 076 IntelliLight (Wei et al., 2018), PressLight (Wei et al., 2019a), CoLight (Wei et al., 2019b), and
 077 MetaLight (Zang et al., 2020) achieving strong results. Recent works explore multi-agent coordi-
 078 nation (Song et al., 2024) and multi-modal or hierarchical representations (Yu et al., 2023; Wang
 079 et al., 2024; Ruan et al., 2024; Duan et al., 2025), yet most still rely on fixed, hand-crafted state
 080 features. Viewing traffic as a complex system (Mitchell, 2009; Strogatz, 2001), hierarchical RL
 081 provides scalable solutions (Salehkaleybar et al., 2019; Shen et al., 2020).

082 Meta-learning has advanced through diverse strategies, including latent embedding optimization
 083 (Rusu et al., 2018), differentiable convex solvers (Lee et al., 2019), implicit gradients (Rajeswaran
 084 et al., 2019; Zhang et al., 2023), and sparsity-aware adaptation (Von Oswald et al., 2021). Studies
 085 have also explored the trade-off between rapid learning and feature reuse (Raghu et al., 2019). Re-
 086 cently, MetaDiff (Zhang et al., 2024) introduced a task-conditional diffusion-based framework that
 087 generalizes gradient descent with learnable momentum and uncertainty modeling. Meta-learning
 088 has recently emerged as a promising direction in TSC for improving generalization and adaptability
 089 across varying traffic scenarios. Early works like MetaLight (Zang et al., 2020) and CrossLight
 090 (Sun et al., 2024) applied meta-learning for quick adaptation and cross-scenario generalization, but
 091 overlooked safety concerns in TSC.

092 Diffusion models have achieved remarkable success in generative modeling (Ho et al., 2020a; Song
 093 et al., 2020a; Nichol & Dhariwal, 2021b), with improvements in training stability and sample quality
 094 through advanced beta schedules (Xiao et al., 2021; Nichol & Dhariwal, 2021a). Classifier-free
 095 guidance further enhanced controllability (Ho & Salimans, 2022). Recently, diffusion has been
 096 extended to RL for robust decision-making under uncertainty, such as DiffLight for missing data in
 097 TSC (Chen et al., 2024), RobustLight for policy robustness (Li et al., 2025b), and DMBP for offline
 098 RL with noisy states (Yang & Xu, 2023). However, these algorithms suffer from slow inference
 099 speed, making them impractical for real-world deployment, and their reconstruction performance
 100 remains suboptimal.

102 3 PRELIMINARY

103 3.1 CROSS-CITY FEW-SHOT POLICY TRANSFER

104 We consider a meta-RL setting for TSC, where K source cities $\mathcal{T}_1^{\text{src}}, \dots, \mathcal{T}_K^{\text{src}}$ provide offline trajec-
 105 tories, and a target city \mathcal{T}_{tgt} lacks prior data but allows limited online interactions. The objective is

108 to transfer a policy pre-trained on $\mathcal{T}_k^{\text{src}}$, $k = 1, \dots, K$ and adapt it efficiently to \mathcal{T}_{tgt} using only a few
 109 online rollouts, thereby maximizing travel efficiency with minimal deployment cost.
 110

111 3.2 TRAFFIC SIGNAL CONTROL

112 We use a four-way intersection, as depicted in
 113 Figure 1, to introduce key concepts and definitions
 114 for TSC. A road network comprises multiple
 115 intersections, each with N road segments,
 116 denoted as $\{\text{Inter}_1, \dots, \text{Inter}_N\}$. Each
 117 intersection is equipped with four directional
 118 sensors (e.g., cameras, radars) monitoring three
 119 lanes per direction. Sensor states are color-
 120 coded as green for normal, orange for noise
 121 attacks, and red for sensor damage, as shown
 122 in Figure 1(b). A vehicle’s path through an
 123 intersection, from an entry lane ($lane_{in}$) to
 124 an exit lane ($lane_{out}$), is defined as $TM =$
 125 $(lane_{in}, lane_{out})$, as illustrated in Figure 1(c).
 126 A traffic signal phase consists of two distinct
 127 movements, TM_i and TM_j ($i \neq j$), denoted as
 128 $p_w = (TM_i, TM_j)$, as shown in Figure 1(d).
 129

130 3.3 ADVERSARIAL ATTACKS AND SENSOR DAMAGE

131 We define four adversarial attacks and physical sensor damage affecting TSC. The **Gaussian Noise**
 132 **Attack** adds Gaussian noise $\mathcal{N}(\mu, \sigma^2)$ scaled by intensity k to the state s , yielding $\tilde{s}_t = s_t + k \cdot \mathcal{N}$.
 133 The **U-rand Attack** introduces uniform random noise \mathcal{U} within intensity k , expressed as $\tilde{s}_t = s_t + k \cdot$
 134 $\mathcal{U}(I, I)$, where I is the identity matrix. The **MAD Attack** selects noise within an ℓ_∞ ball $\mathbf{B}_d(s, k)$ to
 135 maximize policy divergence: $\tilde{s}_t = s_t + \arg \max_{\tilde{s} \in \mathbf{B}_d(s, k)} D(\pi_\phi(\cdot|s) \parallel \pi_\phi(\cdot|\tilde{s}))$. The **MinQ Attack**
 136 chooses noise within $\mathbf{B}_d(s, k)$ to minimize the Q -value: $\tilde{s}_t = s_t + \arg \min_{\tilde{s} \in \mathbf{B}_d(s, k)} Q(\tilde{s}_t, \pi_\phi(\cdot|\tilde{s}))$.
 137 Finally, **physical sensor damage** (e.g., due to weather or human factors) leads to unobserved state
 138 dimensions, which we model as $\tilde{s}_t = \text{Mask} \cdot s_t$.
 139

140 3.4 DENOISING DIFFUSION IMPLICIT MODELS

141 Diffusion models generate data by reversing a Markovian noise process over T steps. To accelerate
 142 inference, DDIM (Song et al., 2020a) introduces a strided schedule τ_1, \dots, τ_S with $S \ll T$, skipping
 143 redundant steps. The transition distribution is reformulated as:

$$145 \quad \mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta^{(t)}(\mathbf{x}_t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \epsilon_\theta^{(t)}(\mathbf{x}_t) + \sigma_t \epsilon,$$

146 where $\epsilon_\theta^{(t)}$ predicts the noise at step t , and $\sigma_t^2 = \delta \cdot \tilde{\beta}_t$ modulates stochasticity via a tunable hyper-
 147 parameter $\delta > 0$, $\tilde{\beta}_t = \sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$, $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ and $\sigma \sim \mathcal{N}(0, I)$.
 148 Setting $\delta = 0$ yields a deterministic generation process. DDIM preserves the marginal distribution
 149 of DDPM (Ho et al., 2020b) but allows for significantly faster sampling. To capture the underlying
 150 data geometry, Song et al. (2020b) approximate the true score $\nabla \log p_t(\mathbf{x})$ using a parameterized
 151 estimator $\mathbf{s}_\theta(\mathbf{x}, t)$. The model parameters θ by minimizing the weighted Fisher divergence, which
 152 takes the form of a weighted Mean Squared Error (MSE):
 153

$$154 \quad J(\theta; \lambda) := \frac{1}{2} \int_0^T \lambda(t) \mathbb{E}_{p_t} [\|\nabla \log p_t(\mathbf{x}) - \mathbf{s}_\theta(\mathbf{x}, t)\|^2] dt. \quad (1)$$

155 Here, $\lambda(t) > 0$ is a time-dependent weighting function that balances the learning signal across
 156 different noise scales. Kwon et al. (2022) estimate the Wasserstein distance $W_2(p_0, q_0)$ between a
 157 given data distribution p_0 and the marginal of the generated samples q_0 obtained by the score-based
 158 model $\mathbf{s}_\theta(\mathbf{x}, t)$.
 159

162 3.5 REPTILE META LEARNING
163

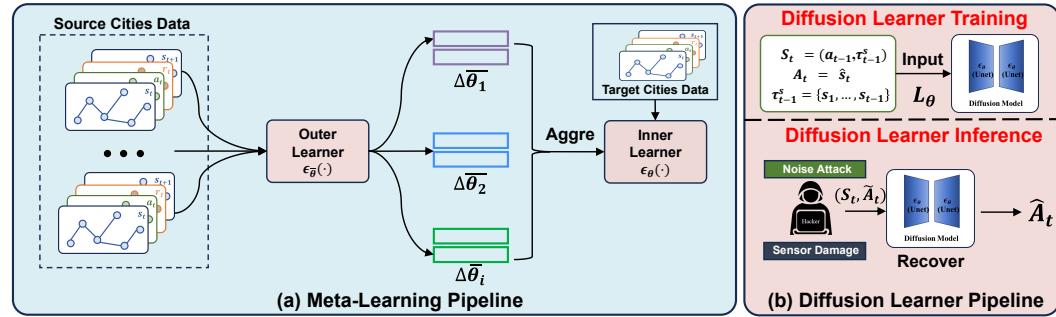
164 Reptile is a first-order gradient-based meta-learning algorithm, similar in spirit to Model-Agnostic
165 Meta-Learning (MAML) (Finn et al., 2017) but computationally more efficient. It iteratively sam-
166 ples tasks, performs k steps of task-specific Stochastic Gradient Descent (SGD) from an initializa-
167 tion θ to obtain $\phi = \nabla \mathcal{L}_{\mathcal{T}}(\theta)$, and updates θ toward ϕ :

$$168 \theta \leftarrow \theta - \mu(\theta - \phi), \quad (2)$$

169 where μ is the meta step size. This process encourages θ to lie close to the optimal manifold \mathcal{M}_i
170 of each task \mathcal{T}_i . Assuming each task \mathcal{T}_i has an optimal parameter manifold $\mathcal{M}_i(\phi)$, the learning
171 objective becomes minimizing the aggregated distance $\|\theta - \mathcal{M}_i(\phi)\|_2^2$ across tasks. The Reptile
172 update approximates the gradient of this objective by treating ϕ as a proxy for the projection of θ
173 onto $\mathcal{M}_i(\phi)$:

$$174 \nabla_{\theta} \left[\frac{1}{2} \|\theta - \mathcal{M}_i(\phi)\|_2^2 \right] \approx (\theta - \phi). \quad (3)$$

175 This enables generalization by locating θ near the intersection of task-specific optima, facilitating
176 fast adaptation in new tasks.

177 4 METHODS
178179 4.1 DDIM WITH REPTILE META LEARNING THEORY
180

181
182 Figure 2: Overall framework of RobustLight++. In meta-learning pipeline, it employs Reptile
183 meta-learning with a two-level architecture. The outer diffusion learner acquires meta-parameters from
184 source cities data, while the inner diffusion learner performs final parameter adaptation on target
185 cities data. In the diffusion pipeline, it uses a trained model to recover the state.

186 4.1.1 LINKING TO REPTILE META-LEARNING.
187

188 We begin by observing the structural similarity between the update rule in diffusion-based mod-
189 els and classical gradient-based optimization (Zhang et al., 2024). Consider the standard gradient
190 descent formulation:

$$191 \mathbf{x}_{t-1} = \frac{\sqrt{\bar{\alpha}_{t-1}}}{\sqrt{\bar{\alpha}_t}} \mathbf{x}_t - \left(\frac{\sqrt{\bar{\alpha}_{t-1}} \sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} - \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \right) \epsilon_{\theta}^{(t)}(\mathbf{x}_t) + \sigma_t \epsilon. \quad (4)$$

192 By defining the following time-dependent parameters:

$$193 \gamma = \frac{\sqrt{\bar{\alpha}_{t-1}}}{\sqrt{\bar{\alpha}_t}}, \quad \xi = \sigma_t, \quad \eta = \frac{\sqrt{\bar{\alpha}_{t-1}} \sqrt{1 - \bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} - \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2}.$$

194 4.1.1.1 LINKING TO REPTILE META-LEARNING.
195

196 We begin by observing the structural similarity between the update rule in diffusion-based mod-
197 els and classical gradient-based optimization (Zhang et al., 2024). Consider the standard gradient
198 descent formulation:

$$199 \theta \leftarrow \theta - \eta \nabla \mathcal{L}(\theta), \quad (5)$$

216 where θ denotes the model parameters, $\nabla \mathcal{L}(\theta)$ is the loss function, and η is the learning rate. This
 217 iterative update aims to minimize the loss by moving in the direction of the negative gradient. In
 218 comparison, the deterministic update rule in DDIM can be reformulated as:
 219

$$220 \quad \mathbf{x}_{t-1} = \mathbf{x}_t - \eta \epsilon_{\theta}^{(t)}(\mathbf{x}_t) + (\gamma - 1)\mathbf{x}_t + \xi \epsilon, \quad (6)$$

222 where x_t denotes the generated sample at time step t , $\epsilon_{\theta}^{(t)}$ is the learned noise predictor, and the ad-
 223 ditional terms $(\gamma - 1)\mathbf{x}_t$ and $\xi \epsilon$ respectively introduce momentum and stochasticity into the update
 224 dynamics. By comparing Eq. (5) with Eq. (6), it becomes evident that DDIM can be interpreted
 225 as performing a noise-conditioned, time-varying descent in the data space. The term $\epsilon_{\theta}^{(t)}$ serves
 226 as a surrogate gradient, while η remains a scaling factor modulating the update magnitude. This
 227 interpretation naturally bridges the diffusion process with meta-learning. In particular, we draw par-
 228 allels to the Reptile algorithm, a first-order meta-learning method that updates the meta-parameters
 229 θ by moving them toward task-specific adapted weights ϕ , which are obtained by applying several
 230 gradient steps on a sampled task. Formally, Reptile performs:
 231

$$231 \quad \theta \leftarrow \theta + \mu(\phi - \theta), \quad (7)$$

233 where ϕ approximates $\theta - \eta \nabla \mathcal{L}_{\mathcal{T}}(\theta)$ (\mathcal{T} represents the specific task dataset) after a few steps gradient
 234 updates. In this light, the DDIM update can be viewed as an implicit meta-update, where x_t plays
 235 the role of the initialization θ , and $\epsilon_{\theta}^{(t)}$ mimics a task-specific gradient.

236 Beyond this structural resemblance, DDIM incorporates additional capabilities absent in vanilla
 237 Reptile. The momentum-like term $(\gamma - 1)x_t$ introduces time-dependent inertia that enhances sta-
 238 bility and adaptivity during sampling, akin to a learnable momentum coefficient. Meanwhile, the
 239 injected Gaussian noise $\xi \epsilon$ serves as a form of stochastic regularization, promoting robustness and
 240 avoiding overfitting to any single generative trajectory.

241 DDIM extends beyond standard gradient descent by naturally incorporating ideas from meta-
 242 optimization frameworks such as Reptile. A key advantage of DDIM is its ability to derive important
 243 hyperparameters like γ and ξ analytically from the diffusion schedule, which removes the need for
 244 manual tuning. This positions DDIM as a principled and efficient meta-optimization method that
 245 supports few-shot learning in both generative and discriminative tasks.

247 4.2 FRAMEWORK OVERVIEW

249 We propose a meta-learning framework that unifies DDIM with Reptile updates for cross-city TSC.
 250 In the meta learning pipeline, each city is treated as a task in a multi-task paradigm: an *outer loop*
 251 aggregates information across source cities and updates a shared initialization, while an *inner loop*
 252 fine-tunes that initialization on a target city. In the diffusion pipeline, we use the trained model of
 253 meta learning to recover the state. Crucially, both loops optimize the same diffusion-based loss,
 254 ensuring consistency between generalization and specialization phases.

255 4.2.1 META LEARNING PIPELINE.

257 Our diffusion learner is trained via offline meta-learning over a collection of multi-city datasets.
 258 Specifically, we first collect logged trajectories $\mathcal{D}_{\tau} = \{(s_t, a_t, s_{t+1})\}$ from each training city τ ,
 259 and aggregate them into a global offline corpus $\mathcal{D}_{\text{meta}}$. During meta-training, the diffusion model is
 260 optimized to learn a cross-domain state distribution by minimizing the diffusion loss (Yang & Xu,
 261 2023):

$$262 \quad L_{\text{diff}}(\theta; \mathcal{T}_i) = \mathbb{E}_{i \sim \mathcal{U}_K, \epsilon_t \sim \mathcal{N}(0, I), (s_{t-N}, \dots, s_{t+M-1}) \in \mathcal{D}_{\nu}} \quad (8)$$

$$263 \quad \|\epsilon_{\theta}(\tilde{s}_t^i, c_{t-1}, i) - \epsilon_t^i\|_2 + \sum_{m=t+1}^{t+M-1} \|\epsilon_{\theta}(\tilde{s}_m^i, \hat{c}_{m-1}, i) - \epsilon_m^i\|_2,$$

266 Where the condition represents as $c_t = (a_{t-1}, \tau_{t-1}^s)$, a_{t-1} is the previous TSC action, $\tau_{t-1}^s =$
 267 $\{s_1, \dots, s_{t-1}\}$ is the TSC state trajectory, $\hat{c}_{m-1} = (a_{m-1}, \tau_{m-1}^s)$, and τ_{m-1}^s is the predicted state
 268 trajectory. This loss balances immediate and future timesteps by penalizing the mismatch between
 269 predicted and true noise across a window of length $N + M$.

270 We use Reptile to meta-learn an initialization θ that performs well on any city after a few updates.
 271 For each outer iteration with N source tasks, we compute:

$$273 \quad \phi = \theta - \eta \nabla_{\theta} L_{\text{diff}}(\theta; \mathcal{T}_i), \quad \theta \leftarrow \theta + \frac{\mu}{N} \sum_{i=1}^N (\phi - \theta), \quad (9)$$

275 where μ is the outer-loop step size. This first-order update aligns the global parameters toward the
 276 average task-adapted parameters. During meta-training, we sample source tasks (e.g., *Hangzhou*)
 277 and run k diffusion-loss inner updates to compute each ϕ . The aggregated update θ refines the
 278 shared initialization. During meta-training, the denoising network is optimized on offline data from
 279 multiple source cities without environment interaction. After convergence, the diffusion model is
 280 frozen and deployed for state recovery in downstream control. At test time, the trained model
 281 supports zero-shot state reconstruction from noisy inputs. When transferring to a target city (e.g.,
 282 *JiNan*), we further perform few-shot adaptation by fine-tuning θ with the diffusion loss (Eq. 8) to
 283 improve reconstruction fidelity and generalization. The algorithm is shown in Algorithm 1. Our
 284 algorithm convergence demonstration is in theorem 1.

285 **Theorem 1.** *Let L_{diff} be the score matching loss. The Wasserstein-2 distance between the target
 286 data distribution p_0 and the model distribution q_0 is bounded by:*

$$287 \quad W_2(p_0, q_0) \leq \underbrace{\mathcal{C}_{\text{score}} \sqrt{L_{\text{diff}}(\theta)}}_{\text{Score Error}} + \underbrace{\mathcal{C}_{\text{disc}} \cdot \mu}_{\text{Reptile Error}} + \underbrace{\mathcal{C}_{\text{init}} W_2(p_T, q_T)}_{\text{Initialization}}, \quad (10)$$

290 where $\mathcal{C}_{\text{score}}$ and $\mathcal{C}_{\text{disc}}$ are constants determined by the integrated one-sided Lipschitz coefficients
 291 of the vector field.

292 **Remark.** Theorem 1 indicates that the generation quality is governed by two key factors: 1) the
 293 accuracy of the surrogate gradient (score matching loss), and 2) the step size μ of the Reptile meta-
 294 update. The one-sided Lipschitz (Kwon et al. (2022)) ensures that the reptile discretization error ac-
 295 cumulates linearly ($\mathcal{O}(\mu)$) rather than exponentially, guaranteeing the stability of the meta-trajectory.
 296 Detailed proof is in Appendix B.

298 4.2.2 DIFFUSION PIPELINE.

300 The pipeline starts from *Denoising via DDIM*. During evaluation, TSC sensors may be corrupted
 301 by Gaussian noise, MAD, U-rand, or Min-Q perturbations. To restore the true state, we employ
 302 the diffusion model meta-trained by Reptile. At each diffusion timestep j , the network receives the
 303 current noisy observation \tilde{s}_t^j , the last estimated state c_{t-1} , and the timestep index j . The denoising
 304 update follows the DDIM rule:

$$305 \quad \tilde{s}_t^{j-1} = \sqrt{\bar{\alpha}_{j-1}} \frac{\tilde{s}_t^j - \sqrt{1 - \bar{\alpha}_j} \epsilon_{\theta}(\tilde{s}_t^j, c_{t-1}, j)}{\sqrt{\bar{\alpha}_j}} + \sqrt{1 - \bar{\alpha}_{j-1} - \sigma_j^2} \epsilon_{\theta}(\tilde{s}_t^j, c_{t-1}, j) + \sigma_j z, \quad (11)$$

307 where $z \sim \mathcal{N}(0, I)$. Iterating this process for $j = T, \dots, 1$ yields the reconstructed state \hat{s}_t , effectively
 308 removing adversarial or stochastic corruptions.

310 Next, *Repainting* is conducted to compensate the missing parts. We adapt conditional diffusion to
 311 infer and restore missing or damaged sensor readings. Let m be the binary mask indicating known
 312 ($m = 1$) and unknown ($m = 0$) entries in \tilde{A}_t^j . At each reverse step, we sample the known portion
 313 by forward diffusion:

$$314 \quad \tilde{s}_{t, \text{known}}^{j-1} = \sqrt{\bar{\alpha}_j} \tilde{s}_{t, \text{known}} + \sqrt{1 - \bar{\alpha}_j} \epsilon, \quad (12)$$

315 and recover the unknown portion via the conditional reverse update:

$$316 \quad \tilde{s}_{t, \text{unknown}}^{j-1} = \sqrt{\bar{\alpha}_{j-1}} \frac{\tilde{s}_{t, \text{unknown}}^j - \sqrt{1 - \bar{\alpha}_j} \epsilon_{\theta}(\tilde{s}_t^j, c_{t-1}, j)}{\sqrt{\bar{\alpha}_j}} + \sqrt{1 - \bar{\alpha}_{j-1} - \sigma_j^2} \epsilon_{\theta}(\tilde{s}_t^j, c_{t-1}, j) + \sigma_j z, \quad (13)$$

320 where σ and z are independent Gaussian noises. The combined sample for the next iteration is

$$321 \quad \tilde{s}_t^{j-1} = m \odot \tilde{s}_{t, \text{known}}^{j-1} + (1 - m) \odot \tilde{s}_{t, \text{unknown}}^{j-1}. \quad (14)$$

323 By iterating from $j = T$ down to $j = 1$, the repaint algorithm reconstructs the full state \hat{s}_t . The
 324 complete procedure is detailed in Algorithm 2.

324

5 EXPERIMENTS

325
326 All experiments were conducted on an Ubuntu 22.04 server equipped with $8 \times$ NVIDIA GeForce
327 RTX 4090 GPUs and 512GB DDR5 RAM. However, both the training and inference of our model
328 only require a single RTX 4090 GPU.
329330

5.1 DATASETS AND COMPARED METHODS

331
332 We evaluate our approach using real-world traffic datasets simulated in Cityflow (Zhang et al., 2019),
333 measuring the Average Travel Time (ATT) over a 60-minute period. The datasets include start/end
334 vehicle points with a fixed motion model, covering 7 traffic datasets from JiNan and HangZhou
335 (China) and New York (Zheng et al., 2019) (USA). JiNan includes 12 intersections (3×4 grid) with
336 three datasets: $JiNan_1$, $JiNan_2$, and $JiNan_3$. HangZhou has 16 intersections (4×4 grid) and
337 two datasets: $HangZhou_1$ and $HangZhou_2$. New York features a large-scale network with 192
338 intersections (28×7 grid) and two datasets: $Newyork_1$ and $Newyork_2$.
339340 We compare our method against traditional and RL-based TSC approaches. Traditional methods in-
341 clude FixedTime (Webster, 1958) and Advanced-Maxpressure (Zhang et al., 2022). RL-based meth-
342 ods include Advanced-CoLight (Zhang et al., 2022) and Advanced-Mplight (Zhang et al., 2022),
343 which is based on FRAP (Zheng et al., 2019), RobustLight (Li et al., 2025b). Our proposed Ro-
344 bustLight++ integrates both traditional and RL-based methods, enabling real-time data recovery and
345 robust ATT evaluation under various sensor noise and damage scenarios. All results are averaged
346 over ten independent runs. More datasets and compared methods are shown in the **Appendix A**.
347348

5.2 RESULTS

349 This subsection presents the results of our experiments, evaluating RobustLight’s performance under
350 various conditions, including resilience to noise attacks and sensor damage, using ATT on real-world
351 traffic datasets.
352353

5.2.1 NOISE ATTACK ON STATE RESULTS

354 Table 1 presents the ATT performance of different TSC algorithms under multiple noise attack
355 settings on the $JiNan$ and $HangZhou$ datasets. We consider four types of perturbations: Gaussian,
356 U-rand, MAD, and MinQ, with two levels of noise intensity. RobustLight++ consistently improves
357 performance across most of the baselines and noise types, indicating its strong robustness under
358 both stochastic and adversarial attacks. In particular, compared to both traditional and RL-based
359 controllers, RobustLight++ yields substantial gains in high-noise scenarios. These results validate
360 that RobustLight++ not only recovers degraded policies but also establishes a more stable decision
361 process against various noise patterns, highlighting its potential for real-world deployment under
362 imperfect sensing conditions. On average, RobustLight++ achieves 6.77% lower ATT with the most
363 significant improvement reaching up to 26.18% under the MinQ attack in $JiNan_1$ with Advanced-
364 CoLight.
365366

5.2.2 SENSOR DAMAGE ON STATE RESULTS

367 We further investigate the performance of traditional and RL-based TSC algorithms under deliber-
368 ate sensor failures, simulating the loss of information from $sensor_W$ and $sensor_E$ by masking the
369 input data. Table 2 summarizes the ATT values across five datasets, where 25% masking refers to
370 damage in $sensor_W$ and 50% masking simulates failures in both $sensor_W$ and $sensor_E$. To miti-
371 gate the resulting observation loss, we apply the Repaint algorithm within RobustLight++ to recover
372 the missing state information. Across all datasets and methods, RobustLight++ achieves an average
373 improvement of 12.75% over RobustLight, Particularly enhancing performance in heavily degraded
374 environments where traditional models collapse, achieving a maximum improvement of 52.13% in
375 $HangZhou_1$ under 50% sensor damage. Notably, even under severe dual-sensor damage (50%
376 mask), RobustLight++ enables most of methods to maintain performance comparable to or better
377 than FixedTime, demonstrating its potential for robust real-world deployment under partial observ-
378 ability. The results show that RobustLight++ consistently improves performance over RobustLight
379 across most of methods and scenarios, demonstrating its strong resilience to sensor failures.
380

378
379
380
381 Table 1: **Performance of ATT in JiNan, HangZhou. Our RobustLight++ recovers the state of**
382 **traditional and RL-based TSC algorithms.**

Dataset	Noise Type	Noise Scale	FixedTime		Advanced-CoLight				Advanced-MpLight		
			base	base	RobustLight	RobustLight++	base	RobustLight	RobustLight++	RobustLight	RobustLight++
<i>JiNan</i> ₁	Gaussian	3.5	316.96±4.63	328.38±3.90	282.26±1.35	327.93±8.76	303.83±5.98	289.85±3.76			
		4.0	329.24±3.73	346.47±3.85	281.73±1.77	338.68±7.41	307.19±2.21	289.25±1.82			
	U-rand	3.5	483.26±74.90	365.55±11.95	327.33±3.81	417.81±12.34	362.61±9.16	399.88±19.17			
		4.0	428.11	497.32±64.04	388.69±25.74	329.89±8.66	434.84±11.18	365.96±7.52	377.99±16.26		
	MAD	3.5	454.77±9.38	301.29±3.43	282.45±2.03	339.41±37.82	305.16±19.99	279.95±1.69			
		4.0	495.47±15.55	305.32±4.13	286.63±2.31	355.38±36.38	313.24±30.45	290.00±1.61			
	MinQ	3.5	493.10±96.80	388.41±85.49	299.67±8.34	347.62±28.10	297.97±14.57	284.94±7.45			
		4.0	520.99±115.29	387.87±62.70	286.29±2.57	356.30±30.91	307.07±21.89	288.30±4.54			
	Gaussian	3.5	320.04±11.40	277.17±2.40	263.89±1.92	378.13±32.17	279.79±1.79	261.91±1.17			
		4.0	331.64±14.13	283.54±4.32	259.75±2.31	390.93±25.46	290.37±2.56	270.69±1.45			
<i>JiNan</i> ₃	U-rand	3.5	481.55±43.52	333.46±19.05	290.39±1.81	496.63±44.43	354.45±11.06	314.14±5.68			
		4.0	383.01	490.09±44.06	344.34±14.80	288.89±3.16	505.93±41.98	363.10±18.75	312.17±3.62		
	MAD	3.5	446.89±15.76	273.78±4.00	281.70±3.29	442.19±81.19	268.96±11.41	259.25±2.87			
		4.0	478.85±22.27	276.64±2.32	298.49±3.37	446.93±27.17	279.83±18.33	279.05±2.91			
	MinQ	3.5	376.00±24.65	298.31±20.34	283.16±4.16	423.76±50.93	278.75±17.00	277.32±17.16			
		4.0	406.03±6.45	315.39±18.80	286.90±2.48	465.95±46.43	297.21±23.12	288.77±8.31			
	Gaussian	3.5	495.92±23.47	353.49±6.46	343.31±4.65	429.53±13.96	367.62±8.48	352.33±8.51			
		4.0	520.59±17.34	355.93±5.86	339.43±3.60	432.60±6.00	378.09±9.33	359.60±11.89			
	U-rand	3.5	567.56±20.09	415.49±11.33	364.17±4.22	481.32±37.20	426.04±13.45	402.33±10.19			
		4.0	406.65	566.64±17.55	429.26±11.82	370.33±3.10	472.05±42.80	433.15±9.94	397.78±9.88		
<i>HangZhou</i> ₂	MAD	3.5	496.73±22.83	333.93±3.71	341.95±6.63	433.46±32.89	362.01±6.67	350.77±9.28			
		4.0	528.74±28.18	339.41±8.00	344.82±2.94	471.26±29.52	363.45±14.04	370.91±15.03			
	MinQ	3.5	441.72±31.86	345.80±2.82	346.51±5.91	425.09±30.34	356.49±5.33	361.75±6.50			
		4.0	478.9±20.02	349.58±7.40	350.15±4.85	450.80±31.37	363.12±6.40	369.61±5.97			

407
408 Table 2: **ATT in JiNan and HangZhou: 25% refers to missing data in $sensor_W$, and 50% refers to $sensor_W$ and $sensor_E$.**
409

Dataset	Mask Scale	FixedTime		Advanced-MaxPressure				Advanced-MpLight		
		base	base	RobustLight	RobustLight++	base	RobustLight	RobustLight++	RobustLight	RobustLight++
<i>JiNan</i> ₁	25%	428.11±0.00	352.13±0.00	296.50±1.12	315.25±6.42	552.15±120.94	371.95±90.21	400.35±63.58		
	50%		1059.67±0.00	610.43±68.52	432.15±4.95	1045.75±26.83	878.09±16.55	867.15±60.67		
<i>JiNan</i> ₂	25%	368.76±0.00	323.13±0.00	273.18±3.95	278.87±3.68	490.56±92.29	276.05±4.71	312.99±47.86		
	50%		1209.97±0.00	755.51±106.57	912.18±24.89	1082.64±65.15	612.14±43.37	558.87±71.86		
<i>JiNan</i> ₃	25%	383.01±0.00	340.81±0.00	281.56±4.11	281.05±4.23	403.29±30.61	288.68±9.41	337.98±19.97		
	50%		1109.57±0.00	570.54±50.20	371.44±21.02	1061.35±67.51	918.43±27.84	654.51±83.29		
<i>HangZhou</i> ₁	25%	495.57±0.00	530.33±0.00	369.52±12.54	318.41±5.98	478.89±37.35	363.55±7.80	343.70±10.98		
	50%		1186.56±0.00	563.56±36.21	440.00±94.94	867.95±172.63	824.83±149.15	394.88±43.05		
<i>HangZhou</i> ₂	25%	406.65±0.00	409.56±0.00	350.86±3.11	341.47±1.68	373.59±13.70	360.22±10.27	346.86±6.61		
	50%		782.93±0.00	447.28±15.87	350.47±2.12	633.73±89.70	459.36±6.87	355.15±7.12		

422
423 5.2.3 TRANSFER EXPERIMENTS
424425 Table 3 shows that our RobustLight++ generalizes effectively to the unseen SUMO Cologne8
426 dataset, where the diffusion-based outer-learner is meta-trained on Cityflow datasets Jinan and
427 Hangzhou for zero-shot transfer, the inner-learner is adapted 50 samples on SUMO dataset Cologne8
428 for few-shot transfer. Both MPLight and MaxPressure get better performance after zero-shot and
429 few-shot meta training in average waiting time (AWT) and ATT of emergency vehicle (EMV) and
430 regular vehicle (REV) used by Su et al. (2022). Under Gaussian and Uniform-Random noise, in
431 most scenarios, the few-shot setting surpasses zero-shot performance for both emergency and regular
432 vehicles, confirming the effectiveness of our method.

Table 3: **Transfer performance (AWT and ATT) of EMV and REV on Cologne8. Results are averaged over 5 runs.**

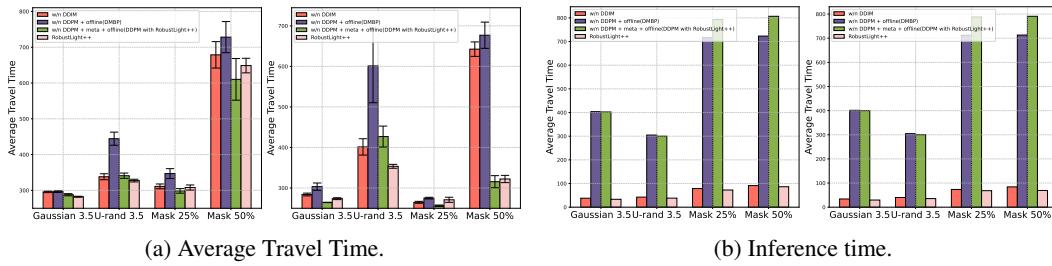
Algorithm	Metrics	Noise-Free	Guassian	Zero-shot	Few-shot	U-Rand	Zero-shot	Few-shot
MPlight	AWT_{EMV}	8	25.0	20.0	15.0	20.0	15.0	15.0
	ATT_{EMV}	20	25.0	20.0	15.0	20.0	15.0	15.0
	AWT_{REV}	0.51	2.14	1.85	1.95	2.37	2.16	2.13
	ATT_{RMV}	54.40	67.47	62.50	62.17	67.49	65.57	64.96
MaxPressure	AWT_{EMV}	6.0	0.0	0.0	0.0	0.0	0.0	6.0
	ATT_{EMV}	25.0	15.0	15.0	15.0	15.0	15.0	20.0
	AWT_{REV}	0.68	2.25	1.48	1.43	3.32	2.21	2.24
	ATT_{REV}	56.46	66.71	61.64	61.29	72.97	65.39	64.52

Table 4: **Transfer to unseen cities performance of ATT in JiNan, HangZhou. Results are averaged over 5 runs.**

Dataset	Noise Type	Noise Scale	FixedTime	Advanced-CoLight				Advanced-MpLight			
				base	RobustLight	RobustLight++ (Zero-Shot)	RobustLight++ (Few-Shot)	base	RobustLight	RobustLight++ (Zero-Shot)	RobustLight++ (Few-Shot)
<i>JiNan</i> ₁	Gaussian	3.5		316.96	423.56	329.56	285.88	327.93	322.04	380.98	369.81
	U-rand	3.5		483.26	540.52	419.14	360.59	417.81	328.01	340.18	325.05
	MAD	3.5	428.11	454.77	483.18	445.61	325.73	339.41	296.69	495.94	454.51
	MinQ	3.5		493.10	393.85	528.60	347.36	347.62	368.18	395.84	339.12
	Mask	25%		343.34	336.82	291.41	312.83	552.15	398.48	562.94	639.32
<i>JiNan</i> ₂	Gaussian	3.5		338.12	427.64	292.83	268.72	626.67	291.99	285.45	287.36
	U-rand	3.5		748.76	565.60	619.69	314.64	506.24	308.08	362.71	333.73
	MAD	3.5	368.77	563.99	356.23	487.48	273.49	330.25	280.68	270.75	268.21
	MinQ	3.5		344.12	348.00	368.26	266.12	272.16	271.29	277.54	270.85
	Mask	25%		277.85	297.95	270.94	285.39	490.56	342.39	359.96	386.45
<i>JiNan</i> ₃	Gaussian	3.5		320.04	413.53	288.25	262.37	378.13	293.93	351.54	283.70
	U-rand	3.5		481.55	543.19	639.80	312.58	496.63	307.64	729.41	337.57
	MAD	3.5	383.01	446.89	401.58	335.38	260.04	442.19	272.86	268.99	263.00
	MinQ	3.5		376.00	364.33	318.01	262.94	423.76	268.08	370.69	261.61
	Mask	25%		324.42	309.56	304.23	287.33	403.29	360.49	588.86	335.52
<i>HangZhou</i> ₁	Gaussian	3.5		512.63	442.47	683.91	354.15	334.03	355.64	336.00	327.65
	U-rand	3.5		971.03	775.62	985.47	615.19	354.63	363.64	366.68	353.87
	MAD	3.5	495.57	751.58	513.22	860.74	719.18	308.78	547.87	312.55	318.79
	MinQ	3.5		506.60	467.94	678.96	369.34	320.32	507.84	306.32	317.45
	Mask	25%		418.49	334.30	324.31	375.17	478.89	442.75	456.33	371.35
<i>HangZhou</i> ₂	Gaussian	3.5		495.92	419.85	377.31	343.34	429.53	377.48	345.56	335.54
	U-rand	3.5		567.56	585.79	568.48	378.70	481.32	365.99	390.19	378.26
	MAD	3.5	406.65	496.73	481.36	369.08	357.09	433.46	492.92	322.85	321.66
	MinQ	3.5		441.72	464.05	368.53	344.55	425.09	444.09	317.63	328.69
	Mask	25%		348.21	359.46	374.68	340.42	373.59	347.58	372.22	361.43

Table 4 summarizes the transfer performance of ATT under different noise types across the *JiNan* and *HangZhou* datasets. The base results correspond to performance directly evaluated on noisy datasets, while RobustLight and RobustLight++ (Zero-Shot) are trained only on seen cities and transferred to unseen cities (eg. seen city *JiNan* to unseen *HangZhou* or seen city *HangZhou* to *JiNan*), without fine-tuning. RobustLight++ (Few-Shot) further adapts to the target domain using 100 samples. All numbers are averaged over five random seeds. RobustLight++ (Zero-Shot) achieves additional gains and shows statistically significant improvements over RobustLight in most heavy-noise settings (e.g., MAD, Mask), demonstrating stronger cross-city generalization. With only 100 samples, RobustLight++ (Few-Shot) achieves the highest overall performance, often recovering or surpassing clean-data performance. These results highlight the robustness and transferability of RobustLight++, especially under unseen and severe noise.

We also conduct transfer experiments to evaluate the generalization capability of RobustLight++ in more large-scale network like *NewYork*. Specifically, we train models on datasets from *JiNan* and *HangZhou*, and test them on the *Newyork* dataset. The Figure 4b demonstrates that RobustLight++ achieves SoTA performance in the transfer setting, further validating the effectiveness and robustness across diverse urban environments, with a 6.92% improvement.

Figure 3: Ablation studies on ATT and inference time in *Hangzhou₂* and *JiNan₂*.

5.2.4 ABALATION STUDY

We conduct ablation studies comparing the following configurations: DDIM with online training, DDPM with offline training (DMBP (Yang & Xu, 2023)), RobustLight++ with DDPM, and RobustLight++. As shown in Figure 3, our proposed method, RobustLight++, achieves SoTA performance. Moreover, it effectively balances performance and inference time, demonstrating practicality.

5.2.5 INFERENCE TIME

Compared to RobustLight, our method uses the DDIM sampling strategy to significantly speed up both denoising and demasking. As shown in Table 17, it reduces runtime by 87.9% for denoising and 91.9% for demasking, leading to much greater inference efficiency and making the framework more practical for real-time deployment in large-scale traffic networks.

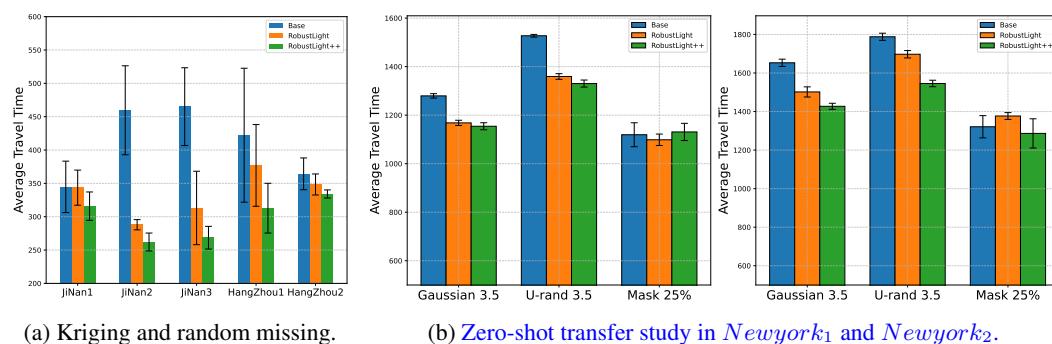


Figure 4: Transfer and other experiments study.

5.2.6 KRIGING AND MISSING EXPERIMENTS

To validate our approach in multiple missing types, we set up involved random masking of data from Kriging Missing (12.5%, single-intersection-sensor failure) and Random Missing (12.5%, full-intersection failure). As demonstrated in Figure 4a, our method effectively addresses data missing scenarios and exhibits robust performance, with an average improvement of 10.57%.

6 CONCLUSION

In this paper, we proposed a diffusion-based TSC framework that addresses key limitations of prior methods like RobustLight. Unlike previous approaches that required separate models per-city and struggled with generalization, our method introduced a meta-learnable DDIM-based controller enabling robust cross-city adaptation and efficient inference. Experiments showed that our approach improved control performance in unseen cities and reduced denoising and demasking times by 87.9% and 91.9%, respectively. These results show the framework’s potential for scalable real-time use in complex urban networks. Future work will explore real-world deployment feedback and extend the method to multi-agent coordination with limited communication.

540
541
ETHICS STATEMENT

542 This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects or
 543 sensitive data, and we have ensured compliance with all relevant legal and ethical standards. The
 544 proposed methodology, which focuses on [briefly describe your work, e.g., novel neural network
 545 architectures], does not introduce harmful applications or exacerbate bias beyond existing bench-
 546 marks. To address potential fairness concerns, we evaluated our model across diverse datasets, as
 547 detailed in appendix, ensuring robustness and fairness in performance. Any potential conflicts of
 548 interest, including funding sources, are disclosed in the acknowledgments section. We have strived
 549 to maintain research integrity by providing clear documentation and transparent evaluation metrics
 550 throughout the paper and supplementary materials.

551
552
REPRODUCIBILITY STATEMENT
553

554 To ensure the reproducibility of our results, we have provided comprehensive details in
 555 the main paper and supplementary materials. The source code for our proposed model
 556 and experiments is available anonymously at [https://anonymous.4open.science/](https://anonymous.4open.science/r/RobustLightPlus-E14F)
 557 r/RobustLightPlus-E14F.. All datasets used are publicly available, with preprocessing
 558 steps fully documented in the appendix. For theoretical contributions, we include complete proofs of
 559 our claims in main text. Hyperparameters, training procedures, and evaluation metrics are detailed
 560 in appendix and the supplementary materials to facilitate replication of our experiments.

561
562
LLM USAGE STATEMENT
563

564 In the preparation of this manuscript, LLM was used solely for polishing the text to improve clarity,
 565 grammar, and readability. The LLM did not contribute to the research ideation, methodology, anal-
 566 ysis, or core writing of the paper. All scientific content, including ideas, experiments, and results,
 567 was developed and authored by the human researchers. We take full responsibility for the content
 568 of this paper, including the polished text, and confirm that the use of the LLM does not constitute
 569 plagiarism or scientific misconduct.

570
571
REFERENCES
572

573 Hanyang Chen, Yang Jiang, Shengnan Guo, Xiaowei Mao, Youfang Lin, and Huaiyu Wan. Dif-
 574 flight: a partial rewards conditioned diffusion model for traffic signal control with missing data.
 575 *Advances in Neural Information Processing Systems*, 37:123353–123378, 2024.

576 Tzanko Donchev and Elza Farkhi. Stability and euler approximation of one-sided lipschitz differen-
 577 tial inclusions. *SIAM journal on control and optimization*, 36(2):780–796, 1998.

578 Wenchang Duan, Zhenguo Gao, Jiwan He, and Jinguo Xian. Bayesian critique-tune-based reinforce-
 579 ment learning with adaptive pressure for multi-intersection traffic signal control. *IEEE Transac-
 580 tions on Intelligent Transportation Systems*, 2025.

581 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 582 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

583 Carlos Gershenson. Self-organizing traffic lights. *arXiv preprint nlin/0411066*, 2004.

584 Yin Gu, Kai Zhang, Qi Liu, Weibo Gao, Longfei Li, and Jun Zhou. π -light: Programmatic inter-
 585 pretable reinforcement learning for resource-limited traffic signal control. In *Proceedings of the*
 586 *AAAI Conference on Artificial Intelligence*, volume 38, pp. 21107–21115, 2024.

587 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 588 *arXiv:2207.12598*, 2022.

589 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 590 *neural information processing systems*, 33:6840–6851, 2020a.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *neural information processing systems*, 33:6840–6851, 2020b.
 596

597 Xingshuai Huang, Di Wu, Michael Jenkin, and Benoit Boulet. Modellight: Model-based meta-
 598 reinforcement learning for traffic signal control. *arXiv preprint arXiv:2111.08067*, 2021.

599 PB Hunt, DI Robertson, RD Bretherton, and RI Winton. Scoot-a traffic responsive method of coor-
 600 dinating signals. Technical report, 1981.
 601

602 Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes
 603 the wasserstein distance. *Advances in Neural Information Processing Systems*, 35:20205–20217,
 604 2022.

605 Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
 606 differentiable convex optimization. In *Proceedings of the IEEE/CVF conference on computer*
 607 *vision and pattern recognition*, pp. 10657–10665, 2019.

608 Mingyuan Li, Jiahao Wang, Bo Du, Jun Shen, and Qiang Wu. Fuzzylight: A robust two-stage fuzzy
 609 approach for traffic signal control works in real cities, 2025a. URL <https://arxiv.org/abs/2501.15820>.

610 Mingyuan Li, Jiahao Wang, Guangsheng Yu, Xu Wang, Qianrun Chen, Wei Ni, Lixiang Li, and
 611 Haipeng Peng. Robustlight: Improving robustness via diffusion reinforcement learning for traffic
 612 signal control. In *Forty-second International Conference on Machine Learning*, 2025b.

613 Xiaoyuan Liang, Xunsheng Du, Guiling Wang, and Zhu Han. Deep reinforcement learning for
 614 traffic light control in vehicular networks. *arXiv preprint arXiv:1803.11115*, 2018.

615 P. R. Lowrie. Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of
 616 controlling urban traffic. *Roads and Traffic Authority NSW*, pp. 28, 1990.

617 Pitu Mirchandani and Larry Head. A real-time traffic signal control system: architecture, algorithms,
 618 and analysis. *Transportation Research Part C: Emerging Technologies*, 9(6):415–432, 2001.

619 Melanie Mitchell. *Complexity: A guided tour*. Oxford university press, 2009.

620 Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. *arXiv*
 621 *preprint arXiv:1803.02999*, 2018.

622 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 623 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021a.

624 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 625 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021b.

626 Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
 627 towards understanding the effectiveness of maml. *arXiv preprint arXiv:1909.09157*, 2019.

628 Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
 629 plicit gradients. *Advances in neural information processing systems*, 32, 2019.

630 Jingqing Ruan, Ziyue Li, Hua Wei, Haoyuan Jiang, Jiaming Lu, Xuantang Xiong, Hangyu Mao, and
 631 Rui Zhao. Coslight: Co-optimizing collaborator selection and decision-making to enhance traffic
 632 signal control. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery*
 633 *and Data Mining*, pp. 2500–2511, 2024.

634 Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
 635 dero, and Raia Hadsell. Meta-learning with latent embedding optimization. *arXiv preprint*
 636 *arXiv:1807.05960*, 2018.

637 Saeed Salehkaleybar, Mohammadsadegh Ghasemzadeh, and Alireza Farhang. Hierarchical rein-
 638 forcement learning for adaptive traffic signal control. *arXiv preprint arXiv:1904.08337*, 2019.

648 Xinyue Shen, Ruiying Zhang, and Wei Zhang. Hierarchical deep reinforcement learning for multi-
 649 agent traffic signal control. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 650 volume 34, pp. 6335–6342, 2020.

651

652 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 653 preprint *arXiv:2010.02502*, 2020a.

654 Xiang (Ben) Song, Bin Zhou, and Dongfang Ma. Cooperative traffic signal control through a coun-
 655 terfactual multi-agent deep actor critic approach. *Transportation Research Part C: Emerging*
 656 *Technologies*, 160:104528, 2024.

657

658 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 659 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 660 *arXiv:2011.13456*, 2020b.

661 Steven H Strogatz. *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chem-
 662 istry, and Engineering*. Perseus Books Publishing, 2001.

663

664 Haoran Su, Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Emvlight: A de-
 665 centralized reinforcement learning framework for efficient passage of emergency vehicles. In
 666 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 4593–4601, 2022.

667

668 Qian Sun, Rui Zha, Le Zhang, Jingbo Zhou, Yu Mei, Zhiling Li, and Hui Xiong. Crosslight: Offline-
 669 to-online reinforcement learning for cross-city traffic signal control. In *Proceedings of the 30th*
670 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2765–2774, 2024.

671

672 Pravin Varaiya. Max pressure control of a network of signalized intersections. *Transportation*
Research Part C: Emerging Technologies, 36:177–195, 2013.

673

674 Johannes Von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas
 675 Zucchet, and João Sacramento. Learning where to learn: Gradient sparsity in meta and continual
 676 learning. *Advances in Neural Information Processing Systems*, 34:5250–5263, 2021.

677

678 Tao Wang, Zhipeng Zhu, Jing Zhang, Junfang Tian, and Wenyi Zhang. A large-scale traffic sig-
 679 nal control algorithm based on multi-layer graph deep reinforcement learning. *Transportation*
Research Part C: Emerging Technologies, 162:104582, 2024.

680

F. V. Webster. Traffic signal settings. Technical Report 39, 1958.

681

682 Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A reinforcement learning ap-
 683 proach for intelligent traffic light control. In *Proceedings of the 24th ACM SIGKDD International*
684 Conference on Knowledge Discovery & Data Mining, pp. 2496–2505, 2018.

685

686 Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li.
 687 Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In
 688 *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &*
Data Mining, pp. 1290–1298, 2019a.

689

690 Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
 691 Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traf-
 692 fic signal control. In *Proceedings of the 28th ACM International Conference on Information*
 693 *and Knowledge Management*, CIKM ’19, pp. 1913–1922, New York, NY, USA, 2019b. Associa-
 694 tion for Computing Machinery. ISBN 9781450369763. doi: 10.1145/3357384.3357902. URL
<https://doi.org/10.1145/3357384.3357902>.

695

696 Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
 697 Yanmin Zhu, Kai Xu, and Zhenhui Jessie Li. Colight: Learning network-level cooperation for
 698 traffic signal control. In *Proceedings of the 28th ACM International Conference on Information*
 699 *and Knowledge Management*, CIKM ’19, pp. 1913–1922, 2019c.

700

701 Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learn-
 702 ing for traffic signal control: A survey of models and evaluation. *ACM SIGKDD Explorations*
Newsletter, 22(2):12–18, 2021.

702 Qiang Wu, Liang Zhang, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Efficient pressure:
 703 Improving efficiency for signalized intersections. *arXiv preprint arXiv:2112.02336*, 2021.
 704

705 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
 706 denoising diffusion gans. *arXiv preprint arXiv:2112.07804*, 2021.

707 Zhihe Yang and Yunjian Xu. Dmbp: Diffusion model based predictor for robust offline reinforce-
 708 ment learning against state observation perturbations. In *The Twelfth International Conference on*
 709 *Learning Representations*, 2023.

710 Jiajie Yu, Pierre-Antoine Laharote, Yu Han, and Ludovic Leclercq. Decentralized signal control for
 711 multi-modal traffic network: A deep reinforcement learning approach. *Transportation Research*
 712 *Part C: Emerging Technologies*, 154:104281, 2023.

713 Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li. Metalight: Value-
 714 based meta-reinforcement learning for traffic signal control. *Proceedings of the AAAI Conference*
 715 *on Artificial Intelligence*, 34(01):1153–1160, Apr. 2020. doi: 10.1609/aaai.v34i01.5467. URL
 716 <https://ojs.aaai.org/index.php/AAAI/article/view/5467>.

717 Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
 718 Metadiff: Meta-learning with conditional diffusion for few-shot learning. In *Proceedings of the*
 719 *AAAI conference on artificial intelligence*, volume 38, pp. 16687–16695, 2024.

720 Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang,
 721 Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning envi-
 722 ronment for large scale city traffic scenario. In *The world wide web conference*, pp. 3620–3624,
 723 2019.

724 Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Expression might be
 725 enough: representing pressure and demand for reinforcement learning based traffic signal
 726 control. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162, pp.
 727 26645–26654, 2022.

728 Yilang Zhang, Bingcong Li, Shijian Gao, and Georgios B Giannakis. Scalable bayesian meta-
 729 learning through generalized implicit gradients. In *Proceedings of the AAAI conference on arti-
 730 ficial intelligence*, volume 37, pp. 11298–11306, 2023.

731 Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai
 732 Xu, and Zhenhui Li. Learning phase competition for traffic signal control. In *Proceedings of the*
 733 *28th ACM International Conference on Information and Knowledge Management*, CIKM ’19, pp.
 734 1963–1972, 2019.

735

736 A DETAILED ALGORITHMS

737
 738 The Cross-City Diffusion Meta-Learning algorithm, outlined in Algorithm 1, is designed to enable
 739 effective knowledge transfer across multiple city-specific tasks for diffusion-based models. By lever-
 740 aging a meta-learning framework inspired by Reptile, the algorithm initializes a shared parameter
 741 set θ and iteratively updates it using gradients computed from source tasks $\mathcal{T}_i^{\text{src}}$. For each source
 742 task, it performs an inner update with step size η to compute task-specific parameters θ'_i , aggregates
 743 the parameter differences, and updates the global parameters using a meta-learning rate μ . After
 744 training on source tasks, the model is fine-tuned on the target task \mathcal{T}_{tgt} to adapt to specific city char-
 745 acteristics, enhancing generalization in diffusion-based applications such as urban data modeling.

746
 747 The Repaint Algorithm of RobustLight++, presented in Algorithm 2, is a robust iterative method for
 748 reconstructing signals in diffusion-based models, particularly suited for tasks requiring inpainting
 749 or signal recovery under noisy conditions. The algorithm takes as input an initial signal estimate
 750 \tilde{s}_t^i , a context c_{t-1} , and a mask m , and performs K iterations, each with U inner steps. In each
 751 step, it samples noise ϵ and z from a standard normal distribution (except in the first iteration, where
 752 noise is set to zero) and applies Equations (10), (11), and (12) to update known and unknown signal
 753 components and recover the signal. A stochastic update is applied when necessary, governed by the
 754 parameter β_{i-1} , to introduce controlled noise, ultimately producing a refined signal estimate \hat{s}_t that
 755 enhances robustness in applications like image or data reconstruction.

756

Algorithm 1 Cross-City Diffusion Meta-Learning

```

757 1: Input: Source tasks  $\{\mathcal{T}_i^{\text{src}}\}$ , target  $\mathcal{T}_{\text{tgt}}$ , step sizes  $\alpha, \eta$ 
758 2: Initialize  $\theta$ 
759 3: for each outer iteration do
760 4:    $\phi \leftarrow 0$ 
761 5:   for each source task  $\mathcal{T}_i^{\text{src}}$  do
762 6:     Compute  $\phi \leftarrow \theta - \eta \nabla_{\theta} L_{\text{diff}}(\theta; \mathcal{T}_i)$ 
763 7:      $\hat{\theta} \leftarrow \hat{\theta} + (\phi - \theta_i)$ 
764 8:   end for
765 9:    $\theta \leftarrow \theta + \frac{\mu}{N} \sum_{i=1}^N \hat{\theta}$ 
766 10: end for
767 11: Few-shot training  $\theta$  on  $\mathcal{T}_{\text{tgt}}$  via  $L_{\text{diff}}$ 
768 12: return  $\theta$ 
769

```

770

Algorithm 2 Repaint algorithm of RobustLight++

```

771 1: Input  $\tilde{s}_t^j, c_{t-1}, m$ 
772 2: for  $j = 1$  to  $K$  do
773 3:   for  $u = 1$  to  $U$  do
774 4:      $\epsilon \sim \mathcal{N}(0, I)$  if  $j > 1$ , else  $\epsilon = 0$ 
775 5:     Get  $\tilde{s}_{t, \text{known}}^{j-1}$  by Equation (10)
776 6:      $z \sim \mathcal{N}(0, I)$  if  $j > 1$ , else  $z = 0$ 
777 7:     Get  $\tilde{s}_{t, \text{unknown}}^{j-1}$  by Equation (11)
778 8:     Get recovered  $\tilde{s}_t^{j-1}$  by Equation (12)
779 9:     if  $u < U$  and  $j > 1$  then
780 10:       $\tilde{s}_t^j \sim \mathcal{N}(\sqrt{1 - \beta_{j-1}} \tilde{s}_t^{j-1}, \beta_{j-1} I)$ 
781 11:    end if
782 12:  end for
783 13: end for
784 14: Return  $\hat{s}_t$ 
785
786

```

787

B PROOFS OF THEOREM 1

788

Proof of Theorem 1. Recall the deterministic probability flow ODE corresponds to DDIM by Song et al. (2020b). The diffusion step can be written:

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla \log p_t(\mathbf{x}). \quad (15)$$

In the DDIM-Reptile framework, the model approximates this field using a learned score network $\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla \log p_t(\mathbf{x})$. The model's approximate velocity field is:

$$v(\mathbf{x}, t) = \frac{d\mathbf{x}}{dt} \approx \mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \mathbf{s}_{\theta}(\mathbf{x}, t). \quad (16)$$

Let q_t denote the distribution of $x(t)$ under this approximate ODE (with initial distribution q_T at $t = T$). By construction p_T and q_T are the terminal distributions for the true and model processes; if the model precisely matches the chosen noise prior. At time $t = 0$, we have p_0 (true data) and q_0 (model-generated data). Our goal is to bound $W_2(p_0, q_0)$. For each $t \in [0, T]$, let p_t denote the noised data distribution and q_t the corresponding model distribution at time t . The score function of p_t is

$$s^*(x, t) := \nabla_x \log p_t(x). \quad (17)$$

804

$s_{\theta}(x, t)$ is the trained score network, and define the score matching loss as

$$L_{\text{diff}}(\theta) := \frac{1}{2} \int_0^T \lambda(t) \mathbb{E}_{x \sim p_t} [\|\nabla_x \log p_t(x) - s^*(x, t)\|^2] dt, \quad (18)$$

808

for some positive weighting function $\lambda(t) > 0$. According to Song et al. (2020b), minimizing Eq. 8 corresponds to estimating the true score function $s^*(x, t) = \nabla_x \log p_t(x)$ in the L^2 sense.

810 From Kwon et al. (2022) Theorem 1, using Cauchy–Schwarz on that time-integral, we obtain an
 811 upper bound in terms of the root of the integrated mean-square error of the score:
 812

$$813 \quad W_2(p_0, q_0^{\text{cont}}) \leq \sqrt{2 \int_0^T g(t)^4 I(t)^2 dt \cdot \int_0^T \lambda(t) \mathbb{E}_{p_t} [\|\nabla \log p_t(x) - s_\theta(x, t)\|^2] dt} \\ 814 \quad + I(T) W_2(p_T, q_T), \\ 815$$

817 The first factor $\int_0^T g(t)^4 I(t)^2 dt$ is a constant determined by the diffusion schedule $g(t)$ and the
 818 integrated Lipschitz coefficients $I(t)$. We may therefore write
 819

$$820 \quad W_2(p_0, q_0^{\text{cont}}) \leq \mathcal{C}_{\text{score}} \sqrt{L_{\text{diff}}(\theta)} + \mathcal{C}_{\text{init}} W_2(p_T, q_T), \\ 821$$

822 for some constant $\mathcal{C}_{\text{score}} = \sqrt{2 \int_0^T g(t)^4 I(t)^2 dt}$ and $\mathcal{C}_{\text{init}} = I(T)$.
 823

824 In practice, DDIM generation runs the ODE backward in N discrete steps (from T to 0). Let the
 825 time step be $\Delta t = T/N$, and denote $\mu = \Delta t$ for notational consistency with the theorem. The Euler
 826 discretization of the reverse dynamics is
 827

$$828 \quad x_{t-\Delta t} = x_t + \Delta t \left(f(x_t, t) - \frac{1}{2} g(t)^2 s_\theta(x_t, t) \right), \\ 829$$

830 This update mirrors the Reptile meta-learning rule $\theta \leftarrow \theta + \mu(\phi - \theta)$, where μ is the meta step
 831 size. Here, each diffusion step plays the role of one Reptile meta-update, and $\mu = \Delta t$ controls the
 832 discretization resolution.

833 Let q_0^{cont} denote the distribution induced by the continuous-time ODE, and q_0^{disc} the distribution
 834 obtained by the Euler discretization. Assume the vector field $v(x, t)$ satisfies the one-sided Lipschitz
 835 assumption proposed by Donchev & Farkhi (1998) (Definition 2.1) with coefficient $L_s(t)$:
 836

$$837 \quad \langle v(x, t) - v(y, t), x - y \rangle \leq L_s(t) \|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d, t \in [0, T], \\ 838$$

839 By Theorem 3.2 and 4.3 of Donchev & Farkhi (1998), we get the pathwise error bound
 840

$$841 \quad \sup_{0 \leq t \leq T} \|x_{\text{cont}}(t) - x_{\text{disc}}(t)\| \leq C_{\text{disc}} \mu, \\ 842$$

843 Let q_0^{cont} and q_0^{disc} denote the laws of the continuous and Euler-approximated reverse flows at time
 844 $t = 0$. According to the definition of 2-Wasserstein or Monge–Kantorovich distance Kwon et al.
 845 (2022) and combined with Eq. 23, we get:
 846

$$847 \quad W_2(q_0^{\text{cont}}, q_0^{\text{disc}}) \leq (\mathbb{E} \|X_0^{\text{cont}} - X_0^{\text{disc}}\|^2)^{1/2} \leq C_{\text{disc}} \mu, \\ 848$$

849 From Theorem 4.3 of Donchev & Farkhi (1998), we get the discretization constant admits the ex-
 850 plicit form

$$851 \quad C_{\text{disc}} = c_0(C_\tau + C_\chi + 1), \quad c_0 = \exp\left(\int_0^T L_s^+(t) dt\right) \max\{2, B\}, \\ 852$$

853 In particular, the one-sided Lipschitz property prevents exponential error amplification in the reverse
 854 diffusion ODE, ensuring that discretization error accumulates only linearly with μ .
 855

856 Finally, let $q_0 \equiv q_0^{\text{disc}}$ be the practical model distribution. By the triangle inequality,
 857

$$858 \quad W_2(p_0, q_0) \leq W_2(p_0, q_0^{\text{cont}}) + W_2(q_0^{\text{cont}}, q_0^{\text{disc}}), \\ 859$$

860 Substituting the continuous-time bound (from the score approximation) and the discretization bound
 861 equation 24, we obtain
 862

$$863 \quad W_2(p_0, q_0) \leq \mathcal{C}_{\text{score}} \sqrt{L_{\text{diff}}(\theta)} + \mathcal{C}_{\text{disc}} \cdot \mu + \mathcal{C}_{\text{init}} W_2(p_T, q_T). \\ 864$$

865 which completes the proof.

864 C DATASETS AND COMPARED METHODS

865 C.1 DATASETS

866 We use real-world traffic flow and road topology datasets for our experiments, with Cityflow Zhang
 867 et al. (2019) as the simulator to evaluate ATT and exit points with a simulation time of 60 minutes
 868 for all vehicles. The datasets include vehicle start and end points, following a fixed motion model.
 869 Seven traffic datasets from three cities, JiNan and HangZhou (China), and New York Zheng et al.
 870 (2019) (USA, are used.

- 873 • **JiNan Datasets:** The JiNan road network consists of 12 intersections (in a 3×4 grid). It
 874 includes three traffic flow datasets: *JiNan*₁, *JiNan*₂, and *JiNan*₃.
- 875 • **HangZhou Datasets:** The HangZhou network encompasses 16 intersections (in a 4×4 grid)
 876 and features two datasets: *HangZhou*₁ and *HangZhou*₂.
- 877 • **New York Datasets:** The New York network features a more complex structure with 192
 878 intersections (28×7 grid) and includes two datasets: *Newyork*₁ and *Newyork*₂.

880 C.2 COMPARED METHODS

882 C.2.1 TRADITIONAL METHODS

884 These methods include FixedTime Webster (1958), which uses a fixed green phase time; Advanced-
 885 Maxpressure Zhang et al. (2022), which uses running and waiting vehicles to choose the phase; and
 886 Maxpressure Gershenson (2004), which uses waiting vehicles to choose the phase.

888 C.2.2 RL-BASED METHODS

889 For RL benchmarks, we consider CoLight Wei et al. (2019c), which uses waiting and neighboring
 890 vehicles to select the signal phase; Advanced-CoLight Zhang et al. (2022), which employs waiting
 891 and running vehicles with a graph attention neural network; and Advanced-Mplight Zhang et al.
 892 (2022), which uses the FRAP Zheng et al. (2019) model for signal phase selection.

894 C.2.3 ROBUSTLIGHT METHOD

896 RobustLight and RobustLight++ integrate the base methods of traditional and RL-based TSC algo-
 897 rithms to recover data in real-time, and then evaluates the ATT under different sensor noise attacks
 898 and sensor damage. Results are presented as the average of ten independent runs.

900 D SENSOR NOISE AND SENSOR DAMAGE EXPAND EXPERIMENTS

902 **Table 5: Performance of ATT in *JiNan*₂, *HangZhou*₁. Our RobustLight++ recovers the state**
 903 **of traditional and RL-based TSC algorithms.**

905 Dataset	Noise Type	906 FixedTime		907 Advanced-CoLight			908 Advanced-MpLight			909 Advanced-MaxPressure		
		910 Scale	911 base	912 base	913 RobustLight	914 RobustLight++	915 base	916 RobustLight	917 RobustLight++	918 base	919 RobustLight	920 RobustLight++
<i>JiNan</i> ₂	Gaussian	3.5	338.12 \pm 12.82	292.70 \pm 2.31	273.68\pm2.32	626.67 \pm 177.54	275.78 \pm 2.17	268.58\pm1.28	276.10 \pm 1.50	280.43 \pm 1.77	269.98\pm0.81	
		4.0	357.56 \pm 30.63	308.17 \pm 3.60	265.32\pm1.31	689.61 \pm 202.25	284.35 \pm 2.65	273.24\pm4.24	281.06 \pm 1.67	287.71 \pm 3.12	274.22\pm1.07	
	U-rand	3.5	748.76 \pm 97.15	564.09 \pm 61.36	353.52\pm4.84	506.24 \pm 105.45	297.90 \pm 4.67	290.15\pm7.68	301.54 \pm 2.38	300.41\pm1.79	304.85 \pm 4.04	
		4.0	368.77	784.89 \pm 68.08	611.86 \pm 54.28	334.67\pm4.53	572.98 \pm 126.74	303.68 \pm 5.53	295.55\pm8.74	307.22 \pm 0.96	307.13\pm1.4	320.89 \pm 3.23
	MAD	3.5	563.99 \pm 40.13	273.66\pm4.84	275.88 \pm 1.76	330.25 \pm 130.61	254.85\pm2.30	262.66 \pm 0.89	-	-	-	
		4.0	630.31 \pm 19.84	277.99\pm1.23	286.36 \pm 2.13	454.53 \pm 256.35	257.66\pm3.72	279.84 \pm 0.91	-	-	-	
<i>HangZhou</i> ₁	MinQ	3.5	344.12 \pm 29.23	287.39\pm12.74	292.35 \pm 8.27	272.16 \pm 8.66	256.80\pm2.05	263.82 \pm 1.75	-	-	-	
		4.0	367.51 \pm 55.65	295.08 \pm 16.33	288.83\pm4.36	402.47 \pm 141.56	261.35\pm3.43	277.89 \pm 2.16	-	-	-	
	Gaussian	3.5	512.63 \pm 25.89	363.83 \pm 8.25	337.84\pm2.34	334.03 \pm 2.48	351.44 \pm 9.07	315.75\pm1.77	327.94 \pm 1.03	346.14 \pm 1.58	319.10\pm0.83	
		4.0	530.59 \pm 30.78	388.49 \pm 7.73	336.53\pm2.89	338.76 \pm 3.89	381.53 \pm 13.58	316.92\pm1.54	331.25 \pm 1.28	370.61 \pm 2.56	320.27\pm0.43	
	U-rand	3.5	971.03 \pm 34.19	537.52 \pm 56.18	426.79\pm23.70	354.63 \pm 2.05	332.80\pm1.60	343.87 \pm 5.61	355.51 \pm 3.32	348.57\pm1.07	350.61 \pm 1.76	
		4.0	495.57	982.41 \pm 42.18	561.60 \pm 50.29	408.59\pm14.11	360.11 \pm 2.75	334.80\pm1.67	351.45 \pm 3.08	360.88 \pm 3.08	353.11\pm1.71	363.21 \pm 4.21
	MAD	3.5	751.58 \pm 44.00	319.42\pm1.81	333.67 \pm 3.23	308.78 \pm 3.91	312.76 \pm 4.85	309.87\pm2.10	-	-	-	
		4.0	754.66 \pm 37.04	323.48\pm2.45	352.27 \pm 4.76	313.53 \pm 3.06	318.14\pm5.43	331.27 \pm 4.13	-	-	-	
	MinQ	3.5	506.60 \pm 42.19	35.29\pm3.50	351.39 \pm 11.40	320.32 \pm 6.34	314.07\pm4.20	315.70 \pm 3.19	-	-	-	
		4.0	550.00 \pm 37.44	343.82\pm5.70	363.18 \pm 14.05	324.65 \pm 5.88	323.04\pm4.15	330.05 \pm 5.85	-	-	-	

918
 919 Table 6: **ATT in JiNan and HangZhou: 25% refers to missing data in $sensor_W$, and 50%**
 920 **refers to $sensor_W$ and $sensor_E$.**

Dataset	Mask Scale	Advanced-CoLight		
		base	RobustLight	RobustLight++
JiNan1	25%	343.34 \pm 8.39	310.14 \pm 9.63	307.98\pm7.15
	50%	699.02 \pm 35.07	539.30\pm54.88	648.73 \pm 20.38
JiNan2	25%	277.85 \pm 7.50	266.62\pm3.79	270.90 \pm 6.33
	50%	682.61 \pm 29.58	351.08 \pm 17.45	322.20\pm8.94
JiNan3	25%	324.42 \pm 13.55	278.06 \pm 9.84	267.95\pm6.13
	50%	627.95 \pm 53.19	417.49 \pm 111.67	306.57\pm7.86
HangZhou1	25%	418.49 \pm 13.59	331.65\pm7.68	383.35 \pm 12.47
	50%	624.83 \pm 13.27	434.31 \pm 34.36	415.23\pm7.23
HangZhou2	25%	348.21 \pm 7.21	340.80 \pm 4.64	335.02\pm2.35
	50%	499.34 \pm 28.56	453.90 \pm 26.08	352.05\pm6.22

937 Table 7: **Performance of ATT in JiNan, HangZhou. Our RobustLight++ recovers the state of**
 938 **traditional and RL-based TSC algorithms to evaluate the performance.**

Dataset	Noise Type	Noise Scale	Advanced-MaxPressure		
			base	RobustLight	RobustLight++
JiNan1	Gaussian	3.5	285.72 \pm 2.20	283.47 \pm 1.16	279.85\pm1.20
		4.0	289.74 \pm 2.61	288.90 \pm 1.18	283.95\pm1.30
	U-rand	3.5	312.67 \pm 2.81	307.08\pm2.67	307.55 \pm 2.07
		4.0	321.26 \pm 1.81	312.52\pm2.82	334.73 \pm 1.70
JiNan3	Gaussian	3.5	268.67 \pm 1.56	268.69 \pm 1.32	262.13\pm0.60
		4.0	273.22 \pm 0.77	272.95 \pm 1.68	265.42\pm1.56
	U-rand	3.5	293.44 \pm 2.74	291.58 \pm 1.74	285.97\pm1.11
		4.0	300.53 \pm 3.67	296.06 \pm 2.23	295.45\pm1.85
HangZhou2	Gaussian	3.5	345.87 \pm 1.37	346.53 \pm 1.61	341.09\pm1.08
		4.0	348.39 \pm 2.53	350.68 \pm 1.44	345.84\pm1.80
	U-rand	3.5	362.58 \pm 0.93	359.44\pm1.02	359.94 \pm 0.64
		4.0	366.46 \pm 2.44	363.44\pm1.91	374.26 \pm 2.71

959 The Table 6 presents the performance of the Advanced-CoLight algorithm across five datasets under
 960 two data missing scenarios: 25% missing data in $sensor_W$ and 50% missing data in both $sensor_W$
 961 and $sensor_E$. It compares the base model, RobustLight, and RobustLight++, highlighting that Ro-
 962 bustLight++ generally achieves the best or competitive performance, with notable improvements in
 963 heavily degraded conditions (e.g., 50% missing data), as indicated by the highlighted cells showing
 964 lower mean values and reduced standard deviations.

965 The Table 7 evaluates the Advanced-MaxPressure algorithm’s performance across three datasets
 966 ($JiNan_1$, $JiNan_3$, $HangZhou_2$) under various conditions, likely involving noise or missing data,
 967 with four entries per dataset. RobustLight++ consistently outperforms or matches the base and
 968 RobustLight models, as evidenced by the highlighted cells with lower mean values and smaller
 969 standard deviations, demonstrating its effectiveness in recovering and stabilizing the performance of
 970 traditional and reinforcement learning-based traffic signal control algorithms.

971 The Table 5 presents the performance of the Advanced-CoLight, Advanced-MpLight and Advanced-
 972 MaxPressure algorithms, evaluated on two distinct datasets: $JiNan_2$ and $HangZhou_1$. The experi-

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
ments were conducted under eight different scenarios for each dataset, designed to simulate environments with data imperfections like noise. The empirical results reveal that the RobustLight++ framework outperforms both the baseline model and the RobustLight implementation in many scenarios. This superiority is quantitatively evidenced by the consistently lower mean values and smaller standard deviations highlighted in the table, which respectively indicate higher operational efficiency and greater stability.

E ABALATION EXPAND EXPERIMENTS

Table 8: ATT ablation of RobustLight++ based on Advanced-CoLight in *JiNan*₂ and *HangZhou*₂ under noise and mask.

Dataset	Type	Scale	Advanced-CoLight			
			w/n ddpm	w/n ddpm+offline	w/n ddpm+meta+offline	RobustLight++
<i>JiNan</i> ₂	Gaussian	3.5	283.96±3.42	285.38±4.03	264.37±0.40	273.68±2.32
	U-rand	3.5	401.34±20.15	601.13±90.80	426.87±25.85	353.52±4.84
	Mask	25%	264.73±2.33	256.35±2.49	256.21±1.74	270.90±6.33
	Mask	50%	642.50±17.84	283.83±9.48	315.55±14.91	322.20±8.94
<i>HangZhou</i> ₂	Gaussian	3.5	340.44±4.40	360.36±13.92	339.82±2.74	343.31±4.65
	U-rand	3.5	364.90±1.64	573.24±17.7	441.79±21.83	364.17±4.22
	Mask	25%	345.65±1.72	348.35±11.41	345.71±6.14	335.02±2.35
	Mask	50%	485.30±10.76	381.7±12.33	349.10±6.76	352.05±6.22

Table 9: Inference time ablation of RobustLight++ based on Advanced-CoLight in *JiNan*₂ and *HangZhou*₂ under noise and mask.

Dataset	Type	Scale	Advanced-CoLight			
			w/n ddpm	w/n ddpm+offline	w/n ddpm+meta+offline	RobustLight++
<i>JiNan</i> ₂	Gaussian	3.5	34.02	409.08	407.72	29.61
	U-rand	3.5	40.17	328.03	389.25	35.61
	Mask	25%	73.50	710.01	766.5	68.41
	Mask	50%	84.14	716.6	780.24	69.27
<i>HangZhou</i> ₂	Gaussian	3.5	48.99	417.00	415.53	40.06
	U-rand	3.5	53.31	333.5	328.85	43.55
	Mask	25%	97.77	705.93	761.54	80.51
	Mask	50%	93.79	706.78	764.46	81.66

Table 10: Ablation study few-shot (100 samples) transfer performance from *JiNan* to *HangZhou* under Different Noise Types and Scales based on Advanced-Color-Light in different learning rates and diffusion steps.

Dataset	Noise Type	Scale	Base	RobustLight++	RobustLight++	RobustLight++
				($\mu=0.1, T=100$)	($\mu=0.05, T=100$)	($\mu=0.05, T=50$)
<i>HangZhou</i> ₁	Gaussian	3.5	512.63	354.15	324.87	564.89
	U-rand	3.5	971.03	615.19	686.54	798.36
	MinQ	3.5	751.58	719.18	393.27	791.02
	MAD	3.5	506.60	369.34	372.98	381.22
	Mask	25%	418.49	375.17	392.13	497.86
<i>HangZhou</i> ₂	Gaussian	3.5	495.92	343.34	342.68	361.82
	U-rand	3.5	567.56	378.70	471.45	511.46
	MinQ	3.5	496.73	357.09	373.30	379.58
	MAD	3.5	441.72	344.55	373.49	376.59
	Mask	25%	348.21	340.42	343.54	355.51

Tables 8 and 9 present the performance and inference time comparisons of RobustLight++ under various noise types and mask conditions, based on ablation studies with the Advanced-CoLight framework. Table 8 shows the ATT results on two datasets (*JiNan*₂ and *HangZhou*₂) with different perturbation types (Gaussian, U-rand) and mask levels (25%, 50%). The comparison includes different model settings: using only DDIM, using DDPM+offline, and using DDPM+meta+offline. RobustLight++ consistently achieves the lowest ATT across most scenarios, demonstrating superior

robustness and performance under noise and partial observability. Table 9 reports the inference time under the same settings. RobustLight++ shows significantly lower inference times compared to all other variants, highlighting its practical efficiency and suitability for real-time deployment. Table 10 shows the few-shot transfer results from *JiNan* to *HangZhou* under different noise settings. RobustLight++ reports recovered performance under different learning rates and diffusion steps with few-shot adaptation (100 samples). The setting meta learning rate is 0.1 and diffusion steps is 100 yields the best overall performance.

F KRIGING AND RANDOM MISSING EXPAND EXPERIMENTS

Table 11: ATT in *JiNan* and *HangZhou* with 12.5% random and kriging missing data.

Dataset	Advanced-CoLight		
	base	RobustLight	RobustLight++
<i>JiNan</i> ₁	344.78±38.56	343.56±26.34	315.84±21.27
<i>JiNan</i> ₂	459.64±66.70	287.95±7.69	262.11±13.41
<i>JiNan</i> ₃	465.06±58.32	313.15±55.05	268.51±17.03
<i>HangZhou</i> ₁	422.23±100.44	376.90±61.27	312.82±37.3
<i>HangZhou</i> ₂	364.32±23.81	348.33±15.77	334.11±6.07

The Table 11 evaluates the performance of the Advanced-CoLight algorithm across five datasets under a 12.5% random and kriging missing data scenario. It compares the base model, RobustLight, and RobustLight++, with RobustLight++ consistently achieving the lowest mean values (highlighted in gray), indicating superior performance and stability, particularly in *JiNan*₂ (262.11) and *JiNan*₃ (268.51), where it significantly outperforms the base and RobustLight models.

G TRANSFER EXPAND EXPERIMENTS

Table 12: Performance of RobustLight++ based on Advanced-Colight in *Newyork* transfer by *JiNan*₁

Dataset	Type	Scale	Advanced-CoLight		
			base	RobustLight	RobustLight++
<i>Newyork</i> ₁	Gaussian	3.5	1279.46±9.07	1168.11±10.90	1154.30±14.42
	U-rand	3.5	1527.23±5.64	1359.38±11.71	1330.24±14.54
	Mask	25%	1119.34±49.36	1098.55±23.48	1130.83±35.49
<i>Newyork</i> ₂	Gaussian	3.5	1653.00±18.94	1501.80±26.33	1427.23±15.71
	U-rand	3.5	1788.00±18.51	1697.33±19.22	1545.65±16.86
	Mask	25%	1321.09±57.72	1376.90±17.63	1286.63±75.82

The Table 12 and Figure 5 assess the Advanced-CoLight algorithm’s performance across six datasets (*JiNan*₂, *JiNan*₃, *HangZhou*₁, *HangZhou*₂, *Newyork*₁, *Newyork*₂) under various noise conditions (Gaussian at 3.5, U-rand at 3.5, and Mask at 25%), transferred from inner learner of *JiNan*₁ and outer learner of *JiNan*₂, *JiNan*₃, *HangZhou*₁, *HangZhou*₂. RobustLight++ demonstrates enhanced performance with lower mean values in most cases (highlighted in gray), such as 1154.30 for *Newyork*₁ Gaussian and 1427.23 for *Newyork*₂ Gaussian, though it underperforms in the Mask scenario for *Newyork*₁ (1130.83), suggesting its effectiveness varies with noise type.

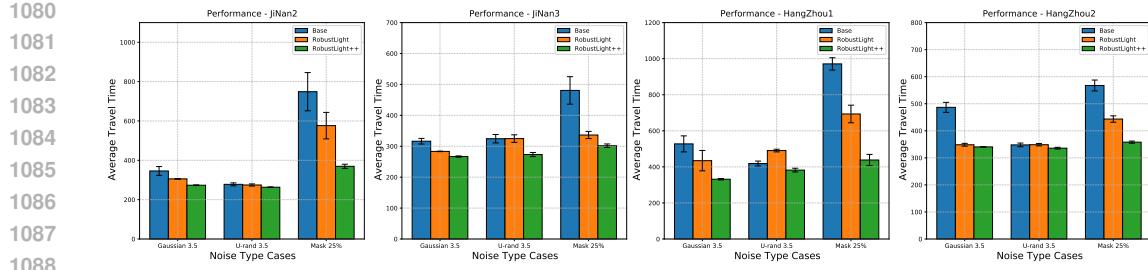


Figure 5: **Performance of RobustLight++ based on Advanced-Colight in *JiNan*₂, *JiNan*₃, *HangZhou*₁ and *HangZhou*₂ transfer by *JiNan*₁**

Table 13: Training-Time Complexity under Different Meta-Diffusion Settings

Scenario	#Tasks	Diffusion Steps	Meta Iter.	Inner Steps	Wall-clock (s)	Avg/Step (s)	Peak GPU (MiB)
2tasks_T50	2	50	3	30	31.93	10.64	163.06
3tasks_T50	3	50	3	30	42.15	14.05	163.06
3tasks_T100	3	100	3	30	42.75	14.25	163.06
5tasks_T150	5	150	3	30	62.57	20.86	163.06

H TRAINING COMPLEXITY ANALYSIS

We evaluate the training-time complexity of RobustLight++ under various meta-learning and diffusion configurations, as summarized in Table 13. During training, each scenario involves a set of outer tasks corresponding to different city environments. For each meta-iteration, the diffusion model performs T denoising steps, followed by K inner-loop gradient updates for control policy adaptation. Specifically, we fix the number of meta-iterations to 3 and inner training steps to 30, and vary the number of tasks and diffusion depth (50–150 steps) to evaluate scalability.

All experiments are conducted on a single RTX 4090 GPU. Importantly, the peak GPU memory remains stable across all settings, demonstrating that the diffusion-based outer-learner does not introduce excessive memory overhead even with increased task scale or diffusion depth. The results indicate that wall-clock time grows approximately linearly with the number of cities and diffusion steps, while the average inner loss consistently decreases as task diversity increases, validating the effectiveness of meta-training across heterogeneous urban environments.

I ADDITIONAL EXPERIMENTS

The tables 15 and 16 compare the performance of RobustLight++ against RobustLight across datasets *JiNan*₁, *JiNan*₂, and *HangZhou*₂. For PSNR (higher is better, shown in Table 15), RobustLight++ consistently outperforms others, with notable improvements to 20.87 for *JiNan*₁ Gaussian and 4.17 for *HangZhou*₂ at 50% mask. For MAE (lower is better, shown in Table 16), RobustLight++ also excels, achieving 2.35 for *JiNan*₁ Gaussian and 0.99 for *HangZhou*₂ at 50% mask, demonstrating superior robustness and accuracy across various scales and noise types.

As shown in Table 14, RobustLight++ based on π -Light Gu et al. (2024) consistently achieves superior performance across both datasets and noise settings. Under both Gaussian and uniform-random perturbations, RobustLight++ yields the lowest values in most evaluation metrics, indicating improved robustness against noisy observations.

J HYPERPARAMETERS

The Table 18 outlines the hyperparameters used for training the proposed model, categorized into UNet/Model Hyperparameters, Diffusion Training Hyperparameters, and TSC RL Agent Training Hyperparameters. Key settings include an embedding dimension of 64 and a hidden dimension of 256 for the UNet model, with state and action dimensions tailored to 20/32 and 4, respectively. Diffusion training employs a non-Markovian step of 6, a beta schedule of [3.0651, 24.552, -3.1702], a diffusion timestep of 100, and an Adam optimizer with a learning rate of 0.0003, alongside meta

1134 Table 14: Performance on *JiNan₃* and *HangZhou₁* under Different Noise Types and Scales based
1135 on π -Light.

1136

1137	Dataset	Noise Type	Scale	Base	RobustLight	RobustLight++
1138	<i>JiNan₃</i>	Gaussian	3.5	472.80 \pm 45.14	441.67 \pm 69.53	382.73\pm8.35
1139		U-rand	3.5	452.44 \pm 28.29	515.18 \pm 16.18	366.31\pm6.99
1140		MinQ	3.5	—	—	—
1141		MAD	3.5	—	—	—
1142		Gaussian	4.0	466.44 \pm 25.91	418.19 \pm 58.81	387.13\pm21.41
1143		U-rand	4.0	457.13 \pm 29.63	522.79 \pm 31.16	370.44\pm13.21
1144		MinQ	4.0	—	—	—
1145		MAD	4.0	—	—	—
1146	<i>HangZhou₁</i>	Gaussian	3.5	442.82 \pm 11.29	377.84 \pm 4.36	365.87\pm4.86
1147		U-rand	3.5	495.52 \pm 3.41	501.25 \pm 32.91	408.16\pm11.38
1148		MinQ	3.5	—	—	—
1149		MAD	3.5	—	—	—
1150		Gaussian	4.0	453.73 \pm 15.11	383.04 \pm 6.20	377.94\pm8.25
1151		U-rand	4.0	505.68 \pm 11.11	532.49 \pm 30.07	422.86\pm10.07
1152		MinQ	4.0	—	—	—
1153		MAD	4.0	—	—	—

1153

1154 Table 15: PSNR Performance Comparison with RobustLight (higher is better)

1155

1156	Dataset	Type	Scale	Advanced-CoLight		
				base	RobustLight	RobustLight++
1158	<i>JiNan₁</i>	Gaussian	3.5	14.25	17.67	20.87
1159		U-rand	3.5	7.30	11.12	16.16
1160		Mask	25%	10.76	14.02	14.74
1161		Mask	50%	5.04	6.93	5.49
1162	<i>JiNan₂</i>	Gaussian	3.5	14.25	20.00	22.58
1163		U-rand	3.5	7.30	11.75	17.57
1164		Mask	25%	22.08	28.65	28.07
1165		Mask	50%	5.80	21.53	17.67
1166	<i>HangZhou₂</i>	Gaussian	3.5	14.32	15.88	16.55
1167		U-rand	3.5	7.26	12.16	11.98
1168		Mask	25%	6.30	6.32	6.71
1169		Mask	50%	3.01	4.25	4.17

1173

1174 and single epoch settings of 25 and 90. The TSC RL agent is configured with a discount factor of
1175 0.8, a buffer capacity of 12,000, a batch size of 20, and an Adam optimizer with a learning rate of
1176 0.001, incorporating an epsilon greedy strategy with initial, minimum, and decay values of 0.8, 0.2,
1177 and 0.95, respectively.

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table 16: **MAE Performance Comparison with RobustLight (lower is better)**

Dataset	Type	Scale	Advanced-CoLight		
			base	RobustLight	RobustLight++
<i>JiNan</i> ₁	Gaussian	3.5	4.44	2.52	2.35
	U-rand	3.5	5.31	5.17	2.92
	Mask	25%	1.50	1.00	1.11
	Mask	50%	1.22	1.63	1.45
<i>JiNan</i> ₂	Gaussian	3.5	8.38	4.55	4.11
	U-rand	3.5	5.28	4.90	4.75
	Mask	25%	1.00	0.76	0.74
	Mask	50%	1.77	1.52	1.19
<i>HangZhou</i> ₂	Gaussian	3.5	1.43	1.15	1.16
	U-rand	3.5	2.92	1.86	1.64
	Mask	25%	0.80	0.76	0.72
	Mask	50%	1.37	1.34	0.99

Table 17: **Inference time comparison (in milliseconds) based on Advanced-Colight.**

<i>JiNan</i> ₁			<i>HangZhou</i> ₁		
Type	RobustLight	Our	Type	RobustLight	Our
Gaussian	131.52	33.40	Gaussian	139.60	31.89
U-rand	173.76	38.23	U-rand	179.18	36.24
MAD	1049.95	119.19	MAD	1505.61	162.36
MinQ	1081.03	118.96	MinQ	1524.30	159.83
Mask 25%	612.33	72.57	Mask 25%	1095.14	75.18
Mask 50%	997.53	86.39	Mask 50%	1095.11	74.52

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254

Table 18: **Hyperparameters**

Hyperparameter Type	Hyperparameter	Setting
UNet/Model Hyperparameter	embed_dim	64
	state_dim	20/32
	action_dim	4
	hidden_dim	256
Diffusion Training Hyperparameter	non_markovian_step	6
	condition_length	4
	beta schedule	3.0651, 24.552, -3.1702
	discount(γ)	0.99
	target critic(τ)	0.005
	diffusion timestep	100
	batch size	16
	buffer capacity	240
	optimizer	Adam
	learning rate	0.0003
	meta learning rate μ	0.1
	epochs(meta/single)	25 / 90
	hidden size	256
	attention embed_dim	64
TSC RL Agent Training Hyperparameter	discount(γ)	0.8
	buffer capacity	12000
	epochs	80
	batch_size	20
	learning_rate	0.001
	target update time	5
	normal factor	20
	loss function	mean_squared_error
	optimizer	Adam
	learning rate	0.001
	patience	10
	epsilon (init/min/decay)	0.8 / 0.2 / 0.95
	D.DENSE	20

1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295