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ABSTRACT

Multimodal Large Language Models (MLLMs) are measured on numerous bench-
marks like image captioning, visual question answer, and reasoning. However,
these benchmarks often include overly simple or uninformative samples, making it
difficult to effectively distinguish the performance of different MLLMs. Addition-
ally, evaluating models across many benchmarks creates a significant computational
burden. To address these issues, we propose LIME (Less Is More for MLLM Eval-
uation), a refined and efficient benchmark curated using a semi-automated pipeline.
This pipeline filters out uninformative samples and eliminates answer leakage by
focusing on tasks that require image-based understanding. Our experiments show
that LIME reduces the number of samples by 76% and evaluation time by 77%,
while it can more effectively distinguish different models’ abilities. Notably, we
find that traditional automatic metrics like CIDEr are insufficient for evaluating
MLLMs’ captioning performance, and excluding the caption task score yields a
more accurate reflection of overall model performance. All code and data are
available at https://anonymous.4open.science/r/LIME-49CD.

1 INTRODUCTION

In order to better understand the model’s capabilities and guide addressing the shortcomings of
MLLMs, researchers develop numerous benchmarks for various tasks (Antol et al., 2015; Wei et al.,
2023; Fu et al., 2023; Yue et al., 2024; Wu et al., 2024a). These benchmarks thoroughly explore the
capabilities of MLLMs in various tasks such as image captioning, image question answering, and
multimodal retrieving.

However, existing MLLM benchmarks and unified evaluation frameworks cannot effectively and
efficiently reflect the ability of MLLMs. Current benchmarks include numerous relatively simple
samples (i.e., how many chairs are in the picture) and some incorrect questions caused by annotation
issues. Most MLLMs consistently perform on these samples (i.e., all correct or all wrong). Therefore,
those benchmarks cannot fully reflect the gap between different MLLMs and across various tasks.
Besides, the current unified multimodal evaluation frameworks require significant computational
resources, necessitating integrating much evaluation data from various benchmarks. The selection of
effective evaluation data is largely overlooked by current researchers.

As shown in Figure 1, to address the aforementioned issues, we propose to use a general data process
pipeline and curate a LIME, which contains 9403 samples and is refined across 10 tasks within 6
domains. We select six major tasks in the multimodal domain and use 9 MLLMs to refine those 10
benchmarks within the corresponding domain. To eliminate bias introduced by individual models,
we choose 9 models as judges and filter samples based on their performance. On the one hand, we
remove samples that most models answer correctly due to the fact that they cannot distinguish the
capabilities among different models. On the other hand, we use a method that combines humans
and MLLMs to filter out some abnormally difficult samples. Meanwhile, we use LLMs to filter out
samples that can be answered directly from the context of the question. After that, we obtain a smaller
yet higher-quality unified bench (i.e., LIME).

We conduct various experiments on LIME using both MLLMs and LLMs on different input settings,
such as QA + image inputs, QA input (text-only input), and the QA + image description experiment.
We make several valuable findings:
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• LIME can better reflect the performance differences of MLLMs. On our LIME benchmark,
under consistent conditions (same model series, same model size), different MLLMs demon-
strate a wider score range, indicating that LIME is more effective at reflecting performance
differences between models with a smaller amount of data.

• MLLMs exhibit varying capabilities across different subtasks. Specifically, they excel in the
Visual Question Answering (VQA) subtasks, showcasing relatively high performance when
answering questions directly related to factual information depicted in images. However,
their performance is comparatively lower in tasks that necessitate the application of addi-
tional commonsense knowledge or complex reasoning. This highlights the significant image
content recognition capabilities of current MLLMs.

• Through the correlation analysis of scores across different tasks, we find that using traditional
automatic metrics for the captioning task makes it difficult to reasonably evaluate the model’s
performance. Different tasks have varying requirements for factual perception and the
application of additional commonsense knowledge in images.

2 METHOD

Most benchmarks contain low-quality, noisy data. Figure 2 shows the statistics of different
subtasks within our LIME benchmark. It is worth mentioning that the proportion of easy and wrong
samples exceeds 30Out of the 10 subtasks, 6 have proportions exceeding 50%. Notably, for the
POPE dataset, 95% of the data can be classified as noisy or erroneous. This indicates that existing
benchmarks are filled with a large amount of low-quality data, which does not accurately reflect the
true capabilities of MLLMs.

Inspired by MMStar (Chen et al., 2024a), we utilize open-source MLLMs and LLMs as the judges for
filtering, specifically, we remove the existing annotation errors. The overall pipeline consists of three
main stages: (1) Using open-source models as judges, (2) A semi-automated screening process, and
(3) Eliminating answer leakage. Our approach aims to improve existing benchmarks by removing
inaccurate and oversimplified data.
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Figure 1: Pipeline of the Data Curation. The left half part is the Open-Source Models as Judges
module, which uses several Multimodal LLMs to answer questions for each sample and assess their
difficulty. The upper right part is the Semi-Automated Screening Process module filtering some
samples that are too simple or difficult. As for the Eliminating Answer Leakage, we filter the sample
that can be answered without the image.
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COCO-Caption TextCaps POPE OK-VQA TextVQA

InfoVQA ChartQA AI2DScienceQA OCRBench

Easy Bad Case Remained

30.7%
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44.3%

9.7%

46.0%

Figure 2: Overall data statics about selected subtasks. Easy: questions that most models can answer
correctly, Bad Case: questions that may contain errors, Remained: questions that finally remain.

2.1 OPEN-SOURCE MODELS AS JUDGES

To avoid potential biases that may exist in individual MLLMs, we select ten different types of open-
source models as judges. To categorize the difficulty of each sample, we analyze the performance of
all judge models on each question and label the difficulty based on the number of models that answer
correctly. We define N as the number of models that correctly answer the sample. If N ≥ 6, the
question is classified as the easy set. If 3 ≤ N ≤ 5, it is classified as the middle set. Conversely, if
N ≤ 2, it is classified as the hard set.

2.2 SEMI-AUTOMATED SCREENING PROCESS

Easy samples do not effectively differentiate the capabilities of various models, as most models can
answer them correctly. Therefore, we remove the easy samples to assess model performance better.

Furthermore, we find that some questions are not correctly answered by any model, which can be
due to potential errors in the question design. To mitigate these potential errors and filter out totally
incorrect questions, we implement a semi-automated screening process, which consists of two stages.
In the first stage, all questions with zero passes are reviewed by GPT-4V to assess their correctness
in terms of logic and meaning. In the second stage, questions deemed correct by GPT-4V are then
manually screened. This strategy helps us eliminate meaningless or erroneous data from the dataset,
thereby reducing its size and improving its quality.

2.3 ELIMINATING ANSWER LEAKAGE

Although the previous two stages have filtered out potential errors and assessed the quality of the
questions, we still need to address the potential issue of ANSWER LEAKAGE. Multimodal Answer
Leakage can be summarized into two main categories: 1.Text Answerable Questions: The textual
information contains all the necessary details to answer the question, making the corresponding visual
information redundant. 2.Seen Questions: The MLLMs have encountered a specific question during
training and has memorized the question along with its corresponding ground truth.

As for the Seen Questions, it has been removed in the Filtering Easy Sample module in Sec. 2.2.
Therefore, we conduct a text-only check using pure text LLMs to eliminate the ANSWER LEAK-
AGE. Specifically, based on LLMs’ responses, we remove the samples that can be directly answered
without using the image. After that, we proportionally sample 1,200 samples from these categories
based on their difficulty levels. For benchmarks with fewer than 1,200 entries, we adapt all samples.
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3 LIME: A COMPREHENSIVE MLLMS BENCHMARK

Table 1: Data statics: Full Size: the size of the
original dataset, Lite Size: the final size of the
LIME. For the COCO-Caption dataset, we selected
the 2017 subset, and for the ScienceQA dataset,
we chose the ScienceQA-IMG subset.

Task Domain Dataset Split Full Size Lite Size

Captioning TextCaps
COCO-Caption

val
val

3166
5000

1200
1200

T/F reasoning POPE val 9000 443

Normal VQA OK-VQA
TextVQA

val
val

5046
5000

1200
1200

Infographic QA infoVQA
ChartQA

val
val

2801
2500

1200
1200

Science QA ScienceQA
AI2D

val
val

2097
3088

300
1000

OCR OCRBench val 1000 460

In this section, we propose LIME, a comprehen-
sive benchmark for Multimodal Large Language
Models (MLLMs). LIME streamlines existing
mainstream benchmarks. Tab 1 shows the main
datasets included in our benchmark, as well as
the data scale after careful pruning. For each
sub-dataset, we aim to keep the size around 1k
samples.

3.1 TASK DEFINITION

We have categorized the existing mainstream
tasks into six domains: Captioning, T/F Reason-
ing, Normal VQA, Infographic Understanding
QA, Science QA, and OCR. Below are the task
definitions for each domain

Image understanding and captioning: The Captioning task focuses on the fundamental image-
text understanding ability, requiring MLLMs to accurately describe and understand the content of
images. This ability is commonly learned by most multimodal models during the pre-training stage.
For example, the CLIP model aligns image and text features through contrastive learning, making
Captioning a measure of the basic capabilities of MLLMs.

T/F reasoning: T/F Reasoning requires the model to judge the truthfulness of textual statements
based on the image content. This not only demands basic image understanding from the MLLMs but
also requires a certain level of reasoning ability.

Normal VQA: Normal VQA, or Visual Question Answering, comprehensively evaluates the model’s
ability to answer questions based on visual input. MLLMs are required to select the most appropriate
answer from specific options.

Infographic Understanding QA: This task differs from Normal VQA as it tests the model’s ability
to retrieve details from images. MLLMs need to find the most relevant information in the image
related to the question and then provide a reasoned answer.

Science QA: Science QA includes questions and answers related to natural science knowledge. This
requires the model to have domain-specific knowledge in natural sciences, mainly assessing the
MLLMs’ mastery of knowledge within a specific domain.

OCR: The OCR task requires the precise extraction of textual content from images.

3.2 DATA STATISTICS

LIME is composed of 10 open-source multimodal evaluation benchmarks, with scales ranging from
1,000 to 9,000. After our three-stage data curation, the data scale of each benchmark is significantly
reduced. Figure 1 shows the number of samples removed at each stage compared to the original
dataset. The amount of data removed varies at each stage, with the most being removed in the first
stage, reflecting a large number of low-difficulty or data-leakage samples in the existing 9 MLLMs.
Comparing the data volumes before and after the second stage of semi-automated screening, we can
see that many datasets, such as OK-VQA and TextVQA, have a high rate of low-quality data leading
to MLLMs’ incorrect answers. Additionally, some datasets, such as ScienceQA and AI2D, have
a significant amount of data removed after the third stage, indicating that many questions in these
datasets may contain potential answer leakage. The statistics of the curated data are shown in Tab 1.
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Figure 3: The number of samples removed at each stage compared to the original data, including
three stages of filtering and the final sampling stage.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

To evaluate the quality of LIME, we conduct a series of experiments across various open-source and
closed-source models. These experiments primarily encompass the following three settings:

Main experiment: To demonstrate the performance of LIME, we evaluate mainstream open-source
and closed-source models using a standardized process to reflect their overall performance differences.

Text-only set: To prevent potential data leakage issues, we conduct validation experiments using
text-only QA pairs. This verifies whether LLMs can correctly answer questions based on text-only
information.

Text-only question with Image Description set: Image Description (ID) refers to simple descriptions
of images that represent superficial information contained within them. For most MLLMs, questions
containing only superficial information are easy to answer; however, questions requiring complex
visual inference are significantly more challenging. To further validate whether LIME can reflect
the capabilities of MLLMs, we input text-only QA pairs combined with ID into LLMs and test their
ability.

4.2 BASELINES

We select LLaVA-1.5 (Liu et al., 2023a;b), LLaVA-1.6 (Liu et al., 2024), Tinny-LLaVA (Zhou et al.,
2024), MiniCPM (Hu et al., 2024), Idefics-2 1, Deepseek-VL(Lu et al., 2024), CogVLM (Wang
et al., 2023; Hong et al., 2023), XComposer-4KHD (Zhang et al., 2023), Mantis (Jiang et al., 2024),
InternVL-1.5 and InternVL-2 (Chen et al., 2023; 2024b) as our MLLMs baseline, and LLaMA3,
Yi, Yi-1.5 (AI et al., 2024), Qwen-1.5 (Bai et al., 2023a) and Qwen2 (Yang et al., 2024) as LLMs
baseline. To ensure fairness in the evaluations, we use the unified evaluation framework provided
by lmms-eval (Zhang et al., 2024b) to conduct evaluation experiments on LIME. For models not
supported by lmms-eval, we refine the inference code provided by the model developers to make it
compatible with the new models for the sake of aligning the results of different models.

Metrics For most tasks included in LIME, we reference the metrics computation methods used in
lmms-eval. Specifically, for tasks such as AI2D, ScienceQA, OCRBench, and POPE, we calculate
the accuracy of the extracted responses. For tasks such as OK-VQA and TextVQA, we calculate the
metric scores based on the overlap between the response and the candidate answers. For tasks like
TextCaps and COCO-Caption2017, we use CIDEr as the score. The ANLS metric is used for the
infoVQA task, and the Relaxed Overall metric is used for the ChartQA task.

We calculate the sub-scores for each task category by taking a weighted average of the subtask scores,
and then compute the overall score by weighted averaging the scores of all tasks except for the caption
tasks. The details of the metrics calculation are provided in Tab 7.

1https://huggingface.co/blog/idefics2
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5 RESULTS

5.1 MAIN RESULT

Table 2: Left half of the table:Comparing overall scores of LIME and Original. The arrow next to
the LIME score indicates the change in ranking on LIME compared to the original dataset. ↑: upward
shift, ↓: downward shift, and -: no change. Right half of the table: performance on six domains

Model Size LIME Original Reasoning VQA InfoQA SciQA OCR Caption

GPT-4O - 52.63 - 47.18 42.95 57.63 56.15 72.39 47.84
claude-3-5-sonnet - 51.99 - 35.89 50.33 56.38 44.69 73.91 28.00
Gemini-1.5-Pro-Vision - 49.46 - 54.63 37.71 55.33 50.15 73.26 41.38
GPT-4-Vision-Preview - 42.23 - 42.44 33.86 48.00 42.39 55.22 29.14

InternVL-2 2023 40B 66.85 ( - ) 80.31 51.69 48.72 81.12 75.92 75.87 56.02
Qwen2-VL 2023b 7B 65.28 (↑ 1) 79.14 53.05 51.37 80.83 62.08 77.61 89.67
InternVL-1.5 2024b 26B 64.12 (↓ 1) 79.49 51.69 52.68 78.96 63.32 60.65 90.93
InternVL-2 2023 26B 63.98 ( - ) 78.82 54.63 45.64 79.12 70.54 71.09 66.54
InternVL-2 2023 8B 62.00 ( ↑ 1 ) 77.84 49.21 45.15 76.00 68.54 70.65 34.00
LLaVA-OneVision 2024 7B 61.95 ( ↓ 1 ) 78.71 52.37 51.27 74.50 66.77 47.83 106.46
XComposer2-4KHD 2023 7B 57.52 (↑ 4) 71.93 46.28 44.22 73.29 58.38 53.04 87.57
InternVL-2 2023 4B 57.22 (↓ 1) 73.97 47.18 39.89 71.21 63.31 67.17 28.83
CogVLM-2 2024 19B 54.44 (↑ 6) 69.93 51.02 37.19 69.92 54.00 68.26 28.84
Qwen2-VL 2023b 2B 54.00 (↑ 5) 70.86 50.79 43.78 66.25 46.38 68.04 88.39
InternVL-2 2023 2B 53.64 (↓ 2) 73.00 50.79 40.71 62.88 56.54 67.39 47.27
CogVLM-1 2023 17B 51.03 (↑ 1) 71.34 55.10 51.45 59.46 36.54 41.96 33.92
Cambrian 2024 34B 50.17 (↓ 5) 73.26 49.44 39.66 57.50 60.23 39.13 4.62
Cambrian 2024 13B 48.57 (↓ 4) 72.39 50.79 41.53 56.04 49.23 42.39 6.96
InternVL-2 2023 1B 48.21 (↑ 3) 68.46 52.82 36.46 56.04 47.92 65.00 14.19
Cambrian 2024 8B 47.95 (↓ 4) 71.84 49.89 42.12 53.55 49.46 43.04 6.13
LLaVA-1.6 2024 34B 44.06 (↑ 3) 67.22 47.00 30.80 53.21 53.08 37.17 66.25
MiniCPM-LLaMA3-2.5 2024 8B 42.61 (↓ 3) 71.22 43.10 43.55 58.55 6.60 55.87 35.89
LLaVA-OneVision 2024 0.5B 41.40 (↑ 4) 65.65 48.98 35.87 48.04 36.23 42.83 93.34
LLaVA-LLaMA3 2023 8B 40.90 (↓ 3) 69.74 44.24 37.36 43.33 45.56 30.22 74.03
Mantis-Idefics-2 2024 8B 39.25 ( - ) 66.91 44.24 36.79 39.75 43.69 32.17 82.44
Deepseek-VL 2024 7B 38.10 (↑ 2) 65.62 48.50 34.90 38.50 44.23 25.43 68.72
LLaVA-1.6-vicuna 2024 13B 37.08 (↓ 4) 67.29 43.10 30.00 41.63 41.54 31.96 62.23
Idefics-2 2024 8B 36.39 (↓ 2) 66.73 42.00 46.05 18.50 47.46 42.61 77.87
LLaVA-1.6-vicuna 2024 7B 30.15 ( - ) 64.80 41.10 25.75 32.88 31.77 23.70 62.20
Mantis-SigLIP 2024 8B 29.13 (↑ 1) 58.96 45.60 29.39 25.79 35.77 10.65 74.69
MiniCPM 2024 1.0 26.15 (↑ 2) 56.18 44.00 21.60 24.58 35.46 14.57 72.80
LLaVA-1.5 2023a 13B 20.38 (↓ 2) 59.58 36.60 25.80 8.96 31.08 5.87 74.81
LLaVA-1.5 2023a 7B 17.20 (↓ 1) 57.27 32.51 19.97 7.17 29.81 4.78 72.47
InstructBLIP-vicuna 2023 7B 15.55 ( - ) 47.87 45.10 16.75 6.04 24.77 4.35 77.61
Tiny-LLaVA-1 2024 1.4B 13.95 ( - ) 34.30 37.00 9.80 8.33 27.85 3.48 61.05

As shown in Tab 2, we evaluate both open-source and closed-source MLLMs using our LIME
benchmark. Overall, for closed-source models, GPT-4O achieves the best performance with a score
of 52%, while for open-source models, models with larger parameter sizes and newer versions tend to
have higher overall scores. InternVL-1.5, InternVL-2-Large (26B, 40B), and LLaVA-OneVision-7B
achieve the best overall performance, with their overall scores all surpassing 60%. The performance
of InternVL-2-Small (1B-8B), the CogVLM series, and the Cambrian series follows, with their
overall scores ranging from 45% to 60%.

Comparing the overall scores of LIME and Origin benchmarks, we observe that certain model
series, such as Cambrian and LLaVA-1.5, experience a decline in overall scores. Conversely, the
CogVLM and LLaVA-OneVision series show an improvement, with CogVLM2 and XComposer-
4KHD experiencing significant increases of 4% and 6%, respectively.

Tab 6 provides more detailed experimental results. Regarding caption subtasks, most models demon-
strate good performance. These tasks involve generating or assessing descriptions of the content in
images, which indicates that current MLLMs possess strong image content recognition capabilities.
As for the VQA task, current MLLMs perform relatively well on TextVQA, ChatQA, and ScienceQA,
where the questions directly ask about facts in the picture. However, their performance is relatively
lower on OK-VQA, infoVQA, and AI2D, which require additional commonsense knowledge or
complex reasoning to answer the questions. This demonstrates that current MLLMs exhibit significant
image content recognition capabilities but are limited in their ability to perform complex reasoning
using additional knowledge. We believe this limitation may be due to constraints in the language
model component of MLLMs.
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Figure 4: Correlation distribution between LIME and Wildvison Elo.

5.2 CORRELATION ANALYSIS

Figure 4 illustrates the correlation between the various sub-tasks in LIME and WildVision Bench.
Most tasks in LIME exhibit a strong positive correlation with WildVision Bench. Six subtasks
have correlation scores exceeding 80%. Additionally, the overall score of LIME correlates at 91%
with WV-Elo, which is higher than any individual sub-task and the original bench’s correlations,
demonstrating that the overall score of LIME provides a more comprehensive reflection of MLLMs’
capabilities.

Automated evaluation metrics (e.g., CIDEr) cannot effectively assess the performance of
MLLMs in captioning tasks. As an early foundational problem, the captioning task is exten-
sively studied, and MLLMs demonstrate exceptional ability in this task. For instance, earlier models
like InstructBlip perform exceptionally well on captioning tasks, and there is a broad presence of
training data for image captioning in MLLMs’ training processes. However, the captioning task
shows a negative correlation with all other sub-tasks. This indicates that previous metrics (e.g., BLEU,
CIDEr) only focus on the overlap between the model-generated responses and the ground truth, but
do not consider that MLLMs might generate content that is semantically close to the ground truth
(i.e., the model-generated response may be semantically similar to the ground truth but expressed
differently, or the model may generate more detailed content about the image). Consequently, we
exclude it from the overall score calculation.

There is a certain degree of correlation between the sub-tasks in LIME. On the one hand, the
relevance of TextVQA, InfographicVQA, and OCRBench is relatively high. As shown in Fig. 4, the
correlation of these tasks all surpasses 85%, and these two VQA tasks require MLLMs to understand
fine-grained content in images to answer questions. This demonstrates that OCR tasks also rely on
the ability of MLLMs to perceive fine-grained objective facts in images. On the other hand, POPE,
ChartQA, and InfographicVQA all require reasoning abilities using extra commonsense knowledge.
The correlation scores of these tasks are all above 70%, and POPE requires the model to use extra

7
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knowledge to solve the hallucination of MLLMs. We assume that ChartQA and infoVQA may also
necessitate the use of additional common knowledge by the models to solve problems.

5.3 EFFECTIVENESS OF LIME
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Figure 5: with the same series of models, the distribution differences of various Parameter sizes.
Left(⋆): LLaVA-1.6 series, Right(▲): InternVL-2 series

Table 3: Statistics on the score distributions
across different model series.

Model series Dataset GiNi stdev

InternVL-2 LIME
Original

0.061
0.030

6.972
4.421

Cambrian LIME
Original

0.006
0.002

1.227
0.715

LLaVA-1.6 LIME
Original

0.042
0.004

6.730
1.418

Table 4: Statistics on the score distributions
across different model sizes.

Model size Dataset GiNi stdev

7B LIME
Original

0.271
0.086

19.041
10.836

8B LIME
Original

0.128
0.046

10.685
6.270

13B LIME
Original

0.174
0.043

13.536
6.446

LIME provides a more challenging evaluation for MLLMs. As shown in Tab 2, the MLLMs’
performances on LIME are less than those on the Original Bench for most tasks. Compared to the
Origin benchmark, different MLLMs show a larger score range on our LIME, indicating that our
LIME can better reflect the performance differences between models with a smaller amount of data.

Furthermore, we compare the score variations across different model series and model sizes. Figure 5
illustrates a clear positive correlation between model performance and model size within the same
model series. Notably, LIME exhibits a more dispersed score distribution, effectively highlighting the
differences in model performance. In Tab 3 and 4, the Gini coefficient and standard deviation are used
to measure the differences in overall score distribution across the same model series and model sizes.
The larger the Gini coefficient and standard deviation, the greater the disparity in data distribution. It
can be observed that, whether within the same model series or the same model size, LIME achieves
higher Gini and standard deviation values compared to the original bench. This indicates that LIME
can better differentiate the performance differences between various models.

LIME eliminates potential data leakage. For multimodal question answering tasks, visual infor-
mation input is essential, and LLMs are unable to provide correct answers due to they cannot perceive
the content within the image. However, as shown in Figure 6 (right), there are severe data leakage
issues in the original Bench for the AI2D and ScienceQA tasks. The average score for AI2D is close
to 55%, and for ScienceQA, it exceeds 60%, which shows that data from AI2D and ScienceQA
in Original are highly likely to have been exposed to the training data of LLMs. In contrast, the
LIME has eliminated this potential threat, achieving scores below 25% in AI2D and close to 40% in
ScienceQA.
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AI2D ScienceQAModel LIME Original LIME Original

LLaMA3-8B 18.10 46.76 33.33 59.35
LLaMA3-70B 25.70 62.05 56.00 69.91
Qwen1.5-32B 24.10 61.14 43.67 67.97
Qwen1.5-72B 19.80 57.45 35.00 61.13
Qwen2-7B 21.00 57.09 43.00 67.38
Qwen2-72B 20.60 69.95 38.67 63.36
Yi-1.5-9B-Chat 20.10 23.22 17.33 23.60
Yi-1.5-34B-Chat 23.60 54.15 42.00 65.20
Yi-1.5-34B-Chat 25.20 60.69 46.00 70.55

AI2D ScienceQA0

10

20

30

40

50

60

Av
g 

Sc
or

e

LIME
Original

Figure 6: Comparing text only results of LIME and original bench. Left: text only results between
LIME and Original on AI2D and ScienceQA; Right: average score comparison of Original and
LIME.

5.4 THE IMPACT OF DETAIL IMAGE PERCEPTION

Table 5: Text-only with VD results: With the condition of providing only text QA information and
VD information, the performance comparison between vlms-bench and origin bench.

Setting Models AI2D ChQA COCO IVQA OCRBen OK VQA POPE SciQA TCaps TVQA

LLaMA3-8B 23.5 6.4 2.8 12.9 9.2 17.4 32.1 16.4 5.3 17.9
LLaMA3-70B 24.0 7.7 3.3 12.3 9.3 21.8 38.1 39.4 6.0 22.0
Qwen1.5-32B 28.8 6.7 6.5 9.4 8.7 4.7 39.3 46.6 9.2 13.7
Qwen1.5-72B 25.4 2.5 3.2 10.1 8.9 7.8 42.7 44.2 6.0 15.2
Qwen2-7B 27.6 6.7 6.9 11.2 8.9 15.0 44.2 45.5 12.5 19.0
Qwen2-72B 26.3 6.9 2.7 10.8 9.6 10.6 36.3 45.2 5.2 16.8

LIME

Yi-1.5-9B-Chat 22.1 2.3 0.3 3.1 0.0 7.8 40.0 0.0 0.2 5.8

LLaMA3-8B 49.0 11.4 3.1 18.6 19.3 32.5 46.9 59.5 6.5 26.4
LLaMA3-70B 52.0 12.4 3.6 17.6 19.5 36.4 5.2 64.6 7.8 36.2
Qwen1.5-32B 60.5 10.7 8.1 15.0 20.2 15.8 47.4 68.8 10.6 22.1
Qwen1.5-72B 58.8 6.4 3.8 16.6 20.2 21.1 35.1 68.4 7.1 27.4
Qwen2-7B 59.2 12.7 7.4 19.7 19.6 30.5 44.6 69.0 15.4 33.3
Qwen2-72B 60.4 10.5 3.5 15.7 20.5 24.2 34.3 67.9 6.8 28.7

Original

Yi-1.5-9B-Chat 24.7 3.1 0.0 5.9 0.5 7.8 32.7 31.7 0.2 5.8

In our data cleaning process, we remove many questions that most models can answer, as well as a
small number of questions that are difficult for both humans and GPT-4V to answer, in order to make
the benchmark better highlight the differences in model capabilities. As shown in Tab 5, to investigate
whether the remaining samples need to be answered by using textual and image information, we
conduct experiments using LLMs to generate answers on both the Original Benchmark and MLLMs
Benchmark under QID (question + image description) setting.

LIME requires MLLMs to perceive deeper levels of image information. Especially in tasks
such as AI2D, OCRBench, and TCaps, the scores of LLMs on LIME are significantly lower than on
the Original Benchmark when provided with only the questions and simple image descriptions. This
indicates that, after removing some of the simpler questions, LIME is better at testing the models’
ability to perceive image details.

5.5 EXISTING BENCHMARK STILL DIFFERS FROM REAL-WORLD QUERY.

To further investigate the gap between LIME and real-world users’ queries, we construct a similarity
search system that compares them. MixEval (Ni et al., 2024) uses SentenceTransformers(Reimers,
2019) as the retrieval model, while Uniir (Wei et al., 2023) employs multimodal models like CLIP
and BLIP. We use WildVision-Chat as the query data source, which contains 45.2k high-quality user
questions, and employ SentenceTransformers to retrieve the top 10 most similar samples from LIME.
To fully incorporate image information, we combine the question and image description as the query
input. Additionally, we utilize Qwen2-72B to ensure a high level of relevance in the final results. As
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a result, we obtain a LIME-fit dataset containing 1.1k relevant samples. Existing benchmark can’t
cover all types of real-world query.

In Figure 9, we compare the category distribution differences between LIME-fit and the WildVision
Bench. It is evident that LIME-fit concentrates in a few specific categories (e.g., data analysis,
general description, object recognition). However, it does not include instructions for solving real-
world problems, such as Face Recognition, Problem Solving, and Scene Description. Furthermore,
Figure 10 shows the frequency distribution of each subcategory in LIME-fit, which follows a long-
tail distribution. This indicates that the current benchmark does not fully cover the instruction
requirements of real-world scenarios.

6 RELATED WORK

In recent years, there has been increasing attention on establishing evaluation benchmarks to assess
the performance of MLLMs in different scenarios to guide the development of MLLMs. Early
multimodal evaluation benchmarks primarily focused on single tasks, such as Visual Question
Answering (VQA)(Antol et al., 2015; Goyal et al., 2017; Kafle & Kanan, 2017; Singh et al., 2019;
Marino et al., 2019), Image Captioning(Agrawal et al., 2019), and Information Retrieval (Wei et al.,
2023). As MLLMs develop, simple benchmarks are no longer sufficient to evaluate the versatile
capabilities of these models comprehensively, since most MLLMs demonstrate exceptional ability on
those benchmarks. Consequently, numerous more difficult and diverse benchmarks have emerged
in recent years to assess the capabilities of MLLMs comprehensively. For instance, MMMU (Yue
et al., 2024) and CMMMU (Zhang et al., 2024a) are comprehensive benchmark tests for university-
level multidisciplinary multimodal understanding and reasoning. MMBench (Liu et al., 2023c)
has developed a comprehensive evaluation pipeline that offers fine-grained capability assessment
and robust evaluation metrics. MMRA (Wu et al., 2024b) systematically establishes an association
relation system among images to assess the multi-image relation mining ability of MLLMs.

However, those benchmarks cannot distinguish the performance gaps among different models ex-
cellently, as they still contain some too simple or difficult samples that most models yield the same
results on. Furthermore, training datasets across different models may contain the samples of those
benchmarks, which results in data leakage issues (Fu et al., 2023). Mmstar (Chen et al., 2024a)
and MMLU Redux (Gema et al., 2024) have identified several issues within current benchmarks.
Mmstar (Chen et al., 2024a) proposes an automated pipeline to filter benchmark data, aiming to detect
potential data leakage, while MMLU Redux (Gema et al., 2024) focuses on correcting annotation
errors. However, there is still a pressing need for a comprehensive pipeline that fully addresses the
challenges posed by multimodal datasets. In response to this, we introduce LIME: LESS IS MORE
FOR MLLM EVALUATION. We have carefully selected six task types from existing mainstream
benchmarks and scaled them down according to clear guidelines. This streamlined version retains the
core elements of mainstream MLLM benchmarks, providing a more efficient and focused evaluation.

7 CONCLUSION

As MLLMs continue to advance, a notable absence of convenient and high-quality multimodal
benchmarks has emerged. In response to this, we propose a pipeline aimed at semi-automatically
refining existing benchmarks to enhance their quality, culminating in the development of LIME,
which comprises 9,403 evaluation samples across 6 types of tasks and 10 different benchmark
datasets. By refining the original benchmarks to filter question difficulty and eliminate potentially
problematic items, LIME offers a more rigorous evaluation for MLLMs, necessitating a deeper
understanding of image information. The outcomes of our evaluation experiments demonstrate the
heightened challenge posed by LIME for MLLMs. We anticipate that our approach will contribute
to the advancement of MLLM evaluation systems, and we are committed to continually enriching
LIME with an expanded array of datasets through regular updates and expansions. Our ultimate goal
is to provide the community with a simpler, more efficient, and more accurate evaluation method and
suite for MLLMs.
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A APPENDIX

A.1 OVERALL DATA STATICS

Figure 7shows the overall data distribution in LIME, and figure 8 shows an example for each category
title

Figure 7: The overall percentage distribution of LIME.
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Ave

�

Answer: False
Answer: 3 young children 

in karate uniforms named 

Gracie Barra are raising 

arms in victory.

Question: What sport can 

you use this for?�

�

�

Question:How many 

years are represented on 

this graph?�

�

�

Figure 8: The overview of LIME.
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A.2 MORE EXPERIMENT RESULT

Table 6: Comparing overall scores of LIME and Original. Top: results on LIME, Bottom: results
on the original dataset. The arrow next to the model name indicates the change in ranking on LIME
compared to the original dataset. ↑: upward shift, ↓: downward shift, and -: no change.

T/F Common VQA InfoVQA ScienceQA OCR CaptioningModel Size Overall POPE ↑ TVQA ↑ OK VQA ↑ ChQA ↑ IVQA ↑ AI2D ↑ SciQA ↑ OCRBen ↑ COCO ↑ TCaps ↑
InternVL-2 2023 ( - ) 40B 66.85 51.69 77.98 19.45 88.33 73.92 69.20 98.33 75.87 63.10 48.94
Qwen2-VL 2023b (↑ 1) 7B 65.28 53.05 74.56 28.18 83.17 78.50 58.20 75.00 77.61 68.74 110.60
InternVL-1.5 2024b (↓ 1) 26B 64.12 51.69 69.88 35.47 87.00 70.92 54.81 91.67 60.65 69.24 112.63
InternVL-2 2023 ( - ) 26B 63.98 54.63 75.20 16.08 87.67 70.58 62.80 96.33 71.09 76.18 56.91
InternVL-2 2023 ( ↑ 1 ) 8B 62.00 49.21 66.10 24.20 83.75 68.25 60.40 95.67 70.65 42.55 25.44
LLaVA-OneVision 2024 ( ↓ 1 ) 7B 61.95 52.37 65.22 37.32 80.83 68.17 59.20 92.00 47.83 104.74 108.18
XComposer2-4KHD 2023 (↑ 4) 7B 57.52 46.28 60.30 28.13 80.42 66.17 54.90 70.00 53.04 97.07 78.07
InternVL-2 2023(↓ 1) 4B 57.22 47.18 62.29 17.48 81.92 60.50 54.00 94.33 67.17 35.99 21.67
CogVLM-2 2024 (↑ 6) 19B 54.44 51.02 69.46 4.92 80.33 59.50 45.00 84.00 68.26 23.67 34.01
Qwen2-VL 2023b (↑ 5) 2B 54.00 50.79 70.70 16.87 67.50 65.00 42.90 58.00 68.04 75.06 101.72
InternVL-2 2023 (↓ 2) 2B 53.64 50.79 59.56 21.87 71.75 54.00 45.80 92.33 67.39 51.95 42.59
CogVLM-1 2023 (↑ 1) 17B 51.03 55.10 71.20 31.70 61.67 57.25 31.40 53.67 41.96 29.28 38.56
Cambrian 2024 (↓ 5) 34B 50.17 49.44 57.28 22.03 71.83 43.17 54.80 78.33 39.13 4.27 4.97
Cambrian 2024 (↓ 4) 13B 48.57 50.79 58.93 24.13 69.25 42.83 45.20 62.67 42.39 7.40 6.52
InternVL-2 2023 (↑ 3) 1B 48.21 52.82 57.55 15.37 65.83 46.25 37.00 84.33 65.00 15.19 13.19
Cambrian 2024 (↓ 4) 8B 47.95 49.89 59.00 25.23 69.42 37.67 43.60 69.00 43.04 5.85 6.41
LLaVA-1.6 2024 (↑ 3) 34B 44.06 47.00 51.20 10.40 64.33 42.08 49.60 64.67 37.17 84.25 48.25
MiniCPM-LLaMA3-2.5 2024 (↓ 3) 8B 42.61 43.10 61.80 25.30 69.00 48.10 6.60 6.60 55.87 31.91 39.86
LLaVA-OneVision 2024 (↑ 4) 0.5B 41.40 48.98 48.61 23.13 55.42 40.67 31.20 53.00 42.83 96.40 90.28
LLaVA-LLaMA3 2023 (↓ 3) 8B 40.90 44.24 40.01 34.72 64.42 22.25 40.72 61.67 30.22 99.35 48.71
Mantis-Idefics-2 2024 ( - ) 8B 39.25 44.24 44.51 29.07 59.00 20.50 35.80 70.00 32.17 61.82 103.07
Deepseek-VL 2024 (↑ 2) 7B 38.10 48.50 44.80 25.00 54.67 22.33 37.00 68.33 25.43 54.22 83.21
LLaVA-1.6-vicuna 2024 (↓ 4) 13B 37.08 43.10 43.90 16.10 54.50 28.75 38.10 53.00 31.96 76.62 47.83
Idefics-2 2024 (↓ 2) 8B 36.39 42.00 56.50 35.60 13.08 23.92 38.10 78.67 42.61 61.23 94.51
LLaVA-1.6-vicuna 2024 ( - ) 7B 30.15 41.10 39.00 12.50 43.08 22.67 27.10 47.33 23.70 76.05 48.35
Mantis-SigLIP 2024 (↑ 1) 8B 29.13 45.60 26.34 32.43 35.33 16.25 27.70 62.67 10.65 68.16 81.21
MiniCPM 2024 (↑ 2) 1.0 26.15 44.00 37.00 6.20 35.75 13.42 27.90 60.67 14.57 68.96 76.65
LLaVA-1.5 2023a (↓ 2) 13B 20.38 36.60 19.50 32.10 5.50 12.42 25.90 48.33 5.87 80.89 68.73
LLaVA-1.5 2023a (↓ 1) 7B 17.20 32.51 16.50 23.43 5.25 9.08 24.05 49.00 4.78 79.20 65.73
InstructBLIP-vicuna 2023 ( - ) 7B 15.55 45.10 11.40 22.10 3.00 9.08 21.90 34.33 4.35 102.08 53.14
Tiny-LLaVA-1 2024 ( - ) 1.4B 13.95 37.00 18.70 0.90 4.50 12.17 22.80 44.67 3.48 63.19 58.91

InternVL-2 40B 80.31 89.23 82.59 50.98 85.52 76.08 85.88 98.56 79.90 99.15 62.03
InternVL-1.5 26B 79.49 88.90 79.00 60.70 83.70 72.50 78.90 94.50 71.40 95.80 148.10
Qwen2-VL 7B 79.14 88.17 80.92 55.68 83.32 78.86 80.73 85.57 81.20 92.13 144.36
InternVL-2 26B 78.82 88.64 82.06 48.50 84.44 72.72 83.16 97.47 77.60 110.30 80.10
LLaVA-OneVision 7B 78.71 89.17 76.02 60.98 80.12 70.69 81.38 95.88 62.10 140.45 136.97
InternVL-2 8B 77.84 87.90 77.00 52.02 82.48 70.65 82.25 97.03 76.50 89.77 36.70
InternVL-2 4B 73.97 87.71 74.51 38.43 81.04 65.19 78.08 96.03 75.00 54.08 30.17
Cambrian 34B 73.26 88.46 72.11 52.07 74.60 51.48 80.41 85.52 59.00 8.18 6.08
InternVL-2 2B 73.00 88.90 72.39 43.74 74.72 57.69 72.70 94.25 75.50 79.52 59.81
Cambrian 13B 72.39 88.53 73.07 53.28 72.60 50.73 73.93 79.08 61.40 14.33 9.44
XComposer-4KHD 7B 71.93 87.00 74.30 51.90 80.60 72.80 34.40 96.00 66.90 134.00 111.40
Cambrian 8B 71.84 88.24 72.47 52.17 73.44 48.05 72.99 80.32 61.60 9.13 7.97
CogVLM-1 17B 71.34 88.90 79.70 46.90 67.00 63.30 61.90 70.50 59.10 28.40 44.70
MiniCPM-LLaMA3-2.5 8B 71.22 88.00 75.00 52.30 72.90 56.90 71.70 53.00 69.40 35.50 52.90
Qwen2-VL 2B 70.86 87.78 78.70 40.59 73.12 67.15 70.21 77.89 75.30 103.52 131.92
CogVLM-2 19B 69.93 87.56 77.59 18.51 79.84 62.62 72.41 90.93 76.60 24.10 42.23
LLaVA-LLaMA3 8B 69.74 87.80 65.40 60.20 69.30 37.60 71.60 73.30 55.00 135.00 69.60
InternVL-2 1B 68.46 87.94 69.67 33.84 71.40 52.02 62.56 89.59 74.20 49.34 18.03
LLaVA-1.6-vicuna 13B 67.29 87.50 67.00 46.30 62.20 41.50 70.40 73.50 55.00 101.90 67.30
LLaVA-1.6 34B 67.22 85.60 68.90 31.00 67.40 51.90 76.10 82.70 58.60 114.40 69.10
Mantis-Idefics-2 8B 66.91 86.90 63.51 52.50 63.56 31.17 66.81 81.80 54.20 79.42 134.08
Idefics-2 8B 66.73 86.80 71.30 53.90 26.40 37.00 69.20 87.20 61.60 71.90 119.10
LLaVA-OneVision 0.5B 65.65 88.33 65.85 44.17 61.36 46.23 57.09 67.03 57.60 131.90 120.81
Deepseek-VL 7B 65.62 87.10 63.20 48.70 60.60 34.30 63.40 81.70 43.30 67.60 110.10
LLaVA-1.6-vicuna 7B 64.80 87.60 64.90 44.20 55.00 37.00 65.30 70.20 52.40 100.00 72.00
LLaVA-1.5 13B 59.58 87.10 48.70 58.30 18.10 29.50 59.40 72.80 33.60 115.40 104.00
Mantis-SigLIP 8B 58.96 81.47 49.59 52.90 42.56 26.56 57.84 75.36 34.50 91.37 111.43
LLaVA-1.5 7B 57.27 87.00 46.10 53.40 18.20 25.80 55.20 69.50 31.50 109.00 98.00
MiniCPM 1.0 56.18 85.10 55.30 47.30 15.40 20.10 56.90 43.00 60.00 25.90 41.60
InstructBLIP-vicuna 7B 47.87 85.00 33.20 45.20 12.50 22.90 34.00 36.40 25.90 141.40 74.00
Tiny-LLaVA-1 1.4B 34.30 56.30 38.50 3.80 11.10 22.20 32.30 58.20 17.20 80.90 83.10
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A.3 PIPELINE DETAILS

A.3.1 PROMPT TEMPLATE DETAILS

Semi-Automated Screening Process Prompt We selected GPT-4V as the basis for automatic
judgment and interacted with the GPT-4V API using specific prompt templates for different subtasks.

Semi-Automated Screening Process Prompt(VQA tasks)

Please judge whether the <Answer>is the golden answer to the <Question>. If it is, please reply YES,
otherwise reply NO.

<Question>: {question}<Answer>: {answer}

<Your judgement> : <YES or NO>

Semi-Automated Screening Process Prompt(captioning tasks)

Now there is an image captioning task.
Please first describe the content of the image, then compare the image content with the provided captions.
If the captions are suitable as captions for the image, please answer YES; if they are not suitable, please
answer NO.
Respond with NO if any of the captions are unsuitable. Respond with YES only if all captions are
suitable.

<Captions>: {answer}
<Description>: <Content of the image>

<Your judgement>: <ONLY YES or NO>

Exact Vision Description Prompt For the QVD experiment, we use LLaVA-NEXT-110B to extract
information from the images, with the following prompt:

Exact Vision Description Prompt

<image> Please provide a description of the following image, You should consider elements in the
image.

A.3.2 METRICS

Subtask metrics: As shown in the Tab 7, different metrics are used for different subtasks. It is
important to note that, except for the CIDEr metric, all other metrics have a range between 0 and 1.
The final score for each subtask is calculated by taking the average of these metrics.

Table 7: Metrics for different subtask

Metric Subtask Formula

Accuracy AI2D, ScienceQA-IMG,
OCRBench, POPE Accuracy =

{
1, if the prediction is correct
0, if the prediction is incorrect

CIDEr TextCaps,COCO-Caption CIDEr = 1
m

∑m
i=1

∑N
n=1 wn · g

(n)
i ·r(n)

i

∥g(n)
i ∥∥r(n)

i ∥

Match score OK-VQA,TextVQA SCORE = min
(
1, match nums

3

)
ANLS InfoVQA ANLS(X,Y ) = 1− Lev(X,Y )

max(|X|,|Y |)

Relaxed Overall ChartQA SCORE = |prediction−SCORE|
|target|
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Overall metric: For the overall metric, we explored two mainstream calculation methods: arithmetic
mean 1 and weighted mean 2.

Arithmetic Mean =
1

n

n∑
i=1

xi (1)

Weighted Mean =

∑n
i=1 wixi∑n
i=1 wi

(2)

The arithmetic mean directly calculates the average of each subtask’s scores, while the weighted
mean takes into account the number of samples in each subtask. We compare the results of these two
calculation methods, as shown in the Tab 8. weighted average method achieves a higher correlation
with WV-ELO. This suggests that the weighted average method is slightly superior to the arithmetic
mean, as it considers the impact of the number of data points on the overall score, thereby avoiding
potential errors caused by uneven data distribution. Therefore, in our work, we ultimately chose the
weighted average as the method for calculating the overall score.

Table 8: Comparison of different overall metrics method

model overall weighted overall sum overall cider WV bench

LLaVA-1.6-vicuna-7B 30.15 30.46 36.07 992

LLaVA-1.6-vicuna-13B 37.08 36.52 41.04 956

LLaVA-1.6-34B 44.06 43.30 47.12 1059

CogVLM 51.03 47.66 44.03 1016

Deepseek-VL 38.1 39.04 43.31 979

Idefics2 36.39 38.43 43.83 965

MiniCPM-v-1.0 26.15 28.95 35.79 910

Tinny-LLaVA-1-hf 13.95 17.79 24.15 879

LLaVA-1.5-13B 20.38 22.88 32.3 891

InstructBLIP-vicuna-7B 15.55 18.61 29.56 862

correlation score 0.91 0.90 0.87 1

A.3.3 DIFFICULTY CLASSIFICATION DETAILS

For subtasks using the accuracy (acc) metric, where the scores are binary, with only 1 or 0, other
tasks may have various possible score distributions (e.g., COCO-Caption, OK-VQA). Therefore, we
determine the threshold score based on the overall distribution of subtask scores, and choose the
cutoff value that offers the greatest distinction, as shown in Tab 9, for the metrics ANLS, Relaxed
Overall and Accuracy (Acc), the threshold is set to 1.0, for BLEU-4 (for the captioning task, we use
the BLEU-4 metric to represent the score for each question), the threshold is set to 0.2, while for
Match Score, it is set to 0.6. When the score is greater than the threshold, it is marked as correct;
otherwise, it is marked as incorrect.

Metrics bleu4 Match score ANLS Relaxed Overall Acc

Threshold 0.2 0.6 1.0 1.0 1.0

Table 9: Thresholds for Different Metrics
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A.3.4 RETRIEVE FROM REAL WORLD QUERYD

Qwen2-72B Judge Prompt

Your task is to compare the content of two questions along with their corresponding image descriptions
to determine if they are the same or aligned. Analyze from multiple perspectives, such as theme,
question type, and description content.

Please adhere to the following guidelines:

1. Theme Consistency:
- Compare whether the themes of the two questions and their corresponding image descriptions match.
If they focus on entirely different topics, they should be marked as not aligned.

2. Question Type:
- Analyze whether the question types (e.g., technical, artistic, textual) of both questions match with
each other and align with their respective image descriptions. If they are of different natures, note the
mismatch.

3. Description Alignment:
- Compare the task or content expected in each question with what is visually or descriptively present in
both image descriptions. If the questions or image content require specific actions (e.g., reading text or
coding) that differ from each other or the descriptions, they should be marked as misaligned.

4. Evaluate Similarity:
- Rate the similarity between the two questions and their respective descriptions on a scale from 1 to 5,
where 1 means entirely different and 5 means highly similar.

5. Output Clarification:
- You should return whether the two questions and their image descriptions align or not in a simple
”True” or ”False” result. - Provide a brief reason for your conclusion. - Include a similarity rating from 1
to 5, based on how well the questions and descriptions match. - The output should only contain the
”result,” ”reason,” and ”similarity rating” fields.

### Example:
<Question 1>: Can you write codes to load this 3D object?
<Description 1>: The image shows a stone sculpture of an angel sitting on a pedestal. The angel has
large, feathered wings that spread out behind it, and its head is bowed down, as if in deep thought or
prayer. The angel’s body is draped in flowing robes, and its arms are crossed over its lap. The pedestal
is ornately carved with intricate designs, and the entire sculpture is set against a dark background, which
makes the white stone stand out even more. The overall mood of the image is one of solemnity and
reverence.

<Question 2>: What is written in the image?
<Description 2>: The image shows the word ”ART” in white capital letters on a blue background.
The letters are bold and have a slight shadow effect, giving them a three-dimensional appearance. The
overall design is simple and modern, with a focus on the text itself.

Result: False
Reason: The first question asks for coding assistance to load a 3D object, but its description is about an

angel sculpture. The second question is focused on reading text from an image, which is aligned with its
description showing the word ”ART.” The themes, questions, and descriptions are entirely different.
Similarity Rating: 1

<Input Question 1>: {Question 1}
<Input Description 1>: {Description 1}

<Input Question 2>: {Question 2}
<Input Description 2>: {Description 2}

<Output>:
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Figure 10: subcategory distrubution of LIME-fit.
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A.4 ABLATION STUDY ABOUT DATA SIZE

Table 10: data size ablation study on OK-
VQA.

Model Full 100 500 1200

llava1.5-7B 22.71 17.00 20.76 22.92

llava1.5-13B 31.59 36.00 29.60 30.23

llava1.6-7B 11.46 13.00 10.40 11.32

llava-llama3-8B 36.12 32.60 36.92 36.17

xcomposer2-4khd 25.91 29.40 26.48 26.90

minicpm 25.76 20.60 29.92 25.30

instructblip 21.45 20.60 23.60 21.78

idefics2 32.76 27.60 35.12 33.00

internvl 38.36 45.00 39.80 38.28

Table 11: data size ablation study on
ChartQA.

Model Full 100 500 1200

llava1.5-7B 4.77 3.00 3.80 4.17

llava1.5-13B 4.71 5.00 4.40 4.33

llava1.6-7B 42.81 39.00 42.00 42.67

llava-llama3-8B 64.78 66.00 66.00 65.75

xcomposer2-4khd 82.11 80.00 83.00 82.92

minicpm 70.37 67.00 71.60 70.75

instructblip 2.95 3.00 3.00 3.00

idefics2 13.18 16.00 12.80 14.25

internvl 87.13 89.00 87.80 86.92

Table 12: data size ablation study on
TextVQA.

Model Full 100 500 1200

llava1.5-7B 16.68 14.40 18.34 17.46

llava1.5-13B 19.54 17.90 22.30 20.14

llava1.6-7B 38.58 43.00 38.62 39.35

llava-llama3-8B 39.81 46.40 38.26 40.17

xcomposer2-4khd 61.20 59.40 60.98 61.63

minicpm 63.07 60.30 63.90 63.39

instructblip 11.66 8.60 12.00 11.25

idefics2 55.94 54.90 57.76 56.56

internvl 70.28 70.10 70.48 70.74

Table 13: data size ablation study on In-
foVQA.

Model Full 100 500 1200

llava1.5-7B 9.40 7.00 9.00 8.83

llava1.5-13B 12.18 16.00 11.60 11.17

llava1.6-7B 21.30 19.00 23.00 20.33

llava-llama3-8B 22.69 25.00 23.40 22.33

xcomposer2-4khd 72.36 72.00 75.80 73.75

minicpm 49.22 55.00 48.20 48.75

instructblip 9.73 11.00 8.40 9.50

idefics2 24.69 23.00 24.00 25.42

internvl 72.08 69.00 72.20 72.25
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B CASE STUDY

The original dataset contains noise data. In the following figure, we categorize the problematic data
into three types and present specific examples from different datasets.

Text Answerable Questions: Some questions can be answered without the need for visual infor-
mation, mainly focusing on the AI2D and ScienceQA datasets. As shown in figs. 30 and 31, AI2D
and ScienceQA emphasize knowledge in the field of science while overlooking the importance of
visual information. Given the background of domain knowledge, some LLMs are able to provide
answers even without requiring visual input.

Annotation Error Questions: Most benchmarks are manually curated, which inevitably leads to
annotation errors. Problematic questions exist in almost all benchmarks. It can be found in figs. 32,
33 and 39 to 44.

Repeated Question: Some benchmarks also contain a significant amount of duplicate data, where
the question content and image content are completely identical. This issue is mainly found in the
POPE dataset, as shown in the figs. 34 to 38.
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Under review as a conference paper at ICLR 2025

MMMU

Question: What vessel(s) serve(s) areas involved in speech in the majority of people? <image 
1>

Ground Truth:   Left middle cerebral artery.

Error Category:  Answer Leakage

Options: ['Right middle cerebral artery.', 'Left middle cerebral artery.', 'Right and left middle 
cerebral arteries.', 'Right and left posterior cerebral arteries.']

Figure 11: A sample bad case of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: Which of the following does the offspring of a pod bug resemble?

Ground Truth: Similar to the adult, but shorter and without wings

Error Category: Answer Leakage

Options: ['Similar to the adult, but shorter and without wings', 'Grub', 'Maggot', 'Caterpillar', 
"Don't know and don't want to guess"]

Figure 12: A sample bad case of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: <image 1> <image 2> Which of the following Acts of Parliament was passed in 
direct response to the events of the Boston Tea Party?

Ground Truth: Coercive Acts

Error Category: Answer Leakage

Options: ['Coercive Acts', 'Tea Act', 'Townshend Acts', 'Currency Act']

<image 1> <image 2> 

Figure 13: A sample bad case of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: Which theory of <image 1> focuses on the labels acquired through the educational 
process?

Ground Truth: Symbolic interactionism

Error Category: Answer Leakage

Options: ['Critical sociology', 'Feminist theory', 'Functionalist theory', 'Symbolic interactionism']

<image 1> 

Figure 14: A sample bad case of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: Hicks Products produces and sells patio furniture through a 
national dealership network. They purchase raw materials from a variety 
of suppliers and all manufacturing, and assembly work is performed at 
their plant outside of Cleveland, Ohio. They recorded these costs for the 
year ending December 31, 2017. What is total revenue?

Ground Truth:  A 

Error Category: Easy Question

Options: [A:'$3,100,000’, B:'$2,616,000’, C:'$2,474,000’, D:'$484,000']

< 11 >

Figure 15: A easy sample of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: You are asked to compare two options with parameters as given. 
The risk-free interest rate should be assumed to be 6%. Assume the stocks 
on which these options are written pay no dividends. <image 1> Which call 
option is written on the stock with the higher volatility?

Ground Truth: B

Error Category: Easy Question

Options: [A:'A', B:'B', C:'Not enough information']

< 28 >

Figure 16: A easy sample of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: <image 1> What seems to be the issue with this young citrus tree?

Ground Truth: E

Error Category: Easy Question

Options: [A:'Mineral deficiency’, B:'Nematode attack’, C:"Don't know and 
don't want to guess", D:'There is no problem’, E:'Pot bound']

< 33 >

Figure 17: A easy sample of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: <image 1> What is the common term for the yellow area surrounding 
the site of an infection?

Ground Truth: D

Error Category: Easy Question

Options: [A:’I don’t know and I don't want to guess’, B:'Corona’, 
C:'Border’, D:'Halo’, E:'Toxin zone']

< 45 >

Figure 18: A easy sample of MMMU
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMMU

Question: <image 1> What is the substance present on the top surface of 
these citrus leaves?

Ground Truth: C

Error Category: Easy Question

Options: [A:'Algae’, B:"Don't know and I don't want to guess", C:'Honey 
dew', 'Gummosis-produced resin', 'Bacterial ooze']

< 47 >

Figure 19: A easy sample of MMMU
Back to List of figures

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

MMBench

Question: Complete the statement. Ammonia is ().

Ground Truth:  B

Error Category: Data Leakage

Options: [A:'an elementary substance’, B:'a compound’]

< en: 316 >

Figure 20: A sample bad case of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Identify the question that Madelyn and Tucker's experiment can 
best answer.

Ground Truth:  B 

Error Category: Data Leakage

Options: [A:'Does Madelyn's snowboard slide down a hill in less time when 
it has a thin layer of wax or a thick layer of wax?’, B:' Does Madelyn's 
snowboard slide down a hill in less time when it has a layer of wax or 
when it does not have a layer of wax?’]

< en: 241 >

Figure 21: A sample bad case of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Which fish's mouth is also adapted for tearing through meat?

Ground Truth:  B 

Error Category: Data Leakage

Options: [A:'copperband butterflyfish’, B:'tiger moray’]

< en: 274 >

Figure 22: A sample bad case of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Which animal's skin is also adapted for survival in cold places?

Ground Truth:  B 

Error Category: Data Leakage

Options: [A:'fantastic leaf-tailed gecko’, B:'polar bear’]

< en: 278 >

Figure 23: A sample bad case of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Which material is this spatula made of?

Ground Truth:  A

Error Category: Data Leakage

Options: [A:'rubber’, B:'cotton’]

< en: 293 >

Figure 24: A sample bad case of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: 图中所示建筑名称为？

Ground Truth: A

Error Category: Easy Question

Options: [A:天坛, B:故宫, C:黄鹤楼, D:少林寺]

< CC: 0 >

Figure 25: A easy sample of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: 图中所示建筑名称为？

Ground Truth: B

Error Category: Easy Question

Options: [A:东方明珠, B:长城, C:中山陵, D:少林寺]

< cc: 1 >

Figure 26: A easy sample of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: 图中所示景观所在地点为？

Ground Truth: D

Error Category: Easy Question

Options: [A:重庆, B:香港, C:青岛, D:上海]

< cc: 4 >

Figure 27: A easy sample of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Which of the following could Laura and Isabella's test show?

Ground Truth: B

Error Category: Easy Question

Options: [A:’if the concrete from each batch took the same amount of time 
to dry’, B:’if a new batch of concrete was firm enough to use’]

< cc: 1 >

Figure 28: A easy sample of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

MMBench

Question: Which animal's limbs are also adapted for gliding?

Ground Truth: A

Error Category: Easy Question

Options: [A:”northern flying squirrel’, B: ring-tailed lemur’]

< cc: 9 >

Figure 29: A easy sample of MMBench
Back to List of figures
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Under review as a conference paper at ICLR 2025

AI2D

Question: Which stage follows the egg stage of development in a beetle's life cycle?

Ground Truth:  Larve 

Error Category:  Data Leakage 

Options: ["Nymph", "Larva", "Adule", "Pupa"]

Figure 30: A sample bad case of AI2D
Back to List of figures
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Under review as a conference paper at ICLR 2025

AI2D

Question: In the illustration, if mahi mahi were to die off the large shark population would?

Ground Truth:  “decrease” 

Error Category:  Data Leakage 

Options: [ "decrease", "remain the same", "can't tell", "increase" ]

Figure 31: A sample bad case of AI2D
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InfographicVQA

Question: What percent of executives does not use social media daily? 

Ground Truth:   ‘24%’ , ‘24’ 

[图片]

Error Category: Annotation Error

Figure 32: A sample bad case of InfoVQA
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InfographicVQA

Question: What is the second last solution given? 

Ground Truth:  ‘access to technical and vocational training’ 

Error Category:  Annotation Error

Figure 33: A sample bad case of InfoVQA
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POPE

Question: : Is there a tv in the image? 

Ground Truth:  No 

Error Category: Annotation Error

Options: Yes

< 228 >

Figure 34: A sample bad case of POPE
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POPE

Question: : Is there a dining table in the image? 

Ground Truth:  No 

Error Category: Annotation Error

Options: Yes

< 934 >

Figure 35: A sample bad case of POPE
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POPE

Question: : Is there a boat in the image? 

Ground Truth:  No 

Error Category: Annotation Error

Options: Yes

< 1412 >

Figure 36: A sample bad case of POPE
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POPE

Question: : Is there a boat in the image? 

Ground Truth: Repeated with id 940

Error Category: Repeated Questions

Options: Yes

< 6940 >

Figure 37: A sample bad case of POPE
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POPE

Question: : Is there a dining table in the image? 

Ground Truth: Repeated with id 694

Error Category: Repeated Questions

Options: Yes

< 6694 >

Figure 38: A sample bad case of POPE
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OK VQA

Question: : How would you dress for this setting? 

Ground Truth: [ "shorts", "swimming suit", "bathing suit", "bikini" ]

Error Category: Annotation Error

Options: [ "shorts", "shorts", "shorts", "shorts", "bathing suit", "bathing 
suit", "bikini", "bikini", "summer", "summer" ]

< 1708495 >

Figure 39: A sample bad case of OKVQA
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OK VQA

Question: : Where are these people?

Ground Truth: [ "outside", "riverbank", "grassland", "field", "hill", 
"outdoors", ”lawn" ]

Error Category: Annotation Error

Options: [ "outside", "outside", "outside", "outside", "field", "field", 
"on hill", "on hill", "outdoors", "outdoors" ]

< 3981385 >

Figure 40: A sample bad case of OKVQA
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OK VQA

Question: : How is this effect painted on to walls?

Ground Truth: [ "whitewash", "paint", "plaster" ]

Error Category: Annotation Error

Options: [ "sponge", "sponge", "sponge", "sponge", "with sponge", "with 
sponge", "sponged", "sponged", "sky", "sky" ]

< 1269585 >

Figure 41: A sample bad case of OKVQA
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Text VQA

Question: : what is one of the numbers on the buttons of the calculator? 

Ground Truth: [ "1", ”2", ”3", ”4", ”5", ”6", "7", ”8", ”9", ”0" ]

Error Category: Annotation Error

Options: [ "1", "1", "1", "1", "1", "7", "7", "5", "1", "5" ]

< 35925 >

Figure 42: A sample bad case of TextVQA
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Text VQA

Question: : what is served at this place?

Ground Truth: [ "ice cream", ”coffee", ”sandwiches", ”gelato", ”cake", ”yule 
log", ”gift certificates" , “grilled focaccia sandwiches”]

Error Category: Annotation Error

Options: [ "gift certificates", "ice cream, coffee, and sandwiches", "ice 
cream& coffee", "traditional italian ice cream and coffee", "ice cream & 
coffee", "ice cream, coffee, and grilled focaccia sandwiches", "ice cream 
& coffee", "traditional italian, ice cream and coffee, grilled focaccia 
sandwiches", "ice cream & coffee, grilled focaccia sandwiches", "gelato" ]

< 37706 >

Figure 43: A sample bad case of TextVQA
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Text VQA

Question: : what is the cell phone carrier? 

Ground Truth: [ "EDGE " ]

Error Category: Annotation Error

Options: [ "cingular", "blackberry", "cingular", "cingular", "cingular", 
"cingular", "at&t", "cingular", "cingular", "cingular" ]

< 36711 >

Figure 44: A sample bad case of TextVQA
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