
Published as a conference paper at ICLR 2023

BEHAVIOR PROXIMAL POLICY OPTIMIZATION

Zifeng Zhuang12∗ Kun Lei2∗ Jinxin Liu2 Donglin Wang23† Yilang Guo4
1 Zhejiang University. 2 School of Engineering, Westlake University.
3 Institute of Advanced Technology, Westlake Institute for Advanced Study.
4 School of Software Engineering, Beijing Jiaotong University.
{zhuangzifeng,leikun,liujinxin,wangdonglin}@westlake.edu.cn,
20301130@bjtu.edu.cn

ABSTRACT

Offline reinforcement learning (RL) is a challenging setting where existing
off-policy actor-critic methods perform poorly due to overestimating of out-of-
distribution state-action pairs. Thus, various additional augmentations are proposed
to keep the learned policy close to the offline dataset (or the behavior policy). In this
work, starting from the analysis of offline monotonic policy improvement, we reach
a surprising conclusion that online on-policy algorithms are naturally able to solve
offline RL. Specifically, the inherent conservatism of these on-policy algorithms is
exactly what the offline RL method needs to overcome the overestimation. Based on
this, we propose Behavior Proximal Policy Optimization (BPPO), which solves of-
fline RL without any extra constraint or regularization introduced compared to PPO.
Extensive experiments on the D4RL benchmark empirically show this extremely
succinct method outperforms state-of-the-art offline RL algorithms. Our implemen-
tation is available at https://github.com/Dragon-Zhuang/BPPO.

1 INTRODUCTION

Typically, reinforcement learning (RL) is thought of as a paradigm for online learning, where the
agent interacts with the environment to collect experiences and then uses them to improve itself
(Sutton et al., 1998). This online process poses the biggest obstacles to real-world RL applications
because of expensive or even risky data collection in some fields (such as navigation (Mirowski et al.,
2018) and healthcare (Yu et al., 2021a)). As an alternative, offline RL eliminates the online interaction
and learns from a fixed dataset collected by some arbitrary and possibly unknown process (Lange
et al., 2012; Fu et al., 2020). The prospect of this data-driven mode (Levine et al., 2020) is pretty
encouraging and has been placed with great expectations for solving real-world RL applications.

Unfortunately, the major superiority of offline RL, the lack of online interaction, also raises another
challenge. The classical off-policy iterative algorithms tend to underperform due to overestimating
out-of-distribution (shorted as OOD) state-action pairs, even though offline RL can be viewed as
an extreme off-policy case. More specifically, when Q-function poorly estimates the value of OOD
state-action pairs during policy evaluation, the agent tends to take OOD actions with erroneously
estimated high values, resulting in low-performance after policy improvement (Fujimoto et al., 2019).
Thus, to overcome the overestimation issue, some solutions keep the learned policy close to the
behavior policy (or the offline dataset) (Fujimoto et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021).

Most offline RL algorithms adopt online interactions to select hyperparameters. This is because
offline hyperparameter selection, which selects hyperparameters without online interactions, is always
an open problem lacking satisfactory solutions (Paine et al., 2020; Zhang & Jiang, 2021). Deploying
the policy learned by offline RL is potentially risky in certain areas (Mirowski et al., 2018; Yu et al.,
2021a) since the performance is unknown. However, the risk during online interactions will be
greatly reduced if the deployed policy can guarantee better performance than the behavior policy.
This inspires us to consider how to use offline dataset to improve behavior policy with a monotonic
performance guarantee. We formulate this problem as offline monotonic policy improvement.

∗Equal contribution.
†Corresponding author.

1

https://github.com/Dragon-Zhuang/BPPO

Published as a conference paper at ICLR 2023

To analyze offline monotonic policy improvement, we introduce the Performance Difference Theorem
(Kakade & Langford, 2002). During analysis, we find that the offline setting does make the monotonic
policy improvement more complicated, but the way to monotonically improve policy remains
unchanged. This indicates the algorithms derived from online monotonic policy improvement (such
as Proximal Policy Optimization) can also achieve offline monotonic policy improvement. In other
words, PPO can naturally solve offline RL. Based on this surprising discovery, we propose Behavior
Proximal Policy Optimization (BPPO), an offline algorithm that monotonically improves behavior
policy in the manner of PPO. Owing to the inherent conservatism of PPO, BPPO restricts the ratio of
learned policy and behavior policy within a certain range, similar to the offline RL methods which
make the learned policy close to the behavior policy. As offline algorithms are becoming more and
more sophisticated, TD3+BC (Fujimoto & Gu, 2021), which augments TD3 (Fujimoto et al., 2018)
with behavior cloning (Pomerleau, 1988), reminds us to revisit the simple alternatives with potentially
good performance. BPPO is such a “most simple” alternative without introducing any extra constraint
or regularization on the basis of PPO. Extensive experiments on the D4RL benchmark (Fu et al.,
2020) empirically shows that BPPO outperforms state-of-the-art offline RL algorithms.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework of sequential decision. Typically, this problem is
formulated by a Markov decision process (MDP)M = {S,A, r, p, d0, γ}, with state space S , action
space A, scalar reward function r, transition dynamics p, initial state distribution d0(s0) and discount
factor γ (Sutton et al., 1998). The objective of RL is to learn a policy, which defines a distribution
over action conditioned on states π (at|st) at timestep t, where at ∈ A, st ∈ S . Given this definition,
the trajectory τ = (s0, a0, · · · , sT , aT) generated by the agent’s interaction with environmentM can
be described as a distribution Pπ (τ) = d0(s0)

∏T
t=0 π (at|st) p (st+1|st, at), where T is the length

of the trajectory, and it can be infinite. Then, the goal of RL can be written as an expectation under the
trajectory distribution J (π) = Eτ∼Pπ(τ)

[∑T
t=0 γ

tr(st, at)
]
. This objective can also be measured

by a state-action value function Qπ (s, a), the expected discounted return given the action a in state s:
Qπ (s, a) = Eτ∼Pπ(τ |s,a)

[∑T
t=0 γ

tr(st, at)|s0 = s, a0 = a
]
. Similarly, the value function Vπ (s) is

the expected discounted return of a certain state s: Vπ (s) = Eτ∼Pπ(τ |s)

[∑T
t=0 γ

tr(st, at)|s0 = s
]
.

Then, we can define the advantage function: Aπ (s, a) = Qπ (s, a)− Vπ (s).

2.2 OFFLINE REINFORCEMENT LEARNING

In offline RL, the agent only has access to a fixed dataset with transitionsD =
{
(st, at, st+1, rt)

N
t=1

}
collected by a behavior policy πβ . Without interacting with environmentM, offline RL expects the
agent to infer a policy from the dataset. Behavior cloning (BC) (Pomerleau, 1988), an approach of
imitation learning, can directly imitate the action of each state with supervised learning:

π̂β = argmax
π

E(s,a)∼D [log π (a|s)] . (1)

Note that the performance of π̂β trained by behavior cloning highly depends on the quality of
transitions, also the collection process of behavior policy πβ . In the rest of this paper, improving
behavior policy actually refers to improving the estimated behavior policy π̂β , because πβ is unknown.

2.3 PERFORMANCE DIFFERENCE THEOREM

Theorem 1. (Kakade & Langford, 2002) Let the discounted unnormalized visitation frequencies as
ρπ (s) =

∑T
t=0 γ

tP (st = s|π) and P (st = s|π) represents the probability of the t-th state equals
to s in trajectories generated by policy π. For any two policies π and π′, the performance difference
J∆ (π′, π) ≜ J (π′)− J (π) can be measured by the advantage function:

J∆ (π′, π) = Eτ∼Pπ′ (τ)

[
T∑

t=0

γtAπ(st, at)

]
= Es∼ρπ′ (·),a∼π′(·|s) [Aπ(s, a)] . (2)

2

Published as a conference paper at ICLR 2023

Derivation detail is presented in Appendix A. This theorem implies that improving policy from π to
π′ can be achieved by maximizing (2). From this theorem, Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015a) is derived, which can guarantee the monotonic improvement of performance.
We also apply this theorem to formulate offline monotonic policy improvement.

3 OFFLINE MONOTONIC IMPROVEMENT OVER BEHAVIOR POLICY

In this section, we theoretically analyze offline monotonic policy improvement based on Theorem 1,
namely improving the π̂β generated by behavior cloning (1) with offline dataset D. Applying the
Performance Difference Theorem to the estimated behavior policy π̂β , we can get

J∆ (π, π̂β) = Es∼ρπ(·),a∼π(·|s)
[
Aπ̂β

(s, a)
]
. (3)

Maximizing this equation can obtain a policy better than behavior policy π̂β . But the above equation
is not tractable due to the dependence of the new policy’s state distribution ρπ (s). For standard
online method, ρπ (s) is replaced by the old state distribution ρπ̂β

(s). But in the offline setting,
ρπ̂β

(s) cannot be obtained through interactions with the environment like the online situation. We
use the state distribution recovered by the offline dataset ρD (s) for replacement, where ρD (s) =∑T

t=0 γ
tP (st = s|D) and P (st = s|D) represents the probability of the t-th state equals to s in the

offline dataset. Therefore, the approximation of J∆ (π, πβ) can be written as:

Ĵ∆ (π, π̂β) = Es∼ρD(·),a∼π(·|s)
[
Aπ̂β

(s, a)
]
. (4)

To measure the difference between J∆ (π, π̂β) and its approximation Ĵ∆ (π, π̂β), we introduce a
midterm Es∼ρπ̂β

(s),a∼π(·|s)
[
Aπ̂β

(s, a)
]

with the state distribution ρπ̂β
(s). During the proof, the

commonly-used total variational divergence DTV (π∥π̂β) [s] =
1
2Ea |π (a|s)− π̂β (a|s)| between

policy π, π̂β at state s is necessary. For the total variational divergence between the offline dataset D
and the estimated behavior policy π̂β , it may not be straightforward. We can view the offline dataset

D =
{
(st, at, st+1, rt)

N
t=1

}
as a deterministic distribution, and then the distance is:

Proposition 1. For offline dataset D =
{
(st, at, st+1, rt)

N
t=1

}
and policy π̂β , the total variational

divergence can be expressed as DTV (D∥π̂β) [st] =
1
2 (1− π̂β (at|st)).

Detailed derivation process is presented in Appendix B. Now we are ready to measure the difference:
Theorem 2. Given the distance DTV (π∥π̂β) [s] and DTV (D∥π̂β) [s] =

1
2 (1− π̂β (at|st)), we can

derive the following bound:

J∆ (π, π̂β) ≥ Ĵ∆ (π, π̂β)− 4γAπ̂β
·max

s
DTV (π∥π̂β) [s] · E

s∼ρπ̂β
(·)

[DTV (π∥π̂β) [s]]

− 2γAπ̂β
·max

s
DTV (π∥π̂β) [s] · E

s∼ρD(·)
[1− π̂β (a|s)] , (5)

here Aπ̂β
= max

s,a

∣∣Aπ̂β
(s, a)

∣∣. The proof is presented in Appendix C.

Compared to the theorem in the online setting (Schulman et al., 2015a; Achiam et al., 2017; Queeney
et al., 2021), the second right term of Equation (5) is similar while the third term is unique for
the offline. E

s∼ρD(·)
[1− π̂β (a|s)] represents the difference caused by the mismatch between offline

dataset D and π̂β . When π̂β is determined, this term is one constant. And because the inequality
maxs DTV (π∥π̂β) [s] ≥ E

s∼ρπ̂β
(·)

[DTV (π∥π̂β) [s]] holds, we can claim the following conclusion:

Conclusion 1

To guarantee the true objective J∆ (π, π̂β) non-decreasing, we should simultaneously maxi-
mize Es∼ρD(·),a∼π(·|s)

[
Aπ̂β

(s, a)
]

and minimize [maxs DTV (π∥π̂β) [s]], which means the
offline dataset D is capable of monotonically improving the estimated behavior policy π̂β .

3

Published as a conference paper at ICLR 2023

Suppose we have improved the behavior policy π̂β and get a policy πk. The above theorem only
guarantees that πk has a higher performance than π̂β but πk may not be optimal. If the offline dataset
D can still improve the policy πk to get a better policy πk+1, πk+1 must be closer to the optimal
policy. Thus, we further analyze the monotonic policy improvement over policy πk. Applying
Performance Difference Theorem 1 to the policy πk,

J∆ (π, πk) = Es∼ρπ(·),a∼π(·|s) [Aπk
(s, a)] . (6)

To approximate the above equation, the common manner is replacing ρπ with the old policy state
distribution ρπk

. But in the offline RL, πk is forbidden from acting in the environment. As a result,
the state distribution ρπk

is impossible to estimate. Thus, the only choice without any other alternative
is replacing ρπk

by the state distribution from the offline dataset D:

Ĵ∆ (π, πk) = Es∼ρD(·),a∼π(·|s) [Aπk
(s, a)] . (7)

Intuitively, this replacement is reasonable if πk, π̂β are similar which means this approximation must
be related to the distance DTV (πk∥π̂β) [s]. Concretely, the gap can be formulated as follows:

Theorem 3. Given the distance DTV (π∥πk) [s], DTV (πk∥π̂β) [s] and DTV (D∥π̂β) [s] =
1
2 (1− π̂β (a|s)), we can derive the following bound:

J∆ (π, πk) ≥ Ĵ∆ (π, πk)− 4γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρπk
(·)

[DTV (π∥πk) [s]]

− 4γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρπ̂β
(·)

[DTV (πk∥π̂β) [s]]

− 2γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρD(·)
[1− π̂β (a|s)] , (8)

here Aπk
= max

s,a
|Aπk

(s, a)|. The proof is presented in Appendix D.

Compared to the theorem 2, one additional term related to the distance of πk, π̂β has been introduced.
The distance E

s∼ρπ̂β
(·)

[DTV (πk∥π̂β) [s]] is irrelevant to the target policy π which can also be viewed

as one constant. Besides, theorem 2 is a specific case of this theorem if πk = π̂β . Thus, we set
π0 = π̂β since π̂β is the first policy to be improved and in the following section we will no longer

deliberately distinguish π̂β , πk. Similarly, we can derive the following conclusion:

Conclusion 2

To guarantee the true objective J∆ (π, πk) non-decreasing, we should simultaneously maxi-
mize Es∼ρD(·),a∼π(·|s) [Aπk

(s, a)] and minimize [maxs DTV (π∥πk) [s]], which means the
offline dataset D is capable of monotonically improving the policy πk, where k = 0, 1, 2, · · · .

4 BEHAVIOR PROXIMAL POLICY OPTIMIZATION

In this section, we derive a practical algorithm based on the theoretical results. And surprisingly,
the loss function of this algorithm is the same as the online on-policy method Proximal Policy
Optimization (PPO) (Schulman et al., 2017). Furthermore, this algorithm highly depends on the
behavior policy so we name it as Behavior Proximal Policy Optimization, shorted as BPPO.

According to the Conclusion 2, to monotonically improve policy πk, we should jointly optimize:

Maximize
π

Es∼ρD(·),a∼π(·|s) [Aπk
(s, a)] & Minimize

π
max

s
DTV (π∥πk) [s], (9)

here k = 0, 1, 2, · · · and π0 = π̂β . But minimizing the total divergence between π and πk results
in a trivial solution π = πk which is impossible to make improvement over πk. A more reasonable
optimization objective is to maximize Ĵ∆ (π, πk) while constraining the divergence:

Maximize
π

Es∼ρD(·),a∼π(·|s) [Aπk
(s, a)] s.t. max

s
DTV (π∥πk) [s] ≤ ϵ. (10)

4

Published as a conference paper at ICLR 2023

For the term to be maximized, we adopt importance sampling to make the expectation only depends
on the action distribution of the old policy πk rather than the new policy π:

Es∼ρD(·),a∼π(·|s) [Aπk
(s, a)] = Es∼ρD(·),a∼πk(·|s)

[
π (a|s)
πk (a|s)

Aπk
(s, a)

]
. (11)

In this way, we could estimate this term by sampling states from offline the dataset s ∼ ρD (·) then
sampling actions with old policy a ∼ πk (·|s). For the total variational divergence, we rewrite it as

max
s

DTV (π∥πk) [s] = max
s

1

2

∫
a

|π (a|s)− πk (a|s)|da

=max
s

1

2

∫
a

πk (a|s)
∣∣∣∣ π (a|s)
πk (a|s)

− 1

∣∣∣∣da =
1

2
max

s
E

a∼πk(·|s)

∣∣∣∣ π (a|s)
πk (a|s)

− 1

∣∣∣∣ . (12)

In the offline setting, only states s ∼ ρD (·) are available and other states are inaccessible. So the
operation maxs can also be expressed as max

s∼ρD(·)
. When comparing Equation (11) and (12), we find

that the state distribution, the action distribution and the policy ratio appear in both. Thus we consider
how to insert the divergence constraint into Equation (11). The following constraints are equivalent:

max
s∼ρD(·)

DTV (π∥πk) [s] ≤ ϵ ⇐⇒ max
s∼ρD(·)

E
a∼πk(·|s)

∣∣∣∣ π (a|s)
πk (a|s)

− 1

∣∣∣∣ ≤ 2ϵ

⇐⇒ max
s∼ρD(·)

E
a∼πk(·|s)

clip
(

π (a|s)
πk (a|s)

, 1− 2ϵ, 1 + 2ϵ

)
, clip (x, l, u) = min (max (x, l) , u) . (13)

Here the max operation is impractical to solve, so we adopt a heuristic approximation (Schulman
et al., 2015a) that changes max into expectation. Then divergence constraint (13) can be inserted:

Lk (π) = Es∼ρD(·),a∼πk(·|s)

[
min

(
π (a|s)
πk (a|s)

Aπk
(s, a), clip

(
π (a|s)
πk (a|s)

, 1− 2ϵ, 1 + 2ϵ

)
Aπk

(s, a)

)]
,

(14)

where the operation min makes this objective become the lower bound of Equation (11). This loss
function is quite similar to PPO (Schulman et al., 2017) and the only difference is the state distribution.
Therefore, we claim that online on-policy algorithms are naturally able to solve offline RL.

5 DISCUSSIONS AND IMPLEMENTATION DETAILS

In this section, we first directly highlight why BPPO can solve offline reinforcement learning, namely,
how to overcome the overestimation issue. Then we discuss some implementation details, especially,
the approximation of the advantage Aπk

(s, a). Finally, we analyze the relation between BPPO and
previous algorithms including Onestep RL and iterative methods.

Why BPPO can solve offline RL? According to the final loss (14) and Equation (13), BPPO
actually constrains the closeness by the expectation of the total variational divergence:

Es∼ρD(·),a∼πk(·|s)

∣∣∣∣ π (a|s)
πk (a|s)

− 1

∣∣∣∣ ≤ 2ϵ. (15)

If k = 0, this equation ensures the closeness between learned policy π and behavior policy π̂β . When
k > 0, one issue worthy of attention is whether the closeness between learned policy π and πk can
indirectly constrain the closeness between π and π̂β . To achieve this, also to prevent the learned
policy π completely away from π̂β , we introduce a technique called clip ratio decay. As the policy
updates, the clip ratio ϵ gradually decreases until reaching a certain training step (such as 200 steps):

ϵi = ϵ0 × (σ)i IF i ≤ 200 ELSE ϵi = ϵ200 (16)

here i denotes the training steps, ϵ0 denotes the initial clip ratio, and σ ∈ (0, 1] is the decay coefficient.

5

Published as a conference paper at ICLR 2023

0 2 4 6 8 10 12
k (update steps)

1.0

1.5

2.0

2.5

Im
po

rta
nc

e
R

at
io

k/

BPPO with decay
BPPO without decay
1 + 2
1 2

(a) hopper-medium

0 1 2 3 4 5 6 7
k (update steps)

0.9

1.0

1.1

1.2

Im
po

rta
nc

e
R

at
io

k/

(b) hopper-medium-replay

Figure 1: Visualization of the importance weight between
the updated policy πk and the estimated behavior policy π̂β .

From Figure 1(a) and 1(b), we can
find that the ratio πk/π̂β may be out of
the certain range [1− 2ϵ, 1 + 2ϵ] (the
region surrounded by the dotted pink
and purple line) without clip ratio de-
cay technique (also σ = 1). But the ra-
tio stays within the range stably when
the decay is applied which means the
Equation (15) can ensure the close-
ness between the final learned policy
by BPPO and behavior policy.

How to approximate the advantage? When calculating the loss function (14), the only difference
from the online situation is the approximation of advantage Aπk

(s, a). In online RL, GAE (General-
ized Advantage Estimation) (Schulman et al., 2015b) approximates the Aπk

using the data collected
by policy πk. Obviously, GAE is inappropriate in the offline situations due to the existence of online
interaction. As a result, BPPO has to calculate the advantage Aπk

= Qπk
− Vπβ

in an off-policy
manner where Qπk

is calculated by Q-learning (Watkins & Dayan, 1992) using offline dataset D and
Vπβ

is calculated by fitting returns
∑T

t=0 γ
tr(st, at) using the MSE loss. Note that the value function

is Vπβ
rather than Vπk

since the state distribution has been changed into s ∼ ρD (·) in Theorem 2, 3.

Algorithm 1 Behavior Proximal Policy Optimization (BPPO)
1: Estimate behavior policy π̂β by behavior cloning;
2: Calculate Q-function Qπβ

by SARSA;
3: Calculate value function Vπβ

by fitting returns;
4: Initialize k = 0 and set πk ← πβ & Qπk

= Qπβ
;

5: for i = 0, 1, 2, · · · , I do
6: Aπk

= Qπk
− Vπβ

7: Update the policy π by maximizing Lk (π);
8: if J(π) > J(πk) then
9: Set k = k + 1 & πk ← π;

10: if advantage replacement then
11: Qπk

= Qπβ
;

12: else
13: Calculate Qπk

by Q-learning;
14: end if
15: end if
16: end for

Besides, we have another simple
choice based on the results that πk

is close to the πβ with the help of
clip ratio decay. We can replace
all the Aπk

with the Aπβ
, which

may introduce some error but the
benefit is that Aπβ

must be more
accurate than Aπk

since off-policy
estimation is potentially dangerous,
especially in the offline setting. We
conduct a series of experiments in
Section 7.2 to compare these two
implementations and find that the
latter one, advantage replacement,
is better. Based on the above im-
plementation details, we summa-
rize the whole workflow of BPPO
in Algorithm 1.

𝜋0 ො𝜋𝛽

𝜖0

𝜋0 ො𝜋𝛽

𝜋1

𝜋2

𝜖1
𝜖2

𝜖0

Figure 2: The difference between Onestep
BPPO (left) and BPPO (right), where the
decreasing circle corresponds to ϵ decay.

What is the relation between BPPO, Onestep RL and
iterative methods? Since BPPO is highly related to
on-policy algorithms, it is naturally associated with On-
estep RL (Brandfonbrener et al., 2021) that solves offline
RL without off-policy evaluation. If we remove lines
8∼15 in Algorithm 1, we get Onestep version of BPPO,
which means only the behavior policy π̂β is improved.
In contrast, BPPO also improves πk, the policy that has
been improved over π̂β . The right figure shows the dif-
ference between BPPO and its Onestep version: Onestep
strictly requires the new policy close to π̂β , while BPPO
appropriately loosens this restriction.

If we calculate the Q-function in off-policy manner, namely, line 13 in Algorithm 1, the method
switches to an iterative style. If we adopt advantage replacement, line 11, BPPO only estimates
the advantage function once but updates many policies, from π̂β to πk. Onestep RL estimates the
Q-function once and use it to update estimated behavior policy. Iterative methods estimate Q-function
several times and then update the corresponding policy. Strictly speaking, BPPO is neither an Onestep
nor an iterative method. BPPO is a special case between these two types.

6

Published as a conference paper at ICLR 2023

6 RELATED WORK

Offline Reinforcement Learning Most of the online off-policy methods fail or underperform in
offline RL due to extrapolation error (Fujimoto et al., 2019) or distributional shift (Levine et al.,
2020). Thus most offline algorithms typically augment existing off-policy algorithms with a penalty
measuring divergence between the policy and the offline data (or behavior policy). Depending on how
to implement this penalty, a variety of methods were proposed such as batch constrained (Fujimoto
et al., 2019), KL-control (Jaques et al., 2019; Liu et al., 2022b), behavior-regularized (Wu et al., 2019;
Fujimoto & Gu, 2021) and policy constraint (Kumar et al., 2019; Levine et al., 2020; Kostrikov et al.,
2021). Other methods augment BC with a weight to make the policy favor high advantage actions
(Wang et al., 2018; Siegel et al., 2020; Peng et al., 2019; Wang et al., 2020). Some methods extra
introduced Uncertainty estimation (An et al., 2021b; Bai et al., 2022) or conservative (Kumar et al.,
2020; Yu et al., 2021b; Nachum et al., 2019) estimation to overcome overestimation.

Monotonic Policy Improvement Monotonic policy improvement in online RL was first introduced
by Kakade & Langford (2002). On this basis, two classical on-policy methods Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization (PPO) (Schulman
et al., 2017) were proposed. Afterwards, monotonic policy improvement has been extended to
constrained MDP (Achiam et al., 2017), model-based method (Luo et al., 2018) and off-policy RL
(Queeney et al., 2021; Meng et al., 2021). The main idea behind BPPO is to regularize each policy
update by restricting the divergence. Such regularization is often used in unsupervised skill learning
(Liu et al., 2021; 2022a; Tian et al., 2021) and imitation learning (Xiao et al., 2019; Kang et al., 2021).
Xu et al. (2021) mentions that offline algorithms lack guaranteed performance improvement over the
behavior policy but we are the first to introduce monotonic policy improvement to solve offline RL.

7 EXPERIMENTS

We conduct a series of experiments on the Gym (v2), Adroit (v1), Kitchen (v0) and Antmaze (v2)
from D4RL (Fu et al., 2020) to evaluate the performance and analyze the design choice of Behavior
Proximal Policy Optimization (BPPO). Specifically, we aim to answer: 1) How does BPPO compare
with previous Onestep and iterative methods? 2) What is the superiority of BPPO over its Onestep
and iterative version? 3) What is the influence of hyperparameters clip ratio ϵ and clip ratio decay σ?

Table 1: The normalized results on D4RL Gym, Adroit, and Kitchen. We bold the best results and
BPPO is calculated by averaging mean returns over 10 evaluation trajectories and five random seeds.
The symbol * specifies that the results are reproduced by running the offical open-source code.

Suite Environment
Iterative methods Onestep methods

BC (Ours) BPPO (Ours)CQL TD3+BC Onestep RL IQL

Gym

halfcheetah-medium-v2 44.0 48.3 48.4 47.4 43.5±0.1 44.0±0.2
hopper-medium-v2 58.5 59.3 59.6 66.3 61.3±3.2 93.9±3.9
walker2d-medium-v2 72.5 83.7 81.8 78.3 74.2±4.6 83.6±0.9
halfcheetah-medium-replay-v2 45.5 44.6 38.1 44.2 40.1±0.1 41.0±0.6
hopper-medium-replay-v2 95.0 60.9 97.5 94.7 66.0±18.3 92.5±3.4
walker2d-medium-replay-v2 77.2 81.8 49.5 73.9 33.4±11.2 77.6±7.8
halfcheetah-medium-expert-v2 91.6 90.7 93.4 86.7 64.4±8.5 92.5±1.9
hopper-medium-expert-v2 105.4 98.0 103.3 91.5 64.9±7.7 112.8±1.7
walker2d-medium-expert-v2 108.8 110.1 113.0 109.6 107.7±3.5 113.1±2.4
Gym locomotion-v2 total 698.5 677.4 684.6 692.4 555.5±57.2 751.0±21.8

Adroit

pen-human-v1 37.5 8.4* 90.7* 71.5 61.6±9.7 117.8±11.9
hammer-human-v1 4.4 2.0* 0.2* 1.4 2.0±0.9 14.9±3.2
door-human-v1 9.9 0.5* -0.1* 4.3 7.8±3.5 25.9±7.5
relocate-human-v1 0.2 -0.3* 2.1* 0.1 0.1±0.0 4.8±2.2
pen-cloned-v1 39.2 41.5* 60.0 37.3 58.8±16.0 110.8±6.3
hammer-cloned-v1 2.1 0.8* 2.0 2.1 0.5±0.2 8.9±5.1
door-cloned-v1 0.4 -0.4* 0.4 1.6 0.9±0.8 6.2±1.6
relocate-cloned-v1 -0.1 -0.3* -0.1 -0.2 -0.1±0.0 1.9±1.0
adroit-v1 total 93.6 52.2 155.2 118.1 131.6±31.1 291.4±38.8

Kitchen

kitchen-complete-v0 43.8 0.0* 2.0* 62.5 55.0±11.5 91.5±8.9
kitchen-partial-v0 49.8 22.5* 35.5* 46.3 44.0±4.9 57.0±2.4
kitchen-mixed-v0 51.0 25.0* 28.0* 51.0 45.0±1.6 62.5±6.7
kitchen-v0 total 144.6 47.5 65.5 159.8 144.0±18.0 211.0±18.0

locomotion+kitchen+adroit 936.7 777.1 905.3 970.3 831.1±106.3 1253.4±78.6

7

Published as a conference paper at ICLR 2023

7.1 RESULTS ON D4RL BENCHMARKS

We first compare BPPO with iterative methods including CQL (Kumar et al., 2020) and TD3+BC
(Fujimoto & Gu, 2021), and Onestep methods including Onestep RL (Brandfonbrener et al., 2021)
and IQL (Kostrikov et al., 2021). Most results of Onestep RL, IQL, CQL, TD3+BC are extracted
from the paper IQL and the results with symbol * are reproduced by ourselves. Since BPPO first
estimates a behavior policy and then improves it, we list the results of BC on the left side of BPPO.

From Table 1, we find BPPO achieves comparable performance on each task of Gym and slightly
outperforms when considering the total performance. For Adroit and Kitchen, BPPO prominently
outperforms other methods. Compared to BC, BPPO achieves 51% performance improvement on
all D4RL tasks. Interestingly, our implemented BC on Adroit and Kitchen nearly outperform the
baselines, which may imply improving behavior policy rather than learning from scratch is better.

Next, we evaluate whether BPPO can solve more difficult tasks with sparse reward. For Antmaze
tasks, we also compare BPPO with Decision Transformer (DT) (Chen et al., 2021), RvS-G and RvS-R
(Emmons et al., 2021). DT conditions on past trajectories to predict future actions using Transformer.
RvS-G and RvS-R condition on goals or rewards to learn policy via supervised learning.

Table 2: The normalized results on D4RL Antmaze tasks. The results of CQL and IQL are extracted
from paper IQL while others are extracted from paper RvS. In the BC column, symbol * specifies the
Filtered BC (Emmons et al., 2021) which removes the failed trajectories instead of standard BC.

Environment CQL TD3+BC Onestep IQL DT RvS-R RvS-G BC (Ours) BPPO (Ours)

Umaze-v2 74.0 78.6 64.3 87.5 65.6 64.4 65.4 51.7±20.4 95.0±5.5
Umaze-diverse-v2 84.0 71.4 60.7 62.2 51.2 70.1 60.9 48.3±17.2 91.7±4.1
Medium-play-v2 61.2 10.6 0.3 71.2 1.0 4.5 58.1 16.7±5.2* 51.7±7.5
Medium-diverse-v2 53.7 3.0 0.0 70.0 0.6 7.7 67.3 33.3±10.3* 70.0±6.3
Large-play-v2 15.8 0.2 0.0 39.6 0.0 3.5 32.4 48.3±11.7* 86.7±8.2
Large-diverse-v2 14.9 0.0 0.0 47.5 0.2 3.7 36.9 46.7±20.7* 88.3±4.1

Total 303.6 163.8 61.0 378.0 118.6 153.9 321.0 245.0±85.5 483.3±35.7

As shown in Table 2, BPPO can outperform most tasks and is significantly better than other algorithms
in the total performance of all tasks. We adopt Filtered BC in last four tasks, where only the successful
trajectories is selected for behavior cloning. The performance of CQL and IQL is very impressive
since no additional operations or information is introduced. RvS-G uses the goal to overcome
the sparse reward challenge. The superior performance demonstrates BPPO can also considerably
improve the policy performance based on (Filtered) BC on tasks with sparse reward.

7.2 THE SUPERIORITY OF BPPO OVER ONESTEP AND ITERATIVE VERSION

BPPO v.s. Onestep BPPO We choose to improve policy πk after it has been improved over
behavior policy π̂β because Theorem 2 provides no guarantee of optimality. Besides, BPPO and
Onestep RL are easily to be connected because BPPO is based on online method while Onestep RL
solves offline RL without off-policy evaluation. Although Figure 2 gives an intuitive interpretation to
show the advantage of BPPO over its Onestep version, the soundness is relatively weak. We further
analyze the superiority of BPPO over its Onestep version empirically.

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

BPPO
Onestep BPPO
BC

(a) hopper-medium-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

BPPO
Onestep BPPO
BC

(b) hopper-medium-replay-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

BPPO
Onestep BPPO
BC

(c) hopper-medium-expert-v2

Figure 3: The comparison between BPPO and Onestep BPPO. The hyperparameters of both methods
are tuned through the grid search, and then we exhibit their learning curves with the best performance.

8

Published as a conference paper at ICLR 2023

In Figure3, we observe that both BPPO and Onestep BPPO can outperform BC (the orange dotted
line). This indicates both of them can achieve monotonic improvement over behavior policy π̂β .
Another important result is that BPPO is consitently better than Onestep BPPO and this demonstrates
two key points: First, improving πk to fully utilize information is necessary. Second, compared to
strictly restricting the learned policy close to the behavior policy, appropriate looseness is useful.

BPPO v.s. iterative BPPO When approximating the advantage Aπk
, we have two implementation

choices. One is advantage replacement (line 11 in Algorithm 1). The other one is off-policy
Q-estimation (line 13 in Algorithm 1), corresponding to iterative BPPO. Both of them will introduce
extra error compared to true Aπk

. The error of the former comes from replacement Aπk
← Aπβ

while the latter comes from the off-policy estimation itself. We compare BPPO with iterative BPPO
in Figure 4 and find that advantage replacement, namely BPPO, is obviously better.

0 50 100 150
Gradient Step (×5)

0

10

20

30

40

N
or

m
al

iz
ed

 R
et

ur
n

(a) halfcheetah-medium-replay

0 50 100 150
Gradient Step (×5)

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

(b) walker2d-medium-replay

0 50 100 150
Gradient Step (×5)

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 R
et

ur
n

(c) halfcheetah-medium-expert

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

120

N
or

m
al

iz
ed

 R
et

ur
n

BPPO
BPPOoff = 5
BPPOoff = 10
BPPOoff = 20
BPPOoff = 100
BC

(d) walker2d-medium-expert

Figure 4: The comparison between BPPO (the green curves) and its iterative versions in which we
update the Q network to approximate Qπk

instead of Qπ̂β
using in BPPO. In particular, we use

“BPPOoff=5” to denote that we update Q network for 5 gradient steps per policy training step.

7.3 ABLATION STUDY OF DIFFERENT HYPERPARAMETERS

In this section, we evaluate the influence of clip ratio ϵ and its decay rate σ. Clip ratio restricts the
policy close to behavior policy and it directly solves the offline overestimation. Since ϵ also appears in
PPO, we can set it properly to avoid catastrophic performance, which is the unique feature of BPPO.
σ gradually tightens this restriction during policy improvement. We show how these coefficients
contribute to the performance of BPPO and more ablations can be found in Appendix G, I, and H.

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.05
=0.10
=0.20
=0.25
=0.30

BC

(a) hopper-medium-replay

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.05
=0.10
=0.20
=0.25
=0.30

BC

(b) hopper-medium-expert

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.90
=0.94
=0.96
=0.98
=1.00

BC

(c) hopper-medium-replay

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.90
=0.94
=0.96
=0.98
=1.00

BC

(d) hopper-medium-expert

Figure 5: Ablation study on clip ratio ϵ (5(a), 5(b)) and clip ratio decay σ (5(c), 5(d)).

Firstly, we analyze five values of the clip coefficient ϵ = (0.05, 0.1, 0.2, 0.25, 0.3). In most envi-
ronment, like hopper-medium-expert 5(b), different ϵ shows no significant difference so we choose
ϵ = 0.25, while only ϵ = 0.1 is obviously better than others for hopper-medium-replay. We then
demonstrate how the clip ratio decay (σ = 0.90, 0.94, 0.96, 0.98, 1.00) affects the performance of
BPPO. As shown in Figure 5(c), a low decay rate (σ = 0.90) or no decay (σ = 1.00) may cause
crash during training. We use σ = 0.96 to achieve stable policy improvement for all environments.

8 CONCLUSION

Behavior Proximal Policy Optimization (BPPO) starts from offline monotonic policy improvement,
using the loss function of PPO to elegantly solve offline RL without any extra constraint or reg-
ularization introduced. Theoretical derivations and extensive experiments show that the inherent
conservatism from the on-policy method PPO is naturally suitable to overcome overestimation in
offline RL. BPPO is simple to implement and achieves superior performance on the D4RL dataset.

9

Published as a conference paper at ICLR 2023

9 ACKNOWLEDGEMENTS

This work was supported by the National Science and Technology Innovation 2030 - Major Project
(Grant No. 2022ZD0208800), and NSFC General Program (Grant No. 62176215). We really
appreciate Li He and Yachen Kang for helpful discussions and writing polishing.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021a.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021b.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Xi Chen, Ali Ghadirzadeh, Tianhe Yu, Yuan Gao, Jianhao Wang, Wenzhe Li, Bin Liang, Chelsea
Finn, and Chongjie Zhang. Latent-variable advantage-weighted policy optimization for offline rl.
arXiv preprint arXiv:2203.08949, 2022.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=r1etN1rtPB.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In In
Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

10

https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB

Published as a conference paper at ICLR 2023

Yachen Kang, Jinxin Liu, Xin Cao, and Donglin Wang. Off-dynamics inverse reinforcement learning
from hetero-domain. arXiv preprint arXiv:2110.11443, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jinxin Liu, Hao Shen, Donglin Wang, Yachen Kang, and Qiangxing Tian. Unsupervised domain adap-
tation with dynamics-aware rewards in reinforcement learning. Advances in Neural Information
Processing Systems, 34:28784–28797, 2021.

Jinxin Liu, Donglin Wang, Qiangxing Tian, and Zhengyu Chen. Learn goal-conditioned policy with
intrinsic motivation for deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 7558–7566, 2022a.

Jinxin Liu, Hongyin Zhang, and Donglin Wang. Dara: Dynamics-aware reward augmentation in
offline reinforcement learning. arXiv preprint arXiv:2203.06662, 2022b.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Wenjia Meng, Qian Zheng, Yue Shi, and Gang Pan. An off-policy trust region policy optimiza-
tion method with monotonic improvement guarantee for deep reinforcement learning. IEEE
Transactions on Neural Networks and Learning Systems, 33(5):2223–2235, 2021.

Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis
Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to navigate in
cities without a map. Advances in Neural Information Processing Systems, 31, 2018.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

James Queeney, Yannis Paschalidis, and Christos G Cassandras. Generalized proximal policy
optimization with sample reuse. Advances in Neural Information Processing Systems, 34:11909–
11919, 2021.

11

Published as a conference paper at ICLR 2023

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. 1998.

Qiangxing Tian, Guanchu Wang, Jinxin Liu, Donglin Wang, and Yachen Kang. Independent skill
transfer for deep reinforcement learning. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 2901–2907, 2021.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Huang Xiao, Michael Herman, Joerg Wagner, Sebastian Ziesche, Jalal Etesami, and Thai Hong Linh.
Wasserstein adversarial imitation learning. arXiv preprint arXiv:1906.08113, 2019.

Haoran Xu, Xianyuan Zhan, Jianxiong Li, and Honglei Yin. Offline reinforcement learning with soft
behavior regularization. arXiv preprint arXiv:2110.07395, 2021.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Robust
offline reinforcement learning via conservative smoothing. arXiv preprint arXiv:2206.02829, 2022.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021a.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021b.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. Advances in Neural Information Processing Systems, 34:12864–12875, 2021.

12

Published as a conference paper at ICLR 2023

A PROOF OF PERFORMANCE DIFFERENCE THEOREM 1

Proof. First note that Aπ(s, a) = Es′∼p(s′|s,a) [r(s, a) + γVπ (s
′)− Vπ(s)] . Therefore,

Eτ∼Pπ′

[
T∑

t=0

γtAπ (st, at)

]

=Eτ∼Pπ′

[
T∑

t=0

γt (r (st, at) + γVπ (st+1)− Vπ (st))

]

=Eτ∼Pπ′

[
−Vπ (s0) +

T∑
t=0

γtr (st, at)

]

=− Es0 [Vπ (s0)] + Eτ∼Pπ′

[
T∑

t=0

γtr (st, at)

]
=− J (π) + J (π′)

≜J∆ (π′, π) (17)

Now the first equation in 1 has been proved. For the proof of second equation, we decompose the
expectation over the trajectory into the sum of expectation over state-action pairs:

Eτ∼Pπ′

[
T∑

t=0

γtAπ (st, at)

]

=

T∑
t=0

∑
s

[
P (st = s|π′)Ea∼π′(·|s)

[
γtAπ (s, a)

]]
=
∑
s

[
T∑

t=0

γtP (st = s|π′)Ea∼π′(·|s) [Aπ (s, a)]

]
=
∑
s

[
ρπ′(s)Ea∼π′(·|s) [Aπ (s, a)]

]
=Es∼ρπ′(s),a∼π′(·|s) [Aπ (s, a)] (18)

B PROOF OF PROPOSITION 1

Proof. For state-action pair (st, at) ∈ D, it can be viewed as one deterministic policy that satisfies
πD (a = at|st) = 1 and πD (a ̸= at|st) = 0. So

DTV (D∥π̂β) [st] = DTV (πD∥π̂β) [st]

=
1

2
Ea |πD (a|st)− π̂β (a|st)|

=
1

2

∫
[P (at) |πD (at|st)− π̂β (at|st)|+ P (a ̸= at) |πD (a|st)− π̂β (a|st)|] da

=
1

2

∫
[P (at) (1− π̂β (at|st)) + P (a ̸= at) π̂β (a ̸= at|st)] da

=
1

2

∫
[P (at) (1− π̂β (at|st)) + (1− P (at)) (1− π̂β (at|st))] da

=
1

2
(1− π̂β (at|st)) (19)

13

Published as a conference paper at ICLR 2023

C PROOF OF THEOREM 2

The definition of Āπ,π̂β
(s) is as follows:

Āπ,π̂β
(s) = Ea∼π(·|s)

[
Aπ̂β

(s, a)
]

(20)

Note that the expectation of advantage function Aπ̂β
(s, a) depends on another policy π rather than

π̂β , so Āπ,π̂β
(s) ̸= 0. Furthermore, given the Āπ,π̂β

(s), the performance difference in Theorem 2
can be rewritten as:

J∆ (π, π̂β) = Es∼ρπ(·),a∼π(·|s)
[
Aπ̂β

(s, a)
]
= Es∼ρπ(·)

[
Āπ,π̂β

(s)
]

(21)

Ĵ∆ (π, π̂β) = Es∼ρD(·),a∼π(·|s)
[
Aπ̂β

(s, a)
]
= Es∼ρD(·)

[
Āπ,π̂β

(s)
]

(22)

Lemma 1. For all state s,∣∣Āπ,π̂β
(s)
∣∣ ≤ 2max

a

∣∣Aπ̂β
(s, a)

∣∣ ·DTV (π∥π̂β) [s] (23)

Proof. The expectation of advantage function Aπ (s, a) over its policy π equals zero:

Ea∼π [Aπ(s, a)] = Ea∼π [Qπ(s, a)− Vπ(s)] = Ea∼π [Qπ(s, a)]− Vπ(s) = 0 (24)

Thus, with the help of Hölder’s inequality, we get∣∣Āπ,π̂β
(s)
∣∣ = ∣∣Ea∼π(·|s)

[
Aπ̂β

(s, a)
]
− Ea∼π̂β(·|s)

[
Aπ̂β

(s, a)
]∣∣

≤∥π (a|s)− π̂β (a|s)∥1
∥∥Aπ̂β

(s, a)
∥∥
∞

=2DTV (π∥π̂β) [s] ·max
a

∣∣Aπ̂β
(s, a)

∣∣ ,∀s (25)

Lemma 2. ((Achiam et al., 2017)) The divergence between two unnormalized visitation frequencies,
∥ρπ (·)− ρπ′ (·)∥1 , is bounded by an average total variational divergence of the policies π and π′:

∥ρπ (·)− ρπ′ (·)∥1 ≤ 2γ E
s∼ρπ′ (·)

[DTV (π∥π′) [s]] (26)

Given this powerful lemma and other preparation, now we are able to derive the bound of∣∣∣J∆ (π, π̂β)− Ĵ∆ (π, π̂β)
∣∣∣:∣∣∣J∆ (π, π̂β)− Ĵ∆ (π, π̂β)
∣∣∣ = ∣∣∣Es∼ρπ(·)

[
Āπ,π̂β

(s)
]
− Es∼ρD(·)

[
Āπ,π̂β

(s)
] ∣∣∣

=

∣∣∣∣ (Es∼ρπ(·)
[
Āπ,π̂β

(s)
]
− Es∼ρπ̂β

(·)
[
Āπ,π̂β

(s)
])

+
(
Es∼ρπ̂β

[
Āπ,π̂β

(s)
]
− Es∼ρD(·)

[
Āπ,π̂β

(s)
]) ∣∣∣∣

(27)

Based on Hölder’s inequality and lemma 2, we can bound the first term as follows:∣∣∣∣ (Es∼ρπ(·)
[
Āπ,π̂β

(s)
]
− Es∼ρπ̂β

(·)
[
Āπ,π̂β

(s)
]) ∣∣∣∣ ≤ ∥∥ρπ (·)− ρπ̂β

(·)
∥∥
1

∥∥Āπ,π̂β
(s)
∥∥
∞

≤2γ E
s∼ρπ̂β

(·)
[DTV (π∥π̂β) [s]] ·max

s

∣∣Āπ,π̂β
(s)
∣∣ (28)

For the second term, we can derive similar bound and furthermore let DTV (D∥π̂β) [s] =
1
2 (1− π̂β (at|st)). Finally, using lemma 1, we get∣∣∣J∆ (π, π̂β)− Ĵ∆ (π, π̂β)

∣∣∣
≤2γmax

s

∣∣Āπ,π̂β
(s)
∣∣(E

s∼ρπ̂β
(·)

[DTV (π∥π̂β) [s]] + E
s∼ρD(·)

[DTV (D∥π̂β) [s]]

)

=2γmax
s

∣∣Āπ,π̂β
(s)
∣∣(E

s∼ρπ̂β
(·)

[DTV (π∥π̂β) [s]] + E
s∼ρD(·)

1

2
[1− π̂β (a|s)]

)

≤4γmax
s,a

∣∣Aπ̂β
(s, a)

∣∣ ·max
s

DTV (π∥π̂β) [s] ·

(
E

s∼ρπ̂β
(·)

[DTV (π∥π̂β) [s]] + E
s∼ρD(·)

1

2
[1− π̂β (a|s)]

)
(29)

14

Published as a conference paper at ICLR 2023

D PROOF OF THEOREM 3

As an extension of Theorem 2, the proof process of Theorem 3 is similar. Based on the Equation
(28), we can directly derive the final bound:∣∣J∆ (π, πk)− Ĵ∆ (π, πk)

∣∣ = ∣∣∣Es∼ρπ(·),a∼π(·|s) [Aπk
(s, a)]− Es∼ρD(·),a∼π(·|s) [Aπk

(s, a)]
∣∣∣

=

∣∣∣∣ (Es∼ρπ(·)
[
Āπ,πk

(s)
]
− Es∼ρπk

(·)
[
Āπ,πk

(s)
])

+
(
Es∼ρπk

(·)
[
Āπ,πk

(s)
]
− Es∼ρπ̂β

(·)
[
Āπ,πk

(s)
])

+
(
Es∼ρπ̂β

(·)
[
Āπ,πk

(s)
]
− Es∼ρD(·)

[
Āπ,πk

(s)
]) ∣∣∣∣

≤2γmax
s

∣∣Āπ,πk
(s)
∣∣(E

s∼ρπk
(·)

[DTV (π∥πk) [s]] + E
s∼ρπ̂β

(·)
[DTV (πk∥π̂β) [s]] + E

s∼ρD(·)

1

2
[1− π̂β (a|s)]

)
≤4γmax

s,a
|Aπk

(s, a)| ·max
s

DTV (π∥πk) [s]

·

(
E

s∼ρπk
(·)

[DTV (π∥πk) [s]] + E
s∼ρπ̂β

(·)
[DTV (πk∥π̂β) [s]] + E

s∼ρD(·)

1

2
[1− π̂β (a|s)]

)
(30)

E WHY GAE IS UNAVAILABLE IN OFFLINE SETTING?

In traditional online situation, advantage Aπk
(s, a) is estimated by Generalized Advantage Estimation

(GAE) (Schulman et al., 2015b) using the data collected by policy πk. But in offline RL, only offline
dataset D =

{
(st, at, st+1, rt)

N
t=1

}
from true behavior policy πβ is available. The advantage of

(st, at) calculated by GAE is as follow:

Aπβ
(st, at) =

∞∑
l=0

(γλ)l
(
rt+l + γVπβ

(st+l+1)− Vπβ
(st+l)

)
. (31)

GAE can only calculate the advantage of (st, at) ∈ D. For (st, ãt) ∼ D, where ãt is an in-
distribution action sampling but (st, ãt) ̸∈ D, GAE is unable to give any estimation. This is because
the calculation process of GAE depends on the trajectory and does not have the ability to generalize
to unseen state-action pairs. Therefore, GAE is not a satisfactory choice for offline RL. Offline RL
forbids the interaction with environment, so data usage should be more efficient. Concretely, we expect
advantage approximation method can not only calculate the advantage of (st, at), but also (st, ãt).
As a result, we directly estimate advantage with the definition Aπβ

(s, a) = Qπβ
(s, a) − Vπβ

(s),
where Q-function is estimated by SARSA and value function by fitting returns

∑T
t=0 γ

tr(st, at) with
MSE loss. This function approximation method can generalize to the advantage of (st, ãt).

F THEORETICAL ANALYSIS FOR Advantage Replacement

We choose to replace all Aπk
with trustworthy Aπ̂β

then theoretically measure the difference rather
than empirically make Aπk

learned by Q-learning more accurate. The difference caused by replacing
the Aπk

in Ĵ∆ (π, πk) with Aπβ
(s, a) can be measured in the following theorem:

Theorem 4. Given the distance DTV (πk∥πβ) [s] and assume the reward function satisfies
|r (s, a)| ≤ Rmax for all s, a, then∣∣∣Ĵ∆ (π, πk)− Es∼ρD(·),a∼π(·|s)

[
Aπβ

(s, a)
]∣∣∣ ≤ 2γ (γ + 1) ·Rmax · E

s∼ρπβ
(·)

[DTV (πk∥πβ) [s]] .

(32)

15

Published as a conference paper at ICLR 2023

Proof. First note that Aπ(s, a) = Es′∼p(s′|s,a) [r(s, a) + γVπ (s
′)− Vπ(s)]. Then we have∣∣∣Es∼ρD(·),a∼π(·|s) [Aπk

(s, a)]− Es∼ρD(·),a∼π(·|s)
[
Aπβ

(s, a)
] ∣∣∣

=

∣∣∣∣Es∼ρD(·),a∼π(·|s)Es′∼p(s′|s,a)

[
γ
(
Vπk

(s′)− Vπβ
(s′)
)
−
(
Vπk

(s)− Vπβ
(s)
)]∣∣∣∣

≤Es∼ρD(·),a∼π(·|s)Es′∼p(s′|s,a)

[
γ
∣∣Vπk

(s′)− Vπβ
(s′)
∣∣+ ∣∣Vπk

(s)− Vπβ
(s)
∣∣] (33)

Similarly to Equation (18), the value function can be rewritten as Vπ (s) = Es∼ρπ(·) [r (s)]. Then the
difference between two value function can be measured using Hölder’s inequality and lemma 2:∣∣Vπk

(s)− Vπβ
(s)
∣∣ = ∣∣∣Es∼ρπk(·) [r (s)]− Es∼ρπβ(·) [r (s)]

∣∣∣
≤
∥∥ρπk

(·)− ρπβ
(·)
∥∥
1
∥r (s)∥∞ ≤ 2γ E

s∼ρπβ
(·)

[DTV (πk∥πβ) [s]] ·max
s
|r (s)| (34)

Thus, the final bound is∣∣∣Es∼ρD(·),a∼π(·|s) [Aπk
(s, a)]− Es∼ρD(·),a∼π(·|s)

[
Aπβ

(s, a)
] ∣∣∣

≤Es∼ρD(·),a∼π(·|s)Es′∼p(s′|s,a)

[
2γ2 E

s′∼ρπβ
(·)

[DTV (πk∥πβ) [s
′]] ·max

s′
|r (s′)|

+2γ E
s∼ρπβ

(·)
[DTV (πk∥πβ) [s]] ·max

s
|r (s)|

]
=2γ (γ + 1)max

s
|r (s)| E

s∼ρπβ
(·)

[DTV (πk∥πβ) [s]] (35)

Note that the right end term of the equation is irrelevant to the policy π and can be viewed as a constant
when optimizing π. Combining the result of Theorem 3 and 4, we get the following corollary:

Corollary 1. Given the distance DTV (π∥πk) [s], DTV (πk∥π̂β) [s] and DTV (D∥π̂β) [s] =
1
2 (1− π̂β (a|s)), we can derive the following bound:

J∆ (π, πk) ≥ Es∼ρD(·),a∼π(·|s)
[
Aπβ

(s, a)
]

− 4γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρπk
(·)

[DTV (π∥πk) [s]]

− 4γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρπ̂β
(·)

[DTV (πk∥π̂β) [s]]

− 2γAπk
·max

s
DTV (π∥πk) [s] · E

s∼ρD(·)
[1− π̂β (a|s)]− Cπk,πβ

, (36)

where Aπk
= max

s,a
|Aπk

(s, a)| and Cπk,πβ
= 2γ (γ + 1) ·max

s,a
|r (s, a)| E

s∼ρπβ
(·)

[DTV (πk∥πβ) [s]].

Conclusion 3

To guarantee the true objective J∆ (π, πk) non-decreasing, we can also simultaneously maxi-
mize Es∼ρD(·),a∼π(·|s)

[
Aπβ

(s, a)
]

and minimize [maxs DTV (π∥πk) [s]], k = 0, 1, 2, · · · .

G ABLATION STUDY ON AN ASYMMETRIC COEFFICIENT

In this section, we give the details of all hyperparameter selections in our experiments. In addition
to the aforementioned clip ratio ϵ and its clip decay coefficient σ, we introduce the ω ∈ (0, 1) as an
asymmetric coefficient to adjust the advantage Āπβ

based on the positive or negative of advantage:

Āπβ
= |ω − 1(Aπβ

< 0)|Aπβ
. (37)

16

Published as a conference paper at ICLR 2023

For ω > 0.5, that downweights the contributions of the state-action value Qπβ
smaller than it’s

expectation, i.e., Vπβ
while distributing more weights to larger Qπβ

. The asymmetric coefficient can
adjust the weight of advantage based on the Q performance, which downweights the contributions of
the state-action value Q smaller than its expectation while distributing more weights to advantage
with a larger Q value. We analyze how the three coefficients affect the performance of BPPO.

We analyze three values of the asymmetric coefficient ω = (0.5, 0.7, 0.9) in three Gym environments.
Figure 6 shows that ω = 0.9 is best for these tasks, especially in hopper-medium-v2 and hopper-
medium-replay-v2. With a larger value ω, the policy improvement can be guided in a better direction,
leading to better performance in Gym environments. Based on the performance of different coefficient
values above, we use the asymmetric advantage coefficient ω = 0.9 for the Gym dataset training and
ω = 0.7 for the Adroit, Antmaze, and Kitchen datasets training, respectively.

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(a) hopper-medium-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(b) hopper-medium-replay-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(c) hopper-medium-expert-v2

Figure 6: Ablation study on coefficient ω. We optimize the hyperparameters through the grid search,
then we fix the value of other coefficients with the best performance and change the value of the
asymmetric coefficient to analyze how it affects the BPPO. In particular, ω = 0.5 denotes without the
asymmetric coefficient during the training phase (contributing equal value to all Advantages).

H IMPORTANCE RATIO DURING TRAINING

In this section, we consider exploring whether the importance weight between the improved policy
πk and the behavior policy πβ will be arbitrarily large. To this end, we quantify this importance
weight in the training phase in Figure 7. In Figure 7, we often observe that the ratio of the BPPO with
decay always stays in the clipped region (the region surrounded by the dotted yellow and red line).
However, the BPPO without decay is beyond the region in Figure 7(a) and 7(b). That demonstrates
the improved policy without decay is farther away from the behavior policy than the case of BPPO
with decay. It may cause unstable performance and even crashing, as shown in Figure 5(c), 5(d) and
10 when σ = 1.00 (i.e., without decay).

0 2 4 6 8 10 12
k (update steps)

1.0

1.5

2.0

2.5

Im
po

rta
nc

e
R

at
io

k/

BPPO with decay
BPPO without decay
1 + 2
1 2

(a) hopper-medium-v2

0 1 2 3 4 5 6 7
k (update steps)

0.9

1.0

1.1

1.2

Im
po

rta
nc

e
R

at
io

k/

(b) hopper-medium-replay-v2

0 2 4 6 8
k (update steps)

0.8

0.9

1.0

1.1

1.2

Im
po

rta
nc

e
R

at
io

k/

(c) hopper-medium-expert-v2

Figure 7: Visualization of the importance weight between the updated policy and the behavior policy
trained by BC. When the performance of the policy is improved, we calculate the importance weight
(i.e., the probability ratio) between the improved policy and the behavior policy.

17

Published as a conference paper at ICLR 2023

I COEFFICIENT PLOTS OF ONESTEP BPPO

In this section, we exhibit the learning curves and coefficient plots of Onestep BPPO. As shown
in Figure 8 and 9, ϵ = 0.25 and ω = 0.9 are best for those tasks. Figure 10 shows how the clip
coefficient decay affects the performance of the Onestep BPPO. We can observe that the performance
of the curve without decay or with low decay is unstable over three tasks and even crash during
training in the "hopper-medium-replay-v2" task. Thus, we select σ = 0.96 to achieve a stable policy
improvement for Onestep BPPO. that We use the coefficients with the best performance to compare
with the BPPO in Figure 3.

0 50 100 150
Gradient Step (×5)

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.05
=0.10
=0.20
=0.25
=0.30

BC

(a) hopper-medium-v2

0 50 100 150
Gradient Step (×5)

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.05
=0.10
=0.20
=0.25
=0.30

BC

(b) hopper-medium-replay-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.05
=0.10
=0.20
=0.25
=0.30

BC

(c) hopper-medium-expert-v2

Figure 8: Ablation study of Onestep BPPO on coefficient ϵ. We optimize the hyperparameters through
the grid search, then we fix the value of other coefficients with the best performance and change the
value of the clip coefficient to analyze how it affects the Onestep BPPO.

0 50 100 150
Gradient Step (×5)

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(a) hopper-medium-v2

0 50 100 150
Gradient Step (×5)

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(b) hopper-medium-replay-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.9
=0.7
=0.5

BC

(c) hopper-medium-expert-v2

Figure 9: Ablation study of Onestep BPPO on coefficient ω. We optimize the hyperparameters
through the grid search, then we fix the value of other coefficients with the best performance and
change the value of the asymmetric coefficient to analyze how it affects the Onestep BPPO.

0 50 100 150
Gradient Step (×5)

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.90
=0.94
=0.96
=0.98
=1.00

BC

(a) hopper-medium-v2

0 50 100 150
Gradient Step (×5)

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

=0.90
=0.94
=0.96
=0.98
=1.00

BC

(b) hopper-medium-replay-v2

0 50 100 150
Gradient Step (×5)

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

=0.90
=0.94
=0.96
=0.98
=1.00

BC

(c) hopper-medium-expert-v2

Figure 10: Ablation study of Onestep BPPO on clip coefficient decay and its decay rate. We optimize
the hyperparameters through the grid search, then we fix the value of other coefficients with the best
performance and change the value of the clip decay coefficient to analyze how it affects the Onestep
BPPO. In particular, σ = 1.00 denotes without the decay coefficient during the training phase.

18

Published as a conference paper at ICLR 2023

J EXTRA COMPARISONS

In this section, we have added the EDAC (An et al., 2021a), LAPO (Chen et al., 2022), RORL
(Yang et al., 2022), and ATAC (Cheng et al., 2022) as the comparison baselines to further evaluate
the superiority of the BPPO. Although the performance of the BPPO is slightly worse than the
SOTA methods on Gym environment, the BPPO significantly outperforms all methods on the Adroit,
Kitchen, and Antmaze datasets and has the best overall performance over all datasets.

Table 3: The normalized results of all algorithms on Gym locomotion and Adroit datasets. The results
of the EDAC, RORL, and ATAC are extracted from their original articles.

Environment/method EDAC RORL ATAC Ours

halfcheetah-medium-v2 65.9 66.8 54.3 44.0±0.2
hopper-medium-v2 101.6 104.8 102.8 93.9±3.9
walker2d-medium-v2 92.5 102.4 91.0 83.6±0.9
halfcheetah-medium-replay-v2 61.3 61.9 49.5 41.0±0.6
hopper-medium-replay-v2 101 102.8 102.8 92.5±3.4
walker2d-medium-replay-v2 87.1 90.4 94.1 77.6±7.8
halfcheetah-medium-expert-v2 106.3 107.8 95.5 92.5±1.9
hopper-medium-expert-v2 110.7 112.7 112.6 112.8±1.7
walker2d-medium-expert-v2 114.7 121.2 116.3 113.1±2.4
Gym locomotion-v2 total 841.1 870.8 818.9 751.0±21.8

pen-human-v1 52.1 33.7 79.3 117.8±11.9
hammer-human-v1 0.8 2.3 6.7 14.9±3.2
door-human-v1 10.7 3.8 8.7 25.9±7.5
relocate-human-v1 0.1 0 0.3 4.8±2.2
pen-cloned-v1 68.2 35.7 73.9 110.8±6.3
hammer-cloned-v1 0.3 1.7 2.3 8.9±5.1
door-cloned-v1 9.6 -0.1 8.2 6.2±1.6
relocate-cloned-v1 0 0 0.8 1.9±1.0
adroit-v1 total 141.8 77.1 180.2 291.4±38.8
locomotion + adroit total 982.9 947.9 999.1 1042.4±60.6

Table 4: The normalized results of all algorithms on Kitchen dataset. The results of the LAPO are
extracted from its original article.

Environment/method LAPO Ours

kitchen-complete-v0 53.2 91.5±8.9
kitchen-partial-v0 53.7 57.0±2.4
kitchen-mixed-v0 62.4 62.5±6.7
kitchen-v0 total 169.3 211.0±18.0

Table 5: The normalized results of all algorithms on Antmaze dataset. The results of the RORL are
extracted from its original article.

Environment/method RORL Ours

Umaze-v2 96.7 95.0±5.5
Umaze-diverse-v2 90.7 91.7±4.1
Medium-play-v2 76.3 51.7±7.5
Medium-diverse-v2 69.3 70.0±6.3
Large-play-v2 16.3 86.7±8.2
Large-diverse-v2 41.0 88.3±4.1
Antmaze-v2 total 390.3 483.3±35.7

19

Published as a conference paper at ICLR 2023

K IMPLEMENTATION AND EXPERIMENT DETAILS

Following the online PPO method, we use tricks called ‘code-level optimization’ including learning
rate decay, orthogonal initialization, and normalization of the advantage in each mini-batch, which
are considered very important to the success of the online PPO algorithm (Engstrom et al., 2020). We
clip the concatenated gradient of all parameters such that the ‘global L2 norm’ does not exceed 0.5.
We use 2 layers MLP with 1024 hidden units for the Q and policy networks, and use 3 layers MLP
with 512 hidden units for value function V . Our method is constructed by Pytorch (Paszke et al.,
2019). Next, we introduce the training details of the Q,V , (estimated) behavior policy π̂β , and target
policy π, respectively.

• Q and V networks training: we run 2× 106 steps for fitting value Q and V functions using
learning rate 10−4, respectively.

• (Estimated) behavior policy π̂β training: we run 5× 105 steps for π̂β cloning using learning
rate 10−4.

• Target policy π training: during policy improvement, we use the learning rate decay, i.e.,
decaying in each interval step in the first 200 gradient steps and then remaining the learning
rate (decay rate σ = 0.96). We run 1,000 gradient steps for policy improvement for Gym,
Adroit, and Kitchen tasks and run 100 gradient steps for Antmaze tasks. The selections
of the initial policy learning rate, initial clip ratio, and asymmetric coefficient are listed in
Table 6, respectively.

Table 6: The selections of part of hyperparameters during policy improvement phase.

Hyperparameter Task Value

Initial policy learning rate
Gym locomotion and cloned tasks of Adroit 10−4

Kitchen, Antmaze, and human tasks of Adroit 10−5

Initial clip ratio ϵ

Hopper-medium-replay-v2 0.1
Antmaze 0.5
Others 0.25

Asymmetric coefficient ω
Gym locomotion 0.9

Others 0.7

20

	Introduction
	Preliminaries
	Reinforcement Learning
	Offline Reinforcement Learning
	Performance Difference Theorem

	Offline Monotonic Improvement over Behavior Policy
	Behavior Proximal Policy Optimization
	Discussions and Implementation Details
	Related Work
	Experiments
	Results on D4RL Benchmarks
	The Superiority of BPPO over Onestep and Iterative Version
	Ablation Study of Different Hyperparameters

	Conclusion
	Acknowledgements
	Proof of Performance Difference Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Why GAE is Unavailable in Offline Setting?
	Theoretical Analysis for Advantage Replacement
	Ablation study on an asymmetric coefficient
	Importance Ratio During Training
	Coefficient Plots of Onestep BPPO
	Extra Comparisons
	Implementation and Experiment Details

