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Abstract

In this paper, we aim at reducing the variance of doubly stochastic optimization, a type of
stochastic optimization algorithm that contains two independent sources of randomness:
The subsampling of training data and the Monte Carlo estimation of expectations. Such
an optimization regime often has the issue of large gradient variance which would lead to
a slow rate of convergence. Therefore we propose Dual Control Variate, a new type of
control variate capable of reducing gradient variance from both sources jointly. The dual
control variate is built upon approximation-based control variates and incremental gradient
methods. We show that on black-box variational inference, which can be formulated as a
doubly stochastic optimization problem, compared with past variance reduction approaches
that take only one source of randomness into account, dual control variate leads to a
gradient estimator of significantly smaller variance and demonstrates significantly faster
convergence1.

1. Introduction

Various machine learning problems can be formulated as optimizing an objective of the form

f(w) = E
n
E
ε
f(w; n, ε). (1)

Here, n is a discrete random variable uniformly distributed on {1, . . . , N}, which typically
represents an index in a dataset. Meanwhile, ε is a continuous random variable drawn from
some fixed distribution, independent of w and n. Objectives like this emerge in black box
variational inference (Paisley et al., 2012; Ranganath et al., 2014; Titsias and Lázaro-Gredilla,
2014) with reparameterization gradient and variational autoencoders (Kingma and Welling,
2014; Rezende et al., 2014) (where ε corresponds to a sample from the latent space) and
models that apply data augmentation or dropout during training (Srivastava et al., 2014)
(where ε corresponds to the random perturbation of the data). Such objectives are typically
addressed with stochastic optimization. The most obvious gradient estimator is given by
drawing a random n and a random ε and evaluating

gnaive(w;n, ε) = ∇f(w;n, ε). (2)

This estimator is adequate for many situations but sometimes displays high variance, which
slows optimization (Nemirovski et al., 2009; Bottou et al., 2018), as is shown by the blue
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Figure 1: On Bayesian logistic regression, simultaneously controlling subsam-
pling and Monte Carlo noise significantly reduces gradient variance.
The naive gradient estimator (Eq. (2)) is the baseline, while the cv estimator
(Eq. (4)) controls for Monte Carlo noise, the inc estimator (Eq. (7)) controls
for subsampling noise, and the proposed dual estimator (Eq. (8)) controls for
both. (The inc estimator is shown only for reference on smaller datasets since it
is not practical.) A reduced variance allows for larger learning rates and faster
optimization (Fig. 2)

lines in Fig. 1. In particular, when N is large, performing data subsampling could introduce
a significant amount of gradient noise. When the variance is large, the step-size must
be made very small, slowing optimization. For black-box variational inference, several
recent works have thus been devoted to reducing the variance of this reparameterization
estimator (Miller et al., 2017; Buchholz et al., 2018; Roeder et al., 2017; Wu et al., 2019;
Geffner and Domke, 2018, 2020; Boustati et al., 2020). Many methods have been developed
to reduce the variance of related objectives. Problems without subsampling correspond to
an objective f(w) = Eε f(w; ε). Many works have proposed to use control variate to control
the gradient variance (Sec. 2.1). Other problems that only have subsampling can be written
as f(w) = En f(w; n). This is the incremental gradient setting, for which many methods
have been developed, e.g. SVRG (Johnson and Zhang, 2013) and SAGA (Defazio et al.,
2014a) (Sec. 2.2). Unfortunately, these methods only address variance coming from a single
source of randomness, meaning there are limitations on what they can accomplish when
applied to doubly-stochastic problems.

In this work we propose a novel dual control variate (Sec. 3) that reduces the two types
of gradient variance at the same time. We empirically evaluate the effectiveness of the dual
control variate on black box variational inference (Sec. 4). We show that the dual control
variate yields a gradient estimator with variance an order of magnitude smaller than the
naive estimator or an approximation-based control variate. It is also superior to a baseline
control variate based on incremental gradient ideas. (This baseline is too expensive to be
practical in general.) This improvement in variance enables the use of larger learning rates,
and thus yields a corresponding order of magnitude increase in optimization speed.

2. Background

2.1. Approximation-based control variate

Assume we have an objective of the form f(w) = Eε f(w; ε), where ε is a random variable
drawn from a fixed distribution independent of w. Computing the exact gradient is often
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intractable. A naive gradient estimator would be ∇f(w; ε). The variance of this can often
be reduced by instead using

g(w; ε) = ∇f(w; ε) + c(w; ε), (3)

where c(w; ε) is a control variate, i.e. a zero-mean random variable. A general way to
construct control variates involves using an approximation function f̃ ≈ f for which the
expectation Eη f̃(w,η) is available in closed-form (Miller et al., 2017; Geffner and Domke,
2020). Then, the control variate is defined as c(w; ε) = Eη∇f̃(w;η)−∇f̃(w; ε), which can
be easily seen to have a mean zero. Approximation-based control variates can be applied to
the doubly-stochastic objective using an approximation f̃(w;n, ε) ≈ f(w;n, ε) with tractable
expectation with respect to ε. Then, using this approximation, we can define the unbiased
gradient estimator

gcv(w;n, ε) = ∇f(w;n, ε) + E
η
∇f̃(w;n,η)−∇f̃(w;n, ε)︸ ︷︷ ︸

ccv(w;n,ε)

, (4)

where the second term defines a control variate. We call this the cv estimator. Notice that
the cv estimator only controls the Monte Carlo noise but cannot reduce subsampling noise.

2.2. Incremental gradient methods

We now consider a stochastic optimization problem with only subsampling noise, whose
objective is given by f(w) = En f(w; n), where n is a random variable uniformly distributed
on {1, . . . , N}. While one could compute f exactly, this may be costly when N is large.
The naive gradient estimator ∇f(w;n) where n is randomly chosen. Incremental gradient
methods (Roux et al., 2012; Shalev-Shwartz and Zhang, 2013; Johnson and Zhang, 2013;
Defazio et al., 2014b; Gower et al., 2020) were developed to reduce the variance of this
gradient estimator. While details vary by algorithm, the basic idea is to ”recycle” previous
evaluations. For example, SAGA (Defazio et al., 2014a) stores the gradients ∇f(wn;n)
where wn is w at the most recent time f(w;n) was evaluated. Then, a gradient step is taken
as

w ← w − λ
(
∇f(w;n) + E

m
∇f(wm;m)−∇f(wn;n)

)
, (5)

where λ is a step size. When wm ≈ m, the first and last terms in Eq. (5) will approximately
cancel. The final expectation over m is tracked as a running average of ∇f(wm;m), meaning
the cost per iteration is independent of N . The update rule above can also be rewritten as a
gradient estimator composed of a naive gradient estimator plus a control variate

ginc(w;n) = ∇f(w;n) + E
m
∇f(wm;m)−∇f(wn;n)︸ ︷︷ ︸

cinc(w;n)

. (6)

This method, however, cannot be easily adapted to the doubly-stochastic setting. To see
this, consider the following inc estimator

ginc(w;n, ε) = ∇fn(w;n, ε) + E
m
∇f(wm;m, ε)−∇f(wn;n, ε)︸ ︷︷ ︸

cinc(w;n,ε)

. (7)
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Algorithm 1 Stochastic gradient descent with the dual control variate.
Require: Learning rate λ.

Initialize the parameter w0, the parameter table W = {w1, . . . , wN} and the running mean

M = Em Eη∇f̃(w0;m,η).

for k = 1, 2, · · · do

Sample n and ε.

Extract the value of wn from the table W .

Compute the base gradient g ← ∇f(wk;n, ε).

Compute the control variate c←M −∇f̃(wn;n, ε). (Uses that M = Em Eη∇f̃(wm;m,η).)

Update the running mean M ←M + 1
N

(
Eη∇f̃(wk;n,η)− Eη∇f̃(wn;n,η)

)
Update the table wn ← wk and update the parameter wk+1 ← wk − λ(g + c).

end for

The first drawback for ginc is that, similar to gcv, ginc also possesses limitations in how much
it can reduce variance: It only controls the subsampling noise from n while retaining the
irreducible variance from ε. However, a more critical issue of this estimator is that it is not
practical to be applied. This is because the value of ∇f(wn;n, ε) is dependent on ε, which
is resampled at each iteration. This means that it is not possible to efficiently maintain
Em∇f(wm;m, ε), and so each gradient estimate, it requires a full pass over the dataset. Of
course, doing this would be pointless—it would be better to simply explicitly sum out n and
solve an optimization problem that only has randomness due to ε. Nevertheless, ginc serves
as an important point of reference. Surprisingly, when we introduce our dual control variate
below, this computational issue disappears. Thus, we will compare to ginc when possible
to give more insight into which source of variance is more important. Unlike gcv, ginc, the
variance of gdual can in principle be arbitrarily small. The variance is only limited by how
close f̃ is to f and how close the previously evaluated values wn are to w.

3. Proposed method: Dual control varaite

We now introduce a new approach for controlling the variance of gradient estimators for
doubly stochastic optimization problems, the central contribution of this paper. The idea is
to introduce an approximation f̃ ≈ f and take an expectation over ε as with approximation-
based control variates, but to also recycle past evaluations at different values of n as in
incremental gradient methods. We propose the estimator

gdual(w;n, ε) = ∇f(w;n, ε) + E
m
E
η
∇f̃(wm;m,η)−∇f̃(wn;n, ε)︸ ︷︷ ︸

cdual(w;n,ε)

. (8)

Note that gdual does not suffer from the same computational issue as ginc. The approximation
f̃ is designed so that Eη∇f̃(wn;n,η) can be computed in closed-form. By caching these
values, the expectation over m can be computed using a running average, rather than
iterating though all possible values of n. The full algorithm is presented in Algorithm. 1.
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4. Experiments

In this section, we empirically evaluate the proposed dual control variate on black box
variational inference with mean-field Gaussian as the variational posterior, in which we
approximate the true posterior distribution with a variational posterior of form qw(z) ∼
N (µ,diag(σ)), and we find the optimal µ and σ by maximizing the evidence lower bound
(ELBO), which is equivalent to minimizing the following objective

f (w) = −E
n

E
qw(z)

[
N log p(xn | z) + log p(z)

]
−H(w), (9)

where we would have w = (µ,σ). In order to estimate the objective’s gradient with respect to
w via Monte Carlo sampling, one typically has to apply the reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014) on z, which
aims to represent the sampling routine z ∼ qw(z) as a deterministic and differentiable
function z = Tw(ε) of a w-independent base random variable ε. With the reparameterized
form, we can rewrite the function inside the nested expectation as kn(Tw(ε)) = N log p(xn |
Tw(ε)) + log p(Tw(ε)). Then, we can rewrite the objective as

f(w) = −E
n
E
ε
f (w; n, ε),

where we define f (w;n, ε) = kn(Tw(ε)) +H(w) and H(w) denotes the entropy of qw. Inspired
by previous work (Miller et al., 2017), we propose to get an approximation for f (w;n, ε)
using a second order Taylor expansion for kn(·) around z0 = Tw(0), which yields

f̃ (w;n, ε) = kn(z0) + (Tw(ε)− z0)>∇kn(z0) +
1

2
(Tw(ε)− z0)>∇2kn(z0)(Tw(ε)− z0)>+H(w),

(10)
in which we assume the entropy can be computed in closed-form.

Results We evaluated our methods on Bayesian logistic regression with standard Gaussian
prior. We first experiment with two small-scale dataset: the Australian dataset and the
sonar dataset, where ginc can be computed tractably as a baseline. We estimate gradients
using a minibatch size of 5 all using a single sample of ε. We optimize using stochastic
gradient descent (without momentum) with learning rates ranging from 10−5 to 5× 10−3.
The results are presented in the left two columns in Fig. 1, Figs. 2(a) and 2(b). Note that
both the inc and cv estimators have lower variance on the naive estimator, but this varies
by the dataset. The excellent performance of the inc estimator on Australian shows the
importance of reducing subsampling noise.

Next, we experiment with two larger-scale datasets: MNIST (LeCun et al., 1998) and
Fashion-MNIST (Xiao et al., 2017) (FMNIST). We estimate the gradients using a mini-batch
of 100 samples with one sample of ε. Because of the scale of the datasets, we are forced to
use the expected gradient norm as a proxy for the gradient variance. We experiment with
learning rates ranging from 4e−8 to 1.5e−5 and 2e−8 to 7.5e−6 for MNIST and FMNIST
respectively. Results are shown in the right two columns in Fig. 1, Fig. 2(c) and Fig. 2(d).
Here gdual shows a much lower variance than gnaive or gcv, which again emphasizes the
importance of controlling subsampling noise in BBVI. (While ginc is too expensive to run,
we conjecture that it would perform well.)
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Figure 2: For mean-field black-box variational inference, the dual estimator leads
to improved convergence at higher learning rates. This improvement is a
consequence of lower variance (Fig. 1). Australian and Sonar are small datasets,
included because it is possible to compute the inc estimator using brute force,
which gives some insight into where the improvement in the dual estimator comes
from. MNIST and FMNIST are larger-scale problems where the inc estimator
is intractable. Given the small improvement of the cv estimator over the naive
estimator on these problems, we suspect that most of the improvement in the dual
estimator comes from reduced subsampling variance. All the figures are based on
10 trials of different random seeds.
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