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ABSTRACT

Earth observing satellites carrying multi-spectral sensors are widely used to monitor
the physical and biological states of the atmosphere, land, and oceans. These satel-
lites have different vantage points above the Earth and different spectral imaging
bands resulting in inconsistent imagery from one to another. This presents chal-
lenges in building downstream applications. What if we could generate synthetic
bands for existing satellites from the union of all domains? We tackle the problem
of generating synthetic spectral imagery for multispectral sensors as an unsuper-
vised image-to-image translation problem with partial labels and introduce a novel
shared spectral reconstruction loss. Simulated experiments performed by dropping
one or more spectral bands show that cross-domain reconstruction outperforms
measurements obtained from a second vantage point. On a downstream cloud
detection task, we show that generating synthetic bands with our model improves
segmentation performance beyond our baseline. Our proposed approach enables
synchronization of multispectral data and provides a basis for more homogeneous
remote sensing datasets.

1 INTRODUCTION

Climate change and related environmental issues - including the loss of biodiversity and extreme
weather - are listed by the World Economic Forum as the most important risks to our planet (7).
Monitoring the Earth is critical to mitigating these risks, understanding the effects, and making future
predictions (38). Multi- and hyper-spectral satellite-based remote sensing enables global observation
of the Earth, allowing scientists to study large-scale system dynamics and inform general circulation
models (26). In weather forecasts satellite data initializes the atmospheric state for future predictions.
On longer time scales, these data are used to measure the effects of climate change such as land-cover
variations, temperature trends, solar radiation levels, and the rate of snow/ice melt. In the coming
decades, increased investments from the public and private sectors in satellite-based observations will
continue to improve global monitoring, as highlighted in NASA’s decadal survey (25).

Satellites are designed based on specifications for a given set of applications with fiscal, technological,
and physical constraints which limit their temporal, spatial, and spectral resolutions. Geostationary
(GEO) satellites rotate with the Earth to stay over a constant position above the equator at a high
elevation of 35,786km. This position enables GEO satellites with on-board multi-spectral imagers to
take continuous and high-temporal snapshots over large spatial regions and are ideal for monitoring
diurnal and fast moving events. Spectral bands measure brightness and radiance intensities of the
electromagnetic spectrum at a specified center wavelength and bandwidth. Bands are selected to
satisfy defined variables of interest constrained by technological cost and accuracy. Applications of
GEO sensors include atmospheric winds measurement (35), tropical cyclone tracking (36), wildfire
monitoring (41), and short-term forecasting (24). Multiple GEO satellites are needed to generate
global high-temporal resolution datasets to better monitor these events around the world. However,
variations in resolutions, sensor uncertainties, and temporal life spans leads to a set of separate
datasets which are not consistent, making this process very challenging (26). Developing consistent
and homogeneous global datasets would relieve many of these challenges.

Supplementary Material: https://github.com/anonymous-ai-for-earth/
satellite-to-satellite-translation
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Figure 1: (Left) Network architecture for K = 3 satellites. Encoders (Ek), decoders (Gk), and
discriminators (Dk) are networks with residual blocks. Losses terms are highlighted in red. (Right)
Venn diagram shows how spectral bands can overlap between pairs and multiple satellites.
The current generation of GEO satellites are no exception. The GOES-16/17 satellites operated
by NASA/NOAA (cost: $11 billion) have a set of 16 imaging bands covering the visible, near-,
and thermal-infrared spectral range (29). The Himawari-8 satellite operated by the Japanese Space
Agency (cost: $800 million) similarly has 16 bands but swaps a NIR (1.38µm) band for a green
channel (0.51µm), enabling the construction of true color images (3). The 1.38µm band is ideal for
measuring Cirrus clouds, composed of ice particles in the upper troposphere, a major contributor to
regulating the Earth’s climate that is not yet well understood (21; 10). Without capturing this band,
directly observing Cirrus clouds over Japan, East Asia, and Western Pacific region from Himawari-8
is not possible. Synthetic observations via virtual spectral sensors could be a low-cost solution to
improving coverage availability and consistency with current satellites.

We present an approach to generate synthetic spectral channels from a multi-domain unpaired satellite
dataset. We treat satellites with either dissimilar spectral coverage or varying vantage points as
separate spectral sets. In this way, the problem closely resembles that of colorization (40) and
image-to-image translation tasks (22; 42; 9) in the case where paired images are not available
but with the added complexity of a large number of spectral bands. We use a combination of
variational autoencoder (VAE) and generative adverserial network (GAN) (8) architectures adapted
to our problem to model a shared latent space, as in unsupervised image-to-image translation(22).
Generating synthetic bands is an under-constrained problem that paired with an adverserial loss
in high dimensions promotes overfitting. Our approach mitigates these challenges by leveraging a
weak supervision signal based on partial overlap in spectral bands between domains. By including a
reconstruction loss on overlapping spectral bands between domain pairs we can substantially improve
spectral band synthesis.

To summarize our contributions, we 1) introduce a shared spectral reconstruction loss to a VAE-GAN
architecture for synthetic band generation; 2) test our methodology on real-world scenarios; 3) present
and release a test dataset of four hemispheric snapshots from three publicly available geostationary
satellites for future research. In the following sections, we will introduce related work in remote
sensing and image-to-image translation, describe the architecture, and review experiments. Lastly,
we will discuss the implications on this work and conclude with future directions.

2 BACKGROUND

Remote Sensing. Current generation GEO satellites observe 16 spectral bands over large regions
every 10-15 minutes at a 0.5-2km resolution. At a sub-optimal 2km, this produces full-disk images of
size 5,424×5,424×16 which causes storage constraints while being computationally expensive to
process. Physical and statistical models are used to convert these images into more easily interpreted
variables such as precipitation, cloud cover, and surface temperature (30). Multiple GEO satellites,
currently in orbit, extend the spatial ranges to actively monitoring larger regions. However, differences
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in spectral bands and sensor uncertainties/biases present challenges to commonly used sensor specific
models, especially existing downstream models do not generalize well to missing spectral information.

Neural models have long been applied to process remote sensing data and generate downstream
products. Hsu et al. (12) presented some of the first work that showed neural networks (NNs)
could generate accurate and high-resolution precipitation products from satellite observations. In
recent years, convolutional neural networks (CNNs) have been found to further improve this task
(27). Similarly, CNNs have successfully been applied to poverty mapping (15), super-resolution
(18), subpixel classification (20), model emulation (6), and land-cover classification (2), all from
low-level satellite products. In terms of spectral synthesis, few studies have explored reconstruction
of hyperspectral bands from RGB bands with supervised approaches (32; 1). While many of these
problems are within the class of image-to-image translation, they generally assume labels are widely
available and focus on individual sensors. To the best of our knowledge, no studies have developed
approaches to synthesize spectral information by learning across satellites in the unsupervised setting.

Image-to-Image Translation. Many problems can be defined as an image-to-image translation task
including super-resolution, style transfer, and colorization. Approaches to image-to-image translation
have been developed for both supervised and unsupervised settings to map images from one domain
to another. In the supervised setting, image pairs are available to learn a direct mapping from one
to the other. Generative adverserial networks have been shown to be highly successful at this task
(14; 33). Numerous unsupervised learning methods have been developed for the common case of
large unpaired datasets (22; 42; 39; 23). CycleGAN, for instance, proposed an approach to directly
map from one domain to another and back by incorporating a cycle consistency loss with a GAN
(42). UNIT (22) proposed a probabilistic approach that uses an intermediate latent space between
domains with a Variational Autoencoder (VAE) (16) and GANs (8). In contrast to prior work on
image-to-image translation our scenario specifically requires spectral translation and across multiple
domains. Rather than translating between relatively low-dimensional RGB images and segmentation
maps, as is found in traditional multimodal image-to-image translation (43; 4; 13), satellite imagery
contains tens to hundreds of spectral bands. Domain adaptation is another area of active research
which also considers the case of effectiveness in unseen environments with cycle consistency and
domain invariant (11; 5). (17) using a shared content loss to translate between RGB image styles.
(28) presented an application of image-to-image translation for 4-band Sentinel-4 images between
different times of day. Our approach is based on the proven fundamental techniques of learning a
shared latent space using cycle consistency and adverserial losses extended in the spectral dimension.
We also use the prior understanding of spatial consistency between domains to implement a partial
skip connection.

3 APPROACH

VAEs and GANs are effective for image-to-image translation where pairs of images are not available
(22). This is the case with for satellites with no space-time overlap. However, as in (22), a shared
latent variable z can be used to approximate the joint distribution from marginals. An adverserial loss
applied to cross reconstructions satisfies the shared latent space assumption but is under-constrained
for high-dimensional, multi-spectral images. We shall observe that this leads to large errors in our
task. To address this, we introduce a shared spectral reconstruction loss and skip connection to
effectively generate synthetic spectral bands (see Fig. 1), the result is a 50-80% reduction in mean
absolute error.

In the spectral domain, we consider the case of K satellites, S = {S1,S2, ...,SK}, such that
Sk ∈ RH×W×Bk is a set of Bk spectral bands with height H and width W , illustrated as a Venn
diagram in Fig. 1. The union of all sets, ∪Ki=1Sk, represents the complete set of spectral channels in
the data. We denote the intersection of two spectral sets as overlapping bands. Our goal is to generate
synthetic bands will where Si ∩ Scj 6= ∅ for ∀(i, j) where c denotes the complement. A shared latent
variable z is modeled with a Gaussian prior to learn a general representation for mapping between
sets such that the assumptions of shared spectral reconstruction, weight sharing, cycle consistency,
and cross-domain adverserial losses are satisfied.

VAE-GAN. For a given spectral set k, we define encoder-generator pairs {Ek, Gk} such that
q(zk|sk) = N (Ek(sk), I) and ŝk→kk = Gk(zk ∼ qk(zk|sk)) for a sk ∈ Sk. For any set j, ŝk→jk cor-
responds to reconstruction from set k to j. The set of encoders {E1, E2, ..., Ek} share their last layer
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of weights to constrain the latent space to high-level representations. Using prior pη(z) ∼ N (0, I),
the VAE likelihood is defined as:

LV AEk
(E,G) = λ1KL(qk(zk|sk)||pη(z))− λ2Ezk∼qk(zk|sk)[logpGk

(sk|zk)]. (1)

Distributions pGk
are modeled as Laplacian distributions and a Gaussian latent space with prior

z ∼ N (0, I). GANs are used to enforce realistic spatial/spectral distributions of reconstructed
images from the latent space. Discriminator networks D1 to Dk compare observations with cross
reconstructions from the latent space.

LGANk
= λ3Esk∼PSk

[log Dk(sk)] + λ3
∑
j 6=k

Ezj∼PSk
[log (1−Dk(Gk(zj)))]. (2)

Cycle Consistency. VAE and GAN losses are under-constrained and do not satisfy the shared latent
space constraint alone. As in (22), a cycle consistent loss is used such that sk = Fj→k(Fk→j(sk))
for all satellite pairs (j, k) and where Fk→j(sk) = Gj(Ek(sk)). The loss between sk and cycled
reconstruction ŝk→j→kk is written as:

LCCk→j
(Ek, Ej , Gk, Gj) =λ4KL(qk(zk|sk)||pη(z)) + λ4KL(qj(zj |sk→jk )||pη(z))

− λ5Ezj∼qj(zj |sk→j
k )[logp(Gk(sk|zj))]

(3)

With multiple domains, each domain should cycle through every other domain. The cycle-consistency
loss for each permutation results in a complete cyclical graph. This loss is written as:

LCCk
=
∑
k 6=j

LCCk→j
(Ek, Ej , Gk, Gj) (4)

Shared Spectral Reconstruction Loss. Adverserial losses can be easily fooled with increased
dimensions. To help avoid this we introduce an additional loss, LSSRk

. In this problem, if the
intersection of spectral channels Sk,j = Sk ∩ Sj between domains is not empty then the difference
between p(sk→kk |zk) and p(sk→kk |zk) can be minimized with KL divergence:

LSSRk
= λ6

∑
j 6=k

KL(p(s̃k→kk |zk)||p(s̃k→jk |zk)) (5)

where s̃k ∈ Sk,j . The SSR loss encourages decoders to reconstruct identical spectral wavelengths
with similar distributions while still synthesizing dissimilar bands. In this scenario, partial constraints
are placed between domains and allows sampling of unobserved spectra from the shared latent space.
By decreasing λ6 the bias between bands will be relaxed which may reduce the effect of more
uncertain domains.

Total Loss The likelihood is maximized by optimizing the GAN mini-max problem such that the
generator aims to fool the discriminator, alternating updates between (E,G) and (G,D).

L = min
E,G

max
D

K∑
k=1

[
LV AEk

+ LCCk
+ LGANk

+ LSSRk

]
(6)

The hyper-parameters used correspond to those in (22) and set as λ1 = 1, λ2 = 0.01, λ3 = 1, λ4 =
1, λ5 = 0.01, and λ6 = 0.1. Adam optimization is used to train the networks for 200,000 steps with
a batch size of 8 with parameters β1 = 0.5, β2 = 0.999 and learning rate 1e− 5. The reader can find
detailed information in the supplementary material. Below we show the steps for generating a new
band.

Algorithm 1: Generate a synthetic band by translating from one satellite to another
Result: Synthetic spectral band
Image sk from satellite k;
Encode to latent space z = Ek(sk);
Decode to other satellite s̃j = Gj(z);
Select synthetic band from s̃j ;

Data. Three geostationary satellite imagery datasets, GOES-16 (G16), GOES-17 (G17), and
Himawari-8 (H8) are used in our experiments. Each satellite captures hemispheric (full-disk)
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A) B)

Figure 2: Mean absolute error (MAE) of a substitute sensor (GT observations from a separate satellite),
synthetic sensor without SSR, synthetic sensor without skip, synthetic sensor, and reconstructed sensor
(reconstructed images from a full model with access to all bands) for each band. The wavelength of
each band is shown below the band number. A) include visible and near infra-red (no physical units)
and B) includes thermal infrared measured in Kelvin.

snapshots from a constant vantage point over time but of different regions. Examples shown in
supplement. Images contain 16 bands (channels) in the visible, near-infrared, and thermal spectrum
at 0.5-2km spatial resolution. G16 and G17 have identical specifications viewing the east and west
regions of North America and include two visible (blue, red), four near-infrared (including cirrus),
and ten thermal infrared bands. H8 has 15 overlapping bands with G16/G17 viewing the Pacific
Ocean and East Asia, this ensures similar information content. H8 captures three visible (blue, green,
red), three near-infrared (missing cirrus), and the same ten thermal infrared bands as G16/G17. Thus,
the G16 and G17 bands all overlap, cirrus (1.37µm) exists in G16 and G17 but is not in H8 and green
(0.51µm) exists in H8 but not in G16 or G17. These differences cause difficulties when applying
models relying on green or cirrus bands across satellite sets.

G16 observes the North, Central and South Americas, capturing a good distribution of land and
ocean. G17 observes the Pacific Ocean as well as most of North and Central America. However,
G17 has known problems with its thermal cooling system causing the near-infrared and thermal-
infrared channels to be unusable during periods of high heat and biased throughout (31). This further
highlights the gain in replacing low quality bands of G17 with a virtual sensor. Periods of high heat
are filtered out of our training and test sets with quality control checks to eliminate temporal periods of
known uncertainty. After quality control, considerable space-time overlap between G16 and G17 can
be used for testing. H8 observes East Asia, Australia, and the Western Pacific, partially overlapping
with G17. Discrepancies are expected between sensors caused by different solar and sensor viewing
angles but we are not aware of a more appropriate dataset for evaluation. The data generated by
(37) is used which normalized G16, G17, and H8 to a common geo-referenced gridding system in
order to facilitate intercomparisons and processed with the Bidirectional Reflectance Distribution
Function (BRDF). Bands have resolutions varying from 500m to 2km which we interpolate to a
common sub-optimal resolution of 2km. Full-disk images are on a common grid with tiles of size
300× 300×16. Training data is generated from the multi-petabyte datasets. We randomly sample
images to build a well distributed and large training dataset from years 2018 (G16,H8) and 2019
(G17) which totaled 359GB of data. Each tile is split into 64×64×16 non-overlapping patches for
training, generating millions of samples.

A test set including 500 random tiles from 25 days in February 2019 from overlapping G16 and G17
observations. The random set of tiles assures a range of solar angles, system patterns, and land cover
types. Similarly, four tiles of data from G17 and H8 on January 2, 2019 at 04:00UTC are selected to
evaluate synthetically generated green and cirrus bands (spatial overlap of G17/H8 is mostly ocean).
This dataset will be made publicly available consisting of tiles from each satellite.

4 EXPERIMENTS AND DISCUSSION

In this section we present a set of experiments to explore the properties of our approach by testing
which bands can be robustly synthesized, how many bands can be generated, how effectively the
proposed loss performs, and the ability to perform downstream tasks.
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Cross Satellite Band Synthesis. Our experiments start with testing how well each spectral band
can be synthesized. To do this we remove individual bands from one satellite (G16) during training,
synthesize these bands and compare with the ground-truth observations. We use the full set of bands
from the other two satellites during training. This approach is applied on G16 such that each model
takes 15 bands of G16 and 16 of G17 and H8.

Three comparisons are used to help put the accuracy of synthesized bands for G16 into context. Ours
refers to bands generated using our proposed approach with both SSR loss and skip connection.
Ours w/o SSR refers to bands generated with our proposed approach without the shared spectral
reconstruction loss. Ours w/o Skip refers to bands generated with our proposed approach without
the skip connection between the input and generator. UNIT refers to the unsupervised image-to-
image translation baseline as presented in (22) and is equivalent to ours without SSR and skip
connection. Sensor refers to the performance if we simply use overlapping observations from another
satellite (G17), this acts as our lower bound in performance and is actually the status-quo (essentially
substituting the missing band with images from the same band but from another satellite, which as
we shall see is a sub-optimal solution). Reconstruction refers to the images reconstructed from a full
model trained on all satellites with no missing bands, this acts as our upper bound in performance.
Each of these signals are computed on our test set of 500 overlapping overlapping tiles from G16/G17.
Fig. 2 shows the mean absolute error (MAE) for each condition. Table 1 shows the average MAE for
VIS/NIR and TIR of each method.

Table 1: The MAE for
VIS/NIR and TIR bands by
method.

Method VIS/NIR TIR
Cross-Sensor .186 4.45
UNIT .183 12.64
Ours w/o SSR .101 7.84
Ours w/o Skip .049 1.68
Ours .048 1.48
Reconstruct .036 1.14

The MAE in the sensor condition is substantial and largely caused
by clouds/aerosols in the vertical direction (see gif in supplementary
material). On the other side, synthetically generating bands using
our approach substantially reduces error by over 60% compared to
both this baseline and UNIT(see Table 1). Similarly, synthesized
bands also improve upon the view from G17 even though during
training they did not see examples of the corresponding band from
G16. Overall, the reconstructed and synthesized images have similar
signal-to-noise ratios. Ablation experiments removing the shared
spectral reconstruction loss and the skip connection show their ef-
fectiveness. SSR is critical to learning a robust latent space and the
skip connection improves both VIS/NIR and TIR predictions. We
observe that without introducing the SSR loss, performance is even
worse than the sensor baseline. From this we learn that applying an

existing image-to-image translation model (22) to our task, without adaptation, performs poorly. We
find that band 7, the shortwave infrared band (3.9µm), is particularly difficult to synthesize with MAE
significantly above that of the full reconstruction. This result suggests that the shortwave infrared
band captures information which cannot be inferred from the others. Notice how the wavelength gap
between bands 7 and 8 is relatively large (2.3µm), this may explain why the performance is poor. In
the future, a similar analysis could be used to inform future satellite design configurations.

We show qualitative examples of generating synthetic bands in Figs. 3b and 4. Two images are shown
in Fig. 3b including a false color image, composed of near-infrared, red, and blue bands, and a true
color image from a synthetically generated green band and real red and blue bands. This process is
applied to Himawari-8 to generate a cirrus band (shown in Fig. 4). While there may be challenges in
synthetically generating all bands, most can be reconstructed with a high signal-to-noise ratio and
this suggests that our approach could be used to make software updates to current satellite datasets.

Synthesizing Multiple Bands. Generating synthetic channels from satellites with a limited number
of spectral bands could be of significant value for long-term analysis. For example, older generation
satellites often have fewer channels and could provide greater utility in downstream tasks if it was
possible to generate images in additional frequency bands. Therefore, we set up an experiment to test
how many additional bands can be synthesized reliably and how many initial bands are required. A
set of synthesis models were trained on G16, removing bands one by one until just one band was left
and while keeping all 16 G17 and H8 bands. For simplicity, and to reduce computation, we dropped
bands in a fixed order: 9,4,13,2,15,12,6,3,10,8,14,5,11,7,16. In the most extreme case we use visible
band 1 and attempt to synthesize the remaining 15. As above, results are computed on the test set of
59 overlapping G16 and G17 tiles. The results presented in Fig. 3a (left) show how the number of
available input bands effects the MAE for VIS/NIR (bands 1-6) and TIR (bands 7-16). As expected,
MAE falls more or less monotonically as more bands are given as inputs. When just two bands, 1
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Figure 3: (a) Horizontal lines correspond to the sensor signal and error bars represent 95% confidence
intervals of tile MAE. (i-ii) show results of an experiment synthetically generating more and more
bands. (iii-iv) show MAE as a function of number of bands shared between spectral sets. (i and
iii) correspond to visible/near-infrared and (ii and iv) to thermal-infrared. (b) False (top) and true
(bottom) color images generated by GOES-17 on January 1 2019.
(blue) and 16 (TIR), are used as inputs, the synthetic TIR reconstruction of G16 still has lower error
than the observed sensor difference between G16 and G17. These results show that few bands are
needed to synthesize images that improve upon the status quo. In the TIR range, we find that MAE
plateaus after 3-4 bands are used as inputs. These results suggest that the information content in a
subset of bands may be sufficient for many applications. However, we should be prepared that some
bands may contain specific information useful for monitoring rare events. Overall, these results show
that a good proportion of bands can be synthesized remarkably well.

Table 2: The MAE
for VIS/NIR and
TIR bands by λ6.

λ6 VIS/NIR TIR
0.01 .068 5.03
0.10 .048 1.48
1.0 .042 1.34
10.0 .049 1.28

Sharing Spectral Losses. The effectiveness of the shared spectral reconstruc-
tion loss is tested by gradually increasing the number of shared bands included
in the loss one by one. Mathematically, this corresponds to the number of
bands included in the set Sk,j . In all runs, 16 bands of G16, G17, and H8
are used even if ignored by the SSR loss. Fig. 3a(iii,iv) shows the effect of
adding shared bands during training leads to a dramatic decrease in MAE. Cor-
responding cross-sensor signals are shown as horizontal lines. In this setting,
we find using the SSR loss is critical to learning this model. Sharing two
spectral bands in the loss function improves the signal and is almost all that
is needed for accurate reconstruction. This further reinforces our insight above
that a large amount of the information is captured in just a few spectral bands.
In Table 2 we further explore the SSR loss by testing a range of values for λ6

from 0.01 to 10. Our results suggest that increasing SSR weighting factor improves performance on
the test set.

Synthesizing Cirrus for Himawari-8. As discussed above, the cirrus band (1.38 µm) monitors ice
particles in the upper troposphere which regulate the climate, and H8 is missing this band. These ice
particles are often seen as thin clouds high in the atmosphere which may be viewed in the visible
range, along with other clouds. To generate a synthetic cirrus band, an H8 observation is translated to
G17. In Fig. 4 we show five images where G17 and H8 have space time overlap. G17 observations
of false color and cirrus bands present a baseline. The observed H8 true color depicts the same
scene and a corresponding synthetic cirrus band. This scene consists of clouds of multiple types and
atmospheric heights on January 2, 04:00UTC. Cirrus clouds are found high in the atmosphere and are
seen as thin or wispy (see lower right portion of the images). Comparing images 4b and 4d shows the
similarity between synthetic bands and observations. Lower-level clouds, which can be seen on the
lower right of the images, are ignored by both the observed and synthetic cirrus bands. Fig. 4e also
shows the corresponding latent space from H8 where we highlight the feature maps corresponding to
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(a) G17 False Color (b) G17 Cirrus (c) H8 True Color (d) H8 Synthetic (e) Latent features

Figure 4: Synthetically sensing cirrus from Himawari-8 using GOES-17. Images are taken from the
test set (January 2, 2019 at 4:00UTC). (a) G17 false color image (NIR,R,B) (b) observed cirrus, (c)
corresponding true color H8 image and (d) synthetically generated cirrus. Latent features are shown
in (e) with red boxes highlighting feature maps capturing cirrus clouds.

the cirrus band. These suggest that our approach has learned to distinguish that clouds of different
types are visible from different bands, a particularly important result.
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Figure 5: Cloud segmentation of four Himawari-8
observations. From top to bottom, rows show ob-
servation and cloud mask labels followed by false
color, synthesized, reconstructed, and observed
segmentation. Yellow denotes cloud pixels and
blue non-cloudy pixels.

Cloud Detection. The goal of generating
synthetic satellite datasets is to enable us
to run downstream applications and models.
Cloud/aerosol segmentation is one important
task. To demonstrate this we take a learned
cloud detection model that is dependent on H8
bands 1-4, including the green band. However,
the green band is not available from G16/G17
and therefore we cannot directly use the cloud
detection model with these data, we need to syn-
thesize the green band first. For background, the
cloud detection model was trained using labels
for clouds and aerosols from a dataset gener-
ated with a physically-based land surface model
tuned specifically for H8 (19). With this training
dataset, a model can be trained to perform cloud
detection (19), specifically we use a Bayesian
convolutional neural network as introduced in
(34; 6) for the model.

Now we can compare the cloud detection ac-
curacy with and without H8’s green band and
with a synthetic green band. We take a version
of our synthesis model trained to synthesize a
green band. Our model is able to translate be-
tween H8 views with and without green bands.
Quantitatively, we compute the area under the
receiver operating characteristic curve (AUC)
when comparing labels to segmented probabil-
ities over 100 random samples. On the upper
limit, observed and reconstructed AUCs are 0.93
and 0.89, respectively. The AUC falls to 0.73
using a false green band versus 0.88 for the syn-
thetically generated green.

In Fig. 5, we show qualitative examples of em-
ulated cloud detection results. The first row

shows the inputs as true color observation with visible clouds and the second shows the physically
generated cloud/aerosol labels. As a baseline, a false green is generated as the average of red and blue
bands (R,R+B

2 ,B) and used for cloud detection. The fourth row shows the results using our synthetic
green band translating between 15-band H8 and 16-band H8. Similarly, the last two rows show results
when using reconstructed and observed bands for segmentation, respectively. Segmentation from
the false color images often produces unclear results and overestimates cloud cover. In contrast, the
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synthetically generated bands produce segmentation maps that look nearly identical to reconstructed
and observed examples. In the last column, we show an example of our approach acting as a denoiser
to improve cloud detection even beyond the observed cloud segmentation. In sum, results suggest
that synthetic data generated from our approach is applicable and may even have the potential to
improve downstream tasks.

Limitations. While the VAE-GAN architecture performs well overall, it does present some limita-
tions. VAEs aim to explicitly model the data as a multivariate Gaussian and often produces blurry
outputs. The GAN counteracts this effect by discriminating between real and generated images.
However, there is concern that this reduces data precision and fails to detect rare and anomalous
events which may effect scientific applications. Extending our work to use normalizing flows, as in
(9), may reduce this limitation.

5 CONCLUSION

We have presented an unsupervised learning approach for satellite-to-satellite translation that can be
used to synthesize unobserved spectral bands. A novel shared spectral reconstruction loss is presented
to further constrain learning and conserve spectral information and a partial skip connection maintains
spatial consistency. Experiments with sensors on the GOES-16/17 and Himawari-8 satellites show
that synthetic spectral bands can be generated through reconstruction from a shared latent space.
For the first time, we are able to generate true color images from GOES-16/17 and the cirrus band
from Himawari-8, generating further value from these satellites. Further, a cloud detection model is
used to show the applicability of synthetically generated bands for downstream tasks. Future work
may consider conditioning the shared latent space with known physical properties and extending to
additional tasks.
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A APPENDIX

A.1 TEST IMAGES

Figure 6: Full Disk Image of GOES-16 at 20:00 UTC on January 1 2019 - False Color (NIR,Red,Blue)

You may include other additional sections here.
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Figure 7: GOES-17 Coverage overlapping GOES-16 at 20:00 UTC on January 1 2019 - False Color
(NIR,Red,Blue)
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Figure 8: Full Disk Image of Himawari-8 at 04:00 UTC on January 2 2019 - True Color
(Red,Green,Blue)
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Figure 9: GOES-17 Coverage overlapping Himawari-8 at 04:00 UTC on January 2 2020 - False Color
(NIR,Red,Blue)
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