
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025 1

Scalable Multi-Robot Informative Path Planning for

Target Mapping via Deep Reinforcement Learning
Apoorva Vashisth1, Manav Kulshrestha1, Damon Conover2, Aniket Bera1

1Department of Computer Science, Purdue University, USA 2DEVCOM Army Research Laboratory, USA
{vashista, mkulshre, aniketbera}@purdue.edu, damon.m.conover.civ@army.mil

Abstract—Autonomous robots are widely utilized for mapping
and exploration tasks due to their cost-effectiveness. Multi-robot
systems offer scalability and efficiency, especially in terms of
the number of robots deployed in more complex environments.
These tasks belong to the set of Multi-Robot Informative Path
Planning (MRIPP) problems. In this paper, we propose a deep
reinforcement learning approach for the MRIPP problem. We
aim to maximize the number of discovered stationary targets in
an unknown 3D environment while operating under resource con-
straints (such as path length). Here, each robot aims to maximize
discovered targets, avoid unknown static obstacles, and prevent
inter-robot collisions while operating under communication and
resource constraints. We utilize the centralized training and
decentralized execution paradigm to train a single policy neural
network. A key aspect of our approach is our coordination graph
that prioritizes visiting regions not yet explored by other robots.
Our learned policy can be copied onto any number of robots
for deployment in more complex environments not seen during
training. Our approach outperforms state-of-the-art approaches
by at least 26.2% in terms of the number of discovered targets
while requiring a planning time of less than 2 sec per step. We
present results for more complex environments with up to 64
robots and compare success rates against baseline planners1

Index Terms—Motion and Path Planning; Reinforcement
Learning; Multi-Robot Systems

I. INTRODUCTION

AUTONOMOUS robotic systems are used in several tasks,
such as search and rescue missions [1], environment

mapping [2], and orchard monitoring [3]. Multi-robot systems
are gaining popularity in these domains due to their increased
efficiency, compared to single-robot systems [4] and manual
approaches [5]. Key challenges for deploying multi-robot
systems in these tasks include planning efficient paths for all
robots to optimize the task objective, avoiding inter-robot and
robot-obstacle collisions, scaling to larger multi-robot systems
deployed in more complex environments, and considering
communication and resource constraints.

In this work, we aim to develop a deep reinforcement
learning-based, scalable, multi-robot path planning approach
for discovering stationary targets in an unknown 3D en-
vironment. Here, each robot is constrained to a resource
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Fig. 1: We implement our approach on Ryze Tello drones
in a real-world monitoring scenario. We use Aruco tags as
the targets to be discovered. Our approach successfully plans
collision-free paths online for maximizing the number of
discovered targets while under mission-time constraints. Here,
4 Tello drones and 3 Aruco tags are visible.

budget (e.g., battery capacity or mission time). Our considered
problem setting belongs to the family of multi-robot informa-
tive path planning (MRIPP) problems. Our 3D environment
contains unknown static obstacles. Our multi-robot system
consists of unmanned aerial vehicles (UAVs), where each
UAV is equipped with two range-constrained modules - a
unidirectional RGB-D sensor and a communication module.
The challenges considered in this work include - the ability
to scale to a larger number of robots deployed in more
complex environments, consideration of regions explored by
other robots while planning, and avoiding inter-robot and
robot-obstacle collisions as the robots operate under commu-
nication constraints. Applications of our work include search
and rescue missions, reconnaissance for military applications,
mapping fruits in an orchard for precision agriculture, and
discovering targets of interest in urban environments.

Several approaches have been proposed for the MRIPP
problem. Classical approaches [6–10] extend the single-robot
planners for multi-robot systems via sequential allocation
by planning path for each robot one after another, in a
specific sequence. Centralized approaches [2, 11–19] plan
over the joint action space of all robots. However, these
planners assume availability of global communication and
hence are not applicable in our problem setting with a limited
communication range. Moreover, as centralized planners plan
in the joint action space of all robots, they do not scale
well with increasing number of robots. Recently proposed
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decentralized planners [20–27] decouple the action space -
each robot in the multi-robot system plans its own action.
However, these approaches do not consider limited communi-
cation range [20, 22, 23, 25, 26], inter-robot collision avoid-
ance [22], or presence of unknown static obstacles in the envi-
ronment [25, 27]. To address these issues, we propose a novel
decentralized approach based on deep reinforcement learning.
Our approach considers the regions previously explored by
other robots during planning, and constrains the planning to
each robot’s local region. This aids our method in not only
avoiding collisions with newly discovered static obstacles, but
also in preventing inter-robot collisions. As our approach is
decentralized, it can be implemented on larger multi-robot
systems deployed within more complex environments unseen
during training.

To summarize, we develop a scalable, decentralized, and
efficient deep-reinforcement learning-based solution to the
MRIPP problem.Our deep reinforcement learning based policy
can be implemented on a multi-robot system consisting of
a large number of robots in environments not seen during
training. The core aspect of our approach is the coordination
graph that models the regions of the environment previously
explored by other robots. Figure 1 illustrates our approach
implemented on a multi-robot system consisting of UAVs in a
real-world monitoring scenario. We present the following four
contributions:

• Our coordination graph models the regions explored by
other robots, enabling the policy to plan actions visiting
unexplored regions of the environment.

• Our proposed reward function, aligned with the MRIPP
objective, encourages inter-robot communication.

• Our method enables more efficient discovery of targets
(66%) compared to state-of-the-art methods (52%) when
deployed in previously unseen environments.

• Our learned policy can be deployed over higher number
of robots without requiring re-training.

We assess the effectiveness of our approach in an urban
monitoring application in a simulator and also perform real-
world experiments with Ryze Tello drones.

II. RELATED WORK

Classical approaches [6–10] to the MRIPP problem attempt
to extend the single-robot methods to multi-robot planning
via sequential allocation [6]. Here, one planner plans the path
for each robot one after another in an arbitrary order. These
approaches decompose the environment into clusters and plan
each robot’s path over the clusters [7], use a random sequence
order of the robots for sequential allocation [10], or utilize
a deep reinforcement learning approach for generating the
planning order of the robots [9]. However, these approaches
assume infinite communication range and do not consider
inter-robot collisions, leading to inapplicability in our problem
setting.

Centralized methods [2, 11–19] introduce cooperative be-
havior by planning in the joint action-space of all robots. Some
approaches plan paths that minimize the final uncertainty of
a given uncertainty map [11–13]. Other methods decompose

the environment into disjoint clusters and allocate one robot
per cluster [2, 14, 15, 18]. Other approaches rely on a
consensus filter [17], on deep reinforcement learning [16], or
attempt to resolve the inter-robot collisions in pre-computed
paths [19]. However, these approaches require availability of
infinite communication range. Moreover, as they plan in the
joint action space of the robots, these methods are not scalable
to a large number of robots.

Decentralized planners [20–29] provide scalable solutions
by allowing each robot to independently plan their next action.
These approaches propose a decentralized variant of Monte-
Carlo tree search (MCTS) [24], or utilize consensus filters for
encouraging cooperation among the robots [26–28]. Recently,
deep reinforcement learning based decentralized planners have
been developed that are not only computationally efficient at
deployment but also have the capability of generalizing to sim-
ilar environments not seen during training. These approaches
utilize parameter sharing to encourage cooperation among
robots [20], employ imitation learning [29], utilize the central-
ized training and decentralized execution paradigm [21, 25],
employ Q-Learning to learn collision avoidance behavior [23],
or attempt to utilize attention mechanism for modeling the
paths of other robots [22]. However, these approaches operate
in 2D environment with known obstacles [29], do not consider
inter-robot collisions [22, 23], assume an obstacle-free envi-
ronment [25, 27], or consider static communication connectiv-
ity [28]. A key difference of our approach with the prior works
is that each robot models the regions explored by other robots
within communication range and plans only within its local
region. This encourages visiting unexplored regions, prevents
collisions with discovered obstacles by planning in known
local regions, and avoids inter-robot collisions due to planning
outside of the collision range of other robots. Our results
demonstrate that our approach outperforms the state-of-the-art
learning and non-learning methods in our considered problem
setting and is scalable to larger number of robots deployed in
more complex environments not seen during training.

III. BACKGROUND

A. Problem Setting
In this work, we aim to maximize the number of discovered

targets in a 3D environment containing undiscovered static
obstacles. Our multi-robot system consists of N ∈ Z+ robots
constrained to a total resource budget B ∈ R+. We model
the budget as the sum of the maximum cost of the paths
executed by each robot. Hence, each robot i ∈ 1, . . . , N
receives a budget of Bi = B/N . We model the robots as
UAVs equipped with a unidirectional range sensor (e.g., RGB-
D camera) and a communication module which is single-hop
and range-constrained, i.e., robots communicate only when
they are within distance ρ ∈ R+. To discover the targets,
we assume presence of a noiseless classifier while limiting
the sensing range to realistically model the reduced prediction
confidence with increasing distance to target.

B. Gaussian Processes
Gaussian processes [30] are widely utilized to represent

continuous distributions [3, 22, 31] as they enable interpolation
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Fig. 2: Overview of our deep reinforcement learning approach for the MRIPP problem. At each time-step, our approach
samples collision-free candidate actions in the robot’s local region. Our coordination graph associates each candidate action
with a utility value, the uncertainty of the utility value, and the exploration features modeling the regions visited by other
robots. Our policy network relies on these features to output the robot’s state value and the next action to execute, leading to
the generation of reward and observations from the environment. Here, the black arrows indicate the robot control loop, green
arrows and green boxes are the variables stored in the experience buffer for on-policy training of our policy network.

between discrete measurements. Moreover, in addition to
providing predicted values, Gaussian processes have the ability
to measure the uncertainty related to the predictions. These
uncertainty measures are particularly valuable in our problem
setting where understanding the confidence interval around a
prediction is crucial for planning subsequent paths.

Given a set of n′ features X ∗ ⊂ X at which a scalar value
is to be inferred, a set of n observed feature set X ′ ⊂ X and
the corresponding observed measurements set Y , the mean and
covariance of the GP is regressed as:

u = µ(X ∗) +K(X ∗,X ′)[K(X ′,X ′) + σ2
nI]

−1(Y − µ(X ′))

P = K(X ∗,X ∗)−K(X ∗,X ′)[K(X ′,X ′) + σ2
nI]

−1

×K(X ∗,X ′)T

where K(·) is a pre-trained kernel function, σ2
n is a hyperpa-

rameter describing the measurement noise, and I is the n×n
identity matrix.

IV. OUR APPROACH

In this section, we provide details for each aspect of our
proposed deep reinforcement learning based approach to the
MRIPP problem. We provide an overview of our approach in
Figure 2 for a robot within the multi-robot system.

A. Environment Representation

We define the complete action space of the robots as A.
We model the disjoint candidate action space for each robot i
at timestep t, defined as Ai

t ⊂ A, as a set of j ∈ {1, . . . , L}
actions aij,t = (xij,t, y

i
j,t, z

i
j,t, d

i
j,t)

⊤ where |Ai
t| = L. Here,

we define the robot’s 3D coordinates as xij,t, y
i
j,t, z

i
j,t ∈ R and

the viewing direction for the unidirectional sensor as dij,t ∈ D.
We define a set D to denote possible sensor view directions.
At each time-step t each robot i has executed an action ait−1.
We then plan an action to execute ait ∈ Ai

t. Similar to [3],
the candidate actions are sampled randomly with a uniform
distribution in the robot’s C-neighborhood around previous

pose ait−1. To account for the kinematic constraints of the
robot platform, we sample only the feasible actions. Here, C is
a constant specifying the extent of the robot’s local region. To
ensure inter-robot collision avoidance, we constrain the robots
to not sample within collision distance dc ∈ R+ of other robots
within communication range ρ, and restrict that dc < ρ.

Each robot maintains an occupancy map for collision
avoidance with newly discovered obstacles. We initialize the
occupancy map voxels as unknown space (1) and update the
observed voxels as either free (0) or occupied (2). A voxel is
occupied if it contains either a target, or a static obstacle. For
robot-obstacle collision avoidance, we perform reachability
checks for each candidate action along straight lines.

Execution of an action ait−1 by robot i leads to the ob-
servation of a certain number of targets at timestep t. To
capture the relationship between an action and its correspond-
ing number of observed targets, we define a utility function
u : A → R+ for each candidate action. As the utility
values for candidate actions are initially unknown, we utilize a
Gaussian process [30] to model the function u. The Gaussian
process is trained on the utility values u(at) ∈ R+ of actions
executed till temestep T ′, i.e. at ∀ t ∈ [0, T ′] and is used
to regress the utility and uncertainty values of the candidate
actions. To stabilize the policy learning, we normalize the
observed number of targets by a constant value. The predicted
uncertainty values aid our policy network in planning long-
horizon paths.

At each timestep t, robot i attempts communication with
robot j within communication range ρ. At time-step t, if the
Euclidean distance between the robots is less than the maxi-
mum communication range ||ait−1 − ajt−1||2 ≤ ρ, the robots
exchange their complete history of the visited waypoints. Each
robot maintains a Gaussian process to model the regions
explored by other robots as a probability distribution over
the robot’s workspace. The probability and confidence values
queried from the communication Gaussian process over the
set of candidate actions aid our policy network in considering
the regions explored by other robots while planning the next
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action.

B. MRIPP Objective

We model the path followed by robot i as a sequence
of consecutively executed actions ψi

0:T = (ai0,a
i
1, . . . ,a

i
T )

where ai0 is the initial pose and aiT is the action executed upon
depletion of the budget Bi = B/N , causing the termination
of its mission. In general, the MRIPP problem searches the
space of all possible paths Ψ1:N for a set of optimal paths
ψ∗

0:T ∈ Ψ1:N such that ψ∗
0:T = [ψ1

0:T , ψ
2
0:T , . . . , ψ

N
0:T ]

to maximize an information-theoretic objective function:

ψ∗
0:T = argmax I (ψ0:T ), s.t. c(ψi

0:T ) ≤ Bi ∀ i ∈ [1, N ] ,
(1)

where I : Ψ → R+ is the information gained upon
executing the trajectory ψi

0:T and c : ψi
0:T → R+ maps

the path ψi
0:T to its execution cost.

While traversing the path ψi
0:t, the robot transitions be-

tween two consecutively executed actions over a straight line.
Observations are collected at each waypoint in the path and
are used to update the utility Gaussian process (uutil, Putil)
and the occupancy map. Upon communication with a nearby
robot, the communication Gaussian process (ucomm, Pcomm)
is updated with the waypoints visited by the communicating
robots. Hence, due to the successive nature of the executed
actions in the planned path, we model the MRIPP problem
as a sequential decision-making process. Towards the MRIPP
objective, we define a function ζ : A × Ψ1:N → R+ as the
number of new targets observed upon executing an action ait
by robot i after following the path ψi

0:t−1.
We define the information obtained by robot i as:

I (ψ0:T ) =

T∑
t=1

ζ(ait,Ψ
1:N

0:t−1) , (2)

and we aim to plan ψ∗
0:T to maximize the information gain.

The above formulation models the diminishing information
gain by not considering the targets that have been observed
during an earlier exploration of the region.

C. Reward Structure

In order to maximize the number of discovered targets, each
robot needs to balance exploration of environment (always
choosing the action with most uncertainty) with exploitation
(always choosing action with maximum informativeness) of
the obtained observations. Moreover, inter-robot communica-
tion is necessary to keep track of the regions previously ex-
plored by other robots. This aids in avoiding planning of sub-
optimal actions leading to re-exploration. Inspired by previous
works [3, 32], we propose a new reward structure that not
only considers the exploration-exploitation trade-off but also
encourages inter-robot communication. Upon communication
with other robots, information is exchanged about the regions
previously explored by the robots. At each time-step t, the
robot i has executed the action ait−1, collected observations,
communicated with the nearby robots, and receives a reward
rit ∈ R+. The reward function consists of an exploratory term

rie,t, an informative term riu,t, and a communication term ric,t
so that:

rit = αrie,t + βriu,t + γric,t (3)

where:

rie,t =
Tr(P−

util)− Tr(P+
util)

Tr(P−
util)

,

ric,t =
Tr(P−

comm)− Tr(P+
comm)

Tr(P−
comm)

,

riu,t = ζ(at−1, ψ0:t−2)

(4)

where the constants α and β balance the exploration-
exploitation trade-off and γ rewards inter-robot communica-
tion. Tr(·) is the matrix trace operator. Here, P− and P+

indicate the prior and posterior covariance matrices of the
Gaussian processes. The reduction in variance of the utility
Gaussian process estimates the exploration of the environment
due to the robot’s own executed actions. Similarly, the variance
reduction of the communication Gaussian process estimates
the exploration knowledge gained from other robots. The num-
ber of new targets observed measures the information gained
upon execution of action ait by robot i. Scaling the reward by
Tr(P−) stabilizes the actor-critic network training [3, 31].

Our reward generation method ensures that each robot
receives the reward reflecting the contribution of it’s actions
towards the global MRIPP objective -

• Robot i will not receive informative reward riu,t for the
new targets that have been observed by another robot.

• At each timestep t during training, we utilize a single
global utility Gaussian process for all robots. The term
rie,t is calculated for robot i’s action considering no action
has been executed by any other robots.

• The communication reward ric,t depends on the explo-
ration knowledge gained by robot i from other robots.
Each robot has a separate instance of communication
Gaussian process to generate this reward component to
ensure the reward received depends on the communica-
tion performed due to execution of its own action only.

D. Coordination Graph

The MRIPP problem considered in this work requires
each robot i in our multi-robot system to reason about the
distribution of targets in the environment to optimize the
MRIPP objective as described in Equation (1) and the regions
explored by other robots for inter-robot collision avoidance.
Inspired by the dynamic graph approach for single-robot path
planning [3], we propose a novel coordination graph that
enables our approach to model the distribution of targets in
the robot’s local neighborhood, plan actions to visit regions in
the environment not explored by other robots, and avoid inter-
robot collisions and collisions with newly discovered static
obstacles. Our policy neural network relies on the coordination
graph to predict the next action to execute.

Each robot rebuilds its coordination graph at every timestep
to account for the newly obtained observations. Our coordina-
tion graph for a robot i at timestep t is a fully-connected graph
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Gi
t = (N i

t , E i
t ). The node set N i

t defines the set of collision-
free candidate actions. The edge set E i

t defines the collision-
free paths from the robot’s current pose to each candidate
action and each edge in the set is associated with the cost of
executing the given candidate action.

We construct the feature matrix Mi
t for robot i correspond-

ing to its coordination graph as the input to our policy neural
network. The features consist of the candidate actions, the
utility and uncertainty values of candidate actions regressed
from the Gaussian process modeling the utility, and the prob-
ability and uncertainty values queried from the communication
Gaussian process. The nth row of Mi

t relates to the nth

candidate action of robot i at timestep t:

Mi
t(n) =[ain,t, uutility(a

i
n,t), Putility(a

i
n,t,a

i
n,t),

ucomm(ain,t, t), Pcomm(ain,t,a
i
n,t)] ,

where ain,t = [xin,t, y
i
n,t, z

i
n,t, d

i
n,t]

⊤, uutility(a
i
n,t) and

Putility(a
i
n,t,a

i
n,t) are the regressed utility and uncertainty

values for candidate action ain,t, and ucomm(ain,t) and
Pcomm([ain,t], [a

i
n,t]) are the regressed probability and con-

fidence values from the communication Gaussian process
modeling the locations of other robots at timestep t.

E. Policy Neural Network

Our coordination graph models each robot’s collision free
action space and aids the deep reinforcement learning policy
in reasoning about the robot’s current knowledge of the
environment. As the utility Gaussian process can only model
the greedy action selection through utility regression, deep
reinforcement learning is essential for achieving the balance in
short-term exploitation of obtained information and the long-
term exploration of the unknown environment.

At each timestep t, each robot i in our multi-robot sys-
tem utilizes an attention-based neural network [31] to model
the planning policy π(Gi

t , ψ
i
0:t−1, B̃

i). The planning policy
outputs the probability distribution over the candidate actions
in the robot’s candidate action set Ai

t. The policy relies on
the feature matrix Mi

t of the current coordination graph Gi
t ,

path executed so far ψi
0:t−1 and the remaining budget B̃i.

The network structure consists of an encoder and a decoder
module. The encoder models the information distribution
obtained from observations and the environment explored
so far by learning the dependencies among the candidate
actions in Gi

t , forming the context over collected observations.
The decoder utilizes the learned context features from the
encoder, the planning state, and the budget mask to output the
probability distribution over the set of candidate actions Ai

t.
The planning state consists of the path executed by the robot
so far ψi

0:t−1 and the remaining budget B̃i. The budget mask
aids in filtering out candidate actions leading to the violation
of the budget constraint. Additionally, the decoder module
estimates the value function of the current state. The estimated
value, executed actions, coordination graphs, planning states,
and rewards generated by actions of the robots throughout
the training episode are collected in the experience buffer for
on-policy actor-critic reinforcement learning under centralized
training and decentralized execution paradigm. In this work,

we use proximal policy optimization [33] due to its stability
and sample efficiency. During deployment, at each time step
and for each robot, we execute the most informative action.

V. RESULTS
A. Setup

Environment. We test our approach in an urban monitoring
scenario consisting of buildings and windows. We represent
the environment internally as bounded within a scale-agnostic
unit cube. Each robot in our multi-robot system maintains an
occupancy map for collision avoidance with static obstacles.
We initialize the occupancy map as unknown space and
update the free space or occupied space based on obtained
observations. Our training environment consists of regularly
spaced buildings with the windows generated randomly on the
buildings. However, our test environments consist of buildings
generated at random locations.

Hyperparameters. We tune the hyperparameters of our
Gaussian processes in a small representative environment. We
use the Matérn 1/2 kernel function for the Gaussian processes.
For the reward structure defined in Equation (1), we choose
α = 20.0 and δ = 0.02 so that both the exploratory rie,t and
utility reward riu,t terms lie numerically in the range [0, 1].
In order to promote MRIPP objective over the inter-robot
communication, we use γ = 1.0 to keep the numerical value
of ric,t lower than the other terms.

Robot Configuration. We consider each robot as a UAV
platform equipped with an RGB-D camera having 90◦ field
of view. We model the reduction in the confidence of target
identification with increasing distance by limiting the camera
sensing range to 24% of the environment size. The UAVs can
communicate at a maximum communication distance ρ = 0.3.
The sensor viewpoint set D is discretized as {0, π2 , π,

3π
2 }

radians. However, our approach supports extension to finer
discretizations by extending the set D.

Training. We generate multiple training episodes to pop-
ulate our experience buffer. Each training episode consists
of a multi-UAV system with a total budget B. Our policy
is trained in a structured environment and then transferred
to a randomized environment for testing. While we fix the
number of buildings during training, the number of windows
is varied in [200, 250]. The start action for each robot is
a0 = (0.0, 0.0, 0.0, π2 ). We set L = 80 for each robot’s
coordination graph. Since we normalize the internal envi-
ronment representation, our budget value B is unitless. For
each training episode, B is a randomly generated real value
in the range [7.0, 9.0]. Each episode is constrained to a
maximum of 256 timesteps. To speed-up the training process,
we run 36 parallel environment instances and train our policy
network over 8 epochs with a batch size of 1024. We utilize
Adam optimizer with a learning rate of 10−4, decaying by a
factor of 0.96 after every 512 optimization steps. The policy
gradient epsilon-clip parameter is set to 0.2. We train our
policy network on a computing cluster equipped with Intel(R)
Xeon(R) CPUs @ 3.60GHz and one NVIDIA A30 Tensor
Core GPU. We require ∼ 120, 000 environment interactions
for our policy to converge. All our tests are conducted on the
same compute cluster.
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Fig. 3: Comparison of our approach with other baselines in an
urban environment. Our performance metric is the percentage
of targets discovered during the episode. The solid lines
represent the mean values across 250 trials, while the shaded
areas denote the standard deviations.

B. Baseline Comparison

In this section, we compare the performance of our approach
against state-of-the-art learning and non-learning baselines.
We utilize fixed random seeds to generate 25 test environ-
ments. We enable global communications for the baselines
and present the performance of our approach with both
global communication (ρ = ∞) and restricted communication
(ρ = 0.1). We deploy N = 3 UAVs with a total budget of
B = 10.00 and run 10 trials corresponding to each randomly
generated environment, leading to a total of 250 tests. Our
baselines include: (i) Intent with destination modeling [22]
as a zero-shot greedy policy (Intent dest.), (ii) CAtNIPP [31]
with a zero-shot policy (CAtNIPP g.), (iii) non-learning Monte
Carlo Tree Search [34] (MCTS), (iv) non-learning Rapidly
exploring random Information Gathering Trees [35] (RIG-
Tree), and (v) a random policy (random agent). As MCTS,
and RIG-Tree are single robot planners, we extend them to
multi-robot planning via sequential allocation [6]. We tune all
the baselines for best performance in our problem setting. We
consider the metric of percentage of targets discovered, as well
as provide the average planning time per step. Additionally,
as modification of these approaches to account for collision-
free path planning is non-trivial, we allow the UAVs for
each planner to ignore obstacle-UAV and inter-robot collisions,
ensuring a fair comparison within this set of experiments.

Our results shown in Figure 3 and Table I indicate that
our method outperforms the considered baselines in terms of
the number of discovered targets. Note that introduction of
communication constraint leads to a drop in the performance
of our approach, however we still outperform the considered
baselines operating with global communications. This could
be attributed to our coordination graph explicitly representing
the regions explored by other robots, leading to planning
actions visiting unexplored regions that provide performance
improvement in our approach over the baselines that do not
model the regions visited by other robots. Note that deep
reinforcement learning based methods are significantly more

TABLE I: Results of our approach compared with other
learning and non-learning baselines in an urban monitoring
scenario.

Baseline % targets Time (s)

Our approach (ρ = ∞) 66.00± 5.59 1.58
Our approach (ρ = 0.1) 62.16± 8.25 1.58
Intent dest. (ρ = ∞) 52.31± 9.29 25.39
CAtNIPP g. (ρ = ∞) 45.31±10.59 3.84
MCTS (ρ = ∞) 48.50± 7.81 153.49
RIG-Tree (ρ = ∞) 47.38±10.43 60.46
Random agent 31.83±15.23 0.06

TABLE II: Ablation study for modeling of explored regions.

Approach % targets

With modeling explored regions 66.00± 5.59
Without modeling explored regions 61.97± 7.34

time-efficient than non-learning approaches, justifying their
use over non-learning methods for real-time applications.

C. Ablation Studies

We study the impact of our communication Gaussian pro-
cess and our new reward structure on the performance of our
approach via the metric of percentage discovered targets.

Communication Gaussian Process. To evaluate the impact
of modeling the unexplored regions of the environment on
the performance of our approach, we compare our approach
trained with and without the communication Gaussian process.
Our results in Table II show that the performance improves
when the communication Gaussian process is included. Fur-
thermore, an unpaired t-test conducted between the two groups
(n = 250 each) yielded a p-value of 3.91×10−9, indicating a
statistically significant difference well below the conventional
threshold of 0.05. Hence, we conclude that our policy neural
network learns to reason about the unexplored regions during
planning.

Communication Reward. To evaluate the impact of the
communication reward term ric,t in Equation (4) on the per-
formance of our approach, we compare the performance of
our policies trained with γ = 0.0 and γ = 1.0. Our results in
Table III show that the performance improves upon inclusion
of the communication reward. Again, the difference between
the two groups of 250 tests each is statistically significant,
with a p-value of 5.11 × 10−6, significantly less than 0.05,
providing strong evidence against the null hypothesis. Hence,
our new reward structure promotes inter-robot communication
and leads to improved performance.

D. Scalability

We compare the ability of our approach to scale to larger
environments and more number of robots N in the multi-
robot system with other approaches. Our policy learned in the
small training environment with N = 3 robots is evaluated
in larger environments and varying number of robots not seen
during training. We present results for test environments that
are approximately 3×, 8×, and 16× larger than the training
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TABLE III: Ablation study for reward structure.

Approach % targets

With communication reward 66.00± 5.59
Without communication reward 62.92± 7.01

TABLE IV: Comparison of our deep reinforcement learning-
based approach against baselines in an urban environment.

Approach % targets

Our Approach 66.46±11.08
Random Planner 28.94± 8.70

environment. We consider N ∈ (16, 32, 48, 64) and conduct
100 tests in each environment for every N .

We compare the performance of our approach, deployed
with communication distance ρ ∈ (0.2, 0.15, 0.12) in
3×, 8×, 16× environment respectively, with (i) CAtNIPP [31]
with global observability and (ii) a random policy. We train
CAtNIPP in the training environment described in Sec-
tion V-A. We do not consider the intent baseline due to its
compute intensive nature for large multi-robot systems. We
do not evaluate the non-learning methods, as the sequential
allocation based time-intensive nature leads to infeasible com-
putation times for large multi-robot systems.

Figure 4 demonstrates the results for this set of exper-
iments. Our approach strongly outperforms the considered
baselines in 3× environment, slightly outperforms in 8×
environment, and is outperformed in 16× environment. The
success of our planner in 3× and 8× environments can be
attributed to the modeling of unexplored regions, leading to
planning of more informative paths by robots in our multi-
robot system as compared to other approaches. However, in
the 16× environment, the instances of communication with
robots located further away drastically reduces, causing our
approach to be outperformed by the CAtNIPP planner with
global observability. Future work will explore more complex
communication paradigms to mitigate this issue.

E. Simulation

We demonstrate the applicability of our deep reinforcement
learning approach in an urban monitoring scenario. We use
the gym-PyBullet-drones [36] simulator to accurately model
UAV physics. Our simulation environment is built using the
Houses3K dataset [37] and is bounded by a 60m×60m×30m
cuboid as shown in Figure 5. We assume perfect localization
and use ground truth target discovery. The 3 UAVs move at a
maximum speed of 1m/s.

We compare the performance of our approach with a
random planner that reflects the performance lower bound. We
do not implement other baselines considered in Section V-B as
modifying these approaches for avoiding inter-robot collisions
and consideration of the presence of unknown obstacles in the
environment is a non-trivial task. Here, our evaluation metric is
the percentage of windows discovered by the robots. To ensure
every discovered target is counted only once, we record the
coordinates of discovered targets. Our results are reported for
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Fig. 4: Our approach outperforms other baselines in terms of
percentage discovered targets in a 3×, 8×, and 16× larger
environments. The x-axis indicates the number of robots in the
multi-robot system during the test. The solid lines represent
the mean values across 100 trials.

Fig. 5: Our approach implemented in an urban simulation envi-
ronment. We place 3 UAVs and 161 targets in the environment
and trace each UAV’s path with colored tracelines.

missions with a budget of 7.0 units in Table IV. Our approach
outperforms the random planner.

F. Implementation

We demonstrate the real-world applicability of our method
on a multi-robot system for target discovery as illustrated in
Figure 1. We carried out experiments on 4 Ryze Tello drones
in a 7.62 × 3.25 × 2.4 m3 arena containing randomly placed
obstacles and 6 Aruco tags as targets.
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VI. CONCLUSION

We present a novel deep reinforcement learning approach
for the MRIPP problem in an unknown 3D environment.
Our coordination graph-based approach models the unexplored
regions of the environment for efficient target discovery. We
present experimental results to support that: (i) our coordina-
tion graph encourages exploration of unknown regions of the
environment, (ii) our reward function encourages inter-robot
communication, (iii) our approach outperforms the state-of-
the-art baselines in environments unseen during training, and
(iv) our learned policy scales to larger multi-robot systems
and more complex environments. We evaluate the performance
of our approach in a UAV-based urban mapping scenario
in a simulator, as well as conduct real robot experiments
to demonstrate the practical applicability. Future research
directions include extension to multi-robot pathfinding, task
allocation, accounting for localization errors, and cooperative
communication.
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