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Abstract

Multiple instance learning (MIL) is the preferred approach for whole slide image classifica-
tion. However, most MIL approaches do not exploit the interdependencies of tiles extracted
from a whole slide image, which could provide valuable cues for classification. This paper
presents a novel MIL approach that exploits the spatial relationship of tiles for classifying
whole slide images. To do so, a sparse map is built from tiles embeddings, and is then clas-
sified by a sparse-input CNN. It obtained state-of-the-art performance over popular MIL
approaches on the classification of cancer subtype involving 10000 whole slide images. Our
results suggest that the proposed approach might (i) improve the representation learning of
instances and (ii) exploit the context of instance embeddings to enhance the classification
performance. The code of this work is open-source at github censored for review.

Keywords: Multiple Instance Learning, Whole Slide Image Classification, Large-scale
Histopathology

1. Introduction

An extremely large number of histological routine tasks involve the classification of whole
slide images, including subtype diagnostic, tumor screening, tumor grading, or the choice
of treatment. However, the extreme sizes of whole slide images impede their classification
with conventional deep learning architectures which are the gold standard for classification
in medical images (Litjens et al., 2017). Indeed, while traditional image weighs less than
1 megapixel — e.g. 0.09 megapixel for images of ImageNet (Deng et al., 2009) — whole
slide images often contain several billions of pixels at full magnification. Unfortunately,
classical deep learning architectures are not suited for such large images due to memory
issues. For instance, ResNet200 (He et al., 2016) can only fit 32 images of width 224 for
simultaneous forward and backward pass on popular graphic cards — equivalent to only
around 1.6 megapixels.

WSI classification is a challenging problem. It cannot be tackled by downsampling WSI
because many tasks rely on the phenotype of cells which is lost with downsampling. Classical
approaches extract handwritten features from annotated elements of interest such as tumor
tissue or lymphocytes and use traditional machine learning (Beck et al., 2011; Wang et al.,
2014; Saltz et al., 2018). Apart from the limited power of manually designed features, this
approach is impeded by the many difficulties of obtaining accurate annotations although
recent approaches aim at automating the delineation of elements of interest (Saltz et al.,
2018; Lerousseau et al., 2021). Meanwhile, classifying a (randomly) subsampled contiguous
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region from a WSI may result in a non-representativeness of a WSI, a phenomenon known as
tumor heterogeneity (Heppner and Miller, 1983; Marusyk and Polyak, 2010). To circumvent
tumor heterogeneity and the limitations of graphic cards memory, a solution consists in
classifying a (pseudo-)uniformly sampled set of tiles using multiple instance learning (MIL)
(Keeler et al., 1991; Dietterich et al., 1997). However, the majority of MIL approaches do
not consider the relationship of tiles which undoubtedly yield valuable information. To the
best of our knowledge, the only viable spatially-aware WSI classifying solution is Streaming
CNN (Pinckaers et al., 2019). This approach leverages the divide and conquer paradigm by
splitting a gigapixel image in subimages which are sequentially processed by graphic cards
until the signal can fit wholly on video memory. While this approach can effectively entirely
process gigapixel images, it suffers from additional processing time and memory usage due
to the intermediate storage of temporary forward and backward maps.

The objective of our work is to bridge the gap between traditional image classification
and multiple instance learning for whole slide images. The purpose is to enhance WSI
classification and tile representation learning with a scalable and modular tool. To this
end, we propose a fully differentiable context-aware multiple instance learning paradigm
that exploits the spatial relationship of tiles extracted from whole slide images. To do so,
a sparse map is built by mapping the tiles embeddings to the locations of their associated
tiles within the original WSI. Then, a sparse-input CNN computes a WSI embedding from
the sparse map, which is further classified using a generic classifier. The potentials of this
approach is benchmarked on (i) a traditional histological MIL task, and (ii) an original
large-scale experiment involving 10000 whole slide images from The Cancer Genome Atlas
for subtype classification among 32 classes. Our contributions are twofold:

• a modular and powerful multiple instance learning framework

• a very large scale experiment involving 10000 slides on a task extremely pertinent to
cancer clinical histopathological routine

2. Background

2.1 Multiple instance learning

MIL is a particular classification paradigm where the considered objects are called bags
(here, WSI) and are made of other objects called instances (here, patches or tiles). Instances
may or may not have labels, although in any case those are unavailable during training. The
only available information is the label of bags. In the more general case, MIL models can be
mathematically decomposed into 3 parts: (i) an instance embedder fθ1 that converts each
instance into an embedding, (ii) a pooling operator gθ2 that computes a bag embedding from
the instance embeddings, and (iii) a generic classifier hθ3 that converts the bag embedding
into scores, such that a bag (x1, . . . , xK) is predicted with

hθ3

(
gθ2
(
fθ1(x1), . . . , fθ1(xK)

))
(1)

fθ1 can be any type of embedding function, with or without parameters, differentiable or
not. In particular, instance-based MIL is a special case where fθ1 outputs embeddings that
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Figure 1: Visual representation of the proposed approach. First, a set of patches are
randomly sampled throughout a WSI (here, 5 patches), and are then concurrently and
independently forwarded into a shared patch embedder fθ1 . Then, a sparse map is built
by placing each resulting embedding at the location of its associated patch. This map is
forwarded into a sparse-input CNN producing a bag embedding which is finally classified
into scores or probabilities using a generic classifier hθ3 .

lie in a unidimensional space, i.e. apparent to a probability space. The classifier hθ3 can
be any type of classifier, including a multi-layer perceptron. Actually, most of the MIL
community efforts have revolved around pooling operators which can be grouped in two
categories: permutation invariant operators, and others.

In some applications, such as the drug discovery problem (Dietterich et al., 1997), in-
stances do not exhibit dependency, ordering, or spatial information among each other, i.e.
they are independently and identically distributed (iid). For any permutation σ, the output
of an iid pooling operator is the same for x = (x1, . . . , xK) and (σ(x1), . . . , σ(xK)), i.e. they
are permutation invariant. Examples of such pooling functions are max, mean, log-sum-
exp (Ramon and De Raedt, 2000), attention-based (Ilse et al., 2018) — their mathematical
formulations are provided in Appendix A.

The iid assumption does not hold for applications where there is inherent structural
information about instances, such as document classification from sentences (Angelidis and
Lapata, 2018), or WSI classification from tiles. Zhou et al. (2009) have notably achieved
state-of-the-art performance over iid MIL pooling operators by building a graph from in-
stance embeddings, and then performing classification with kernel methods. With recent
improvements of graph neural networks (Wu et al., 2020), further iterations have been
proposed by the community (Tu et al., 2019; Yi and Lin, 2016; Zhao et al., 2020).

2.2 Sparse-input convolutional neural network

Sparse data involve the concept of active and inactive cells or pixels, where inactive cells
contain no data — not even a value of 0 which uses memory. Truly sparse data have
significantly less active cells than inactive cells. Examples of sparse data are cloud points
from LiDAR, or tiles extracted from WSI. With their own structure, sparse data have
decreased memory footprint over non-sparse (i.e. dense) data such as images. Several
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convolutional implementations designed for sparse input data have been proposed (Graham,
2015; Graham and van der Maaten, 2017; Riegler et al., 2017) revolving around the idea
that convolutions should only be performed on active cells, which therefore decreases the
number of computations by ignoring input regions with only inactive cells. In our work, we
integrate sparse-input CNN within the MIL paradigm to shift the MIL paradigm towards a
sparse convolutional one. From another point of view, we design a pooling layer that embed
the MIL paradigm into a sparse fully convolutional classification architecture.

3. Methods

In this section, we present the processing of a WSI by SparseConvMIL, as illustrated in Fig-
ure 1 containing a first step of tile embeddings, followed by SparseConvMIL specific steps
including (i) the sparse map construction, (ii) the sparse-input CNN processing of the sparse
map, and (iii) specific data augmentation.

We consider a WSI x ∈ R3×w×h (3 channels, width w, height h) and a set of K
patches (x1, . . . , xK) extracted from x. A generic tile embedder fθ1 (e.g. a ResNet ar-
chitecture (He et al., 2016)) concurrently and independently computes the tiles embeddings
(fθ1(x1), . . . , fθ1(xK)).

Sparse map construction For each tile xk, we also consider its location within the
WSI denoted (ik, jk), such as its center. A sparse embedding map Sx is built by assigning
each tile embedding to their associated tile location, while other locations are set inactive.
Alternatively, Sx can be formalized only by its active cells:

Sx =
{[

(ik, jk), fθ1(xik,jk)
]
; 1 ≤ k ≤ K

}
⊂ (N× N×H)K (2)

In theory, a sparse map thus built has the same size as the input WSI. However in
practice, few tiles can be extracted from a WSI i.e. the sparse map is very sparse. This im-
plies that most convolutional operations would involve at most one active cell — essentially
not leveraging the locality of the filters of the CNN. To address this issue, we introduce
an additional parameter called the downsampling factor, noted d. Rather than assigning a

tile xk at its associated location (ik, jk) within Sx, it is assigned to locations
(⌊

ik
d

⌋
,
⌊
jk
d

⌋)
.

d sufficiently high would ensure that later neurons have at least two active cells in their
receptive fields. We evaluate the impact of the downsampling factor in the experiments.

Because the sparse map construction only assigns vectors to locations, it is differentiable.
In particular, an error signal from backpropagation can be assigned to vectors based on their
locations — and subsequently to update the parameters of fθ1 . Once Sx is built, it is forward
into a sparse-input CNN.

Sparse-input convolutional neural network Sparse-input CNNs are essentially CNNs
that operate specifically on sparse data, with reduced FLOPs and memory footprint. In
particular with the formulation of Graham and van der Maaten (2017), a sparse-input
convolution produces at most the number of input map active cells, by setting an inactive
cell in the output for each input inactive cell. Mathematically, given a convolutional layer
U ∈ R2f+1×R2f+1×Ro with a filter of half-size f , stride s, and o output channels, convolving
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U on a sparse map Sx produces the feature map U ~ Sx such that:

∀i, j : (U ~ Sx)i,j =


f∑

m=−f
n=−f

Um+f,n+f · Sxsi+m,sj+n if Sxsi,sj 6= Ø

Ø otherwise

(3)

where Ø indicates inactive cells and an inactive cell has no impact on the sum.
Similarly, for a pooling function p such as max or average, the output of a p-pooling

layer with filter size f and stride s on Sx produces p(Sx) such that:

∀i, j : p(Sx)i,j =

{
p
(
{Sxsi+m,sj+n; 0 ≤ m,n < f, Sxsi+m,sj+n 6= Ø}

)
if Sxsi,sj 6= Ø

Ø otherwise
(4)

In particular, sparse-input adaptive global pooling layers with output size o are defined as
sparse-input pooling layers of both stride and filter size

⌊
w
o

⌋
for the width and

⌊
h
o

⌋
for the

height. Activation functions are processed in the same fashion with stride 1, filter size 1
(therefore only on active cells) and with functions such as ReLU, tanh, or sigmoid.

Eventually a bag embedding is obtained after a succession of sparse-input (strided)
convolutions and activations. To ensure that the spatial dimension of the bag embedding
does not depend on the size of the input whole slide image, a (sparse-)adaptive global pooling
layer is used at the end of the sparse-input CNN MIL operator — effectively transforming
the output sparse feature map into a dense one. Bag scores can then be computed with any
type of classifier, including multi-layer perceptrons.

Context-aware specific data augmentation The proposed approach benefits from
additional data augmentation strategies over permutation non-invariant pooling strategies,
precisely because it treats instances as non i.i.d. Spatial augmentations (e.g. flipping,
rotations, local shuffling or elastic deformations) performed on tiles locations, or equivalently
on the sparse map, can help reduce the burden of overfitting by artificially increasing the
input data to the pooling CNN. Besides, these augmentations can be performed after tile
embedding inference, implying that multiple sparse map spatial augmentations can be done
with a low additional memory footprint. Examples of data augmented sparse maps are
shown in Figure 3.

4. Experimental validation

We have used two data examples to demonstrate the extreme potentials of our method:
CRCHistoPhenotype (subsection 4.1) and The Cancer Genome Atlas (TCGA) (sub-
section 4.2).

4.1 Classical MIL dataset

Dataset The CRCHistoPhenotype (Sirinukunwattana et al., 2016) dataset consists of
100 haematoxylin and eosin-stained (H&E) 500× 500 pixels histology images of colorectal
adenocarcinomas. A total of 22,444 nuclei are annotated with (i) the position of their center
and (ii) their class type i.e. one of epithelial, inflammatory, fibroblast, or miscellaneous.
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We considered the binary task of classifying power fields as having epithelial cells or not:
accurately detecting epithelial cells is a valuable clinical task since most cancers arise from
the epithelium (Thiery et al., 2009). To do so, 27 pixels-wide images were extracted from
all annotated cell centers. Although each 27×27 image has a binary annotation (epithelial
or not), those were hidden during training, and only the power field-level labels were made
available, which were set to 1 if at least one 27×27 image is epithelial. This resulted in 51
positive and 49 negative bags.

Implementation details SparseConvMIL was benchmarked along attention-based MIL
approaches (Ilse et al., 2018), as well as instance and embedding-based max and mean
pooling. All of these approaches shared the same training parameters which are detailed
in Appendix B. This included (i) architectures of the tile embedding network fθ1 and
classifier hθ3 , (ii) hyper-parameters such as learning rate, optimizer, and batch size, and
(iii) data augmentation. We now detail the specificities of each approach. Attention-based
approaches used a two-layer neural network for attention with 128 hidden neurons as used
in Ilse et al. (2018), resulting in 66304 pooling parameters and 131968 for the gated version.
The proposed SparseConvMIL was implemented with two 12-channels convolutional filters
with filter size 3 and stride 1, and ReLU activation, resulting in a module with 56628
parameters. For SparseConvMIL, the position of the center of each tile was used to build
the sparse maps with a downsampling factor of 5, resulting in sparse maps of size 50× 50.

Method Accuracy Precision Recall F1-score AUC

Instance+max 0.842±0.021 0.866±0.017 0.816±0.031 0.839±0.023 0 .914±0.010
Instance+mean 0.772±0.012 0.821±0.011 0.710±0.031 0.759±0.017 0 .866±0.008
max 0.824±0.015 0.884±0.014 0.753±0.020 0.813±0.017 0 .918±0.010
mean 0.860±0.014 0.911±0.011 0.804±0.027 0.853±0.016 0 .940±0.010
Attention 0.904±0.011 0.953±0.014 0.855±0.017 0.901±0.011 0.968±0.009
Gated-Attention 0.898±0.020 0.944±0.016 0.851±0.035 0.893±0.022 0.968±0.010
Proposed 0.944±0.019 0.929±0.021 0.944±0.019 0.932±0.024 0.958±0.008

Table 1: Results on CRCHistoPhenotype in mean ± standard deviation of 5 runs.
Attention and Gated-Attention are from Ilse et al. (2018).

Results Results are reported in Table 1. The proposed approach achieved the best per-
formance in terms of balanced accuracy and f1-score. Although its precision was slightly
lower than the attention-based methods, it achieved a significantly higher recall, which is
desirable for clinical considerations in order not to miss potentially arising tumor tissue.

4.2 Large-scale whole slide image dataset

Dataset 10000 whole slide images were downloaded from The Cancer Genome Atlas
from 32 cancer subtypes as detailed in Table 5, for a total of 5.57 TB of data. The only
inclusive criteria was that WSI must display tumor material since the downstream task was
cancer subtype classification which cannot be accurately done on benign samples. All WSI
were tiled into 512 pixel-wide tiles with 128 pixels overlap on both sides at 10×magnification
using the repository from Lerousseau et al. (2020). The cohort was split on a patient-basis
in 4397, 2001 and 3602 slides for respectively the training, validation and testing sets.

6



Sparse Convolutional Context-Aware Multiple Instance Learning

Implementation details 14 MIL approaches were benchmarked: (i) embedding and
instance-based meax, mean, and log-sum-exp, (ii) several flavors of attention-based ap-
proaches, (iii) a graph-CNN approach (Tu et al., 2019), and (iv) several flavors of Spar-
seConvMIL. Similar to the previous experiment, all approaches share the same training
context detailed in Appendix B including hyper-parameters, data augmentation, architec-
tures of both tile embedder and classifier from WSI embeddings. For specific details of the
benchmarked approaches, SparseConvMIL used a downsampling of 128. We experimented
with only 2 convolutional layers with 32, or 128 channels. The attention module of attention
MIL approaches were made of a 1 hidden layer perceptron with 128, 512 or 2048 neurons.
Graph-based MIL was implemented with the same parameters as in Tu et al. (2019).

Method #Params Accuracy Precision F1-score AUC CE↓
Random performance N/A 0.031 0.031 0.031 0.500 3.506
Instance+max† 0 0.417 0.365 0.360 0.879 2.027
Instance+mean† 0 0.463 0.417 0.414 0.905 1.783
Instance+LSE† 0 0.451 0.406 0.403 0.898 1.819
max† 0 0.441 0.434 0.403 0.913 1.821
mean† 0 0.488 0.463 0.456 0.917 1.604
Attention-128 12k 0.481 0.448 0.449 0.913 1.619
Attention-512 219k 0.487 0.451 0.453 0.912 1.616
Attention-2048 985k 0.472 0.452 0.452 0.909 1.621
Gated-Attention-128 24k 0.492 0.452 0.456 0.916 1.613
Gated-Attention-512 261k 0.487 0.447 0.450 0.911 1.629
Gated-Attention-2048 1986k 0.483 0.457 0.459 0.911 1.604
Graph-CNN 719k 0.464 0.439 0.436 0.907 1.673
Proposed-c32,c32 87k 0.523 0.508 0.504 0.935 1.386
Proposed-c128,c128 672k 0.568 0.568 0.553 0.944 1.267
Random performance N/A 0.031 0.031 0.031 0.500 3.506

Table 2: Results of the 32 classes classification on the TCGA dataset. Params are the
number of pooling parameters (in thousand) i.e. without considering tile embedder and
classifier. Accuracy is balanced. CE stands for cross-entropy. Random is the random
performance. † denotes pooling methods that are non-parametric i.e. that cannot have
parameters in their pooling operator.

Results Table 2 reports results for several metrics computed by averaging one-vs-all
metrics for each class. In particular, the random performance is 0.031 for both accuracy,
precision and f1-score, 0.5 AUC, and 3.506 cross-entropy. Although the number of pooling
parameters differed for some methods, the comparisons are otherwise fair since both tile
embedder and finale classifier were the same.

The proposed approach achieved superior results in all metrics and for all configura-
tions. Even the smaller SparseConvMIL configuration outcompeted other benchmarked
approaches with 0.568 of precision and balanced accuracy, f1-score of 0.553, and AUC of
0.944. This is extremely encouraging given that the task has 32 classes and that many
classes are under-represented: for instance, 14 classes have less than 100 training sam-
ples (Table 6). Furthermore, SparseConvMIL seemed to scale better with parameters than
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attention-based MIL. Indeed, increasing the parameters of SparseConvMIL significantly im-
proved its performance whereas attention-based MIL stagnated with additional parameters.
The graph-based approach notoriously underperformed, which may be due to the difficulty
in choosing appropriate parameters for the many modules involved in this approach.

(a) varying the downsampling factor (b) varying the number of sampled tiles

Figure 2: Performance of SparseConvMIL-c32,c32 by varying the input sparsity on the
TCGA experiment.

We aimed at understanding the limitations of the proposed approach. Figure 2a plots
the performance of SparseConvMIL-c32,c32 on the same task but with various downsam-
pling factors. In particular, the method performed significantly worse for low downsampling,
which we conjecture is due to the fact that tiles are too far apart to exploit spatial context
with convolutions. Furthermore, the performance of SparseConvMIL decreased for high
downsampling, e.g. 256 or 512, which is probably due to uncoalesced sparse maps, where
there may be duplicate coordinates for several tiles provoking a loss of input tiles. Mean-
while, Figure 2b plots the performance of SparseConvMIL by varying the number of tiles
sampled per WSI for a downsampling of 128. Its performance increased with respect to
the number of sampled tiles, which is not surprising since more increasing the number of
sampled tiles provide additional information about the underlying whole slide images.

5. Conclusion

In this paper, we proposed a flexible and powerful sparse-input convolutional multiple in-
stance learning approach for classifying whole slide images. SparseConvMIL demonstrated
significantly better performance for the pan-cancer subtype classification of whole slide
image, an extremely pertinent task for clinical purposes. Although some limitations of
our approach have been highlighted, we believe that SparseConvMIL has the potential to
become a gold standard for WSI classification and tile representation learning.

Our most important future work is to integrate interpretability through visualization,
and notably by automatically extracting key instances. We obtained encouraging early
results by using several common CNN visualization techniques such as Class Activation
Mapping (Zhou et al., 2016), GradCAM Selvaraju et al. (2017), and DeepLIFT (Shrikumar
et al., 2017). Meanwhile, there are endless possibilities on the choice of architectures for
the sparse-input CNN part of our approach which can be investigated.
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Appendix A. Mathematical framework of multiple instance learning

Let us consider a set X of bags (WSIs) (xi)1≤i≤n such that each bag xi is constituted of
a set of ki instances (tiles) {xi,1, xi,2, · · · , xi,ki} where instances are from a domain D. In
particular, bags can have variables number of instances, or can share the same number of
instances and, in that case, ∀i, j, ki = kj .

In its most general formulation, a MIL model m can be written as a combination of 3
modules:

1. An instance-embedder fθ1 : D → E embedding instances into a space E

2. A pooling operator gθ2 :
∏
E → F processing a set (of arbitrary size) of instance

embeddings into a bag embedding

3. A bag classifier hθ3 : F → Y projecting a bag embedding

such that

∀xi ∈ X,m(xi) = gθ3

(
hθ2
(
fθ1(xi,1), fθ1(xi,2), · · · , fθ1(xi,ki)

))
∈ Y

Examples of pooling functions are:

mean : xi 7→
1

ki

ki∑
k=1

xi,k

max : xi 7→ max{x1, . . . , xki}

log-sum-exp (Ramon and De Raedt, 2000) : xi 7→
1

M
log
( ki∑
k=1

exp(M × xi,k)
)

attention (Ilse et al., 2018) : xi 7→
ki∑
k=1

exp
(
w> tanh(V x>i,k)

)∑ki
j=1 exp

(
w> tanh(V x>j )

) · xi,k
gated-attention (Ilse et al., 2018) : xi 7→

ki∑
k=1

exp
(
w>(tanh(V x>i,k)� sigm(Ux>i,k))

)∑ki
j=1 exp

(
w>(tanh(V x>j )� sigm(Ux>j )

) · xi,k
where a ∈ N∗, r ∈ R∗, M ∈ R+, V ∈ RL×dim(H), U ∈ RL×dim(H), w ∈ RL×1, L ∈ N∗
are parameters, � is the elementwise multiplication, and sigm is the elementwise sigmoid
function. The max operator can also be substituted or combined with the min operator.
The log-sum-exp is also known as the softplus function and is considered as a smooth
approximation to the max function. Attention-based approaches (Ilse et al., 2018) leverage
an attention module formalized with a one hidden layer perceptron, that computes one score
per input instance embedding which are then normalized such that they sum to 1, as to
accommodate with a potentially varying number of instances. All of these functions output
a vector (or bag embedding) with the same shape as the ki input vectors. It is possible to
combine them in many ways such as to obtain output vectors of higher dimensions e.g. by
using concatenation, summation, average or sequential combinations of themselves. These
operators can be used for instance-based or embedding-based multple instance learning.
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Appendix B. Implementation details of the experimental validation

B.1 Epithelial classification on CRCHistoPhenotype

All methods shared the same training parameters as follows:

• The instance embedding model fθ1 (Table 3) proposed in Sirinukunwattana et al.
(2016) and used in Ilse et al. (2018) was employed.

• Loss function was binary cross-entropy

• Optimizer was the Adam (Kingma and Ba, 2014) with default momentum values β
of 0.9 and 0.999, learning rate of 1e−4, weight decay of 5e−4, batch size of 1 for 100
epochs.

• Data augmentation consisted in the next functions in that order:

1. Random vertical and horizontal flip.

2. Random rotation.

3. H&E color augmentation (Ruifrok et al., 2001): H&E histopathological slides
are originally uncoloured. The two stains Haematoxylin and Eosin are applied
which respectively color nuclei and cytoplasm. Therefore, the true color space
of H&E slides is made of the two vectors H and E rather than R, G, and B.
Each tile was deconvoluted in the HE space using scikit-learn (Pedregosa et al.,
2011) v0.24.2 (behavior changes depending on the version for the considered
functions) with H vector value of H = [0.650, 0.704, 0.286]> and E value of E =
[0.071, 0.994, 0.112]>. Then, two independent random gaussian variables with
mean 1 and standard deviation of 3 were sampled, and multiplied to H and E.
These product of these multiplications were used to convert the tile from the (H,
E, residual) space back to the RGB space.

4. Random crop of a 128 pixel-wide region.

5. Channel-wise standard scaling with RGB mean and standard deviation extracted
from the training set.

Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25

Table 3: Tile embedding model fθ1 from Sirinukunwattana et al. (2016) used in the
CRCHistoPhenotype experiment.
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Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25
9 max or
9 mean or
9 attention module or
9 Sparse-input CNN
10 Fully connected 1 output neuron, Sigmoid

Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25
9 Fully connected 1 output neuron, Sigmoid
10 Max-MIL/Mean-MIL

Table 4: Complete models from the CRCHistoPhenotype experiment. The top table
displays architectures for embedding-level approaches, while the bottom row displays archi-
tectures for instance-level approaches.

For SparseConvMIL, the position of the center of each tile was used to build the sparse
maps before applying spatial data augmentation consisting of random flips, rotations, and
per axis scaling as detailed in section B. The sparse-input CNN was made of 2 convolu-
tional layers of 12 channels, filter size 3, stride 1, activated with ReLU. An adaptive global
average pooling layer converted the second layer sparse signal into a dense signal. The
implementations of other methods are detailed in Table 4 and (Ilse et al., 2018).

All approaches are trained end-to-end. The 100 power fields were split into 55, 20,
24 samples for respectively the training, validation and testing set. The validation set
is used to select the snapshot with least validation error for inference on the testing set.
The training/testing process was performed 5 times for each method to derive confidence
intervals.
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Project ID Description Location # WSI

TCGA-ACC Adrenocortical carcinoma Adrenal gland 96
TCGA-BLCA Bladder Urothelial Carcinoma Bladder 298
TCGA-BRCA Brain Lower Grade Glioma Breast 1052
TCGA-CESC Breast invasive carcinoma Cervix 190
TCGA-CHOL Cervical squamous cell carcinoma and en-

docervical adenocarcinoma
Bile ducts 46

TCGA-COAD Cholangiocarcinoma Colon 508
TCGA-DLBC Colon adenocarcinoma Lymph nodes 39
TCGA-ESCA Esophageal carcinoma Esophagus 130
TCGA-GBM Glioblastoma multiforme Brain 647
TCGA-HNSC Head and Neck squamous cell carcinoma Head and Neck 412
TCGA-KICH Kidney Chromophobe Kidney 104
TCGA-KIRC Kidney renal clear cell carcinoma Kidney 773
TCGA-KIRP Kidney renal papillary cell carcinoma Kidney 242
TCGA-LGG Liver hepatocellular carcinoma Brain 509
TCGA-LIHC Lung adenocarcinoma Liver 287
TCGA-LUAD Lung squamous cell carcinoma Lung 514
TCGA-LUSC Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma
Lung 511

TCGA-MESO Mesothelioma Mesothelium 55
TCGA-OV Ovarian serous cystadenocarcinoma Ovary 477
TCGA-PAAD Pancreatic adenocarcinoma Pancreas 147
TCGA-PCPG Pheochromocytoma and Paraganglioma Adrenal gland 132
TCGA-PRAD Prostate adenocarcinoma Prostate 426
TCGA-READ Rectum adenocarcinoma Rectum 180
TCGA-SARC Sarcoma Soft tissues 292
TCGA-SKCM Skin Cutaneous Melanoma Skin 336
TCGA-STAD Stomach adenocarcinoma Stomach 383
TCGA-TGCT Testicular Germ Cell Tumors Testicular 138
TCGA-THCA Thymoma Thyroid 384
TCGA-THYM Thyroid carcinoma Thymus 105
TCGA-UCEC Uterine Carcinosarcoma Uterus 465
TCGA-UCS Uterine Corpus Endometrial Carcinoma Uterus 60
TCGA-UVM Uveal Melanoma Skin 62

Total Vitually all solid cancer subtypes Pan-location 10000

Table 5: Distribution of cancer subtypes (classes), locations, and number of WSI in the
total cohort of 10000 slides involved in our experiments. The first column indicates the
official TCGA project ids which groups all cases from the same cancer subtype. The second
columns shows the location of each cancer subtype. The third displays the total number of
WSI for each cancer subtype. The last line indicates the total of the cohort.
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B.2 Subtype classification on The Cancer Genome Atlas

All benchmarked methods used a ResNet34 architecture He et al. (2016) pre-trained on
Imagenet Deng et al. (2009) as the instance embedding fθ1 . To obtain embeddings instead
of the probabilities output of ResNet34, the last classifier layer was removed, resulting in 512
output channels per tile instead of 1 probability. All benchmarked approaches shared the
same MIL classifier hθ3 which was made of one 512-neurons ReLU activated fully connected
layer followed by a 32-output fully connected layer (there are 32 classes). During training,
200 randomly cropped 128×128 pixel tiles were randomly sampled within each WSI. Hyper-
parameters were shared across all benchmarked approaches and were:

• Loss function was binary cross-entropy.

• Optimizer was the Adaptive Momentum (Kingma and Ba, 2014) with default mo-
mentum values, learning rate of 1e−4, weight decay of 1e−4, batch size of 10 (or 2000
taking into account the number of tiles per WSI) for 200 epochs.

• Due to significant imbalance in the class distribution, oversampling was employed
during training with frequencies equal to the inverse of the class counts.

• Data augmentation was the same as in the CRCHistoPhenotype experiment (see sub-
section B.1).

Cancer subtype (class) # training WSI

lymphoid neoplasm diffuse large b-cell lymphoma 17
cholangiocarcinoma 20
mesothelioma 24
uterine carcinosarcoma 26
uveal melanoma 27
adrenocortical carcinoma 42
kidney chromophobe 46
thymoma 46
esophageal carcinoma 57
pheochromocytoma and paraganglioma 58
testicular germ cell tumors 61
pancreatic adenocarcinoma 65
rectum adenocarcinoma 79
cervical squamous cell carcinoma and endocervical adenocarcinoma 83

Table 6: Number of training whole slide images for the 14 cancer subtypes (classes) with
less than 100 training samples. This table illustrates that some classes are heavily under-
represented in the training set, which can challenge the accurate and efficient learning of
features discriminative for subtype classification.

Additionally, SparseConvMIL and the graph-based approaches has the following data
augmentation directly performed on tiles coordinates as follows (no effect on other ap-
proaches):
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Figure 3: Illustration of SparseConvMIL specific data augmentation. 3 sparse maps are
represented in the first column, 1 per line. For each sparse map, 300 512 pixel wide tiles
were randomly sampled from the tissue section of WSI, and were spatially represented
as coordinates within sparse maps. Each sparse map was spatially data augmented with
random flips, rotations, scaling per axis and is displayed in the second column. Color for
tiles is used for tracking purposes.

• random vertical and horizontal coordinates flips

• random coordinates rotation with an angle uniformly sampled within [0, 2π]

• random zoom for both x and y axes by sampling one value per axis in range [0.7, 1.3]

All approaches were trained end-to-end. For each method, the training process lasted
approximately 1 week on 2 Nvidia V100. For fairness of comparisons, all approaches shared
the same tile embedding function and classifier function: the only varying method was the
pooling operator which can scale with the number of parameters for attention-based, graph-
based and sparse-convolutional-based approaches but not for non-parametric approaches of
max, mean and LSE.
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Amaury Leroy, Roger Sun, Maria Vakalopoulou, Jean-Yves Scoazec, Eric Deutsch, et al.
Weakly supervised pan-cancer segmentation tool. arXiv preprint arXiv:2105.04269, 2021.

15



Anonymous

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,
and Clara I Sánchez. A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

Andriy Marusyk and Kornelia Polyak. Tumor heterogeneity: causes and consequences.
Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1805(1):105–117, 2010.
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