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Abstract

Named entity recognition (NER) is the founda-001
tion of many natural language processing tasks.002
Current NER models have achieved promising003
results. But as pointed by several studies, they004
fail with a high ratio on generalization tests005
such as invariance test because they heavily006
rely on name information. So, we propose a007
context module to explicitly model the contex-008
tual information, and a trainable balance factor009
is designed to incorporate the result of context010
module. To learn this factor, we propose several011
tailored data augmentation strategies to gener-012
ate synthetic labels for it. These approaches013
help the model learn whether it should focus on014
the context. Our method achieves on average015
1.2% absolute improvement of F1 than BERT-016
CRF on three datasets. Moreover, our method017
performs on par with the best solutions who018
rely heavily on external features besides BERT.019
We also conduct invariance test to analyse the020
effect of the context information. The source021
code of our model and augmentation strategies022
will be available at Anonymous.url1.023

1 Introduction024

Named Entity Recognition (NER) aims to extract025

word spans in natural language that mention real-026

world entities, and classify them into a predefined027

set of types like person, address, etc. It is the028

up-stream task of many NLP tasks like relation-029

ship extraction (Cao et al., 2019) and event extrac-030

tion (Wadden et al., 2019).031

NER models have achieved promising results on032

many benchmark datasets, but recent researches033

point out that current NER models are fragile and034

unreliable. Gui et al. (2021) find that the perfor-035

mance of NER models drops sharply when unseen036

phrases occur in the sample (drops around 10% and037

20% respectively). Ribeiro et al. (2020) proposed038

a “CheckList” to reveal the generalization capacity039

of NLP models. Among the list, Invariance Test040
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

Next we will introduce the main business situation of
Nantong Roads and Bridges .        (a company name)

Security Company .                (another company name)


Text: Next we will introduce the main business situation

(I)
(II)

NER Model Performance:         Hit       Predict       Not Recall

of

Santiago  or  L.A.
Россия .                 


Text: Washington has never lived

(I)
(II)

NER Model Performance: Hit       Predict       Not Recall

in

Figure 1: Invariance test: replacing a mention with
another mention with the same type may lead to model
failure.

expects the model prediction to remain the same 041

when facing with label-preserving perturbations to 042

inputs on Quora Question Pairs task. In their tests, 043

models perform poorly with a 10% failure rate. 044

Motivated by these work, we propose a “invari- 045

ance test” for NER by replacing a mention with 046

another mention with the same type, as demon- 047

strated in Figure 1. We find BERT-based CRF (De- 048

vlin et al., 2018) model which achieves acceptable 049

performance also fails on such small perturbation. 050

Such behavior is further studied in Section 5.6, 051

the failure rate reaches 19.0% and 8.1% for well- 052

known CRF (Lafferty et al., 2001) solutions. It 053

indicates that, some essential skills for NER are 054

neglected by current models. 055

Current NER models are fragile because in many 056

cases remembering the name, or exploiting biased 057

cues in mentions is simpler than considering a long 058

context, so that NER models tend to learn such 059

shortcut (Peng et al., 2020; Field and Tsvetkov, 060

2019), which leading to a poor performance for en- 061

tities not appearing in training data (Agarwal et al., 062

2020b). Here, “name” means the surface form of a 063

text span, and “context” is the rest of the sentence. 064

We human can perform well on NER because we 065

are able to effectively distinguish the information 066

from both the name and context. We can identify a 067

company mention by a clear pattern in names like 068

“ABC Co., Ltd.”, or identify an ambiguous mention 069

by looking at its context. Xu et al. (2017) also 070

claim that contexts play an important role when it 071
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involves multi-sense words or phrases. Although072

such phenomenon has been discovered, to our best073

knowledge, few work has proposed to tackle it.074

In this work, we propose to explicitly model-075

ing the context information as an attempt to this076

problem. We adopt a span-based method that first077

detects possible spans and then classifies them into078

an entity type or the “None” type. In the span clas-079

sification step, the model judges whether the span080

is an entity with two modules: A name module081

focuses on the information within the span, while a082

context module focuses on the information outside083

the span. Then, a combination module integrates084

them using a balance factor α to dynamically adjust085

their weight, and makes the final prediction. Note086

that the name module is an ordinary NER model087

can also look at the context, but we train it to focus088

on the name, and the context module can only look089

at the context. This is because if we separate the090

name and context of a span, then we need a heavy091

model to combine them. Our design has a ordinary092

module that looks at the whole sentence while can093

turn to context module is necessary.094

However, existing datasets only annotate095

whether a span is an entity mention, but do not096

explain when context is more important to iden-097

tify the mention. Without such supervision data,098

the proposed two-channel model will still lean to099

the name module. To solve this issue, we design100

tailored data augmentation strategies. For exam-101

ple, the “mention replacement (random)” strategy102

replaces an entity mention in a sentence with a ran-103

dom string. The context module is asked to predict104

the random string as an entity mention, the name105

module is asked to predict it as non-mention, and α106

leans to context. This encourages the model to dis-107

covery unseen entities. More details are discussed108

in Section 3.4.109

We conduct experiment on several Chinese110

datasets, and leave other languages for further111

study. Experimental results show that our NC112

model performs on par or better than state-of-the-113

art NER models on several datasets, even though114

they incorporate heavy external resources. At the115

same time, our method significantly outperforms116

existing models on invariance test. Our main con-117

tributions are summarized as follows:118

•We propose a two-module model called “NC-119

Model” with an context module to explicit model120

the context information. It performs significantly121

better on F1-Score than models using the same122

resource. 123

•We propose tailored data augmentation strate- 124

gies to weakly supervise the model to learn when 125

to focus on context information. 126

•We propose a “Invariance Test” to measure the 127

generalization capacity of NER model on unseen 128

names or contexts. Our proposed method performs 129

significantly better on this test. 130

2 Related Work 131

Currently, NER models have achieved promising 132

results on many benchmark datasets with various 133

external resources. For example, the state-of-the- 134

art models (Robert et al., 2021a) on Chinese NER 135

(CNER) tasks dataset have achieved high F1-scores. 136

Recent research pushes the limit by making use of a 137

large lexicon and gazetteer (Zhang and Yang, 2018; 138

Li et al., 2020), font features (Meng et al., 2019; 139

Xuan et al., 2020), as well as a large corpus for 140

pre-trained language models (Brown et al., 2020; 141

Liang et al., 2020). 142

Existing solutions for NER tasks fall into two 143

main categories: sequence labeling and span-based 144

methods. Most recent work on NER are based 145

on sequence labeling (Huang et al., 2015; Lample 146

et al., 2016) to assign a label for each token. They 147

focus on how to model a better text representation, 148

such as character LSTM (Dong et al., 2016), char- 149

acter CNN (Ma and Hovy, 2016; Zhu et al., 2019) 150

or Bert (Devlin et al., 2018). Current best CNER 151

models are all using sequence labeling methods. 152

Besides sequence labeling, span-based (Eberts 153

and Ulges, 2019; Zhong and Chen, 2021) solutions 154

are also common in NER. This kind of method 155

enumerates all spans in a text, filter them, and then 156

assign a label to each span. The number of all 157

spans in a sentence is usually large (O(|s|2)). For 158

this reason, the span-based solutions mentioned 159

above drop spans longer than 6 (Tan et al., 2020; 160

Xia et al., 2020) or 10 (Lee et al., 2017; Eberts 161

and Ulges, 2019; Joshi et al., 2020) tokens at first. 162

Our solution also utilize the span-based method for 163

better modeling the context features. 164

Currently, there are researches that diagnose ex- 165

isting NER models and discuss the importance of 166

name and context information for NER. Fu et al. 167

(2020) systematically diagnosed current state-of- 168

the-art NER models. They observed that the per- 169

formance of existing models (including the latest 170

ones) is largely affected by the extent to which 171

test entities have been seen in the training set with 172
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the same label. Agarwal et al. (2020b) designed a173

model to classify mention purely depends on the174

context. The result indicated that only use context175

is not possible to achieve a high performance NER176

model.177

The representations for context information at-178

tracts a lot of attention. Yaghoobzadeh and Schütze179

(2015) took the concatenation of the embeddings180

of the surrounding words of the mention as context181

representation. They pointed out that explicitly dis-182

tinguishing name and context separately for mod-183

elling performed better. Lin et al. (2020a) prepared184

entity-triggers to solve with zero-shot entity strings.185

The triggers in context are able to mark the posi-186

tion of an entity in the sentence, to help the model187

effectively improve its generalization ability. How-188

ever, the model requires extra annotation effort to189

annotate the trigger words of entity mentions. Lin190

et al. (2020b) claimed that there is a strong regular-191

ity between the names of same-labeled entities in192

the training and validation sets in the same dataset.193

They find that breaking the regularity (e.g., replac-194

ing the span with a random string) makes it harder195

for the model to predict correctly. Agarwal et al.196

(2020a) even replace entities with the ones in other197

languages. Other attempts on context information198

with max-pooling on Bert (Eberts and Ulges, 2019)199

or self-attention on Bi-LSTM (Xin et al., 2018), are200

also far behind existing CNER models mostly rely201

on names.202

3 Name-and-Context Model203

3.1 Overview204

Given a pre-defined entity type set E , the NER205

task aims to extract entities from a given sentence206

x = (w1, w2, ..., wn) . The result is an entity set207

Ê = {(i, j, t) | 0 ≤ i ≤ j < |x|}, t ∈ E .208

We want to explicitly model the context of a209

text span. Sequence labeling (Huang et al., 2015;210

Dong et al., 2016) method identify and type the211

mention simultaneously, which are not suitable212

for modeling spans. Therefore, we use the span-213

based method (Stratos, 2017; Tan et al., 2020)214

in this paper which first selects span candidates215

and then classifies them into pre-defined types216

L = E ∪ {None}, where None is the type for217

non-entity spans. A span (wi, ..., wj) is denoted as218

s = (i, j), s ∈ S.219

We name our model as NC Model (in short of220

“Name-and-Context Model”), as the entity type clas-221

sification model has name module and context mod-222

ule. We also propose augmentation strategies for 223

the classification step to encourage the model to 224

lean on context modules under proper situations. 225

In the following sections, we introduce the span 226

selection model, the span classification model, and 227

finally the tailored data augmentation strategies in 228

turn. 229

3.2 Span Selection 230

The span selection step filters all spans S in the text 231

to obtain a subset Sf for classification. Most span- 232

based methods (Lee et al., 2017; Zhong and Chen, 233

2021) enumerate all possible spans whose length 234

are smaller than a threshold Lsp ∈ {6, 8, 10}. It is 235

effective for English corpus as the length is mea- 236

sured at the word or sub-word level. For Chinese 237

corpus with longer text spans at the character level, 238

it is not enough. Millions of spans need to be 239

judged, it takes too much time for training or infer- 240

ence. So that besides the simple length limit Lsp, 241

we train a span scoring model g(·) for scoring each 242

text span g(s) ∈ [0, 1]. The model classifies with 243

both the boundary tokens of a span s = (i, j): 244

(h1, ..., hn) = Encoder(x)

g(s) = Sigmoid(FFN(hi ⊕ hj))
245

where hi is the hidden vector for wi from the 246

Encoder, ⊕ denotes the concatenation operation. 247

Moreover, we utilize the sentence segmentation
as another filtering rule. We remove spans which
locate in more than one segments, so for each span
candidate s = (i, j), it needs to comply:

(wi, wi+1, ..., wj) ∩ {，；。？！. . . } = ∅

which means we only generate spans between two 248

adjacent delimiters. It reduces the number and 249

average length of span candidates. 250

In a two-step NER approach, the recall of span 251

classification is bounded by the span selection 252

step. The training process needs strong negative 253

spans (Eberts and Ulges, 2019), while the infer- 254

ring needs span candidates that cover more entity 255

mentions. At the same time, the number of span 256

candidates is too large in longer sentences. It re- 257

sults in Out-Of-Memory issues during training with 258

regular filtering methods (e.g., negative sampling 259

by a certain proportion). There is a trade-off be- 260

tween the recall rate and span counts. After sorting 261

with the span scores, We take the top θtop-sp spans 262

in training and evaluating. 263
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Figure 2: The framework for the span classification step in NC Model. The name module considers the information
of the whole sentence, while the context module focus the context.

3.3 Span Classification264

The span classification consists three modules:265

name, context, and combination modules. The266

name module focuses on the information inside the267

span, the context module focuses on the informa-268

tion outside the span, and the combination module269

balance these two modules. For a sentence x =270

(w1, ..., wn) and a span s = (wi, wi+1, ..., wj), we271

introduce these three modules as follows.272

The name module is demonstrated in the or-273

ange parts in Figure 2. We get the representation274

hname(s) of span s in sentence from an encoder275

using its head and tail word representations:276

(h1, ..., hn) = Encoder(x)

hname(s) = hi ⊕ hj
277

where hi is the hidden vector from the Encoder, ⊕278

is the concatenation operation.279

The context module is demonstrated in the blue280

parts in Figure 2. To prevent the shortcut learning281

from ignoring the context during the training pro-282

cess, we intentionally model the context separately.283

x is fed into a bi-directional LSTM to get two284

hidden vectors for each token in forward and back-285

ward direction (h1, ..., hn) = BiLSTM(x), where286

hi = [
−→
hi ;
←−
hi ] is the concatenation of hidden vectors287

from two directions. The context hidden vectors288

h′ctx does not utilize any from the name informa-289

tion. Then we take an attention module based on290

h′ctx(s):291

q = h′ctx(s) = [
−−→
hi−1,

←−−
hj+1]

K = V = [
−→
h1, ...,

−−→
hi−1,

←−−
hj+1, ...,

←−
hn]

hctx(s) = Softmax(q ·KT /
√
nh) · V

(1)292

where nh is the dimension of hidden vector. Notice 293

we only attend on
−→
hk if k < i and

←−
hk if k > j so 294

that hctx(s) does not contain name information. In 295

this way, we generate the sentence representations 296

for all spans at the same time. Other ways to ob- 297

tain context features, such as masking tokens in 298

mention (Field and Tsvetkov, 2019) or inserting 299

boundary tokens around the mention (Zhong and 300

Chen, 2021), spend much more time generating 301

sentence representations for every single span. The 302

context module is obvious weaker than the name 303

module, because it only covers contextual tokens. 304

We do not care the performance of this module it- 305

self. What we focus on is whether the extra pure 306

context information improves the NC Model. 307

It is worth mentioning that we do not strictly 308

separate the context from the name module. In our 309

model design, we leverage the pre-trained language 310

model like BERT to offer semantic features for the 311

name module. So the name module can peek at the 312

context. We design the name module like this with 313

the following concern: 1) The strictly decoupled 314

name module plays the same role as a gazetteer 315

or lexicon. There is no need to degrade the name 316

module to achieve strict decoupling. 2) In the case 317

where the name is confusing, the alpha value will 318

lead the model to depend on the context module 319

that does not contain tokens in the name. Even 320

if both modules correctly focus on the same fea- 321

tures in some cases, the model can still effectively 322

answer with any alpha value. 323

The combination module combines hname and 324

hctx to make a final prediction. In addition, we uti- 325

lize width embeddings embwidth for the span length 326

feature. A balance factor α ∈ [0, 1] is introduced to 327

balance between name and context modules. The 328
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final representation of the span is:329

hnc(s) = αhname(s) + (1− α)hctx(s) (2)330

h(s) = hnc(s)⊕ embwidth(|s|) (3)331

If α is close to 1, the final result depends more on332

the name module, otherwise more on the context333

module. In our primary experiments, we tried sev-334

eral methods to compute α, such as feed forward335

network and bi-affine. We find bi-affine performs336

slightly better. So, we adopt bi-affine in the the337

following experiments, computed as:338

α = Sigmoid(hTname(s)Wbiafhctx(s)) (4)339

Finally, h(s) is fed into a feed forward layer fol-340

lowed by the Softmax function to get the proba-341

bility distribution p(x). Note that if there are two342

spans with overlapping parts, we only leave the one343

with higher max(p(x)). We use cross-entropy as344

loss function during training:345

Lcom =
∑
s∈S

∑
l∈L

(
−y(s)(l) log(p(s)(l))

)
(5)346

where S is the set of all candidate spans in the347

sentence.348

If we are able to give α a gold label, we can also349

compute a negative log-likelihood as the loss Lα350

for α. Then, for each span candidate in the sen-351

tence, we can derive a loss function that is the sum352

of both parts: L = Lα+Lcom. However, we do not353

have labels for α in current CNER datasets. The su-354

pervision on α to explicitly guide the model when355

to focus on features from the context is significant.356

We will introduce it in the next section.357

3.4 Tailored Data Augmentations358

We propose the following data augmentation strate-359

gies that assign different labels for name and con-360

text modules on the same sample. The augmenta-361

tions strategies aim to guide the model focus on362

the name or context information correctly. Some363

strategies provide a label for α, turn the learning364

on α into weak-supervised from un-supervised.365

As summarized in Table 1, the augmentation366

strategies are categorized into two groups: insertion367

and replacement. We assign labels for different368

strategies: For each module, 3 means we keep the369

original label (a positive entity type), 7 means we370

set it as negative (None type), “-” means ignore the371

loss for this module in current sample.372

The first class of augmentation is replacement.
Suppose we are given a sentence x and a span s =

(wi, ..., wj), l(s) ∈ E, i.e. s is an entity mention.
We can replace s by another token sequence s′ =
(w′1, ..., w

′
m) to get a new sentence:

x′ = (w1, ..., wi−1, w
′
1, ..., w

′
m, wj+1, ..., wn).

For the Mention Replacement strategy, s′ is an en- 373

tity mention with the same type as s. For the Ran- 374

dom Replacement strategy, s′ is a random string. 375

So, we set the label for name module as None, but 376

set the label for context module as l(s). Dai and 377

Adel (2020)’s experiments show that attempting 378

to improve the NER performance by using only a 379

single mention of substitution does not yield signif- 380

icant improvements. We believe that the replace- 381

ment for augmentation is not enough. 382

Another class of augmentation strategies is in- 383

sertion. We insert a text span s′ into the sentence at 384

random position. For the Random Insertion strat- 385

egy, s′ is not an entity mention, the model should 386

predict it as negative (i.e. ŷ(s′) = None). For the 387

Mention Insertion strategy, s′ is an entity mention 388

in another sentence. We set label for name module 389

as ŷ(s), and label for context as None, to encourage 390

the name module focus on the name. 391

As for α, we set its label lean to context in “Re- 392

placement (Random)” to encourage the model to 393

predict unseen mentions2. We set its label to lean 394

to name to accept clear name patterns with un- 395

clear contexts. In summary, we set different la- 396

bels to guide the model focus on targeted informa- 397

tion. One possible concern about these strategies 398

is that the random replacement and random inser- 399

tion strategies generate confusing and unreasonable 400

samples. Such samples are difficult to be incorpo- 401

rated by most existing models, as we cannot assign 402

them a reasonable type. However, we take them 403

in our model to guide the focus of modules, and 404

to simulate the extreme cases of rare context or 405

mentions. It means the unreasonable augmented 406

samples are only treated as extra annotations for 407

training specific modules. We do not utilize these 408

counter-intuitive samples in evaluation. 409

4 Invariance Test 410

The performance of the NER model is overesti- 411

mated with traditional metrics on a fixed test set. 412

We propose an evaluation method and the corre- 413

sponding metric which is an extension of “Invari- 414

ance Test” from the “Checklist” (Ribeiro et al., 415

2Each character in the random string does not exceed the
character set of the current data set.
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Strategy Converted Sample Label
name ctx com α

For a sentence with entity mention span: Aunt Kate ate this cake.
Boundary Movement Aunt Kate ate this cake. 7 7 7 -
Mention Replacement Aunt John Smith ate this cake. 3 3 3 -
Mention Replacement (Random) Aunt Vodka ate this cake. 7 3 - ctx
For a sentence not specifying the span: The cake tastes great.
Mention Insertion The John Smith cake tastes great. 3 7 - name
Mention Insertion (Random) The cake tastes Vodka great. 7 7 - -

Table 1: Augmentation strategies. The bold blue tokens are span candidates. 3 and 7 are labels for modules, “-”
means ignoring the loss. For each kind of module, we ensure that both positive and negative samples exist.

Dataset MSRA Resume Onto4
# Train Samples 45000 3821 15724
# Valid Samples - 463 4301
# Test Samples 3442 477 4346

# Tag Types 3 8 4
Avg # Chars 48.22 32.48 31.28

Avg # Entities 1.67 3.52 0.85
Avg Ent Length 3.23 5.88 3.08

Table 2: Statistics of three datasets. All Average mea-
sures are calculated on training samples.

2020). It is similar to Mention Replacement data416

augmentation introduced in Section 3.4. As we417

replace a mention with another mention with the418

same type, the resulting samples usually have cor-419

rect grammar. At first, We randomly select nit sen-420

tences from the test set. For each entity type t ∈ Eit,421

we collect all mentions M in these sentence. Then,422

for the X sentences that contain a mention with423

type t, we replace the first one with all mentions424

in M . The process generates |M | × |X| manipu-425

lated mentions to be recognized. The NER models426

are expected to recognize and classify as type t427

correctly.428

5 Experiments429

5.1 Datasets430

In this section, we will introduce the widely-431

used (Robert et al., 2021b) CNER datasets. Details432

for these datasets are shown in Table 2.433

•MSRA dataset. MSRA (MicroSoft Research434

Asia (2006)) is the simplified Chinese version of435

the Microsoft NER dataset on the Third SIGHAN436

Chinese Language Processing Bakeoff 3. Original437

MSRA dataset only has training set and testing set,438

3http://sighan.cs.uchicago.edu/bakeoff2006/

• Resume dataset. The Resume dataset is an- 439

other popular Chinese NER dataset proposed by 440

Zhang and Yang (2018). 441

• Onto4 dataset. The OntoNote 4 dataset is 442

also a well-known Chinese NER dataset released 443

by Weischedel et al. (2011). 444

5.2 Baselines 445

We compare our model with the following models. 446

• LSTM-CRF and BERT-CRF. We take Bi- 447

LSTM CRF (Lample et al., 2016) and BERT 448

CRF (Devlin et al., 2018) as baseline models which 449

is the de facto standard sequence labeling model for 450

NER. Moreover, we utilize them as the encoders 451

for two modules in our Model, without CRF parts. 452

• LatticeLSTM and FLAT. One of the best solu- 453

tions for sentence-level NER in Chinese is with the 454

lattice structure (Zhang and Yang, 2018) as lexical 455

information. FLAT (Li et al., 2020) achieves the 456

state-of-the-art result on MSRA dataset. 457

• PURE-CN. As the best performing span- 458

based solution in English NER, PURE (Zhong and 459

Chen, 2021) outperforms on English NER datasets 460

like ACE and GENIA. We follow the span-based 461

method from this work and adapt it for CNER. 462

• Others. In Chinese NER, using the glyph in- 463

formation as an additional kind of embedding of 464

characters is also effective. Such as Glyce (Meng 465

et al., 2019) and FGN (Xuan et al., 2020). This 466

kind of solution, together with the aforementioned 467

FLAT, are the current best solutions (Robert et al., 468

2021a) on the CNER task. However, the pre- 469

trained glyph embeddings are not released yet, so 470

we cannot reproduce their results and conduct in- 471

variance tests on them. 472
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5.3 Experiment Settings473

Embeddings, hyper-parameters and metrics are474

carefully designed for a fair comparison.475

• Embeddings. The parameters for embed-476

dings in LSTM are initialized from the same BERT477

model4. It means the token embeddings in different478

modules or models are calculated with the same479

position embeddings, layer normalization and so480

on. In NC Model, the embeddings in BERT are481

freezed during the training.482

• Hyper-Parameters. For all Chinese datasets,483

we set batch size as 4, Lsp as 25, and conduct484

10 epochs of training. The learning rate for mod-485

ules in our model is 5e-4, wheile BERT’s learning486

rate is 1e-5. Moreover, we set the dropout rate to487

0.2 for FFN. The model takes a step of 50 to find488

θtop-sp, and θtop-sp = 300 is the largest before Out-489

Of-Memory problem occurs5. The selected spans490

cover more than 98% entiies for all CNER datasets491

we mentioned in Section 5.1.492

• Evaluation Metrics. We adopt micro F1-493

Score as the evaluation metric. Only when both494

the span (l, r) and the entity type t are correct at495

the same time, we count it as a hit. Following the496

definition from Xiao et al. (2019), we treat any497

spans that do not exactly match the annotation as498

negative (it affects precision). It means that entities499

which are not recalled from the span generation500

step are counted as misses. Nested mentions, such501

as the “Nanjing” in the organization mention “Nan-502

jing University” is regarded as negative, as it does503

not appear in the annotations.504

Another evaluation metric is “Failure Rate” for505

the invariance tests mentioned in Section 4. We506

propose this new metric to measure a model :507

FR =
1

|S|
∑
si∈S

1(ŷ(si) 6= y(si)) (6)508

here 1(·) is the indicator function.509

5.4 Overall Results510

The experimental results on different dataset are511

shown in Table 3. As shown in Table 3, current512

state of the art models heavily depend on external513

features: 1) the in-house corpus and glyph features6514

are not publicly available yet7, making it difficult515

4“bert-chinese_L-12_H-768_A-12”, while FLAT uses bert-
wwm with the same embedding size as its default setting.

5on single Nvidia 12G RTX 2080Ti
6pre-trained Glyph embeddings and Glyce-BERT
7github.com/ShannonAI/glyce/issues

Performance
Dataset Model P R F1

MSRA

BiLSTM-CRF (2016) 93.0 90.8 91.9
LatticeLSTM♦ (2018) 94.0 92.2 93.1
BERT-CRF (2018) 95.0 93.3 94.1
PURE-CN (2021) 95.6 95.3 95.4
NC (Ours) 95.7 95.0 95.4
Glyce♠ (2019) 95.6 95.5 95.5
FLAT♦ (2020) - - 96.1

Resume

BiLSTM-CRF 94.5 94.3 94.4
LatticeLSTM♦ 94.8 94.1 94.5
BERT-CRF 94.0 95.2 94.6
PURE-CN 95.5 96.0 95.8
NC (Ours) 96.2 96.5 96.3
Glyce♠ 96.6 96.5 96.5
FLAT♦ - - 95.9

Onto4

BiLSTM-CRF 74.4 69.4 71.8
LatticeLSTM♦ 74.2 73.1 73.6
BERT-CRF 82.4 78.4 80.4
PURE-CN 83.5 78.5 80.9
NC (Ours) 80.9 81.1 81.0
Glyce♠ 81.9 81.4 81.6
FLAT♦ - - 81.8

Table 3: Overall Results on different datasets. The
network of BERT in “BERT-CRF” is optimized by us
so that it performs better than original. We take the
same BERT in our approaches. ♦ for utilizing external
lexicon and embeddings and ♠ for glyph embeddings.

to reproduce or improve upon the Glyce model. 516

2) FLAT gathers over 700 thousand external pre- 517

trained word embeddings from 3 different external 518

resources for lexicon features. The model perfor- 519

mance heavily relies on the quality of lexicons and 520

plenty of n-gram embeddings. 521

Our model utilizes BERT only, and it is excit- 522

ing that our model performs comparably to these 523

best CNER solutions. The ability to rival the opti- 524

mal CNER method without the need for external 525

features and tools makes our model easy to use in 526

practical applications. Compared to BERT-CRF 527

with the same inputs at prediction, our model im- 528

proves 1.2% on average. 529

To figure out why the model improves perfor- 530

mance, we put attention on ablations and the invari- 531

ance test in the following sections. 532

5.5 Ablations on Augmentation Strategies 533

We take the ablation experiment on CNER datasets 534

for further analysis as shown in Table 4. In this 535

section, we test the validity of our proposed aug- 536

mentation strategies. 537

In Table 4, we take ablation tests on augmenta- 538

tion strategies. Moreover, we also calculate FR to 539

figure out their contribution for the NER model’s 540

generalization ability. These CNER datasets share 541

7

github.com/ShannonAI/glyce/issues


Figure 3: Invariance test by combining different entity mentions and contexts. In the subfigures, the columns are for
different models and the rows are for different entity types (PERson and ORGanization).

MSRA Resume Onto4
Model F1 FR F1 FR F1 FR
NC Model 95.4 4.83 96.3 2.73 81.0 21.79
- Aug 95.0 4.53 96.0 2.79 80.6 22.53

- Replacement 95.0 5.14 96.2 2.85 79.9 22.54
- Insertion 95.2 4.74 95.8 3.39 80.5 24.08

Table 4: Ablations on augmentation strategies for NC
Model on CNER datasets. “-” means taking the part
away.

Models BiLSTM Latt BERT-CRF PURE NC
-CRF -ice Origin (+Aug) -CN (Ours)

PER 14.5 6.7 3.4 1.9 2.3 1.6
ORG 25.1 23.4 14.5 14.6 14.3 9.3
Total 19.0 13.6 8.1 7.3 7.4 4.8

Table 5: Failure rate (FR) in Invariance Test on the
MSRA dataset. We also tried to apply data augmenta-
tions (+Aug) on BERT-CRF.

a subset of tags {PER, ORG}, we treat it as Eit.542

When removing these augmentation strategies,543

both F1-Score and FR decrease. The model learn544

when to depend on context information without545

labels. Two kinds of strategies generate different546

labels for α, the absence of either “name” label or547

“context” label makes it difficult for α to function.548

On one hand, if there is no “context” labels, the549

model is not aware of when it needs to rely on the550

context module. On the other hand, the “name” la-551

bels teach the model when to discard all the features552

from the context module. In Section 3.4, we argue553

that the augmentation needs the insertion strategy554

in addition to the replacement strategy. The experi-555

mental results proved it is reasonable.556

5.6 Invariance Test557

We show the results of invariance tests as a heatmap558

in Figure 3. We take the MSRA dataset as an exam-559

ple to show the corresponding statistics in Table 5. 560

In the heatmap, all dots in each sub-figure in- 561

dicate model prediction failures, and faded dots 562

indicate a faulty tag type for a correctly recalled 563

span. Note that the not-recalled spans in our model 564

are also counted as failures. A large number of 565

dots in a row means the entity name is hard for 566

the model, while many dots in a column means the 567

context is confusing for the model. On the other 568

hand, fewer dots indicates that the corresponding 569

model generalizes better and produces consistent 570

results under manipulation above. We also try to 571

apply data augmentations for sequence labeling 572

models. For instance, the failure rate of BERT- 573

CRF drops 0.8% (relatively reduced by 9.9%) with 574

our proposed data augmentations. It indicates that 575

data augmentation also works on sequence label- 576

ing models. Our proposed model performs much 577

better than other models with a failure rate of 4.8%. 578

We can see that the invariance performance of the 579

model can be ranked as: 580

NC Model > BERT-CRF (+Aug) ≈ PURE-CN 581

≈ BERT-CRF > LatticeLSTM > BiLSTM-CRF. 582

6 Conclusions and Future Work 583

We propose a model containing both the name and 584

context channels of an entity mention. A balance 585

factor for the channels guides whether the model 586

depends on the name or context for classification. 587

To help the model learn the factor and modules, 588

we also propose data augmentation strategies. As 589

a result, our model performs on par with the best- 590

performing ones on the CNER task and outper- 591

forms on the invariance test. 592

Further improvements can be expected if each 593

module can be replaced with more efficient ones. 594

We leave this to future work. 595
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