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Abstract001

We introduce a new Reflective Generative002
Model(RGM), which obtains OpenAI o3-003
mini’s performance via a novel Reflective Gen-004
erative Form. This form focuses on high-005
quality reasoning trajectory selection and con-006
tains two novelties: 1) A unified interface for007
policy and process reward model: we share008
the backbone network and use task-specific009
heads for reasoning trajectory predicting and010
scoring respectively, introducing only 53M ex-011
tra parameters for trajectory scoring. 2) Elimi-012
nating the reliance on process-level annota-013
tion: we provide a self-supervised process re-014
ward model, which can directly learn the high-015
quality reasoning trajectory selection from the016
outcome reward. Equipped with the reflective017
generative form, RGM is naturally suitable for018
test-time scaling, and we provide three rea-019
soning effort modes (low, medium, and high)020
based on the controllable thinking length. Ex-021
periments demonstrate that our RGM achieves022
comparable performance to OpenAI o3-mini’s023
series with only 32B parameter size. Code will024
be available.025

1 Introduction026

Over the past two years, the field of Large Lan-027

guage Models (LLMs) has experienced rapid ad-028

vancements, marked by the emergence of increas-029

ingly sophisticated models. Notable developments030

include OpenAI’s GPT-4, Google’s Gemini, Meta’s031

LLaMA series, Alibaba’s Qwen, and DeepSeek’s032

R1, which have collectively pushed the bound-033

aries of natural language understanding and gen-034

eration. This progress is attributed to innovations035

in model architectures and training techniques, en-036

abling LLMs to process and generate content across037

various formats.038

Recent analyses suggest that OpenAI’s o3 model039

achieves its advanced reasoning and coding ca-040

pabilities through Test-Time Scaling (TTS) tech-041

niques such as massive sampling, candidate scor-042

ing, and search over multiple reasoning paths (Labs, 043

2025; Zeff, 2024). For instance, during ARC- 044

AGI and competitive coding evaluations, o3 was 045

shown to generate up to 1024 candidate samples for 046

each query (Chollet, 2024; OpenAI, 2025). These 047

inference-time strategies mark a significant shift 048

from traditional one-pass models, enabling o3 to 049

adapt dynamically to novel tasks and achieve near- 050

human performance in reasoning benchmarks. 051

TTS approaches can be categorized into two 052

types: internal TTS and external TTS. Internal TTS 053

(also called sequential TTS in Zeng et al. (2025)) 054

strategies use CoT for longer thinking processes 055

(Guo et al., 2025; OpenAI, 2024), which benefits 056

from Long-CoT Supervised Fine-Tuning and rein- 057

forcement learning. Recent internal TTS methods 058

(Guo et al., 2025) mainly suffer from the false pos- 059

itive reasoning process, as the outcome reward will 060

misclassify the correct answer with incorrect rea- 061

soning during the training stage. External TTS 062

(also called parallel TTS in Zeng et al. (2025)) is 063

proposed for selecting the correct reasoning pro- 064

cess. Prominent external TTS algorithms include 065

Best-of-N sampling, Beam Search, and Diverse 066

Verifier Tree Search, using the reward model as 067

the verifier to select high-quality reasoning trajec- 068

tories. Researchers (Lightman et al., 2023) have 069

shown that the Process Reward Model(PRM) is 070

more effective in performance boosting compared 071

with the Outcome Reward Model(ORM). However, 072

Wang et al. (2023); Guan et al. (2025) point out 073

that training a high-quality PRM remains costly, 074

primarily due to the lack of accurate process-level 075

annotations. Moreover, during the inference stage, 076

introducing an additional LLM-based PRM intro- 077

duces significant extra parameters and computa- 078

tional overhead, which severely limits the practical 079

deployment of external TTS. 080

This paper focuses on external TTS and pro- 081

poses a new Reflective Generative Form for high- 082

quality reasoning trajectory selection. Specially, 083
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the proposed new form shares the backbone of the084

policy model and process reward model, provid-085

ing a more efficient scoring process with little pa-086

rameter and computational overhead. Besides, a087

Self-supervised Process Reward Mode(SPRM) is088

introduced for self-supervised training to eliminate089

the reliance on process-level supervision. Based090

on the Reflective Generative Form, the proposed091

RGM contains high, medium, and low reasoning092

effort modes with the controllable thinking length.093

Experiment results show that RGM achieves com-094

parable performance to OpenAI o3-mini’s series095

with only 32B parameters.096

In summary, the main contributions of this paper097

are as follows:098

• We provide a new Reflective Generative099

Form for high-quality reasoning trajectory100

selection, which enables a single network to101

achieve both reasoning trajectory prediction102

and selection (with Zero process-level anno-103

tation).104

• We provide both qualitative and quantitative105

analysis for the aha moment, scaling law,106

and robustness of the proposed new form.107

These exhaustive discussions will effectively108

benefit the community for future research.109

• RGM achieves comparable performance as110

the OpenAI o3-mini’s series with only 32B111

parameters, and outperforms a series of open-112

source and closed-source models.113

2 Related Works114

2.1 Test-Time Scaling115

Test-Time Scaling (TTS) is a technique that lever-116

ages additional computational resources at infer-117

ence time to tackle challenging problems. TTS can118

be divided into two categories: internal TTS and ex-119

ternal TTS. Internal TTS introduces the long Chain-120

of-Thought (CoT) to generate answers based on121

the detailed reasoning process. OpenAI o1(Jaech122

et al., 2024) and DeepSeek R1(Guo et al., 2025)123

introduce a thinking process to plan the solution124

and guide the final answer. Jin et al. (2024); Yeo125

et al. (2025) have shown that long CoT can help126

models correct mistakes by themselves and decom-127

pose complex problems more effectively. However,128

Chen et al. (2024b,a) have highlighted the risk of129

overthinking, where excessively long reasoning tra-130

jectories may lead to performance degradation. On131

the other hand, external TTS scales up inference 132

through search-based strategies and auxiliary re- 133

ward models. A common approach is the Best-of-N 134

strategy (Lightman et al., 2023; Brown et al., 2024; 135

Wang et al., 2023). Fine-grained step level search- 136

ing methods have also been explored, such as Beam 137

Search (Liu et al., 2025; Snell et al., 2024), Diverse 138

Verifier Tree Search (Beeching et al.) and Monte 139

Carlo Tree Search (MCTS) (Zhang et al., 2024; 140

Guan et al., 2025; Luo et al., 2024). These methods 141

search at the step level and utilize Process Reward 142

Models (PRMs) to guide the reasoning trajectory 143

step-by-step. Beyond search strategies, recent work 144

emphasizes that the quality of the reward model is 145

a crucial factor in external TTS (Guan et al., 2025). 146

2.2 Process Reward Model 147

Process Reward Models (PRMs) focus on evaluat- 148

ing LLMs at the step level. Lightman et al. (2023) 149

unveil that this fine-grained guidance can lead to 150

better TTS performance compared with the global- 151

level Outcome Reward Model (ORM). However, 152

accurately identifying logical errors in LLM out- 153

puts remains challenging, and PRMs require high- 154

quality task-specific annotated data for training. To 155

this end, recent works Wang et al. (2023) lever- 156

age Monte Carlo estimation to automatically as- 157

sign step-level scores using only the final answers 158

as supervision. Zhang et al. (2024); Guan et al. 159

(2025) iteratively synthesizes data by MCTS and 160

fine-tuning both LLMs and PRMs, improving per- 161

formance across both models. Tan et al. (2025) 162

follow the LLM-as-a-judge method and introduce 163

a new LLM to annotate the reward of each step. 164

Nonetheless, Zhang et al. (2025) point out that la- 165

bels generated by Monte Carlo estimation can be 166

noisy, as incorrect reasoning processes may still 167

yield correct final answers. They further propose a 168

hybrid approach that combines both Monte Carlo 169

estimation with the LLM-as-a-judge. 170

3 Problem Formulation 171

This paper aims to find a high-quality reasoning 172

trajectory more efficiently at inference time based 173

on TTS. We first summarize the general inference 174

forms for standard LLMs (policy models) and ex- 175

isting TTS methods, and then formally define our 176

proposed Reflective Generative Form. 177

1) Basic LLMs. The model directly generates an 178

answer based on the input query Q. This basic in- 179
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ference form can be formulated as:180

answer = LLManswer(Q). (1)181

TTS based methods can be categorized into two182

types: sequential scaling based internal TTS and183

parallel scaling based external TTS.184

2) Internal TTS. The internal TTS first generates a185

reasoning trajectory by Long-CoT using LLMthink,186

and then predicts the final answer with this trajec-187

tory using LLManswer, which can be expressed as:188

answer = LLManswer(LLMthink(query)). (2)189

To be specific, recent methods (e.g. DeepSeek190

R1(Guo et al., 2025)) use the same policy model191

for both LLMthink and LLManswer.192

3) External TTS. Firstly, the Long-CoT genera-193

tion is extended by generating multiple reasoning194

trajectories and answers in parallel. Then, a reward195

model (e.g. PRM) is used to score and select the196

best result (Lightman et al., 2023; Liu et al., 2025).197

This inference form can be described as:198

answeri = [LLManswer
(
LLMthink(Q)

)
]i.

answer = argmax
i∈[1,k]

LLMPRM

(
answeri

)
, (3)199

where [∗]i denotes the i-th candidate among k200

parallel generations.201

Though existing external TTS methods have202

been proven to obtain considerable performance203

enhancement, they still encounter several prob-204

lems: (1) Extra Computation: PRM contains indi-205

vidual parameters from the policy model(LLMthink206

and LLManswer), which introduces additional huge207

computation. (2) Expensive Annotation: It is diffi-208

cult to obtain the large-scale reasoning trajectory209

annotations for PRM training.210

Reflective Generative Form. To address the extra211

computation and expensive annotation issues, we212

propose a new Reflective Generative Form focus-213

ing on the efficient and label-free reasoning trajec-214

tory selection. The proposed Reflective Generative215

Form is shown in follows,216

thinki∗ = argmax
i∈[1,k]

[LLM share
SPRM

(
LLM share

think (Q)
)
]i,

answer = LLM share
answer

(
thinki∗

)
.

(4)217

Firstly, we share the backbone of the policy218

model and PRM in a single network, which en-219

ables reasoning trajectory generation and scoring220

in a unified interface for parallel prediction. The 221

score measures the quality of each reasoning tra- 222

jectory, and the trajectory with higher score is se- 223

lected as the high-quality candidate in TTS. This 224

unified interface is proved to be effective for param- 225

eter reduction in our experiments. Secondly, we 226

introduce a novel Self-supervised Process Reward 227

Model (SPRM) to eliminate the reliance on process- 228

level annotation, which can be optimized with only 229

outcome-level annotation in a self-supervised man- 230

ner. In particular, we only implement the SPRM for 231

the LLMthink selection, which can further improve 232

the inference efficiency during the real implemen- 233

tation. 234

4 Approach 235

4.1 Unified Interface in Reflective Generative 236

Form 237

Our proposed Reflective Generative Form estab- 238

lishes a unified interface for the policy model 239

and the PRM. For the policy model, we employ 240

reasoning LLMs that contain the thinking pro- 241

cess in response, delineated by the ’<think>’ and 242

’</think>’ tokens. For the PRM, we introduce a 243

Self-supervised Process Reward Model (SPRM), 244

which shares the same backbone as the policy 245

model but incorporates an additional lightweight 246

SPRM head. The SPRM head is implemented by a 247

binary classifier consisting of two linear layers and 248

a dropout layer. An overview of the joint frame- 249

work is illustrated in Fig. 1(a). 250

Within this unified form, the policy model first 251

generates multiple thinking processes as the reason- 252

ing trajectories. Subsequently, the SPRM evaluates 253

each thinking process for reasoning trajectory se- 254

lection. The evaluation procedure contains two 255

steps: (1) Segmenting the reasoning trajectory into 256

discrete steps and (2) Predicting a trajectory score 257

based on evaluation in each step. 258

1. Step Segmentation. We segment each reason- 259

ing trajectory using tokens that are already sup- 260

ported by the policy model’s tokenizer, eliminating 261

the need to introduce additional step-specific to- 262

kens or fine-tune the LLM for step-format outputs. 263

Specifically, we treat tokens containing ’.\n\n’ as 264

step-tokens and split the trajectory accordingly. Ad- 265

ditionally, we retain only the first token in any se- 266

quence of consecutive step-tokens and ignore the 267

step-token appearing at the beginning of the trajec- 268

tory, as it does not contain valuable information. 269

2. Trajectory Score Prediction. After using step- 270
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Figure 1: The training and inference framework of Reflective Generative Models.

tokens to mark the end of individual reasoning271

steps, we evaluate each step based on the represen-272

tation of the corresponding step-token. Since the273

representation in the last layer mainly captures the274

logits prediction for a single token, we use the hid-275

den representations from the second-to-last layer276

of the policy model to provide richer contextual in-277

formation of the entire step. These representations278

are then fed into the SPRM head to predict process279

scores for each step. The final score for the entire280

reasoning trajectory is computed as the geometric281

mean of the individual process scores:282

Sfinal =

(
N∏

n=1

Scoren

) 1
N

=

(
N∏

n=1

SPRM(ftokenn)

) 1
N

,

(5)283

where N denotes the total number of steps, and284

ftokenn is the representation of the n-th step-token285

obtained from the policy model. Scoren is the286

SPRM’s process score for n-th step.287

Through this unified interface, a single network288

can generate reasoning trajectories and score them289

in parallel, enabling joint training in an end-to-290

end manner. This design facilitates a straightfor- 291

ward and efficient training pipeline for on-policy 292

PRM learning, where both the policy model and the 293

SPRM continuously refine their parameters from 294

shared experiences, thereby improving the overall 295

quality of the generated trajectories. 296

4.2 Optimization of Reflective Generative 297

Form 298

During optimization, we train the policy model and 299

the SPRM head simultaneously. For the policy 300

model, we adopt Group Relative Policy Optimiza- 301

tion (GRPO) following Shao et al. (2024). To opti- 302

mize the SPRM head, we propose a Self-supervised 303

Process Reward Loss (SPR Loss), which enables 304

learning process discrimination ability only from 305

outcome reward (e.g. final answer correctness). 306

The SPR Loss is formulated as follows, 307

LSPR =
1

N

N∑
n=1

wn ∗BCELoss(Scoren, yn),

where wn =


1, if yn = 1 & Scoren > 0.5

1, if yn = 0 & Scoren < 0.5

0, others

,

(6) 308
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where n denotes the step-tokens, wn is a token-309

level weight, Scoren is SPRM’s process score on310

step n, and yn denotes whether the final answer311

from the policy model is correct. In Eq.6, the pro-312

cess score is optimized based on the correctness of313

the final answer. However, since a correct final an-314

swer may include incorrect intermediate steps and315

vice versa (Lightman et al., 2023), we introduce316

the self-supervised dynamic weight wi to mitigate317

supervision noise. Specifically, we use the SPRM318

head’s own prediction on each step as the pseudo319

label and set wn = 1 only if the pseudo label is320

consistent with the final answer’s correctness. This321

dynamic filtering allows the model to avoid noisy322

samples and focus on the most representative steps323

of correct and incorrect solutions. Thus, by enlarg-324

ing the score gap between correct and incorrect325

steps, SPRM can progressively learn the process326

evaluation ability with only final annotations.327

4.3 Inference with Reflective Generative Form328

In the inference stage, our Reflective Genera-329

tive Form is naturally suitable for TTS where330

the SPRM can provide guidance for selecting the331

high-quality reasoning trajectory from the policy332

model. The total inference process divides into333

three steps(shown in Fig.1(b)): (1) For the given334

question, the policy model first samples k thinking335

processes as the candidate reasoning trajectories:336

think1, think2, . . . , thinkk. (2) The SPRM eval-337

uates the steps in each process and obtains the fi-338

nal score by the geometric mean of corresponding339

process scores: S1, S2, . . . , Sk. (3) The reasoning340

trajectory with the highest final score is chosen341

and guides the policy model to answer the question342

(Eq.7).343

i∗ = argmax
i∈[1,k]

(S1, . . . , Sk),

answer = LLManswer(thinki∗).
(7)344

5 Experiment345

5.1 Baseline&Dataset346

We conduct experiments on the models with three347

different sizes: RGM-1.5B, 7B, and 32B, which348

are initialized from DeepSeek-R1-Distill-Qwen-349

1.5B/7B (Guo et al., 2025), and QWQ-32B (Team,350

2025) with continual reinforcement training. After351

adding the SPRM head, only 5M/26M/53M extra352

parameters are introduced for RGM-1.5B/7B/32B.353

Our training dataset is constructed from multiple354

publicly available math-related sources, including 355

NuminaMath (Li et al., 2024), OpenR1-Math-220k, 356

DeepScaleR (Luo et al., 2025), LIMR (Li et al., 357

2025), and OREAL-RL (Lyu et al., 2025). We 358

apply a multi-agent data cleaning framework to 359

ensure data quality, resulting in a final dataset of 360

40k high-quality examples. The models are trained 361

on 64 H200 GPUs with batch size of 128 and re- 362

sponse length of 32k. In the inference stage, we 363

use the sampling temperature of 0.6 and output 364

length of 32k. We set 3 reasoning effort modes with 365

k = 2, 8, 32 in Eq.7, named RGM-low, -medium, 366

and -high. 367

We evaluate our models on 2 mathematical 368

benchmarks: AIME2024 and AIME2025 (AIME, 369

2025). To verify the robustness of our RGM, we 370

introduce 2 extra out-of-distribution benchmarks: 371

LivecodeBench(240801-250201) (Jain et al., 2024) 372

(for coding capability evaluation) and C-Eval 373

(Huang et al., 2023) (for Chinese reasoning capabil- 374

ity evaluation). We adopt Pass@1 as the evaluation 375

metric. For each problem, the model generates only 376

one final answer, and the Pass@1 score is computed 377

as the proportion of correctly solved problems. To 378

improve the stability of the results, we repeat the 379

evaluation 64 times and report the average accuracy 380

as the final score. 381

5.2 Main Results 382

Table 1 summarizes the performance of our RGM 383

across fo4ur representative benchmarks. We de- 384

note baseline as the only policy model without 385

using the Reflective Generative Form. Across dif- 386

ferent model scales, our proposed Reflective Gener- 387

ative Form consistently enhances the baseline, par- 388

ticularly on mathematical reasoning benchmarks. 389

Specifically, compared with the baseline, RGM 390

achieves performance gains of 18.6/15.5/5.3 points 391

on AIME24 and 10.5/7.4/3.1 points on AIME25 392

for the 1.5B/7B/32B sizes, respectively. Our Re- 393

flective Generative Form is also robust on other 394

out-of-domain tasks, yielding gains of 5.7/5.0/0.8 395

points on LiveCodeBench and 2.3/6.5/0.3 points 396

on C-Eval. 397

We further compare RGM against both advanced 398

open-source and closed-source models. Among 399

the open-source models, we consider DeepScaleR- 400

1.5B-Preview (Luo et al., 2025), DeepSeek-R1- 401

Distill-Qwen (1.5B/7B/32B), DeepSeek-R1-Distill- 402

LLaMA-8B (Guo et al., 2025), QwQ-32B (Team, 403

2025), GLM-Z1-32B-0414 (GLM et al., 2024), s1- 404

32B (Muennighoff et al., 2025), and DeepSeek-R1- 405
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Model Mathematical Out-of-Distribution

AIME24 AIME25 LiveCodeBench C-Eval

Small-size Open-Source Models
DeepScaleR-1.5B-Preview 43.1 30.0 - -
R1-Distill-Qwen-1.5B 28.9 22.8 16.9 27.1
R1-Distill-Qwen-7B 55.5 - 37.6 -
R1-Distill-Llama-8B 50.4 - 39.6 -

Baseline-1.5B 39.3 29.9 22.4 41.8
RGM-1.5B-low 44.0 32.6 24.2 43.6
RGM-1.5B-medium 53.1 35.7 26.6 43.9
RGM-1.5B-high 57.9 40.4 28.1 44.1

Baseline-7B 54.7 41.2 39.4 51.3
RGM-7B-low 60.7 45.4 41.7 55.1
RGM-7B-medium 66.3 48.3 44.1 57.5
RGM-7B-high 70.2 48.6 44.4 57.8

Large-size Open-Source Models
s1-32B 56.7 50.0 - -
QwQ-32B 79.5 69.5 63.4 88.4
R1-Distill-Qwen-32B 72.6 49.6 57.2 82.2
GLM-Z1-32B-0414 80.8 63.6 59.1 -
DeepSeek-R1-671B 79.8 70.0 65.9 91.8

Closed-Source Models
Claude-3.5-Sonnet1022 16.0 7.4 37.2 76.7
GPT-4o-0513 9.3 11.6 32.9 -
OpenAI o1-mini 63.6 50.7 53.8 68.9
OpenAI o1-1217 79.2 - 63.4 -
OpenAI o3-mini* 79.6 74.8 67.4 75.9

Baseline-32B 79.9 70.5 63.4 89.4
RGM-32B-low 82.0 72.0 63.8 89.5
RGM-32B-medium 84.2 73.4 64.0 89.6
RGM-32B-high 85.2 73.6 64.2 89.7

Table 1: Comparison of our RGM and other comparable models. * denotes medium level of OpenAI o3-mini. The
best and second-best results are shown in bold and underlined.

671B (Guo et al., 2025). Among the closed-source406

models, we include Claude-3.5-Sonnet-1022, GPT-407

4o-0522, OpenAI o1-mini, OpenAI o1-1217, and408

OpenAI o3-mini-medium.409

At the small scale, RGM-1.5B and RGM-7B con-410

sistently outperform the listed open-source models411

with comparable or larger parameter sizes. Es-412

pecially, RGM-1.5B-low surpasses DeepScaleR-413

1.5B-Preview and R1-Distill-Qwen-1.5B on all414

datasets. And RGM-1.5B-high further outperforms415

R1-Distill-Qwen-7B and R1-Distill-Llama-8B on416

AIME24 (57.9% vs 55.5%), demonstrating strong417

efficiency and capability of our lightweight SPRM.418

For RGM-7B, its low reasoning effort mode has 419

outperformed R1-Distill-Qwen-7B and R1-Distill- 420

Llama-8B on AIME24 and LiveCodeBench. And 421

RGM-7B-high further gains the improvement of 422

14.7 points on AIME24 (70.2% vs 55.5%) and 4.8 423

points on LiveCodeBench (44.4% vs 39.6%). 424

At the larger scale, RGM-32B-high achieves su- 425

perior results on mathematical reasoning tasks, out- 426

performing all listed open-source models of com- 427

parable or even larger size by +4.4% on AIME24 428

(85.2% vs 80.8%) and +3.6% on AIME25 (73.6% 429

vs 70.0%). For other out-of-distribution tasks, 430

RGM-32B-high surpasses other 32B-sized models 431
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Model Reward Model Extra Params AIME24 AIME25 LiveCodeBench

RGM-1.5B-high
Qwen2.5-Math-RM 72B 55.8 35.3 26.8
Qwen2.5-Math-PRM 72B 56.7 40.0 26.8
SPRM 5M 57.9 40.4 28.1

RGM-7B-high
Qwen2.5-Math-RM 72B 63.5 46.7 42.3
Qwen2.5-Math-PRM 72B 68.8 48.3 42.8
SPRM 26M 70.2 48.6 44.4

Table 2: Comparison of SPRM and other PRM models.

Figure 2: Evaluation of varying numbers of candidate
reasoning trajectories on AIME24.

by +0.8% on LiveCodeBench (64.2% vs 63.4%)432

and +1.3% on C-Eval (89.7% vs 88.4%). Com-433

pared to closed-source models, medium and high434

levels of RGM-32B outperform Claude-3.5-Sonnet-435

1022 and GPT-4o-0522, and achieving comparable436

performance with medium level of OpenAI o3-mini437

(85.2% vs 79.6% on AIME24, 73.6% vs 74.8%438

on AIME25, 64.2% vs 67.4% on LiveCodeBench,439

89.7% vs 75.9% on C-Eval,), highlighting its strong440

competitiveness in mathematical tasks and robust-441

ness on general tasks.442

Besides, RGM with a more advanced backbone443

(Qwen3(Yang et al., 2025)) can be found in Ap-444

pendix.A.2.445

5.3 Ablation Study446

Effectiveness of SPRM. As shown in Table.2,447

our SPRM, with only around 26M extra parameters,448

achieves higher performance compared with 72B449

ORM and PRM. This demonstrates that sharing450

parameters between the reward model and policy451

model is able to generate high-quality guidance452

without the requirement of additional large-scale453

reward models. To further analyze the efficacy of454

different reward models, we compare their perfor-455

mance under different numbers of candidate rea-456

soning trajectories k in Fig.2. Across different k457

and model sizes, SPRM consistently outperforms458

other methods, indicating its strong ability to dis-459

tinguish between high and low quality reasoning460

trajectories. The detailed predictions of SPRM are461

Model Loss AIME24 LiveCodeBench

RGM-1.5B-high
BCELoss 56.7 27.9
SPRLoss 57.9 28.1

RGM-7B-high
BCELoss 69.1 43.9
SPRLoss 70.2 44.4

Table 3: Evaluation on SPRLoss.

Figure 3: The prediction score gap between correct and
incorrect solutions. The blue curve shows the SPRLoss.
The red curve shows the BCELoss.

listed in Appendix.A.3 462

Moreover, we evaluate the generalization ability 463

of SPRM on tasks from the other domain (Live- 464

CodeBench). Without any task-specific fine-tuning 465

or in-domain data, our SPRM still achieves superior 466

performance compared to separate reward models. 467

This demonstrates SPRM’s strong zero-shot gener- 468

alization capability, suggesting that it can capture 469

domain-agnostic patterns to evaluate the reasoning 470

trajectories. 471

Effectiveness of self-supervised optimization. 472

We evaluate the effectiveness of SPRLoss in Ta- 473

ble.3. Compared with using the final answer 474

correctness as process-level supervision for PRM 475

training, our proposed self-supervised optimization 476

method achieves larger performance gains on both 477

1.5B and 7B models. Furthermore, Fig.3 shows 478

the prediction score gap between correct and incor- 479

rect solutions. Compared to the BCELoss, SPR- 480

Loss demonstrates stronger discriminative capabil- 481

ity with a larger score gap. This indicates that treat- 482

ing final answer correctness as process-level labels 483

introduces substantial label noise, which harms the 484

7



Figure 4: The training process of SPRM. The blue and red curves denote the final score on correct and incorrect
reasoning trajectories. The green dashed line indicates the "aha moment".

Figure 5: The scaling law of Reflective Generative Mod-
els.

optimization. In contrast, SPRLoss leverages self-485

supervised signals to reduce the impact of noisy486

supervision, leading to stable and accurate training.487

5.4 Aha Moment of RGMs488

In Fig. 4, we present the final evaluation scores489

from RGM for both correct and incorrect reasoning490

trajectories throughout the training process. During491

the initial phase of training, the optimization trajec-492

tories for all samples follow a similar trend, indicat-493

ing that the model has not yet learned to distinguish494

between correct and incorrect reasoning trajecto-495

ries. However, after a certain number of training496

steps (e.g., around 10/20/50 steps, 1280/2560/6400497

samples for RGM-1.5B/7B/32B, respectively), we498

observe a distinct "aha moment" point where the499

optimization trends of different reasoning trajecto-500

ries begin to diverge. This suggests that the model501

is starting to judge the correctness based on the502

reasoning contents. With this aha moment, RGM503

can progressively refine its SPRM head through504

our proposed self-supervised SPRLoss, leading to505

a clear score gap between correct and incorrect506

reasoning trajectories, and enabling effective TTS.507

The typical “aha moment” case study can be found508

in Appendix.A.3 509

5.5 Scaling Law of RGMs 510

In Fig. 5, we present the scaling law for reflec- 511

tive generative models, which shows the relation- 512

ship between the total reasoning computation in 513

TTS and the final performance. Following Snell 514

et al. (2024), we define the computation budget C 515

as the product of the model’s parameter (B) and 516

the total number of reasoning tokens (k): C = 517

Parampolicy ×Tokeninfer. Notably, when the to- 518

tal reasoning length is scaled to more than 32 times 519

the baseline (e.g., Best-of-64), the performance im- 520

proves slowly. Therefore, we mainly focus on TTS 521

results up to Best-of-32 for each model scale. We 522

observe that the final performance shows a positive 523

correlation with the logarithm of the computation 524

budget (the specific scaling factor depends on the 525

baseline model architecture). This indicates that 526

the final performance of our model can be enhanced 527

by exponentially scaling on parameter size or the 528

reasoning length. 529

6 Conclusion 530

In this work, we propose a novel Reflective Genera- 531

tive Form, which enables a single LLM to both gen- 532

erate and select high-quality reasoning trajectories 533

for Test-Time Scaling (TTS). Based on this form, 534

we present the reflective generative model (RGM). 535

Specifically, we design a unified interface that inte- 536

grates the policy model and process reward model 537

(PRM) within a single network, resulting in low 538

parameter overhead and efficient TTS inference. 539

A self-supervised process reward model (SPRM) 540

is proposed to learn process-level evaluation with 541

only final answer annotations. With 32B parame- 542

ters, RGM achieves comparable performance to the 543

OpenAI o3-mini series across mathematics, coding, 544

and Chinese reasoning benchmarks. 545

8



7 Limitations546

Despite the promising performance, our Reflective547

Generative Model has several limitations. First,548

the best-of-N strategy requires the policy model to549

generate N complete reasoning trajectories before550

selecting the final output, which cannot be used551

for streaming output and may introduce additional552

latency. This is a common problem for Test-Time553

Scaling based methods. Second, the model’s im-554

provements on non-mathematical tasks remain lim-555

ited. For the models on 32B level, the improvement556

on LiveCodeBench and C-Eval are only 0.8 and557

0.3 points compared with the baseline. This is due558

to our training set only containing mathematical559

data. Building a large-scale training set including560

more domains could help address this issue. Third,561

we only use Qwen and QWQ-32B architectures as562

the backbone. The detailed step of aha moment563

and the specific growth rate of scaling law may564

be different for other architectures. Moreover, the565

effectiveness of our method on large-scale models566

with over 32B parameters remains to be explored.567

Finally, our model with QwQ-32B backbone still568

underperforms OpenAI o3-mini-medium on some569

benchmarks, such as AIME25 and LiveCodeBench.570

Using a stronger backbone could help mitigate this571

gap.572
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A Appendix 738

A.1 Extend on MCTS 739

Since SPRM produces process scores for each step, 740

our reflective generative models can be naturally 741

used in step-level search-based TTS methods such 742

as Monte Carlo Tree Search (MCTS). In our setup, 743

instead of performing full simulations to the end 744

of a reasoning trajectory, we directly use SPRM to 745

estimate the value of each node during the search. 746

This enables a more efficient evaluation at each 747

expansion step. In the expanding stage, we expand 748

4 children for the selected node and generate 1024 749

tokens in each child node. To balance the computa- 750

tion cost, we set the maximum number of tokens 751

in the MCTS process from 0 (without MCTS) to 752

160k for each question. 753

Table.4 presents the performance of MCTS on 754

the AIME24 dataset. By increasing the maximum 755
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number of searching tokens, the performance im-756

proved from 39.3 to 52.8, demonstrating the effec-757

tiveness of SPRM in providing high-quality step-758

level guidance in the reasoning stage. However, the759

performance of MCTS is still lower than the results760

under the Best-of-N strategy reported in Table 1.761

This is primarily due to the computational overhead762

inherent in tree-based search methods, which leads763

to incomplete searching in our setting. Nonethe-764

less, the observed gains over the baseline validate765

the potential of our reflective generative models766

for integration with more advanced search-based767

inference methods.768

Tokens(k) 0 40 80 120 160

Accuracy(%) 39.3 48.8 50.0 51.7 52.8

Table 4: Performance of RGM-1.5B with MCTS on
AIME24.

A.2 Generalization on advanced architecture.769

To further assess the performance upper bound of770

our Reflective Generative Form, we integrate it771

with a more capable open-source model, Qwen3-772

32B (Yang et al., 2025), denoted as RGM-Qwen3-773

32B. Experimental results are displayed in Ta-774

ble.5. Across all four benchmarks, RGM-Qwen3-775

32B consistently outperforms the original Qwen3-776

32B model. On mathematical reasoning tasks,777

it achieves a stable improvement of +3.2% on778

AIME24 and +4.4% on AIME25. Similar gains779

are observed on other general benchmarks, with780

+1.5% on LivecodeBench and +2.4% on C-Eval.781

These results demonstrate that RGM scales effec-782

tively with the capacity of the backbone model,783

highlighting its generalization potential on more784

advanced models.785

Benchmark Qwen3-32B
RGM-Qwen3-32B

low medium high

AIME24 81.4 81.7 83.8 84.6

AIME25 72.9 74.8 77.1 77.3

LivecodeBench 65.7 66.6 67.0 67.2

C-Eval 87.3 89.4 89.5 89.7

Table 5: Evaluation with Qwen3 backbone. The v5
version of LivecodeBench is used for comparison.

A.3 Case study 786

Case study of SPRM Fig.6 shows the visualiza- 787

tion of step-wise evaluation scores from SPRM. 788

It can be observed that SPRM effectively identi- 789

fies low-quality processes generated by the policy 790

model, including logical error (e.g. the misunder- 791

standing of b in step 58 of example 1) and calcula- 792

tion error (e.g., the incorrect computation 9 × 21 + 793

7 = 193 in step 32 of example 2). SPRM assigns 794

low scores to these low-quality steps. Since SPRM 795

only outputs process scores, we additionally pro- 796

vide post-descriptions within the dashed boxes for 797

better clarity. 798

Case study of aha moment. We show an exam- 799

ple in Fig.7. We fix the reasoning trajectory and use 800

RGM before and after the aha moment for scoring. 801

In this case, the model mistakenly confuses εk and 802

εk+1, resulting in an incorrect solution. Our model 803

fails to recognize the error before the aha moment, 804

while the model after the aha moment can correctly 805

discriminate it. 806

A.4 Artifacts Statement 807

All models and datasets utilized in this study are 808

publicly available and distributed under permissible 809

licenses. 810
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Example 1

Question: Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf
clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are
437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the
number of residents of Aimeville who own all four of these things.

Reasoning Trajectories:
. . .

Step 5:
However, in this case, we have four sets: diamond rings (D), golf clubs (G), garden spade (S), and candy hearts
(C).

Score: 1.00. Define variables.

. . .

Step 58:
The number of residents who own exactly two things is b = 437. This includes those who own exactly two
things among D, G, S, and those who own exactly one thing in D, G, S and exactly one thing in C.

Score: 0.44. Post-description: Encounter logical error. As everyone owns C, b should not include those who
own exactly two things among D, G, S.

. . .

Final score: 0.00

Example2

Question: Find the sum of all integer bases 𝑏 > 9 for which 17𝑏 is a divisor of 97𝑏.

Reasoning Trajectories:
. . .

Step 30:
Therefore, possible bases are 21 and 49.

Score: 1.00. Post-description: The model successfully solved the question and the correct answer is
21+49=70.

. . .

Step 32:
Let me check 𝑏 = 21:
Compute (1721) : (1 ∗ 21 + 7 = 28)
Compute (9721) : (9 ∗ 21 + 7 = 186 + 7 = 193)
Check if 28 divides 193? Wait, no, because 28*7=196, which is more than 193. Wait, perhaps my earlier
assumption was wrong.

Score: 0.04. Post-description: Encounter calculation error. 9 × 21 + 7 should be 196 rather than 193.
This causes the model to discard 21.

. . .

Final score: 0.03

Figure 6: SPRM’s predictions on reasoning trajectories. Only key steps are listed. Correct and error steps are
marked in green and red.
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Example of Aha Moment in SPRM

Question: Let the sequence of rationals 𝑥1, 𝑥2, . . . be defined such that 𝑥1 = 25
11 and [𝑥𝑘+1 =

1
3

(
𝑥𝑘 + 1

𝑥𝑘
− 1

)
]. 𝑥2025 can be expressed as 𝑚

𝑛 for relatively prime positive integers 𝑚 and 𝑛. Find the
remainder when 𝑚 + 𝑛 is divided by 1000.

Reasoning Trajectories:
. . .

Step:
Alternatively, perhaps make a substitution. Let me define 𝜇𝑘 = 1/𝜀𝑘. Then,
1/𝜀𝑘+1 = −1/𝜀𝑘 + (8/9)/𝜀𝑘2

Multiply both sides by 𝜀𝑘2:
𝜀𝑘 = −𝜀𝑘 + (8/9)
Thus,
𝜀𝑘 + 𝜀𝑘+1 = 8/9
But no, not quite.

Score: 0.52 (before Aha Moment) -> 0.12 (after Aha Moment).
Post-description: Encounter calculation error, model confuses 𝜀𝑘 and 𝜀𝑘+1 during the simplifi-
cation.

. . .

1313

Figure 7: Comparison of SPRM’s predictions before and after the aha moment. Only key steps are listed. The error
steps are marked in red.
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