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Abstract

Named entity recognition (NER) is the founda-
tion of many natural language processing tasks.
Current NER models have achieved promising
results. But as pointed by several studies, they
fail with a high ratio on generalization tests
such as invariance test because they heavily
rely on name information. So, we propose a
context module to explicitly model the contex-
tual information, and a trainable balance factor
is designed to incorporate the result of context
module. To learn this factor, we propose several
tailored data augmentation strategies to gener-
ate synthetic labels for it. These approaches
help the model learn whether it should focus on
the context. Our method achieves on average
1.2% absolute improvement of F1 than BERT-
CREF on three datasets. Moreover, our method
performs on par with the best solutions who
rely heavily on external features besides BERT.
We also conduct invariance test to analyse the
effect of the context information. The source
code of our model and augmentation strategies
will be available at Anonymous.url'.

1 Introduction

Named Entity Recognition (NER) aims to extract
word spans in natural language that mention real-
world entities, and classify them into a predefined
set of types like person, address, etc. It is the
up-stream task of many NLP tasks like relation-
ship extraction (Cao et al., 2019) and event extrac-
tion (Wadden et al., 2019).

NER models have achieved promising results on
many benchmark datasets, but recent researches
point out that current NER models are fragile and
unreliable. Gui et al. (2021) find that the perfor-
mance of NER models drops sharply when unseen
phrases occur in the sample (drops around 10% and
20% respectively). Ribeiro et al. (2020) proposed
a “CheckList” to reveal the generalization capacity
of NLP models. Among the list, Invariance Test
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Figure 1: Invariance test: replacing a mention with
another mention with the same type may lead to model
failure.

expects the model prediction to remain the same
when facing with label-preserving perturbations to
inputs on Quora Question Pairs task. In their tests,
models perform poorly with a 10% failure rate.

Motivated by these work, we propose a “invari-
ance test” for NER by replacing a mention with
another mention with the same type, as demon-
strated in Figure 1. We find BERT-based CRF (De-
vlin et al., 2018) model which achieves acceptable
performance also fails on such small perturbation.
Such behavior is further studied in Section 5.6,
the failure rate reaches 19.0% and 8.1% for well-
known CRF (Lafferty et al., 2001) solutions. It
indicates that, some essential skills for NER are
neglected by current models.

Current NER models are fragile because in many
cases remembering the name, or exploiting biased
cues in mentions is simpler than considering a long
context, so that NER models tend to learn such
shortcut (Peng et al., 2020; Field and Tsvetkov,
2019), which leading to a poor performance for en-
tities not appearing in training data (Agarwal et al.,
2020b). Here, “name” means the surface form of a
text span, and “context” is the rest of the sentence.
We human can perform well on NER because we
are able to effectively distinguish the information
from both the name and context. We can identify a
company mention by a clear pattern in names like
“ABC Co., Ltd.”, or identify an ambiguous mention
by looking at its context. Xu et al. (2017) also
claim that contexts play an important role when it
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involves multi-sense words or phrases. Although
such phenomenon has been discovered, to our best
knowledge, few work has proposed to tackle it.

In this work, we propose to explicitly model-
ing the context information as an attempt to this
problem. We adopt a span-based method that first
detects possible spans and then classifies them into
an entity type or the “None” type. In the span clas-
sification step, the model judges whether the span
is an entity with two modules: A name module
focuses on the information within the span, while a
context module focuses on the information outside
the span. Then, a combination module integrates
them using a balance factor a to dynamically adjust
their weight, and makes the final prediction. Note
that the name module is an ordinary NER model
can also look at the context, but we train it to focus
on the name, and the context module can only look
at the context. This is because if we separate the
name and context of a span, then we need a heavy
model to combine them. Our design has a ordinary
module that looks at the whole sentence while can
turn to context module is necessary.

However, existing datasets only annotate
whether a span is an entity mention, but do not
explain when context is more important to iden-
tify the mention. Without such supervision data,
the proposed two-channel model will still lean to
the name module. To solve this issue, we design
tailored data augmentation strategies. For exam-
ple, the “mention replacement (random)” strategy
replaces an entity mention in a sentence with a ran-
dom string. The context module is asked to predict
the random string as an entity mention, the name
module is asked to predict it as non-mention, and «
leans to context. This encourages the model to dis-
covery unseen entities. More details are discussed
in Section 3.4.

We conduct experiment on several Chinese
datasets, and leave other languages for further
study. Experimental results show that our NC
model performs on par or better than state-of-the-
art NER models on several datasets, even though
they incorporate heavy external resources. At the
same time, our method significantly outperforms
existing models on invariance test. Our main con-
tributions are summarized as follows:

e We propose a two-module model called “NC-
Model” with an context module to explicit model
the context information. It performs significantly
better on F1-Score than models using the same

resource.

e We propose tailored data augmentation strate-
gies to weakly supervise the model to learn when
to focus on context information.

e We propose a “Invariance Test” to measure the
generalization capacity of NER model on unseen
names or contexts. Our proposed method performs
significantly better on this test.

2 Related Work

Currently, NER models have achieved promising
results on many benchmark datasets with various
external resources. For example, the state-of-the-
art models (Robert et al., 2021a) on Chinese NER
(CNER) tasks dataset have achieved high F1-scores.
Recent research pushes the limit by making use of a
large lexicon and gazetteer (Zhang and Yang, 2018;
Li et al., 2020), font features (Meng et al., 2019;
Xuan et al., 2020), as well as a large corpus for
pre-trained language models (Brown et al., 2020;
Liang et al., 2020).

Existing solutions for NER tasks fall into two
main categories: sequence labeling and span-based
methods. Most recent work on NER are based
on sequence labeling (Huang et al., 2015; Lample
et al., 2016) to assign a label for each token. They
focus on how to model a better text representation,
such as character LSTM (Dong et al., 2016), char-
acter CNN (Ma and Hovy, 2016; Zhu et al., 2019)
or Bert (Devlin et al., 2018). Current best CNER
models are all using sequence labeling methods.

Besides sequence labeling, span-based (Eberts
and Ulges, 2019; Zhong and Chen, 2021) solutions
are also common in NER. This kind of method
enumerates all spans in a text, filter them, and then
assign a label to each span. The number of all
spans in a sentence is usually large (O(|s|?)). For
this reason, the span-based solutions mentioned
above drop spans longer than 6 (Tan et al., 2020;
Xia et al., 2020) or 10 (Lee et al., 2017; Eberts
and Ulges, 2019; Joshi et al., 2020) tokens at first.
Our solution also utilize the span-based method for
better modeling the context features.

Currently, there are researches that diagnose ex-
isting NER models and discuss the importance of
name and context information for NER. Fu et al.
(2020) systematically diagnosed current state-of-
the-art NER models. They observed that the per-
formance of existing models (including the latest
ones) is largely affected by the extent to which
test entities have been seen in the training set with



the same label. Agarwal et al. (2020b) designed a
model to classify mention purely depends on the
context. The result indicated that only use context
is not possible to achieve a high performance NER
model.

The representations for context information at-
tracts a lot of attention. Yaghoobzadeh and Schiitze
(2015) took the concatenation of the embeddings
of the surrounding words of the mention as context
representation. They pointed out that explicitly dis-
tinguishing name and context separately for mod-
elling performed better. Lin et al. (2020a) prepared
entity-triggers to solve with zero-shot entity strings.
The triggers in context are able to mark the posi-
tion of an entity in the sentence, to help the model
effectively improve its generalization ability. How-
ever, the model requires extra annotation effort to
annotate the trigger words of entity mentions. Lin
et al. (2020b) claimed that there is a strong regular-
ity between the names of same-labeled entities in
the training and validation sets in the same dataset.
They find that breaking the regularity (e.g., replac-
ing the span with a random string) makes it harder
for the model to predict correctly. Agarwal et al.
(2020a) even replace entities with the ones in other
languages. Other attempts on context information
with max-pooling on Bert (Eberts and Ulges, 2019)
or self-attention on Bi-LSTM (Xin et al., 2018), are
also far behind existing CNER models mostly rely
on names.

3 Name-and-Context Model

3.1 Overview

Given a pre-defined entity type set £, the NER
task aims to extract entities from a given sentence
x = (wi,ws,...,wy,) . The result is an entity set
E={(ijt)|0<i<j<|z|},teC.

We want to explicitly model the context of a
text span. Sequence labeling (Huang et al., 2015;
Dong et al., 2016) method identify and type the
mention simultaneously, which are not suitable
for modeling spans. Therefore, we use the span-
based method (Stratos, 2017; Tan et al., 2020)
in this paper which first selects span candidates
and then classifies them into pre-defined types
L = £ U {None}, where None is the type for
non-entity spans. A span (wj, ..., w;) is denoted as
s=(i,5),s €S.

We name our model as NC Model (in short of
“Name-and-Context Model”), as the entity type clas-
sification model has name module and context mod-

ule. We also propose augmentation strategies for
the classification step to encourage the model to
lean on context modules under proper situations.

In the following sections, we introduce the span
selection model, the span classification model, and
finally the tailored data augmentation strategies in
turn.

3.2 Span Selection

The span selection step filters all spans .S in the text
to obtain a subset S7 for classification. Most span-
based methods (Lee et al., 2017; Zhong and Chen,
2021) enumerate all possible spans whose length
are smaller than a threshold Ly, € {6,8,10}. It is
effective for English corpus as the length is mea-
sured at the word or sub-word level. For Chinese
corpus with longer text spans at the character level,
it is not enough. Millions of spans need to be
judged, it takes too much time for training or infer-
ence. So that besides the simple length limit L,
we train a span scoring model g(-) for scoring each
text span g(s) € [0, 1]. The model classifies with
both the boundary tokens of a span s = (i, j):

(h1, ..., hy) = Encoder(z)
g(s) = Sigmoid(FFN(h; @ h;))

where h; is the hidden vector for w; from the
Encoder, @ denotes the concatenation operation.

Moreover, we utilize the sentence segmentation
as another filtering rule. We remove spans which
locate in more than one segments, so for each span
candidate s = (3, j), it needs to comply:

(wi,wi+1,...,wj) N {’ ;oo 70! } =0
which means we only generate spans between two
adjacent delimiters. It reduces the number and
average length of span candidates.

In a two-step NER approach, the recall of span
classification is bounded by the span selection
step. The training process needs strong negative
spans (Eberts and Ulges, 2019), while the infer-
ring needs span candidates that cover more entity
mentions. At the same time, the number of span
candidates is too large in longer sentences. It re-
sults in Out-Of-Memory issues during training with
regular filtering methods (e.g., negative sampling
by a certain proportion). There is a trade-off be-
tween the recall rate and span counts. After sorting
with the span scores, We take the top 0iqp-sp Spans
in training and evaluating.
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Figure 2: The framework for the span classification step in NC Model. The name module considers the information
of the whole sentence, while the context module focus the context.

3.3 Span Classification

The span classification consists three modules:
name, context, and combination modules. The
name module focuses on the information inside the
span, the context module focuses on the informa-
tion outside the span, and the combination module
balance these two modules. For a sentence x =
(w1, ...,wy) and a span s = (w;, Wit1, ..., W;), We
introduce these three modules as follows.
The name module is demonstrated in the
parts in Figure 2. We get the representation
hname(s) of span s in sentence from an encoder
using its head and tail word representations:

(h1, ..., hn) = Encoder(z)
hname<3) =h; ® hj

where h; is the hidden vector from the Encoder, ®
is the concatenation operation.

The context module is demonstrated in the blue
parts in Figure 2. To prevent the shortcut learning
from ignoring the context during the training pro-
cess, we intentionally model the context separately.

x is fed into a bi-directional LSTM to get two
hidden vectors for each token in forward and back-
ward direction (hq, ..., hy,) = BILSTM(z), where
hi = [E), E] is the concatenation of hidden vectors
from two directions. The context hidden vectors
h!,, does not utilize any from the name informa-
tion. Then we take an attention module based on

Ictx(s):

4 = M) = iy, ]
K=V =1, hitshyatsiin] (D
hetz(s) = Softmax(q - KT/\/nTL) Vv

where ny, is the dimension of hidden vector. Notice
we only attend on hy if £ < 7 and E if K > jso
that h,(s) does not contain name information. In
this way, we generate the sentence representations
for all spans at the same time. Other ways to ob-
tain context features, such as masking tokens in
mention (Field and Tsvetkov, 2019) or inserting
boundary tokens around the mention (Zhong and
Chen, 2021), spend much more time generating
sentence representations for every single span. The
context module is obvious weaker than the name
module, because it only covers contextual tokens.
We do not care the performance of this module it-
self. What we focus on is whether the extra pure
context information improves the NC Model.

It is worth mentioning that we do not strictly
separate the context from the name module. In our
model design, we leverage the pre-trained language
model like BERT to offer semantic features for the
name module. So the name module can peek at the
context. We design the name module like this with
the following concern: 1) The strictly decoupled
name module plays the same role as a gazetteer
or lexicon. There is no need to degrade the name
module to achieve strict decoupling. 2) In the case
where the name is confusing, the alpha value will
lead the model to depend on the context module
that does not contain tokens in the name. Even
if both modules correctly focus on the same fea-
tures in some cases, the model can still effectively
answer with any alpha value.

The combination module combines h,,qme and
hetz to make a final prediction. In addition, we uti-
lize width embeddings embyigm for the span length
feature. A balance factor o € [0, 1] is introduced to
balance between name and context modules. The



final representation of the span is:

hnc(s) - ahname<5) + (1 - a)hcta:(s) (2)
h(S) = hm(s) D embwidth(\s\) (3)

If a is close to 1, the final result depends more on
the name module, otherwise more on the context
module. In our primary experiments, we tried sev-
eral methods to compute «, such as feed forward
network and bi-affine. We find bi-affine performs
slightly better. So, we adopt bi-affine in the the
following experiments, computed as:

a = Sigmoid(hl,,,.. () Whiatheta(s))  (4)

name

Finally, h(s) is fed into a feed forward layer fol-
lowed by the Softmax function to get the proba-
bility distribution p(x). Note that if there are two
spans with overlapping parts, we only leave the one
with higher max(p(x)). We use cross-entropy as
loss function during training:

Leom = 3D (~y(5) D loglp(s)™)) )

SES leEL

where S is the set of all candidate spans in the
sentence.

If we are able to give « a gold label, we can also
compute a negative log-likelihood as the loss £,
for . Then, for each span candidate in the sen-
tence, we can derive a loss function that is the sum
of both parts: £ = L4+ Lcom. However, we do not
have labels for « in current CNER datasets. The su-
pervision on « to explicitly guide the model when
to focus on features from the context is significant.
We will introduce it in the next section.

3.4 Tailored Data Augmentations

We propose the following data augmentation strate-
gies that assign different labels for name and con-
text modules on the same sample. The augmenta-
tions strategies aim to guide the model focus on
the name or context information correctly. Some
strategies provide a label for «, turn the learning
on « into weak-supervised from un-supervised.

As summarized in Table 1, the augmentation
strategies are categorized into two groups: insertion
and replacement. We assign labels for different
strategies: For each module, v means we keep the
original label (a positive entity type), X means we
set it as negative (None type), “-”” means ignore the
loss for this module in current sample.

The first class of augmentation is replacement.
Suppose we are given a sentence z and a span s =

(ws, ..., wj), l(s) € E, i.e. sis an entity mention.
We can replace s by another token sequence s’ =
(wh, ..., w},) to get a new sentence:

/

/ /
r = (wl, sy Wi—1, Wyy eeey Wiy, W1, ...,wn).

For the Mention Replacement strategy, s’ is an en-
tity mention with the same type as s. For the Ran-
dom Replacement strategy, s’ is a random string.
So, we set the label for name module as None, but
set the label for context module as [(s). Dai and
Adel (2020)’s experiments show that attempting
to improve the NER performance by using only a
single mention of substitution does not yield signif-
icant improvements. We believe that the replace-
ment for augmentation is not enough.

Another class of augmentation strategies is in-
sertion. We insert a text span s into the sentence at
random position. For the Random Insertion strat-
egy, s’ is not an entity mention, the model should
predict it as negative (i.e. 3(s’) = None). For the
Mention Insertion strategy, s’ is an entity mention
in another sentence. We set label for name module
as g(s), and label for context as None, to encourage
the name module focus on the name.

As for a, we set its label lean to context in “Re-
placement (Random)” to encourage the model to
predict unseen mentions>. We set its label to lean
to name to accept clear name patterns with un-
clear contexts. In summary, we set different la-
bels to guide the model focus on targeted informa-
tion. One possible concern about these strategies
is that the random replacement and random inser-
tion strategies generate confusing and unreasonable
samples. Such samples are difficult to be incorpo-
rated by most existing models, as we cannot assign
them a reasonable type. However, we take them
in our model to guide the focus of modules, and
to simulate the extreme cases of rare context or
mentions. It means the unreasonable augmented
samples are only treated as extra annotations for
training specific modules. We do not utilize these
counter-intuitive samples in evaluation.

4 Invariance Test

The performance of the NER model is overesti-
mated with traditional metrics on a fixed test set.
We propose an evaluation method and the corre-
sponding metric which is an extension of “Invari-
ance Test” from the “Checklist” (Ribeiro et al.,

2Each character in the random string does not exceed the
character set of the current data set.



Label

Strategy Converted Sample Tame  ctx com -
For a sentence with entity mention span: Aunt Kate ate this cake.
Boundary Movement Aunt Kate ate this cake. X X X -
Mention Replacement Aunt John Smith ate this cake. -
Mention Replacement (Random) Aunt Vodka ate this cake. X - ctx
For a sentence not specifying the span: The cake tastes great.
Mention Insertion The John Smith cake tastes great. X - name
Mention Insertion (Random) The cake tastes Vodka great. X X - -

Table 1: Augmentation strategies. The bold blue tokens are span candidates.

and X are labels for modules, “-”

means ignoring the loss. For each kind of module, we ensure that both positive and negative samples exist.

Dataset MSRA Resume Onto4

# Train Samples 45000 3821 15724
# Valid Samples - 463 4301
# Test Samples 3442 477 4346

# Tag Types 3 8 4

Avg # Chars 48.22 32.48 31.28
Avg # Entities 1.67 3.52 0.85
Avg Ent Length ~ 3.23 5.88 3.08

Table 2: Statistics of three datasets. All Average mea-
sures are calculated on training samples.

2020). It is similar to Mention Replacement data
augmentation introduced in Section 3.4. As we
replace a mention with another mention with the
same type, the resulting samples usually have cor-
rect grammar. At first, We randomly select n;; sen-
tences from the test set. For each entity type t € &,
we collect all mentions M in these sentence. Then,
for the X sentences that contain a mention with
type t, we replace the first one with all mentions
in M. The process generates |M| x | X | manipu-
lated mentions to be recognized. The NER models
are expected to recognize and classify as type ¢
correctly.

5 Experiments

5.1 Datasets

In this section, we will introduce the widely-
used (Robert et al., 2021b) CNER datasets. Details
for these datasets are shown in Table 2.

o MSRA dataset. MSRA (MicroSoft Research
Asia (2006)) is the simplified Chinese version of
the Microsoft NER dataset on the Third SIGHAN
Chinese Language Processing Bakeoff 3. Original
MSRA dataset only has training set and testing set,

3http://sighan.cs.uchicago.edu/bakeoff2006/

e Resume dataset. The Resume dataset is an-
other popular Chinese NER dataset proposed by
Zhang and Yang (2018).

e Onto4 dataset. The OntoNote 4 dataset is
also a well-known Chinese NER dataset released
by Weischedel et al. (2011).

5.2 Baselines

We compare our model with the following models.

e LSTM-CRF and BERT-CREF. We take Bi-
LSTM CRF (Lample et al., 2016) and BERT
CRF (Devlin et al., 2018) as baseline models which
is the de facto standard sequence labeling model for
NER. Moreover, we utilize them as the encoders
for two modules in our Model, without CRF parts.

e LatticeLSTM and FLAT. One of the best solu-
tions for sentence-level NER in Chinese is with the
lattice structure (Zhang and Yang, 2018) as lexical
information. FLAT (Li et al., 2020) achieves the
state-of-the-art result on MSRA dataset.

e PURE-CN. As the best performing span-
based solution in English NER, PURE (Zhong and
Chen, 2021) outperforms on English NER datasets
like ACE and GENIA. We follow the span-based
method from this work and adapt it for CNER.

e Others. In Chinese NER, using the glyph in-
formation as an additional kind of embedding of
characters is also effective. Such as Glyce (Meng
et al., 2019) and FGN (Xuan et al., 2020). This
kind of solution, together with the aforementioned
FLAT, are the current best solutions (Robert et al.,
2021a) on the CNER task. However, the pre-
trained glyph embeddings are not released yet, so
we cannot reproduce their results and conduct in-
variance tests on them.



5.3 Experiment Settings

Embeddings, hyper-parameters and metrics are
carefully designed for a fair comparison.

e Embeddings. The parameters for embed-
dings in LSTM are initialized from the same BERT
model*. Tt means the token embeddings in different
modules or models are calculated with the same
position embeddings, layer normalization and so
on. In NC Model, the embeddings in BERT are
freezed during the training.

e Hyper-Parameters. For all Chinese datasets,
we set batch size as 4, Ly, as 25, and conduct
10 epochs of training. The learning rate for mod-
ules in our model is Se-4, wheile BERT’s learning
rate is le-5. Moreover, we set the dropout rate to
0.2 for FEN. The model takes a step of 50 to find
BOtop-sp> and Oyop.sp = 300 is the largest before Out-
Of-Memory problem occurs>. The selected spans
cover more than 98% entiies for all CNER datasets
we mentioned in Section 5.1.

e Evaluation Metrics. We adopt micro F1-
Score as the evaluation metric. Only when both
the span ([, 7) and the entity type ¢ are correct at
the same time, we count it as a hit. Following the
definition from Xiao et al. (2019), we treat any
spans that do not exactly match the annotation as
negative (it affects precision). It means that entities
which are not recalled from the span generation
step are counted as misses. Nested mentions, such
as the “Nanjing” in the organization mention “Nan-
jing University” is regarded as negative, as it does
not appear in the annotations.

Another evaluation metric is “Failure Rate” for
the invariance tests mentioned in Section 4. We
propose this new metric to measure a model :

FR= o > 0(s) £ () ©

;€S
here 1(-) is the indicator function.

5.4 Overall Results

The experimental results on different dataset are
shown in Table 3. As shown in Table 3, current
state of the art models heavily depend on external
features: 1) the in-house corpus and glyph features®
are not publicly available yet’, making it difficult

4“bert-chinese_L- 12_H-768_A-12”, while FLAT uses bert-
wwm with the same embedding size as its default setting.

Son single Nvidia 12G RTX 2080Ti

Spre-trained Glyph embeddings and Glyce-BERT

’github.com/ShannonAI/glyce/issues

Performance

Dataset Model P R F1
BILSTM-CRF (2016)  93.0 90.8 919
LatticeLSTM® (2018) 94.0 922 93.1
BERT-CRF (2018) 95.0 933 94.1

PURE-CN (2021) 95.6 953 954

MSRA NC (Ours) 957 950 95.4
Glyce® (2019) 956 955 955

FLAT® (2020) - - 96.1
BiLSTM-CRF 945 943 944
LatticeLSTM® 948 941 94.5
BERT-CRF 940 952 946
Resume PURE-CN 955 960 958
NC (Ours) 962 965 96.3

Glyce® 96.6 965 96.5
FLAT® - - 95.9
BiLSTM-CRF 744 694 7138
LatticeLSTM® 742 731 73.6
BERT-CRF 824 784 804

Onto4  PURE-CN 835 785 809
NC (Ours) 80.9 81.1 81.0

Glyce® 819 814 816
FLAT® - - 818

Table 3: Overall Results on different datasets. The
network of BERT in “BERT-CRF” is optimized by us
so that it performs better than original. We take the
same BERT in our approaches. < for utilizing external
lexicon and embeddings and & for glyph embeddings.

to reproduce or improve upon the Glyce model.
2) FLAT gathers over 700 thousand external pre-
trained word embeddings from 3 different external
resources for lexicon features. The model perfor-
mance heavily relies on the quality of lexicons and
plenty of n-gram embeddings.

Our model utilizes BERT only, and it is excit-
ing that our model performs comparably to these
best CNER solutions. The ability to rival the opti-
mal CNER method without the need for external
features and tools makes our model easy to use in
practical applications. Compared to BERT-CRF
with the same inputs at prediction, our model im-
proves 1.2% on average.

To figure out why the model improves perfor-
mance, we put attention on ablations and the invari-
ance test in the following sections.

5.5 Ablations on Augmentation Strategies

We take the ablation experiment on CNER datasets
for further analysis as shown in Table 4. In this
section, we test the validity of our proposed aug-
mentation strategies.

In Table 4, we take ablation tests on augmenta-
tion strategies. Moreover, we also calculate FR to
figure out their contribution for the NER model’s
generalization ability. These CNER datasets share
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Figure 3: Invariance test by combining different entity mentions and contexts. In the subfigures, the columns are for
different models and the rows are for different entity types (PERson and ORGanization).

MSRA Resume Onto4
Model F1 FR F1 FR F1 FR
NC Model 954 483 96.3 2.73 81.0 21.79
- Aug 95.0 4.53 96.0 279 80.6 22.53
- Replacement 95.0 5.14 96.2 285 799 2254
- Insertion 952 474 958 339 80.5 24.08

Table 4: Ablations on augmentation strategies for NC
Model on CNER datasets. “-” means taking the part
away.

BiLSTM Latt BERT-CRF PURE NC

Models ™ -gg " lice Origin (+Aug) -CN (Ours)
PER 145 67 34 19 23 16
ORG 251 234 145 146 143 93
Total 190 136 81 73 74 48

Table 5: Failure rate (FR) in Invariance Test on the
MSRA dataset. We also tried to apply data augmenta-
tions (+Aug) on BERT-CRF.

a subset of tags {PER, ORG}, we treat it as &;;.

When removing these augmentation strategies,
both F1-Score and FR decrease. The model learn
when to depend on context information without
labels. Two kinds of strategies generate different
labels for «, the absence of either “name” label or
“context” label makes it difficult for « to function.
On one hand, if there is no “context” labels, the
model is not aware of when it needs to rely on the
context module. On the other hand, the “name” la-
bels teach the model when to discard all the features
from the context module. In Section 3.4, we argue
that the augmentation needs the insertion strategy
in addition to the replacement strategy. The experi-
mental results proved it is reasonable.

5.6 Invariance Test

We show the results of invariance tests as a heatmap
in Figure 3. We take the MSRA dataset as an exam-

ple to show the corresponding statistics in Table 5.

In the heatmap, all dots in each sub-figure in-
dicate model prediction failures, and faded dots
indicate a faulty tag type for a correctly recalled
span. Note that the not-recalled spans in our model
are also counted as failures. A large number of
dots in a row means the entity name is hard for
the model, while many dots in a column means the
context is confusing for the model. On the other
hand, fewer dots indicates that the corresponding
model generalizes better and produces consistent
results under manipulation above. We also try to
apply data augmentations for sequence labeling
models. For instance, the failure rate of BERT-
CRF drops 0.8% (relatively reduced by 9.9%) with
our proposed data augmentations. It indicates that
data augmentation also works on sequence label-
ing models. Our proposed model performs much
better than other models with a failure rate of 4.8%.
We can see that the invariance performance of the
model can be ranked as:

NC Model > BERT-CRF (+Aug) ~ PURE-CN
~ BERT-CRF > LatticeLSTM > BiLSTM-CRF.

6 Conclusions and Future Work

We propose a model containing both the name and
context channels of an entity mention. A balance
factor for the channels guides whether the model
depends on the name or context for classification.
To help the model learn the factor and modules,
we also propose data augmentation strategies. As
a result, our model performs on par with the best-
performing ones on the CNER task and outper-
forms on the invariance test.

Further improvements can be expected if each
module can be replaced with more efficient ones.
We leave this to future work.
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