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ABSTRACT

Despite remarkable progress in Reinforcement Learning (RL) for Traffic Sig-
nal Control (TSC), existing methods largely lack the ability to generalize across
cities, limiting their applicability in real deployments. The recent SoTA method
RobustLight improves robustness but still exhibits weak transfer performance,
high inference latency, and limited resistance to sensor failures. In this paper,
we present RobustLight++, a meta-diffusion-based framework designed to explic-
itly learn transferable representations among heterogeneous urban environments.
By theoretically linking DDIM with Reptile meta-learning, RobustLight++ en-
ables a diffusion policy that supports both zero-shot deployment and few-shot
adaptation in unseen cities, significantly reducing the cost of retraining and data
collection in new domains. Comprehensive experiments on large-scale real-
world benchmarks demonstrate superior cross-city transfer capability, with per-
formance gains ranging from 7.41% to 52.13% under diverse noise conditions,
and consistent improvements over all competing baselines in unseen environ-
ments. In addition, RobustLight++ achieves up to 91.9% reduction in inference
latency, ensuring real-time applicability. The proposed framework delivers a prac-
tical solution toward scalable, transferable, and robust urban traffic control sys-
tems. Our code is available at https://anonymous.4open.science/r/
RobustLightPlus-E14F.

1 INTRODUCTION

Traffic Signal Control (TSC) is a fundamental component of urban traffic management, aiming
to alleviate congestion and improve mobility (Liang et al., 2018). While recent Reinforcement
Learning (RL) based approaches have demonstrated promise in adaptive signal control (Wei et al.,
2019c), their practical deployment is often hindered by critical challenges in generalization, effi-
ciency, and robustness, particularly when faced with imperfect real-world sensor data. The recent
state-of-the-art (SoTA), RobustLight (Li et al., 2025b;a), marks a significant step forward. How-
ever, several critical limitations still impede its large-scale, real-world application: 1) its per-city
training paradigm, which requires a separate model for each environment, fundamentally restricts
its ability to generalize and transfer knowledge across diverse urban settings; 2) its inference and
adaptation processes are computationally intensive, resulting in high latency that is prohibitive for
real-time control applications; and 3) although effective in controlled research settings, it falls short
of meeting industrial-grade standards under the complex, dynamic, and noisy conditions of real-
world traffic. These limitations underscore the urgent need for a more generalizable, efficient, and
robust framework capable of adapting to new environments with minimal overhead.

To address the challenge of generalization, meta-learning frameworks have been proposed (Huang
et al., 2021; Zang et al., 2020) to extract transferable knowledge across different cities. Concur-
rently, denoising diffusion models, such as Denoising Diffusion Implicit Model (DDIM) (Song
et al., 2020a), have emerged as exceptionally powerful generative tools. However, their potential
for robust decision-making and meta-generalization in RL remains largely underexplored.

In this work, we bridge this gap by introducing RobustLight++, a novel meta-diffusion framework.
We establish a key theoretical connection between the iterative sampling process of DDIM and the
meta-update rule of Reptile (Nichol et al., 2018). Our core insight is that the DDIM sampling process
naturally mirrors a gradient-based meta-optimization, where the learned noise predictor implicitly
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guides the policy toward a robust solution space. Based on this connection, we propose a unified
framework that recasts the diffusion model as a powerful meta-learner, enabling rapid and robust
policy adaptation across cities with only a few fine-tuning steps.

This work significantly narrows the gap between academic research and the practical demands of
industrial-scale traffic optimization. Our primary contributions are:

• We establish a novel theoretical connection between the DDIM sampling process and the
Reptile meta-learning, framing DDIM as a learnable and robust meta-optimizer for policy
adaptation.

• We propose RobustLight++, a unified meta-diffusion framework that leverages this con-
nection for cross-city TSC, enabling superior generalization and rapid adaptation with a
single shared model.

• We validate the effectiveness of our approach on multiple real-world benchmarks, where
it achieves SoTA performance, reduces inference latency by over 91.9%, and demonstrates
industrial-grade availability.

2 RELATED WORKS

TSC has progressed from rule-based methods (Webster, 1958) to adaptive systems like SCOOT
(Hunt et al., 1981), SCATS (Lowrie, 1990), and RHODES (Mirchandani & Head, 2001), which
reduce delays dynamically. Control-theoretic methods such as Max Pressure (Varaiya, 2013) and
Efficient Pressure (Wu et al., 2021) offer robustness but rely on simplified assumptions. Rein-
forcement learning has become the dominant paradigm (Wei et al., 2021), with approaches like
IntelliLight (Wei et al., 2018), PressLight (Wei et al., 2019a), CoLight (Wei et al., 2019b), and
MetaLight (Zang et al., 2020) achieving strong results. Recent works explore multi-agent coordi-
nation (Song et al., 2024) and multi-modal or hierarchical representations (Yu et al., 2023; Wang
et al., 2024; Ruan et al., 2024; Duan et al., 2025), yet most still rely on fixed, hand-crafted state
features. Viewing traffic as a complex system (Mitchell, 2009; Strogatz, 2001), hierarchical RL
provides scalable solutions (Salehkaleybar et al., 2019; Shen et al., 2020).

Meta-learning has advanced through diverse strategies, including latent embedding optimization
(Rusu et al., 2018), differentiable convex solvers (Lee et al., 2019), implicit gradients (Rajeswaran
et al., 2019; Zhang et al., 2023), and sparsity-aware adaptation (Von Oswald et al., 2021). Studies
have also explored the trade-off between rapid learning and feature reuse (Raghu et al., 2019). Re-
cently, MetaDiff (Zhang et al., 2024) introduced a task-conditional diffusion-based framework that
generalizes gradient descent with learnable momentum and uncertainty modeling. Meta-learning
has recently emerged as a promising direction in TSC for improving generalization and adaptability
across varying traffic scenarios. Early works like MetaLight (Zang et al., 2020) and CrossLight
(Sun et al., 2024) applied meta-learning for quick adaptation and cross-scenario generalization, but
overlooked safety concerns in TSC.

Diffusion models have achieved remarkable success in generative modeling (Ho et al., 2020a; Song
et al., 2020a; Nichol & Dhariwal, 2021b), with improvements in training stability and sample quality
through advanced beta schedules (Xiao et al., 2021; Nichol & Dhariwal, 2021a). Classifier-free
guidance further enhanced controllability (Ho & Salimans, 2022). Recently, diffusion has been
extended to RL for robust decision-making under uncertainty, such as DiffLight for missing data in
TSC (Chen et al., 2024), RobustLight for policy robustness (Li et al., 2025b), and DMBP for offline
RL with noisy states (Yang & Xu, 2023). However, these algorithms suffer from slow inference
speed, making them impractical for real-world deployment, and their reconstruction performance
remains suboptimal.

3 PRELIMINARY

3.1 CROSS-CITY FEW-SHOT POLICY TRANSFER

We consider a meta-RL setting for TSC, where K source cities T src
1 , . . . , T src

K provide offline trajec-
tories, and a target city Ttgt lacks prior data but allows limited online interactions. The objective is
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to transfer a policy pre-trained on T src
k , k = 1, ..,K and adapt it efficiently to Ttgt using only a few

online rollouts, thereby maximizing travel efficiency with minimal deployment cost.

3.2 TRAFFIC SIGNAL CONTROL

(a) Intersection

(c) Movement

(d) Phase

Q R S T

M N O P

(b) Sensors

Normal Noisy Damage

A B C D E F

G H I J K L
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Figure 1: Definition of the TSC. Sensors are
used to acquire vehicle information, which is fed
into the TSC algorithm to output the appropriate
phase, as shown in Figure 1(d).

We use a four-way intersection, as depicted in
Figure 1, to introduce key concepts and defini-
tions for TSC. A road network comprises mul-
tiple intersections, each with N road segments,
denoted as {Inter1, . . . , InterN}. Each inter-
section is equipped with four directional sen-
sors (e.g., cameras, radars) monitoring three
lanes per direction. Sensor states are color-
coded as green for normal, orange for noise
attacks, and red for sensor damage, as shown
in Figure 1(b). A vehicle’s path through an
intersection, from an entry lane (lanein) to
an exit lane (laneout), is defined as TM =
(lanein, laneout), as illustrated in Figure 1(c).
A traffic signal phase consists of two distinct
movements, TMi and TMj (i ̸= j), denoted as
pw = (TMi, TMj), as shown in Figure 1(d).

3.3 ADVERSARIAL ATTACKS AND SENSOR DAMAGE

We define four adversarial attacks and physical sensor damage affecting TSC. The Gaussian Noise
Attack adds Gaussian noiseN (µ, σ2) scaled by intensity k to the state s, yielding s̃t = st + k · N .
The U-rand Attack introduces uniform random noise U within intensity k, expressed as s̃t = st+k·
U(I, I), where I is the identity matrix. The MAD Attack selects noise within an ℓ∞ ball Bd(s, k) to
maximize policy divergence: s̃t = st+argmaxs̃∈Bd(s,k) D(πϕ(·|s) ∥ πϕ(·|s̃)). The MinQ Attack
chooses noise within Bd(s, k) to minimize the Q-value: s̃t = st+argmins̃∈Bd(s,k) Q(s̃t, πϕ(·|s̃)).
Finally, physical sensor damage (e.g., due to weather or human factors) leads to unobserved state
dimensions, which we model as s̃t = Mask · st.

3.4 DENOISING DIFFUSION IMPLICIT MODELS

Diffusion models generate data by reversing a Markovian noise process over T steps. To accelerate
inference, DDIM (Song et al., 2020a) introduces a strided schedule τ1, . . . , τS with S ≪ T , skipping
redundant steps. The transition distribution is reformulated as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t ϵ
(t)
θ (xt) + σtϵ,

where ϵ
(t)
θ predicts the noise at step t, and σ2

t = δ · β̃t modulates stochasticity via a tunable hyper-
parameter δ > 0 , β̃t = σ2

t = 1−ᾱt−1

1−ᾱt
· βt, αt = 1 − βt and ᾱt =

∏t
i=1 αi and σ ∼ N (0, I).

Setting δ = 0 yields a deterministic generation process. DDIM preserves the marginal distribution
of DDPM (Ho et al., 2020b) but allows for significantly faster sampling. To capture the underlying
data geometry, Song et al. (2020b) approximate the true score ∇ log pt(x) using a parameterized
estimator sθ(x, t). The model parameters θ by minimizing the weighted Fisher divergence, which
takes the form of a weighted Mean Squared Error (MSE):

J(θ;λ) :=
1

2

∫ T

0

λ(t)Ept

[
∥∇ log pt(x)− sθ(x, t)∥2

]
dt. (1)

Here, λ(t) > 0 is a time-dependent weighting function that balances the learning signal across
different noise scales. Kwon et al. (2022) estimate the Wasserstein distance W2(p0, q0) between a
given data distribution p0 and the marginal of the generated samples q0 obtained by the score-based
model sθ(x, t).
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3.5 REPTILE META LEARNING

Reptile is a first-order gradient-based meta-learning algorithm, similar in spirit to Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) but computationally more efficient. It iteratively sam-
ples tasks, performs k steps of task-specific Stochastic Gradient Descent (SGD) from an initializa-
tion θ to obtain ϕ = ∇LT (θ), and updates θ toward ϕ:

θ ← θ − µ(θ − ϕ), (2)

where µ is the meta step size. This process encourages θ to lie close to the optimal manifoldMi

of each task Ti. Assuming each task Ti has an optimal parameter manifold Mi(ϕ), the learning
objective becomes minimizing the aggregated distance |θ − Mi(ϕ)|22 across tasks. The Reptile
update approximates the gradient of this objective by treating ϕ as a proxy for the projection of θ
ontoMi(ϕ):

∇θ[
1

2
|θ −Mi(ϕ)|22] ≈ (θ − ϕ). (3)

This enables generalization by locating θ near the intersection of task-specific optima, facilitating
fast adaptation in new tasks.

4 METHODS

Source Cities Data

Target Cities Data

Outer
Learner
𝝐𝜽(·)

Inner
Learner
𝝐𝜽(·)

(a) Meta-Learning Pipeline

Aggre

(b) Diffusion Learner Pipeline

𝑺𝒕 = (𝒂𝒕−𝟏,𝝉𝒕−𝟏𝒔 )
𝑨𝒕 = 𝒔𝒕

𝝉𝒕−𝟏𝒔 = 𝒔𝟏, … , 𝒔𝒕−𝟏

Input

Diffusion Learner Training

Sensor Damage

Noise Attack

Recover

Diffusion Learner Inference

2025/7/29 10:14 framework.svg
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Figure 2: Overall framework of RobustLight++. In meta-learning pipeline, it employs Reptile meta-
learning with a two-level architecture. The outer diffusion learner acquires meta-parameters from
source cities data, while the inner diffusion learner performs final parameter adaptation on target
cities data. In the diffusion pipeline, it uses a trained model to recover the state.

4.1 DDIM WITH REPTILE META LEARNING THEORY

We present a unified view that connects the DDIM with gradient-based meta-learning, particularly
the Reptile meta learning. By reformulating the DDIM sampling process, we reveal its structural
equivalence to a generalized meta-update rule with momentum and uncertainty modeling. The
DDIM sampling step from time t to t− 1 can be written as:

xt−1 =

√
ᾱt−1√
ᾱt

xt −
(√

ᾱt−1

√
1− ᾱt√

ᾱt
−
√
1− ᾱt−1 − σ2

t

)
ϵ
(t)
θ (xt) + σtϵ. (4)

By defining the following time-dependent parameters:

γ =

√
ᾱt−1√
ᾱt

, ξ = σt, η =

√
ᾱt−1

√
1− ᾱt√

ᾱt
−
√
1− ᾱt−1 − σ2

t .

4.1.1 LINKING TO REPTILE META-LEARNING.

We begin by observing the structural similarity between the update rule in diffusion-based mod-
els and classical gradient-based optimization (Zhang et al., 2024). Consider the standard gradient
descent formulation:

θ ← θ − η∇L(θ), (5)

4
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where θ denotes the model parameters, ∇L(θ) is the loss function, and η is the learning rate. This
iterative update aims to minimize the loss by moving in the direction of the negative gradient. In
comparison, the deterministic update rule in DDIM can be reformulated as:

xt−1 = xt − ηϵ
(t)
θ (xt) + (γ − 1)xt + ξϵ, (6)

where xt denotes the generated sample at time step t, ϵ(t)θ is the learned noise predictor, and the ad-
ditional terms (γ − 1)xt and ξϵ respectively introduce momentum and stochasticity into the update
dynamics. By comparing Eq. (5) with Eq. (6), it becomes evident that DDIM can be interpreted
as performing a noise-conditioned, time-varying descent in the data space. The term ϵ

(t)
θ serves

as a surrogate gradient, while η remains a scaling factor modulating the update magnitude. This
interpretation naturally bridges the diffusion process with meta-learning. In particular, we draw par-
allels to the Reptile algorithm, a first-order meta-learning method that updates the meta-parameters
θ by moving them toward task-specific adapted weights ϕ, which are obtained by applying several
gradient steps on a sampled task. Formally, Reptile performs:

θ ← θ + µ(ϕ− θ), (7)

where ϕ approximates θ−η∇LT (θ) (T represents the specific task dataset) after a few steps gradient
updates. In this light, the DDIM update can be viewed as an implicit meta-update, where xt plays
the role of the initialization θ, and ϵ

(t)
θ mimics a task-specific gradient.

Beyond this structural resemblance, DDIM incorporates additional capabilities absent in vanilla
Reptile. The momentum-like term (γ − 1)xt introduces time-dependent inertia that enhances sta-
bility and adaptivity during sampling, akin to a learnable momentum coefficient. Meanwhile, the
injected Gaussian noise ξϵ serves as a form of stochastic regularization, promoting robustness and
avoiding overfitting to any single generative trajectory.

DDIM extends beyond standard gradient descent by naturally incorporating ideas from meta-
optimization frameworks such as Reptile. A key advantage of DDIM is its ability to derive important
hyperparameters like γ and ξ analytically from the diffusion schedule, which removes the need for
manual tuning. This positions DDIM as a principled and efficient meta-optimization method that
supports few-shot learning in both generative and discriminative tasks.

4.2 FRAMEWORK OVERVIEW

We propose a meta-learning framework that unifies DDIM with Reptile updates for cross-city TSC.
In the meta learning pipeline, each city is treated as a task in a multi-task paradigm: an outer loop
aggregates information across source cities and updates a shared initialization, while an inner loop
fine-tunes that initialization on a target city. In the diffusion pipeline, we use the trained model of
meta learning to recover the state. Crucially, both loops optimize the same diffusion-based loss,
ensuring consistency between generalization and specialization phases.

4.2.1 META LEARNING PIPELINE.

Our diffusion learner is trained via offline meta-learning over a collection of multi-city datasets.
Specifically, we first collect logged trajectories Dτ = {(st, at, st+1)} from each training city τ ,
and aggregate them into a global offline corpus Dmeta. During meta-training, the diffusion model is
optimized to learn a cross-domain state distribution by minimizing the diffusion loss (Yang & Xu,
2023):

Ldiff(θ; Ti) = Ei∼UK ,ϵt∼N (0,I),(st−N ,...,st+M−1)∈Dν∥∥ϵθ(s̃it, ct−1, i)− ϵit
∥∥
2
+

t+M−1∑
m=t+1

∥∥ϵθ(s̃im, ĉm−1, i)− ϵim
∥∥
2
,

(8)

Where the condition represents as ct = (at−1, τ
s
t−1), at−1 is the previous TSC action, τst−1 =

{s1, ..., st−1} is the TSC state trajectory, ĉm−1 = (am−1, τ
ŝ
m−1), and τ ŝm−1 is the predicted state

trajectory. This loss balances immediate and future timesteps by penalizing the mismatch between
predicted and true noise across a window of length N +M .
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We use Reptile to meta-learn an initialization θ that performs well on any city after a few updates.
For each outer iteration with N source tasks, we compute:

ϕ = θ − η∇θLdiff(θ; Ti), θ ← θ +
µ

N

N∑
i=1

(ϕ− θ), (9)

where µ is the outer-loop step size. This first-order update aligns the global parameters toward the
average task-adapted parameters. During meta-training, we sample source tasks (e.g., Hangzhou)
and run k diffusion-loss inner updates to compute each ϕ. The aggregated update θ refines the
shared initialization. During meta-training, the denoising network is optimized on offline data from
multiple source cities without environment interaction. After convergence, the diffusion model is
frozen and deployed for state recovery in downstream control. At test time, the trained model
supports zero-shot state reconstruction from noisy inputs. When transferring to a target city (e.g.,
JiNan), we further perform few-shot adaptation by fine-tuning θ with the diffusion loss (Eq. 8) to
improve reconstruction fidelity and generalization. The algorithm is shown in Algorithm 1. Our
algorithm convergence demonstration is in theorem 1.
Theorem 1. Let Ldiff be the score matching loss. The Wasserstein-2 distance between the target
data distribution p0 and the model distribution q0 is bounded by:

W2(p0, q0) ≤ Cscore
√

Ldiff(θ)︸ ︷︷ ︸
Score Error

+ Cdisc · µ︸ ︷︷ ︸
Reptile Error

+ CinitW2(pT , qT )︸ ︷︷ ︸
Initialization

, (10)

where Cscore and Cdisc are constants determined by the integrated one-sided Lipschitz coefficients
of the vector field.

Remark. Theorem 1 indicates that the generation quality is governed by two key factors: 1) the
accuracy of the surrogate gradient (score matching loss), and 2) the step size µ of the Reptile meta-
update. The one-sided Lipschitz (Kwon et al. (2022)) ensures that the reptile discretization error ac-
cumulates linearly (O(µ)) rather than exponentially, guaranteeing the stability of the meta-trajectory.
Detailed proof is in Appendix B.

4.2.2 DIFFUSION PIPELINE.

The pipeline starts from Denoising via DDIM. During evaluation, TSC sensors may be corrupted
by Gaussian noise, MAD, U-rand, or Min-Q perturbations. To restore the true state, we employ
the diffusion model meta-trained by Reptile. At each diffusion timestep j, the network receives the
current noisy observation s̃jt , the last estimated state ct−1, and the timestep index j. The denoising
update follows the DDIM rule:

s̃ j−1
t =

√
ᾱ j−1

s̃jt −
√
1− ᾱj ϵθ(s̃

j
t , ct−1, j)√

ᾱj
+
√
1− ᾱ j−1 − σ2

j ϵθ(s̃
j
t , ct−1, j) + σjz , (11)

where z∼N (0, I). Iterating this process for j = T, ..., 1 yields the reconstructed state ŝt, effectively
removing adversarial or stochastic corruptions.

Next, Repainting is conducted to compensate the missing parts. We adapt conditional diffusion to
infer and restore missing or damaged sensor readings. Let m be the binary mask indicating known
(m = 1) and unknown (m = 0) entries in Ã j

t . At each reverse step, we sample the known portion
by forward diffusion:

s̃ j−1
t,known =

√
ᾱj s̃t,known +

√
1− ᾱj ϵ, (12)

and recover the unknown portion via the conditional reverse update:

s̃ j−1
t, unknown =

√
ᾱ j−1

s̃jt, unknown −
√
1− ᾱj ϵθ(s̃

j
t , ct−1, j)

√
ᾱj

+
√

1− ᾱ j−1 − σ2
j ϵθ(s̃

j
t , ct−1, j) + σj z,

(13)

where σ and z are independent Gaussian noises. The combined sample for the next iteration is

s̃ j−1
t = m⊙ s̃ j−1

t,known + (1−m)⊙ s̃ j−1
t,unknown. (14)

By iterating from j = T down to j = 1, the repaint algorithm reconstructs the full state ŝt. The
complete procedure is detailed in Algorithm 2.
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5 EXPERIMENTS

All experiments were conducted on an Ubuntu 22.04 server equipped with 8 × NVIDIA GeForce
RTX 4090 GPUs and 512GB DDR5 RAM. However, both the training and inference of our model
only require a single RTX 4090 GPU.

5.1 DATASETS AND COMPARED METHODS

We evaluate our approach using real-world traffic datasets simulated in Cityflow (Zhang et al., 2019),
measuring the Average Travel Time (ATT) over a 60-minute period. The datasets include start/end
vehicle points with a fixed motion model, covering 7 traffic datasets from JiNan and HangZhou
(China) and New York (Zheng et al., 2019) (USA). JiNan includes 12 intersections (3× 4 grid) with
three datasets: JiNan1, JiNan2, and JiNan3. HangZhou has 16 intersections (4 × 4 grid) and
two datasets: HangZhou1 and HangZhou2. New York features a large-scale network with 192
intersections (28× 7 grid) and two datasets: Newyork1 and Newyork2.

We compare our method against traditional and RL-based TSC approaches. Traditional methods in-
clude FixedTime (Webster, 1958) and Advanced-Maxpressure (Zhang et al., 2022). RL-based meth-
ods include Advanced-CoLight (Zhang et al., 2022) and Advanced-Mplight (Zhang et al., 2022),
which is based on FRAP (Zheng et al., 2019), RobustLight (Li et al., 2025b). Our proposed Ro-
bustLight++ integrates both traditional and RL-based methods, enabling real-time data recovery and
robust ATT evaluation under various sensor noise and damage scenarios. All results are averaged
over ten independent runs. More datasets and compared methods are shown in the Appendix A.

5.2 RESULTS

This subsection presents the results of our experiments, evaluating RobustLight’s performance under
various conditions, including resilience to noise attacks and sensor damage, using ATT on real-world
traffic datasets.

5.2.1 NOISE ATTACK ON STATE RESULTS

Table 1 presents the ATT performance of different TSC algorithms under multiple noise attack
settings on the JiNan and HangZhou datasets. We consider four types of perturbations: Gaussian,
U-rand, MAD, and MinQ, with two levels of noise intensity. RobustLight++ consistently improves
performance across most of the baselines and noise types, indicating its strong robustness under
both stochastic and adversarial attacks. In particular, compared to both traditional and RL-based
controllers, RobustLight++ yields substantial gains in high-noise scenarios. These results validate
that RobustLight++ not only recovers degraded policies but also establishes a more stable decision
process against various noise patterns, highlighting its potential for real-world deployment under
imperfect sensing conditions. On average, RobustLight++ achieves 6.77% lower ATT with the most
significant improvement reaching up to 26.18% under the MinQ attack in JiNan1 with Advanced-
CoLight.

5.2.2 SENSOR DAMAGE ON STATE RESULTS

We further investigate the performance of traditional and RL-based TSC algorithms under deliber-
ate sensor failures, simulating the loss of information from sensorW and sensorE by masking the
input data. Table 2 summarizes the ATT values across five datasets, where 25% masking refers to
damage in sensorW and 50% masking simulates failures in both sensorW and sensorE . To miti-
gate the resulting observation loss, we apply the Repaint algorithm within RobustLight++ to recover
the missing state information. Across all datasets and methods, RobustLight++ achieves an average
improvement of 12.75% over RobustLight, Particularly enhancing performance in heavily degraded
environments where traditional models collapse, achieving a maximum improvement of 52.13% in
HangZhou1 under 50% sensor damage. Notably, even under severe dual-sensor damage (50%
mask), RobustLight++ enables most of methods to maintain performance comparable to or better
than FixedTime, demonstrating its potential for robust real-world deployment under partial observ-
ability. The results show that RobustLight++ consistently improves performance over RobustLight
across most of methods and scenarios, demonstrating its strong resilience to sensor failures.
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Table 1: Performance of ATT in JiNan, HangZhou. Our RobustLight++ recovers the state of
traditional and RL-based TSC algorithms.

Dataset Noise

Type

Noise

Scale

FixedTime Advanced-CoLight Advanced-MpLight

base base RobustLight RobustLight++ base RobustLight RobustLight++

JiNan1

Gaussian 3.5

428.11

316.96±4.63 328.38±3.90 282.26±1.35 327.93±8.76 303.83±5.98 289.85±3.76
4.0 329.24±3.73 346.47±3.85 281.73±1.77 338.68±7.41 307.19±2.21 289.25±1.82

U-rand 3.5 483.26±74.90 365.55±11.95 327.33±3.81 417.81±12.34 362.61±9.16 399.88±19.17

4.0 497.32±64.04 388.69±25.74 329.89±8.66 434.84±11.18 365.96±7.52 377.99±16.26

MAD 3.5 454.77±9.38 301.29±3.43 282.45±2.03 339.41±37.82 305.16±19.99 279.95±1.69
4.0 495.47±15.55 305.32±4.13 286.63±2.31 355.38±36.38 313.24±30.45 290.00±1.61

MinQ 3.5 493.10±96.80 388.41±85.49 299.67±8.34 347.62±28.10 297.97±14.57 284.94±7.45
4.0 520.99±115.29 387.87±62.70 286.29±2.57 356.30±30.91 307.07±21.89 288.30±4.54

JiNan3

Gaussian 3.5

383.01

320.04±11.40 277.17±2.40 263.89±1.92 378.13±32.17 279.79±1.79 261.91±1.17
4.0 331.64±14.13 283.54±4.32 259.75±2.31 390.93±25.46 290.37±2.56 270.69±1.45

U-rand 3.5 481.55±43.52 333.46±19.05 290.39±1.81 496.63±44.43 354.45±11.06 314.14±5.68
4.0 490.09±44.06 344.34±14.80 288.89±3.16 505.93±41.98 363.10±18.75 312.17±3.62

MAD 3.5 446.89±15.76 273.78±4.00 281.70±3.29 442.19±81.19 268.96±11.41 259.25±2.87
4.0 478.85±22.27 276.64±2.32 298.49±3.37 446.93±27.17 279.83±18.33 279.05±2.91

MinQ 3.5 376.00±24.65 298.31±20.34 283.16±4.16 423.76±50.93 278.75±17.00 277.32±17.16
4.0 406.03±6.45 315.39±18.80 286.90±2.48 465.95±46.43 297.21±23.12 288.77±8.31

HangZhou2

Gaussian 3.5

406.65

495.92±23.47 353.49±6.46 343.31±4.65 429.53±13.96 367.62±8.48 352.33±8.51
4.0 520.59±17.34 355.93±5.86 339.43±3.60 432.60±6.00 378.09±9.33 359.60±11.89

U-rand 3.5 567.56±20.09 415.49±11.33 364.17±4.22 481.32±37.20 426.04±13.45 402.33±10.19
4.0 566.64±17.55 429.26±11.82 370.33±3.10 472.05±42.80 433.15±9.94 397.78±9.88

MAD 3.5 496.73±22.83 333.93±3.71 341.95±6.63 433.46±32.89 362.01±6.67 350.77±9.28
4.0 528.74±28.18 339.41±8.00 344.82±2.94 471.26±29.52 363.45±14.04 370.91±15.03

MinQ 3.5 441.72±31.86 345.80±2.82 346.51±5.91 425.09±30.34 356.49±5.33 361.75±6.50

4.0 478.9±20.02 349.58±7.40 350.15±4.85 450.80±31.37 363.12±6.40 369.61±5.97

Table 2: ATT in JiNan and HangZhou: 25% refers to missing data in sensorW , and 50%
refers to sensorW and sensorE .

Dataset Mask Scale FixedTime Advanced-MaxPressure Advanced-MpLight

base base RobustLight RobustLight++ base RobustLight RobustLight++

JiNan1
25% 428.11±0.00 352.13±0.00 296.50±1.12 315.25±6.42 552.15±120.94 371.95±90.21 400.35±63.58

50% 1059.67±0.00 610.43±68.52 432.15±4.95 1045.75±26.83 878.09±16.55 867.15±60.67

JiNan2
25% 368.76±0.00 323.13±0.00 273.18±3.95 278.87±3.68 490.56±92.29 276.05±4.71 312.99±47.86

50% 1209.97±0.00 755.51±106.57 912.18±24.89 1082.64±65.15 612.14±43.37 558.87±71.86

JiNan3
25% 383.01±0.00 340.81±0.00 281.56±4.11 281.05±4.23 403.29±30.61 288.68±9.41 337.98±19.97

50% 1109.57±0.00 570.54±50.20 371.44±21.02 1061.35±67.51 918.43±27.84 654.51±83.29

HangZhou1
25% 495.57±0.00 530.33±0.00 369.52±12.54 318.41±5.98 478.89±37.35 363.55±7.80 343.70±10.98
50% 1186.56±0.00 563.56±36.21 440.00±94.94 867.95±172.63 824.83±149.15 394.88±43.05

HangZhou2
25% 406.65±0.00 409.56±0.00 350.86±3.11 341.47±1.68 373.59±13.70 360.22±10.27 346.86±6.61
50% 782.93±0.00 447.28±15.87 350.47±2.12 633.73±89.70 459.36±6.87 355.15±7.12

5.2.3 TRANSFER EXPERIMENTS

Table 3 shows that our RobustLight++ generalizes effectively to the unseen SUMO Cologne8
dataset, where the diffusion-based outer-learner is meta-trained on Cityflow datasets Jinan and
Hangzhou for zero-shot transfer, the inner-learner is adapted 50 samples on SUMO dataset Cologne8
for few-shot transfer. Both MPLight and MaxPressure get better performance after zero-shot and
few-shot meta training in average waiting time (AWT) and ATT of emergency vehicle (EMV) and
regular vehicle (REV) used by Su et al. (2022). Under Gaussian and Uniform-Random noise, in
most scenarios, the few-shot setting surpasses zero-shot performance for both emergency and regular
vehicles, confirming the effectiveness of our method.
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Table 3: Transfer performance (AWT and ATT) of EMV and REV on Cologne8. Results are
averaged over 5 runs.

Algorithm Metrics Noise-Free Guassian Zero-shot Few-shot U-Rand Zero-shot Few-shot

MPlight

AWTEMV 8 25.0 20.0 15.0 20.0 15.0 15.0
ATTEMV 20 25.0 20.0 15.0 20.0 15.0 15.0
AWTREV 0.51 2.14 1.85 1.95 2.37 2.16 2.13
ATTRMV 54.40 67.47 62.50 62.17 67.49 65.57 64.96

MaxPressure

AWTEMV 6.0 0.0 0.0 0.0 0.0 0.0 6.0

ATTEMV 25.0 15.0 15.0 15.0 15.0 15.0 20.0

AWTREV 0.68 2.25 1.48 1.43 3.32 2.21 2.24

ATTREV 56.46 66.71 61.64 61.29 72.97 65.39 64.52

Table 4: Transfer to unseen cities performance of ATT in JiNan, HangZhou. Results are
averaged over 5 runs.

Dataset Noise

Type

Noise

Scale
FixedTime Advanced-CoLight Advanced-MpLight

base RobustLight RobustLight++

(Zero-Shot)

RobustLight++

(Few-Shot)
base RobustLight RobustLight++

(Zero-Shot)

RobustLight++

(Few-Shot)

JiNan1

Gaussian 3.5

428.11

316.96 423.56 329.56 285.88 327.93 322.04 380.98 369.81

U-rand 3.5 483.26 540.52 419.14 360.59 417.81 328.01 340.18 325.05
MAD 3.5 454.77 483.18 445.61 325.73 339.41 296.69 495.94 454.51

MinQ 3.5 493.10 393.85 528.60 347.36 347.62 368.18 395.84 339.12
Mask 25% 343.34 336.82 291.41 312.83 552.15 398.48 562.94 639.32

JiNan2

Gaussian 3.5

368.77

338.12 427.64 292.83 268.72 626.67 291.99 285.45 287.36

U-rand 3.5 748.76 565.60 619.69 314.64 506.24 308.08 362.71 333.73

MAD 3.5 563.99 356.23 487.48 273.49 330.25 280.68 270.75 268.21
MinQ 3.5 344.12 348.00 368.26 266.12 272.16 271.29 277.54 270.85
Mask 25% 277.85 297.95 270.94 285.39 490.56 342.39 359.96 386.45

JiNan3

Gaussian 3.5

383.01

320.04 413.53 288.25 262.37 378.13 293.93 351.54 283.70
U-rand 3.5 481.55 543.19 639.80 312.58 496.63 307.64 729.41 337.57

MAD 3.5 446.89 401.58 335.38 260.04 442.19 272.86 268.99 263.00
MinQ 3.5 376.00 364.33 318.01 262.94 423.76 268.08 370.69 261.61
Mask 25% 324.42 309.56 304.23 287.33 403.29 360.49 588.86 335.52

HangZhou1

Gaussian 3.5

495.57

512.63 442.47 683.91 354.15 334.03 355.64 336.00 327.65
U-rand 3.5 971.03 775.62 985.47 615.19 354.63 363.64 366.68 353.87
MAD 3.5 751.58 513.22 860.74 719.18 308.78 547.87 312.55 318.79

MinQ 3.5 506.60 467.94 678.96 369.34 320.32 507.84 306.32 317.45

Mask 25% 418.49 334.30 324.31 375.17 478.89 442.75 456.33 371.35

HangZhou2

Gaussian 3.5

406.65

495.92 419.85 377.31 343.34 429.53 377.48 345.56 335.54
U-rand 3.5 567.56 585.79 568.48 378.70 481.32 365.99 390.19 378.26

MAD 3.5 496.73 481.36 369.08 357.09 433.46 492.92 322.85 321.66
MinQ 3.5 441.72 464.05 368.53 344.55 425.09 444.09 317.63 328.69

Mask 25% 348.21 359.46 374.68 340.42 373.59 347.58 372.22 361.43

Table 4 summarizes the transfer performance of ATT under different noise types across the JiNan
and HangZhou datasets. The base results correspond to performance directly evaluated on noisy
datasets, while RobustLight and RobustLight++ (Zero-Shot) are trained only on seen cities and
transferred to unseen cities (eg. seen city JiNan to unseen HangZhou or seen city HangZhou
to JiNan), without fine-tuning. RobustLight++ (Few-Shot) further adapts to the target domain us-
ing 100 samples. All numbers are averaged over five random seeds. RobustLight++ (Zero-Shot)
achieves additional gains and shows statistically significant improvements over RobustLight in most
heavy-noise settings (e.g., MAD, Mask), demonstrating stronger cross-city generalization. With
only 100 samples, RobustLight++ (Few-Shot) achieves the highest overall performance, often re-
covering or surpassing clean-data performance. These results highlight the robustness and transfer-
ability of RobustLight++, especially under unseen and severe noise.

We also conduct transfer experiments to evaluate the generalization capability of RobustLight++ in
more large-scale network like NewY ork. Specifically, we train models on datasets from JiNan
and HangZhou, and test them on the Newyork dataset. The Figure 4b demonstrates that Robust-
Light++ achieves SoTA performance in the transfer setting, further validating the effectiveness and
robustness across diverse urban environments, with a 6.92% improvement.
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(b) Inference time.

Figure 3: Ablation studies on ATT and inference time in HangZhou2 and JiNan2.

5.2.4 ABALATION STUDY

We conduct ablation studies comparing the following configurations: DDIM with online training,
DDPM with offline training (DMBP (Yang & Xu, 2023)), RobustLight++ with DDPM, and Robust-
Light++. As shown in Figure 3, our proposed method, RobustLight++, achieves SoTA performance.
Moreover, it effectively balances performance and inference time, demonstrating practicality.

5.2.5 INFERENCE TIME

Compared to RobustLight, our method uses the DDIM sampling strategy to significantly speed up
both denoising and demasking. As shown in Table 17, it reduces runtime by 87.9% for denoising
and 91.9% for demasking, leading to much greater inference efficiency and making the framework
more practical for real-time deployment in large-scale traffic networks.
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(a) Kriging and random missing.
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(b) Zero-shot transfer study in Newyork1 and Newyork2.

Figure 4: Transfer and other experiments study.

5.2.6 KRIGING AND MISSING EXPERIMENTS

To validate our approach in multiple missing types, we set up involved random masking of data
from Kriging Missing (12.5%, single-intersection-sensor failure) and Random Missing (12.5%, full-
intersection failure). As demonstrated in Figure 4a, our method effectively addresses data missing
scenarios and exhibits robust performance , with an average improvement of 10.57%.

6 CONCLUSION

In this paper, we proposed a diffusion-based TSC framework that addresses key limitations of prior
methods like RobustLight. Unlike previous approaches that required separate models per-city and
struggled with generalization, our method introduced a meta-learnable DDIM-based controller en-
abling robust cross-city adaptation and efficient inference. Experiments showed that our approach
improved control performance in unseen cities and reduced denoising and demasking times by
87.9% and 91.9%, respectively. These results show the framework’s potential for scalable real-
time use in complex urban networks. Future work will explore real-world deployment feedback and
extend the method to multi-agent coordination with limited communication.
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Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Expression might be
enough: representing pressure and demand for reinforcement learning based traffic signal con-
trol. In Proceedings of the 39th International Conference on Machine Learning, volume 162, pp.
26645–26654, 2022.

Yilang Zhang, Bingcong Li, Shijian Gao, and Georgios B Giannakis. Scalable bayesian meta-
learning through generalized implicit gradients. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 37, pp. 11298–11306, 2023.

Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai
Xu, and Zhenhui Li. Learning phase competition for traffic signal control. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management, CIKM ’19, pp.
1963–1972, 2019.

A DETAILED ALGORITHMS

The Cross-City Diffusion Meta-Learning algorithm, outlined in Algorithm 1, is designed to enable
effective knowledge transfer across multiple city-specific tasks for diffusion-based models. By lever-
aging a meta-learning framework inspired by Reptile, the algorithm initializes a shared parameter
set θ and iteratively updates it using gradients computed from source tasks T src

i . For each source
task, it performs an inner update with step size η to compute task-specific parameters θ′i, aggregates
the parameter differences, and updates the global parameters using a meta-learning rate µ. After
training on source tasks, the model is fine-tuned on the target task Ttgt to adapt to specific city char-
acteristics, enhancing generalization in diffusion-based applications such as urban data modeling.

The Repaint Algorithm of RobustLight++, presented in Algorithm 2, is a robust iterative method for
reconstructing signals in diffusion-based models, particularly suited for tasks requiring inpainting
or signal recovery under noisy conditions. The algorithm takes as input an initial signal estimate
s̃it, a context ct−1, and a mask m, and performs K iterations, each with U inner steps. In each
step, it samples noise ϵ and z from a standard normal distribution (except in the first iteration, where
noise is set to zero) and applies Equations (10), (11), and (12) to update known and unknown signal
components and recover the signal. A stochastic update is applied when necessary, governed by the
parameter βi−1, to introduce controlled noise, ultimately producing a refined signal estimate ŝt that
enhances robustness in applications like image or data reconstruction.
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Algorithm 1 Cross-City Diffusion Meta-Learning

1: Input: Source tasks {T src
i }, target Ttgt, step sizes α, η

2: Initialize θ
3: for each outer iteration do
4: ϕ← 0
5: for each source task T src

i do
6: Compute ϕ← θ − η∇θLdiff(θ; Ti)
7: θ̂ ← θ̂ + (ϕ− θi)
8: end for
9: θ ← θ + µ

N

∑N
i=1 θ̂

10: end for
11: Few-shot training θ on Ttgt via Ldiff

12: return θ

Algorithm 2 Repaint algorithm of RobustLight++

1: Input s̃jt , ct−1,m
2: for j = 1 to K do
3: for u = 1 to U do
4: ϵ ∼ N (0, I) if j > 1, else ϵ = 0

5: Get s̃j−1
t,known by Equation (10)

6: z ∼ N (0, I) if j > 1, else z = 0

7: Get s̃j−1
t,unknown by Equation (11)

8: Get recovered s̃j−1
t by Equation (12)

9: if u < U and j > 1 then
10: s̃jt ∼ N (

√
1− βj−1s̃

j−1
t , βj−1I)

11: end if
12: end for
13: end for
14: Return ŝt

B PROOFS OF THEOREM 1

Proof of Theorem 1. Recall the deterministic probability flow ODE corresponds to DDIM by Song
et al. (2020b). The diffusion step can be written:

dx

dt
= f(x, t)− 1

2
g(t)2∇ log pt(x). (15)

In the DDIM-Reptile framework, the model approximates this field using a learned score network
sθ(x, t) ≈ ∇ log pt(x). The model’s approximate velocity field is:

v(x, t) =
dx

dt
≈ f(x, t)− 1

2
g(t)2sθ(x, t). (16)

Let qt denote the distribution of x(t) under this approximate ODE (with initial distribution qT at
t = T ). By construction pT and qT are the terminal distributions for the true and model processes;
if the model precisely matches the chosen noise prior. At time t = 0, we have p0 (true data) and
q0 (model-generated data). Our goal is to bound W2(p0, q0). For each t ∈ [0, T ], let pt denote the
noised data distribution and qt the corresponding model distribution at time t. The score function of
pt is

s⋆(x, t) := ∇x log pt(x) . (17)
sθ(x, t) is the trained score network, and define the score matching loss as

Ldiff(θ) :=
1

2

∫ T

0

λ(t)Ex∼pt

[
∥∇x log pt(x)− s⋆(x, t)∥2

]
dt, (18)

for some positive weighting function λ(t) > 0. According to Song et al. (2020b), minimizing
Eq. 8 corresponds to estimating the true score function s⋆(x, t) = ∇x log pt(x) in the L2 sense.
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From Kwon et al. (2022) Theorem 1, using Cauchy–Schwarz on that time-integral, we obtain an
upper bound in terms of the root of the integrated mean-square error of the score:

W2(p0, q
cont
0 ) ≤

√
2

∫ T

0

g(t)4I(t)2 dt ·
∫ T

0

λ(t)Ept
[∥∇ log pt(x)− sθ(x, t)∥2] dt

+I(T )W2(pT , qT ),

(19)

The first factor
∫ T

0
g(t)4I(t)2dt is a constant determined by the diffusion schedule g(t) and the

integrated Lipschitz coefficients I(t). We may therefore write

W2(p0, q
cont
0 ) ≤ Cscore

√
Ldiff(θ) + CinitW2(pT , qT ), (20)

for some constant Cscore =
√
2
∫ T

0
g(t)4I(t)2dt and Cinit = I(T ).

In practice, DDIM generation runs the ODE backward in N discrete steps (from T to 0). Let the
time step be ∆t = T/N , and denote µ = ∆t for notational consistency with the theorem. The Euler
discretization of the reverse dynamics is

xt−∆t = xt +∆t
(
f(xt, t)−

1

2
g(t)2sθ(xt, t)

)
, (21)

This update mirrors the Reptile meta-learning rule θ ← θ + µ(ϕ − θ), where µ is the meta step
size. Here, each diffusion step plays the role of one Reptile meta-update, and µ = ∆t controls the
discretization resolution.

Let qcont0 denote the distribution induced by the continuous-time ODE, and qdisc0 the distribution
obtained by the Euler discretization. Assume the vector field v(x, t) satisfies the one-sided Lipschitz
assumption proposed by Donchev & Farkhi (1998) (Definition 2.1) with coefficient Ls(t):

⟨v(x, t)− v(y, t), x− y⟩ ≤ Ls(t) ∥x− y∥2, ∀x, y ∈ Rd, t ∈ [0, T ], (22)

By Theorem 3.2 and 4.3 of Donchev & Farkhi (1998), we get the pathwise error bound

sup
0≤t≤T

∥xcont(t)− xdisc(t)∥ ≤ Cdiscµ, (23)

Let qcont0 and qdisc0 denote the laws of the continuous and Euler-approximated reverse flows at time
t = 0. According to the definition of 2-Wasserstein or Monge-Kantorovich distance Kwon et al.
(2022) and combined with Eq. 23, we get:

W2

(
qcont0 , qdisc0

)
≤
(
E∥Xcont

0 −Xdisc
0 ∥2

)1/2 ≤ Cdisc µ, (24)

From Theorem 4.3 of Donchev & Farkhi (1998), we get the discretization constant admits the ex-
plicit form

Cdisc = c0(Cτ + Cχ + 1), c0 = exp
( ∫ T

0
L+
s (t) dt

)
max{2, B}, (25)

In particular, the one-sided Lipschitz property prevents exponential error amplification in the reverse
diffusion ODE, ensuring that discretization error accumulates only linearly with µ.

Finally, let q0 ≡ qdisc0 be the practical model distribution. By the triangle inequality,

W2(p0, q0) ≤W2(p0, q
cont
0 ) +W2(q

cont
0 , qdisc0 ), (26)

Substituting the continuous-time bound (from the score approximation) and the discretization bound
equation 24, we obtain

W2(p0, q0) ≤ Cscore
√

Ldiff(θ) + Cdisc · µ+ CinitW2(pT , qT ). (27)

which completes the proof.
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C DATASETS AND COMPARED METHODS

C.1 DATASETS

We use real-world traffic flow and road topology datasets for our experiments, with Cityflow Zhang
et al. (2019) as the simulator to evaluate ATT and exit points with a simulation time of 60 minutes
for all vehicles. The datasets include vehicle start and end points, following a fixed motion model.
Seven traffic datasets from three cities, JiNan and HangZhou (China), and New York Zheng et al.
(2019) (USA, are used.

• JiNan Datasets: The JiNan road network consists of 12 intersections (in a 3 × 4 grid). It
includes three traffic flow datasets: JiNan1, JiNan2, and JiNan3.

• HangZhou Datasets: The HangZhou network encompasses 16 intersections (in a 4 × 4
grid) and features two datasets: HangZhou1 and HangZhou2.

• New York Datasets: The New York network features a more complex structure with 192
intersections (28× 7 grid) and includes two datasets: Newyork1 and Newyork2.

C.2 COMPARED METHODS

C.2.1 TRADITIONAL METHODS

These methods include FixedTime Webster (1958), which uses a fixed green phase time; Advanced-
Maxpressure Zhang et al. (2022), which uses running and waiting vehicles to choose the phase; and
Maxpressure Gershenson (2004), which uses waiting vehicles to choose the phase.

C.2.2 RL-BASED METHODS

For RL benchmarks, we consider CoLight Wei et al. (2019c), which uses waiting and neighboring
vehicles to select the signal phase; Advanced-CoLight Zhang et al. (2022), which employs waiting
and running vehicles with a graph attention neural network; and Advanced-Mplight Zhang et al.
(2022), which uses the FRAP Zheng et al. (2019) model for signal phase selection.

C.2.3 ROBUSTLIGHT METHOD

RobustLight and RobustLight++ integrate the base methods of traditional and RL-based TSC algo-
rithms to recover data in real-time, and then evaluates the ATT under different sensor noise attacks
and sensor damage. Results are presented as the average of ten independent runs.

D SENSOR NOISE AND SENSOR DAMAGE EXPAND EXPERIMENTS

Table 5: Performance of ATT in JiNan2, HangZhou1. Our RobustLight++ recovers the state
of traditional and RL-based TSC algorithms.

Dataset Noise

Type

Noise

Scale

FixedTime Advanced-CoLight Advanced-MpLight Advanced-MaxPressure

base base RobustLight RobustLight++ base RobustLight RobustLight++ base RobustLight RobustLight++

JiNan2

Gaussian 3.5

368.77

338.12±12.82 292.70±2.31 273.68±2.32 626.67±177.54 275.78±2.17 268.58±1.28 276.10±1.50 280.43±1.77 269.98±0.81
4.0 357.56±30.63 308.17±3.60 265.32±1.31 689.61±202.25 284.35±2.65 273.24±4.24 281.06±1.67 287.71±3.12 274.22±1.07

U-rand 3.5 748.76±97.15 564.09±61.36 353.52±4.84 506.24±105.45 297.90±4.67 290.15±7.68 301.54±2.38 300.41±1.79 304.85±4.04

4.0 784.89±68.08 611.86±54.28 334.67±4.53 572.98±126.74 303.68±5.53 295.55±8.74 307.22±0.96 307.13±1.4 320.89±3.23

MAD 3.5 563.99±40.13 273.66±4.84 275.88±1.76 330.25±130.61 254.85±2.30 262.66±0.89 - - -

4.0 630.31±19.84 277.99±1.23 286.36±2.13 454.53±256.35 257.66±3.72 279.84±0.91 - - -

MinQ 3.5 344.12±29.23 287.39±12.74 292.35±8.27 272.16±8.66 256.80±2.05 263.82±1.75 - - -

4.0 367.51±55.65 295.08±16.33 288.83±4.36 402.47±141.56 261.35±3.43 277.89±2.16 - - -

HangZhou1

Gaussian 3.5

495.57

512.63±25.89 363.83±8.25 337.84±2.34 334.03±2.48 351.44±9.07 315.75±1.77 327.94±1.03 346.14±1.58 319.10±0.83
4.0 530.59±30.78 388.49±7.73 336.53±2.89 338.76±3.89 381.53±13.58 316.92±1.54 331.25±1.28 370.61±2.56 320.27±0.43

U-rand 3.5 971.03±34.19 537.52±56.18 426.79±23.70 354.63±2.05 332.80±1.60 343.87±5.61 355.51±3.32 348.57±1.07 350.61±1.76

4.0 982.41±42.18 561.60±50.29 408.59±14.11 360.11±2.75 334.80±1.67 351.45±3.08 360.88±3.08 353.11±1.71 363.21±4.21

MAD 3.5 751.58±44.00 319.42±1.81 333.67±3.23 308.78±3.91 312.76±4.85 309.87±2.10 - - -

4.0 754.66±37.04 323.48±2.45 352.27±4.76 313.53±3.06 318.14±5.43 331.27±4.13 - - -

MinQ 3.5 506.60±42.19 35.29±3.50 351.39±11.40 320.32±6.34 314.07±4.20 315.70±3.19 - - -

4.0 550.00±37.44 343.82±5.70 363.18±14.05 324.65±5.88 323.04±4.15 330.05±5.85 - - -
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Table 6: ATT in JiNan and HangZhou: 25% refers to missing data in sensorW , and 50%
refers to sensorW and sensorE .

Dataset Mask Scale Advanced-CoLight

base RobustLight RobustLight++

JiNan1 25% 343.34±8.39 310.14±9.63 307.98±7.15
50% 699.02±35.07 539.30±54.88 648.73±20.38

JiNan2 25% 277.85±7.50 266.62±3.79 270.90±6.33

50% 682.61±29.58 351.08±17.45 322.20±8.94

JiNan3 25% 324.42±13.55 278.06±9.84 267.95±6.13
50% 627.95±53.19 417.49±111.67 306.57±7.86

HangZhou1 25% 418.49±13.59 331.65±7.68 383.35±12.47

50% 624.83±13.27 434.31±34.36 415.23±7.23

HangZhou2 25% 348.21±7.21 340.80±4.64 335.02±2.35
50% 499.34±28.56 453.90±26.08 352.05±6.22

Table 7: Performance of ATT in JiNan, HangZhou. Our RobustLight++ recovers the state of
traditional and RL-based TSC algorithms to evaluate the performance.

Dataset Noise

Type

Noise

Scale

Advanced-MaxPressure

base RobustLight RobustLight++

JiNan1

Gaussian 3.5 285.72±2.20 283.47±1.16 279.85±1.20
4.0 289.74±2.61 288.90±1.18 283.95±1.30

U-rand 3.5 312.67±2.81 307.08±2.67 307.55±2.07

4.0 321.26±1.81 312.52±2.82 334.73±1.70

JiNan3

Gaussian 3.5 268.67±1.56 268.69±1.32 262.13±0.60
4.0 273.22±0.77 272.95±1.68 265.42±1.56

U-rand 3.5 293.44±2.74 291.58±1.74 285.97±1.11
4.0 300.53±3.67 296.06±2.23 295.45±1.85

HangZhou2

Gaussian 3.5 345.87±1.37 346.53±1.61 341.09±1.08
4.0 348.39±2.53 350.68±1.44 345.84±1.80

U-rand 3.5 362.58±0.93 359.44±1.02 359.94±0.64

4.0 366.46±2.44 363.44±1.91 374.26±2.71

The Table 6 presents the performance of the Advanced-CoLight algorithm across five datasets under
two data missing scenarios: 25% missing data in sensorW and 50% missing data in both sensorW
and sensorE . It compares the base model, RobustLight, and RobustLight++, highlighting that Ro-
bustLight++ generally achieves the best or competitive performance, with notable improvements in
heavily degraded conditions (e.g., 50% missing data), as indicated by the highlighted cells showing
lower mean values and reduced standard deviations.

The Table 7 evaluates the Advanced-MaxPressure algorithm’s performance across three datasets
(JiNan1, JiNan3, HangZhou2) under various conditions, likely involving noise or missing data,
with four entries per dataset. RobustLight++ consistently outperforms or matches the base and
RobustLight models, as evidenced by the highlighted cells with lower mean values and smaller
standard deviations, demonstrating its effectiveness in recovering and stabilizing the performance of
traditional and reinforcement learning-based traffic signal control algorithms.

The Table 5 presents the performance of the Advanced-CoLight, Advanced-MpLight and Advanced-
MaxPressure algorithms, evaluated on two distinct datasets: JiNan2 and HangZhou1. The experi-
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ments were conducted under eight different scenarios for each dataset, designed to simulate environ-
ments with data imperfections like noise. The empirical results reveal that the RobustLight++ frame-
work outperforms both the baseline model and the RobustLight implementation in many scenarios.
This superiority is quantitatively evidenced by the consistently lower mean values and smaller stan-
dard deviations highlighted in the table, which respectively indicate higher operational efficiency
and greater stability.

E ABALATION EXPAND EXPERIMENTS

Table 8: ATT ablation of RobustLight++ based on Advanced-Colight in JiNan2 and
HangZhou2 under noise and mask.

Dataset Type Scale Advanced-CoLight
w/n ddim w/n ddpm+offline w/n ddpm+meta+offline RobustLight++

JiNan2

Gaussian 3.5 283.96±3.42 285.38±4.03 264.37±0.40 273.68±2.32
U-rand 3.5 401.34±20.15 601.13±90.80 426.87±25.85 353.52±4.84
Mask 25% 264.73±2.33 256.35±2.49 256.21±1.74 270.90±6.33
Mask 50% 642.50±17.84 283.83±9.48 315.55±14.91 322.20±8.94

HangZhou2

Gaussian 3.5 340.44±4.40 360.36±13.92 339.82±2.74 343.31±4.65
U-rand 3.5 364.90±1.64 573.24±17.7 441.79±21.83 364.17±4.22
Mask 25% 345.65±1.72 348.35±11.41 345.71±6.14 335.02±2.35
Mask 50% 485.30±10.76 381.7±12.33 349.10±6.76 352.05±6.22

Table 9: Inference time ablation of RobustLight++ based on Advanced-Colight in JiNan2 and
HangZhou2 under noise and mask.

Dataset Type Scale Advanced-CoLight
w/n ddim w/n ddpm+offline w/n ddpm+meta+offline RobustLight++

JiNan2

Gaussian 3.5 34.02 409.08 407.72 29.61
U-rand 3.5 40.17 328.03 389.25 35.61
Mask 25% 73.50 710.01 766.5 68.41
Mask 50% 84.14 716.6 780.24 69.27

HangZhou2

Gaussian 3.5 48.99 417.00 415.53 40.06
U-rand 3.5 53.31 333.5 328.85 43.55
Mask 25% 97.77 705.93 761.54 80.51
Mask 50% 93.79 706.78 764.46 81.66

Table 10: Ablation study few-shot (100 samples) transfer performance from JiNan to HangZhou
under Different Noise Types and Scales based on Advanced-Color-Light in different learning rates
and diffusion steps.

Dataset Noise Type Scale Base RobustLight++
(µ=0.1,T=100)

RobustLight++
(µ=0.05,T=100)

RobustLight++
(µ=0.05,T=50)

HangZhou1

Gaussian 3.5 512.63 354.15 324.87 564.89
U-rand 3.5 971.03 615.19 686.54 798.36
MinQ 3.5 751.58 719.18 393.27 791.02
MAD 3.5 506.60 369.34 372.98 381.22
Mask 25% 418.49 375.17 392.13 497.86

HangZhou2

Gaussian 3.5 495.92 343.34 342.68 361.82
U-rand 3.5 567.56 378.70 471.45 511.46
MinQ 3.5 496.73 357.09 373.30 379.58
MAD 3.5 441.72 344.55 373.49 376.59
Mask 25% 348.21 340.42 343.54 355.51

Tables 8 and 9 present the performance and inference time comparisons of RobustLight++ under
various noise types and mask conditions, based on ablation studies with the Advanced-CoLight
framework. Table 8 shows the ATT results on two datasets (JiNan2 and HangZhou2) with differ-
ent perturbation types (Gaussian, U-rand) and mask levels (25%, 50%). The comparison includes
different model settings: using only DDIM, using DDPM+offline, and using DDPM+meta+offline.
RobustLight++ consistently achieves the lowest ATT across most scenarios, demonstrating superior
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robustness and performance under noise and partial observability. Table 9 reports the inference time
under the same settings. RobustLight++ shows significantly lower inference times compared to all
other variants, highlighting its practical efficiency and suitability for real-time deployment. Table 10
shows the few-shot transfer results from JiNan to HangZhou under different noise settings. Ro-
bustLight++ reports recovered performance under different learning rates and diffusion steps with
few-shot adaptation (100 samples). The setting meta learning rate is 0.1 and diffusion steps is 100
yields the best overall performance.

F KRIGING AND RANDOM MISSING EXPAND EXPERIMENTS

Table 11: ATT in JiNan and HangZhou with 12.5% random and kriging missing data.

Dataset Advanced-CoLight

base RobustLight RobustLight++

JiNan1 344.78±38.56 343.56±26.34 315.84±21.27

JiNan2 459.64±66.70 287.95±7.69 262.11±13.41

JiNan3 465.06±58.32 313.15±55.05 268.51±17.03

HangZhou1 422.23±100.44 376.90±61.27 312.82±37.3

HangZhou2 364.32±23.81 348.33±15.77 334.11±6.07

The Table 11 evaluates the performance of the Advanced-CoLight algorithm across five datasets
under a 12.5% random and kriging missing data scenario. It compares the base model, Robust-
Light, and RobustLight++, with RobustLight++ consistently achieving the lowest mean values
(highlighted in gray), indicating superior performance and stability, particularly in JiNan2 (262.11)
and JiNan3 (268.51), where it significantly outperforms the base and RobustLight models.

G TRANSFER EXPAND EXPERIMENTS

Table 12: Performance of RobustLight++ based on Advanced-Colight in Newyork transfer by
JiNan1

Dataset Type Scale Advanced-CoLight

base RobustLight RobustLight++

Newyork1

Gaussian 3.5 1279.46±9.07 1168.11±10.90 1154.30±14.42
U-rand 3.5 1527.23±5.64 1359.38±11.71 1330.24±14.54
Mask 25% 1119.34±49.36 1098.55±23.48 1130.83±35.49

Newyork2

Gaussian 3.5 1653.00±18.94 1501.80±26.33 1427.23±15.71
U-rand 3.5 1788.00±18.51 1697.33±19.22 1545.65±16.86
Mask 25% 1321.09±57.72 1376.90±17.63 1286.63±75.82

The Table 12and Figure 5 assess the Advanced-CoLight algorithm’s performance across six datasets
(JiNan2, JiNan3, HangZhou1, HangZhou2, Newyork1, Newyork2) under various noise con-
ditions (Gaussian at 3.5, U-rand at 3.5, and Mask at 25%), transferred from inner learner of JiNan1

and outer learner of JiNan2, JiNan3, HangZhou1, HangZhou2. RobustLight++ demonstrates
enhanced performance with lower mean values in most cases (highlighted in gray), such as 1154.30
for Newyork1 Gaussian and 1427.23 for Newyork2 Gaussian, though it underperforms in the Mask
scenario for Newyork1 (1130.83), suggesting its effectiveness varies with noise type.
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Figure 5: Performance of RobustLight++ based on Advanced-Colight in JiNan2, JiNan3,
HangZhou1 and HangZhou2 transfer by JiNan1

Table 13: Training-Time Complexity under Different Meta-Diffusion Settings

Scenario #Tasks Diffusion Steps Meta Iter. Inner Steps Wall-clock (s) Avg/Step (s) Peak GPU (MiB)
2tasks T50 2 50 3 30 31.93 10.64 163.06
3tasks T50 3 50 3 30 42.15 14.05 163.06
3tasks T100 3 100 3 30 42.75 14.25 163.06
5tasks T150 5 150 3 30 62.57 20.86 163.06

H TRAINING COMPLEXITY ANALYSIS

We evaluate the training-time complexity of RobustLight++ under various meta-learning and dif-
fusion configurations, as summarized in Table 13. During training, each scenario involves a set
of outer tasks corresponding to different city environments. For each meta-iteration, the diffusion
model performs T denoising steps, followed by K inner-loop gradient updates for control policy
adaptation. Specifically, we fix the number of meta-iterations to 3 and inner training steps to 30, and
vary the number of tasks and diffusion depth (50–150 steps) to evaluate scalability.

All experiments are conducted on a single RTX 4090 GPU. Importantly, the peak GPU memory
remains stable across all settings, demonstrating that the diffusion-based outer-learner does not in-
troduce excessive memory overhead even with increased task scale or diffusion depth. The results
indicate that wall-clock time grows approximately linearly with the number of cities and diffusion
steps, while the average inner loss consistently decreases as task diversity increases, validating the
effectiveness of meta-training across heterogeneous urban environments.

I ADDITIONAL EXPERIMENTS

The tables 15 and 16 compare the performance of RobustLight++ against RobustLight across
datasets JiNan1, JiNan2, and HangZhou2. For PSNR (higher is better, shown in Table 15),
RobustLight++ consistently outperforms others, with notable improvements to 20.87 for JiNan1

Gaussian and 4.17 for HangZhou2 at 50% mask. For MAE (lower is better, shown in Table 16),
RobustLight++ also excels, achieving 2.35 for JiNan1 Gaussian and 0.99 for HangZhou2 at 50%
mask, demonstrating superior robustness and accuracy across various scales and noise types.

As shown in Table 14, RobustLight++ based on π-Light Gu et al. (2024) consistently achieves
superior performance across both datasets and noise settings. Under both Gaussian and uniform-
random perturbations, RobustLight++ yields the lowest values in most evaluation metrics, indicating
improved robustness against noisy observations.

J HYPERPARAMETERS

The Table 18 outlines the hyperparameters used for training the proposed model, categorized into
UNet/Model Hyperparameters, Diffusion Training Hyperparameters, and TSC RL Agent Training
Hyperparameters. Key settings include an embedding dimension of 64 and a hidden dimension of
256 for the UNet model, with state and action dimensions tailored to 20/32 and 4, respectively.
Diffusion training employs a non-Markovian step of 6, a beta schedule of [3.0651, 24.552, -3.1702],
a diffusion timestep of 100, and an Adam optimizer with a learning rate of 0.0003, alongside meta
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Table 14: Performance on JiNan3 and HangZhou1 under Different Noise Types and Scales based
on π-Light.

Dataset Noise Type Scale Base RobustLight RobustLight++

JiNan3

Gaussian 3.5 472.80±45.14 441.67±69.53 382.73±8.35
U-rand 3.5 452.44±28.29 515.18±16.18 366.31±6.99
MinQ 3.5 – – –
MAD 3.5 – – –

Gaussian 4.0 466.44±25.91 418.19±58.81 387.13±21.41
U-rand 4.0 457.13±29.63 522.79±31.16 370.44±13.21
MinQ 4.0 – – –
MAD 4.0 – – –

HangZhou1

Gaussian 3.5 442.82±11.29 377.84±4.36 365.87±4.86
U-rand 3.5 495.52±3.41 501.25±32.91 408.16±11.38
MinQ 3.5 – – –
MAD 3.5 – – –

Gaussian 4.0 453.73±15.11 383.04±6.20 377.94±8.25
U-rand 4.0 505.68±11.11 532.49±30.07 422.86±10.07
MinQ 4.0 – – –
MAD 4.0 – – –

Table 15: PSNR Performance Comparison with RobustLight (higher is better)

Dataset Type Scale Advanced-CoLight

base RobustLight RobustLight++

JiNan1

Gaussian 3.5 14.25 17.67 20.87
U-rand 3.5 7.30 11.12 16.16
Mask 25% 10.76 14.02 14.74
Mask 50% 5.04 6.93 5.49

JiNan2

Gaussian 3.5 14.25 20.00 22.58
U-rand 3.5 7.30 11.75 17.57
Mask 25% 22.08 28.65 28.07

Mask 50% 5.80 21.53 17.67

HangZhou2

Gaussian 3.5 14.32 15.88 16.55
U-rand 3.5 7.26 12.16 11.98

Mask 25% 6.30 6.32 6.71
Mask 50% 3.01 4.25 4.17

and single epoch settings of 25 and 90. The TSC RL agent is configured with a discount factor of
0.8, a buffer capacity of 12,000, a batch size of 20, and an Adam optimizer with a learning rate of
0.001, incorporating an epsilon greedy strategy with initial, minimum, and decay values of 0.8, 0.2,
and 0.95, respectively.
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Table 16: MAE Performance Comparison with RobustLight (lower is better)

Dataset Type Scale Advanced-CoLight

base RobustLight RobustLight++

JiNan1

Gaussian 3.5 4.44 2.52 2.35
U-rand 3.5 5.31 5.17 2.92
Mask 25% 1.50 1.00 1.11

Mask 50% 1.22 1.63 1.45

JiNan2

Gaussian 3.5 8.38 4.55 4.11
U-rand 3.5 5.28 4.90 4.75
Mask 25% 1.00 0.76 0.74
Mask 50% 1.77 1.52 1.19

HangZhou2

Gaussian 3.5 1.43 1.15 1.16

U-rand 3.5 2.92 1.86 1.64
Mask 25% 0.80 0.76 0.72
Mask 50% 1.37 1.34 0.99

Table 17: Inference time comparison (in milliseconds) based on Advanced-Colight.

JiNan1 HangZhou1

Type RobustLight Our Type RobustLight Our

Gaussian 131.52 33.40 Gaussian 139.60 31.89
U-rand 173.76 38.23 U-rand 179.18 36.24
MAD 1049.95 119.19 MAD 1505.61 162.36
MinQ 1081.03 118.96 MinQ 1524.30 159.83

Mask 25% 612.33 72.57 Mask 25% 1095.14 75.18
Mask 50% 997.53 86.39 Mask 50% 1095.11 74.52
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Table 18: Hyperparameters

Hyperparameter Type Hyperparameter Setting

UNet/Model
Hyperparameter

embed dim 64
state dim 20/32

action dim 4
hidden dim 256

Diffusion Training
Hyperparameter

non markovian step 6
condition length 4

beta schedule 3.0651, 24.552, -3.1702
discount(γ) 0.99

target critic(τ ) 0.005
diffusion timestep 100

batch size 16
buffer capacity 240

optimizer Adam
learning rate 0.0003

meta learning rate µ 0.1
epochs(meta/single) 25 / 90

hidden size 256
attention embed dim 64

TSC RL Agent
Training Hyperparameter

discount(γ) 0.8
buffer capacity 12000

epochs 80
batch size 20

learning rate 0.001
target update time 5

normal factor 20
loss function mean squared error

optimizer Adam
learning rate 0.001

patience 10
epsilon (init/min/decay) 0.8 / 0.2 / 0.95

D DENSE 20
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