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Abstract

We introduce a new Reflective Generative
Model(RGM), which obtains OpenAl o03-
mini’s performance via a novel Reflective Gen-
erative Form. This form focuses on high-
quality reasoning trajectory selection and con-
tains two novelties: 1) A unified interface for
policy and process reward model: we share
the backbone network and use task-specific
heads for reasoning trajectory predicting and
scoring respectively, introducing only 53M ex-
tra parameters for trajectory scoring. 2) Elimi-
nating the reliance on process-level annota-
tion: we provide a self-supervised process re-
ward model, which can directly learn the high-
quality reasoning trajectory selection from the
outcome reward. Equipped with the reflective
generative form, RGM is naturally suitable for
test-time scaling, and we provide three rea-
soning effort modes (low, medium, and high)
based on the controllable thinking length. Ex-
periments demonstrate that our RGM achieves
comparable performance to OpenAl 03-mini’s
series with only 32B parameter size. Code will
be available.

1 Introduction

Over the past two years, the field of Large Lan-
guage Models (LLMs) has experienced rapid ad-
vancements, marked by the emergence of increas-
ingly sophisticated models. Notable developments
include OpenAl’s GPT-4, Google’s Gemini, Meta’s
LLaMA series, Alibaba’s Qwen, and DeepSeek’s
R1, which have collectively pushed the bound-
aries of natural language understanding and gen-
eration. This progress is attributed to innovations
in model architectures and training techniques, en-
abling LLMs to process and generate content across
various formats.

Recent analyses suggest that OpenAl’s 03 model
achieves its advanced reasoning and coding ca-
pabilities through Test-Time Scaling (TTS) tech-
niques such as massive sampling, candidate scor-

ing, and search over multiple reasoning paths (Labs,
2025; Zeft, 2024). For instance, during ARC-
AGI and competitive coding evaluations, 03 was
shown to generate up to 1024 candidate samples for
each query (Chollet, 2024; OpenAl, 2025). These
inference-time strategies mark a significant shift
from traditional one-pass models, enabling 03 to
adapt dynamically to novel tasks and achieve near-
human performance in reasoning benchmarks.

TTS approaches can be categorized into two
types: internal TTS and external TTS. Internal TTS
(also called sequential TTS in Zeng et al. (2025))
strategies use CoT for longer thinking processes
(Guo et al., 2025; OpenAl, 2024), which benefits
from Long-CoT Supervised Fine-Tuning and rein-
forcement learning. Recent internal TTS methods
(Guo et al., 2025) mainly suffer from the false pos-
itive reasoning process, as the outcome reward will
misclassify the correct answer with incorrect rea-
soning during the training stage. External TTS
(also called parallel TTS in Zeng et al. (2025)) is
proposed for selecting the correct reasoning pro-
cess. Prominent external TTS algorithms include
Best-of-N sampling, Beam Search, and Diverse
Verifier Tree Search, using the reward model as
the verifier to select high-quality reasoning trajec-
tories. Researchers (Lightman et al., 2023) have
shown that the Process Reward Model(PRM) is
more effective in performance boosting compared
with the Outcome Reward Model(ORM). However,
Wang et al. (2023); Guan et al. (2025) point out
that training a high-quality PRM remains costly,
primarily due to the lack of accurate process-level
annotations. Moreover, during the inference stage,
introducing an additional LLM-based PRM intro-
duces significant extra parameters and computa-
tional overhead, which severely limits the practical
deployment of external TTS.

This paper focuses on external TTS and pro-
poses a new Reflective Generative Form for high-
quality reasoning trajectory selection. Specially,



the proposed new form shares the backbone of the
policy model and process reward model, provid-
ing a more efficient scoring process with little pa-
rameter and computational overhead. Besides, a
Self-supervised Process Reward Mode(SPRM) is
introduced for self-supervised training to eliminate
the reliance on process-level supervision. Based
on the Reflective Generative Form, the proposed
RGM contains high, medium, and low reasoning
effort modes with the controllable thinking length.
Experiment results show that RGM achieves com-
parable performance to OpenAl 03-mini’s series
with only 32B parameters.

In summary, the main contributions of this paper
are as follows:

* We provide a new Reflective Generative
Form for high-quality reasoning trajectory
selection, which enables a single network to
achieve both reasoning trajectory prediction
and selection (with Zero process-level anno-
tation).

* We provide both qualitative and quantitative
analysis for the aha moment, scaling law,
and robustness of the proposed new form.
These exhaustive discussions will effectively
benefit the community for future research.

* RGM achieves comparable performance as
the OpenAl 03-mini’s series with only 32B
parameters, and outperforms a series of open-
source and closed-source models.

2 Related Works

2.1 Test-Time Scaling

Test-Time Scaling (TTS) is a technique that lever-
ages additional computational resources at infer-
ence time to tackle challenging problems. TTS can
be divided into two categories: internal TTS and ex-
ternal TTS. Internal TTS introduces the long Chain-
of-Thought (CoT) to generate answers based on
the detailed reasoning process. OpenAl ol(Jaech
et al., 2024) and DeepSeek R1(Guo et al., 2025)
introduce a thinking process to plan the solution
and guide the final answer. Jin et al. (2024); Yeo
et al. (2025) have shown that long CoT can help
models correct mistakes by themselves and decom-
pose complex problems more effectively. However,
Chen et al. (2024b,a) have highlighted the risk of
overthinking, where excessively long reasoning tra-
jectories may lead to performance degradation. On

the other hand, external TTS scales up inference
through search-based strategies and auxiliary re-
ward models. A common approach is the Best-of-N
strategy (Lightman et al., 2023; Brown et al., 2024;
Wang et al., 2023). Fine-grained step level search-
ing methods have also been explored, such as Beam
Search (Liu et al., 2025; Snell et al., 2024), Diverse
Verifier Tree Search (Beeching et al.) and Monte
Carlo Tree Search (MCTS) (Zhang et al., 2024;
Guan et al., 2025; Luo et al., 2024). These methods
search at the step level and utilize Process Reward
Models (PRMs) to guide the reasoning trajectory
step-by-step. Beyond search strategies, recent work
emphasizes that the quality of the reward model is
a crucial factor in external TTS (Guan et al., 2025).

2.2 Process Reward Model

Process Reward Models (PRMs) focus on evaluat-
ing LLMs at the step level. Lightman et al. (2023)
unveil that this fine-grained guidance can lead to
better TTS performance compared with the global-
level Outcome Reward Model (ORM). However,
accurately identifying logical errors in LLM out-
puts remains challenging, and PRMs require high-
quality task-specific annotated data for training. To
this end, recent works Wang et al. (2023) lever-
age Monte Carlo estimation to automatically as-
sign step-level scores using only the final answers
as supervision. Zhang et al. (2024); Guan et al.
(2025) iteratively synthesizes data by MCTS and
fine-tuning both LLMs and PRMs, improving per-
formance across both models. Tan et al. (2025)
follow the LLM-as-a-judge method and introduce
a new LLM to annotate the reward of each step.
Nonetheless, Zhang et al. (2025) point out that la-
bels generated by Monte Carlo estimation can be
noisy, as incorrect reasoning processes may still
yield correct final answers. They further propose a
hybrid approach that combines both Monte Carlo
estimation with the LLM-as-a-judge.

3 Problem Formulation

This paper aims to find a high-quality reasoning
trajectory more efficiently at inference time based
on TTS. We first summarize the general inference
forms for standard LLMs (policy models) and ex-
isting TTS methods, and then formally define our
proposed Reflective Generative Form.

1) Basic LLMs. The model directly generates an
answer based on the input query Q. This basic in-



ference form can be formulated as:
answer = LL Mnswer(Q). (D

TTS based methods can be categorized into two
types: sequential scaling based internal TTS and
parallel scaling based external TTS.

2) Internal TTS. The internal TTS first generates a
reasoning trajectory by Long-CoT using L L Mpink,
and then predicts the final answer with this trajec-
tory using L L Mpswer, Which can be expressed as:

answer = LL Mynswer(LL Mnink(query)). (2)

To be specific, recent methods (e.g. DeepSeek
R1(Guo et al., 2025)) use the same policy model
for both LL Mpink and LL M pswer-

3) External TTS. Firstly, the Long-CoT genera-
tion is extended by generating multiple reasoning
trajectories and answers in parallel. Then, a reward
model (e.g. PRM) is used to score and select the
best result (Lightman et al., 2023; Liu et al., 2025).
This inference form can be described as:

answer; = [LLManswer (LLMthink(Q))]i-

answer = arg max LLMp gy (answer;), 3)
1€[1,k]

where [«]; denotes the i-th candidate among &
parallel generations.

Though existing external TTS methods have

been proven to obtain considerable performance
enhancement, they still encounter several prob-
lems: (1) Extra Computation: PRM contains indi-
vidual parameters from the policy model(L L Mnin
and L L Myngwer), which introduces additional huge
computation. (2) Expensive Annotation: It is diffi-
cult to obtain the large-scale reasoning trajectory
annotations for PRM training.
Reflective Generative Form. To address the extra
computation and expensive annotation issues, we
propose a new Reflective Generative Form focus-
ing on the efficient and label-free reasoning trajec-
tory selection. The proposed Reflective Generative
Form is shown in follows,

think;» = arg max [LLMghers (LLMGm(Q))]s,
1€[1,k]

answer = LLMShare (think;- ).
4
Firstly, we share the backbone of the policy
model and PRM in a single network, which en-

ables reasoning trajectory generation and scoring

in a unified interface for parallel prediction. The
score measures the quality of each reasoning tra-
jectory, and the trajectory with higher score is se-
lected as the high-quality candidate in TTS. This
unified interface is proved to be effective for param-
eter reduction in our experiments. Secondly, we
introduce a novel Self-supervised Process Reward
Model (SPRM) to eliminate the reliance on process-
level annotation, which can be optimized with only
outcome-level annotation in a self-supervised man-
ner. In particular, we only implement the SPRM for
the L L Mpink selection, which can further improve
the inference efficiency during the real implemen-
tation.

4 Approach

4.1 Unified Interface in Reflective Generative
Form

Our proposed Reflective Generative Form estab-
lishes a unified interface for the policy model
and the PRM. For the policy model, we employ
reasoning LLMs that contain the thinking pro-
cess in response, delineated by the *<think>" and
’</think>" tokens. For the PRM, we introduce a
Self-supervised Process Reward Model (SPRM),
which shares the same backbone as the policy
model but incorporates an additional lightweight
SPRM head. The SPRM head is implemented by a
binary classifier consisting of two linear layers and
a dropout layer. An overview of the joint frame-
work is illustrated in Fig. 1(a).

Within this unified form, the policy model first
generates multiple thinking processes as the reason-
ing trajectories. Subsequently, the SPRM evaluates
each thinking process for reasoning trajectory se-
lection. The evaluation procedure contains two
steps: (1) Segmenting the reasoning trajectory into
discrete steps and (2) Predicting a trajectory score
based on evaluation in each step.

1. Step Segmentation. We segment each reason-
ing trajectory using tokens that are already sup-
ported by the policy model’s tokenizer, eliminating
the need to introduce additional step-specific to-
kens or fine-tune the LLM for step-format outputs.
Specifically, we treat tokens containing ’.\n\n’ as
step-tokens and split the trajectory accordingly. Ad-
ditionally, we retain only the first token in any se-
quence of consecutive step-tokens and ignore the
step-token appearing at the beginning of the trajec-
tory, as it does not contain valuable information.

2. Trajectory Score Prediction. After using step-
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Figure 1: The training and inference framework of Reflective Generative Models.

tokens to mark the end of individual reasoning
steps, we evaluate each step based on the represen-
tation of the corresponding step-token. Since the
representation in the last layer mainly captures the
logits prediction for a single token, we use the hid-
den representations from the second-to-last layer
of the policy model to provide richer contextual in-
formation of the entire step. These representations
are then fed into the SPRM head to predict process
scores for each step. The final score for the entire
reasoning trajectory is computed as the geometric
mean of the individual process scores:

N ~
(H Scoren>
n=1

N
<H SPRM(ftokenn)> ’

n=1

Sﬁnal

&)

z|~

where N denotes the total number of steps, and
froken,, 18 the representation of the n-th step-token
obtained from the policy model. Score,, is the
SPRM’s process score for n-th step.

Through this unified interface, a single network
can generate reasoning trajectories and score them
in parallel, enabling joint training in an end-to-

end manner. This design facilitates a straightfor-
ward and efficient training pipeline for on-policy
PRM learning, where both the policy model and the
SPRM continuously refine their parameters from
shared experiences, thereby improving the overall
quality of the generated trajectories.

4.2 Optimization of Reflective Generative
Form

During optimization, we train the policy model and
the SPRM head simultaneously. For the policy
model, we adopt Group Relative Policy Optimiza-
tion (GRPO) following Shao et al. (2024). To opti-
mize the SPRM head, we propose a Self-supervised
Process Reward Loss (SPR Loss), which enables
learning process discrimination ability only from
outcome reward (e.g. final answer correctness).
The SPR Loss is formulated as follows,

N
1
Lspr = v Z wy, * BOELoss(Score,,, yn),

n=1
1, ify, =1& Score, > 0.5
where w, = ¢ 1, ify, =0 & Score, < 0.5,
0,

others

(6)



where n denotes the step-tokens, w,, is a token-
level weight, Score,, is SPRM’s process score on
step n, and y,, denotes whether the final answer
from the policy model is correct. In Eq.6, the pro-
cess score is optimized based on the correctness of
the final answer. However, since a correct final an-
swer may include incorrect intermediate steps and
vice versa (Lightman et al., 2023), we introduce
the self-supervised dynamic weight w; to mitigate
supervision noise. Specifically, we use the SPRM
head’s own prediction on each step as the pseudo
label and set w,, = 1 only if the pseudo label is
consistent with the final answer’s correctness. This
dynamic filtering allows the model to avoid noisy
samples and focus on the most representative steps
of correct and incorrect solutions. Thus, by enlarg-
ing the score gap between correct and incorrect
steps, SPRM can progressively learn the process
evaluation ability with only final annotations.

4.3 Inference with Reflective Generative Form

In the inference stage, our Reflective Genera-
tive Form is naturally suitable for TTS where
the SPRM can provide guidance for selecting the
high-quality reasoning trajectory from the policy
model. The total inference process divides into
three steps(shown in Fig.1(b)): (1) For the given
question, the policy model first samples k thinking
processes as the candidate reasoning trajectories:
thinky,thinks, ..., thinkg. (2) The SPRM eval-
uates the steps in each process and obtains the fi-
nal score by the geometric mean of corresponding
process scores: S1,.59, ..., Sg. (3) The reasoning
trajectory with the highest final score is chosen
and guides the policy model to answer the question
(Eq.7).

i* = argmax (S1,...,Sk),
1€[1,k] (7)
answer = LLMpswer(think;-).

5 Experiment

5.1 Baseline&Dataset

We conduct experiments on the models with three
different sizes: RGM-1.5B, 7B, and 32B, which
are initialized from DeepSeek-R1-Distill-Qwen-
1.5B/7B (Guo et al., 2025), and QWQ-32B (Team,
2025) with continual reinforcement training. After
adding the SPRM head, only SM/26M/53M extra
parameters are introduced for RGM-1.5B/7B/32B.
Our training dataset is constructed from multiple

publicly available math-related sources, including
NuminaMath (Li et al., 2024), OpenR1-Math-220k,
DeepScaleR (Luo et al., 2025), LIMR (Li et al.,
2025), and OREAL-RL (Lyu et al., 2025). We
apply a multi-agent data cleaning framework to
ensure data quality, resulting in a final dataset of
40k high-quality examples. The models are trained
on 64 H200 GPUs with batch size of 128 and re-
sponse length of 32k. In the inference stage, we
use the sampling temperature of 0.6 and output
length of 32k. We set 3 reasoning effort modes with
k = 2,8,32 in Eq.7, named RGM-low, -medium,
and -high.

We evaluate our models on 2 mathematical
benchmarks: AIME2024 and AIME2025 (AIME,
2025). To verify the robustness of our RGM, we
introduce 2 extra out-of-distribution benchmarks:
LivecodeBench(240801-250201) (Jain et al., 2024)
(for coding capability evaluation) and C-Eval
(Huang et al., 2023) (for Chinese reasoning capabil-
ity evaluation). We adopt Pass@1 as the evaluation
metric. For each problem, the model generates only
one final answer, and the Pass @1 score is computed
as the proportion of correctly solved problems. To
improve the stability of the results, we repeat the
evaluation 64 times and report the average accuracy
as the final score.

5.2 Main Results

Table 1 summarizes the performance of our RGM
across fodur representative benchmarks. We de-
note baseline as the only policy model without
using the Reflective Generative Form. Across dif-
ferent model scales, our proposed Reflective Gener-
ative Form consistently enhances the baseline, par-
ticularly on mathematical reasoning benchmarks.
Specifically, compared with the baseline, RGM
achieves performance gains of 18.6/15.5/5.3 points
on AIME24 and 10.5/7.4/3.1 points on AIME25
for the 1.5B/7B/32B sizes, respectively. Our Re-
flective Generative Form is also robust on other
out-of-domain tasks, yielding gains of 5.7/5.0/0.8
points on LiveCodeBench and 2.3/6.5/0.3 points
on C-Eval.

We further compare RGM against both advanced
open-source and closed-source models. Among
the open-source models, we consider DeepScaleR-
1.5B-Preview (Luo et al., 2025), DeepSeek-R1-
Distill-Qwen (1.5B/7B/32B), DeepSeek-R1-Distill-
LLaMA-8B (Guo et al., 2025), QwQ-32B (Team,
2025), GLM-Z1-32B-0414 (GLM et al., 2024), s1-
32B (Muennighoff et al., 2025), and DeepSeek-R1-



Mathematical

Model

Out-of-Distribution

AIME24 AIME25 LiveCodeBench C-Eval

Small-size Open-Source Models

DeepScaleR-1.5B-Preview 43.1 30.0 - -
R1-Distill-Qwen-1.5B 28.9 22.8 16.9 27.1
R1-Distill-Qwen-7B 55.5 - 37.6 -
R1-Distill-Llama-8B 50.4 - 39.6 -
Baseline-1.5B 39.3 29.9 22.4 41.8
RGM-1.5B-low 44.0 32.6 24.2 43.6
RGM-1.5B-medium 53.1 35.7 26.6 439
RGM-1.5B-high 57.9 404 28.1 44.1
Baseline-7B 54.7 41.2 394 51.3
RGM-7B-low 60.7 454 41.7 55.1
RGM-7B-medium 66.3 48.3 44.1 57.5
RGM-7B-high 70.2 48.6 444 57.8
Large-size Open-Source Models
s1-32B 56.7 50.0 - -
QwQ-32B 79.5 69.5 63.4 88.4
R1-Distill-Qwen-32B 72.6 49.6 57.2 82.2
GLM-Z1-32B-0414 80.8 63.6 59.1 -
DeepSeek-R1-671B 79.8 70.0 659 91.8
Closed-Source Models
Claude-3.5-Sonnet1022 16.0 7.4 37.2 76.7
GPT-40-0513 9.3 11.6 329 -
OpenAl ol1-mini 63.6 50.7 53.8 68.9
OpenAl 01-1217 79.2 - 63.4 -
OpenAl 03-mini* 79.6 74.8 67.4 75.9
Baseline-32B 79.9 70.5 63.4 89.4
RGM-32B-low 82.0 72.0 63.8 89.5
RGM-32B-medium 84.2 73.4 64.0 89.6
RGM-32B-high 85.2 73.6 64.2 89.7

Table 1: Comparison of our RGM and other comparable models. * denotes medium level of OpenAl 03-mini. The
best and second-best results are shown in bold and underlined.

671B (Guo et al., 2025). Among the closed-source
models, we include Claude-3.5-Sonnet-1022, GPT-
40-0522, OpenAl ol-mini, OpenAl 01-1217, and
OpenAl o3-mini-medium.

At the small scale, RGM-1.5B and RGM-7B con-
sistently outperform the listed open-source models
with comparable or larger parameter sizes. Es-
pecially, RGM-1.5B-low surpasses DeepScaleR-
1.5B-Preview and R1-Distill-Qwen-1.5B on all
datasets. And RGM-1.5B-high further outperforms
R1-Distill-Qwen-7B and R1-Distill-Llama-8B on
AIME24 (57.9% vs 55.5%), demonstrating strong
efficiency and capability of our lightweight SPRM.

For RGM-7B, its low reasoning effort mode has
outperformed R1-Distill-Qwen-7B and R1-Distill-
Llama-8B on AIME24 and LiveCodeBench. And
RGM-7B-high further gains the improvement of
14.7 points on AIME24 (70.2% vs 55.5%) and 4.8
points on LiveCodeBench (44.4% vs 39.6%).

At the larger scale, RGM-32B-high achieves su-
perior results on mathematical reasoning tasks, out-
performing all listed open-source models of com-
parable or even larger size by +4.4% on AIME24
(85.2% vs 80.8%) and +3.6% on AIME25 (73.6%
vs 70.0%). For other out-of-distribution tasks,
RGM-32B-high surpasses other 32B-sized models



Model Reward Model Extra Params AIME24 AIME25 LiveCodeBench
Qwen2.5-Math-RM 72B 55.8 353 26.8

RGM-1.5B-high Qwen2.5-Math-PRM 72B 56.7 40.0 26.8
SPRM M 57.9 40.4 28.1
Qwen2.5-Math-RM 72B 63.5 46.7 423

RGM-7B-high Qwen2.5-Math-PRM 72B 68.8 48.3 42.8
SPRM 26M 70.2 48.6 44.4

Table 2: Comparison of SPRM and other PRM models.
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Figure 2: Evaluation of varying numbers of candidate
reasoning trajectories on AIME24.

by +0.8% on LiveCodeBench (64.2% vs 63.4%)
and +1.3% on C-Eval (89.7% vs 88.4%). Com-
pared to closed-source models, medium and high
levels of RGM-32B outperform Claude-3.5-Sonnet-
1022 and GPT-40-0522, and achieving comparable
performance with medium level of OpenAl 03-mini
(85.2% vs 79.6% on AIME24, 73.6% vs 74.8%
on AIME25, 64.2% vs 67.4% on LiveCodeBench,
89.7% vs 75.9% on C-Eval,), highlighting its strong
competitiveness in mathematical tasks and robust-
ness on general tasks.

Besides, RGM with a more advanced backbone
(Qwen3(Yang et al., 2025)) can be found in Ap-
pendix.A.2.

5.3 Ablation Study

Effectiveness of SPRM. As shown in Table.2,
our SPRM, with only around 26M extra parameters,
achieves higher performance compared with 72B
ORM and PRM. This demonstrates that sharing
parameters between the reward model and policy
model is able to generate high-quality guidance
without the requirement of additional large-scale
reward models. To further analyze the efficacy of
different reward models, we compare their perfor-
mance under different numbers of candidate rea-
soning trajectories k in Fig.2. Across different k
and model sizes, SPRM consistently outperforms
other methods, indicating its strong ability to dis-
tinguish between high and low quality reasoning
trajectories. The detailed predictions of SPRM are

Model Loss AIME24 LiveCodeBench
. BCELoss 56.7 27.9
RGM-1.5B-high  qppioss  57.9 28.1
. BCELoss 69.1 43.9
RGM-7B-high  qppioss  70.2 44.4

Table 3: Evaluation on SPRLoss.

Score gap of RGM-S1-1.5B
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Figure 3: The prediction score gap between correct and
incorrect solutions. The blue curve shows the SPRLoss.
The red curve shows the BCELoss.

listed in Appendix.A.3

Moreover, we evaluate the generalization ability
of SPRM on tasks from the other domain (Live-
CodeBench). Without any task-specific fine-tuning
or in-domain data, our SPRM still achieves superior
performance compared to separate reward models.
This demonstrates SPRM’s strong zero-shot gener-
alization capability, suggesting that it can capture
domain-agnostic patterns to evaluate the reasoning
trajectories.

Effectiveness of self-supervised optimization.
We evaluate the effectiveness of SPRLoss in Ta-
ble.3. Compared with using the final answer
correctness as process-level supervision for PRM
training, our proposed self-supervised optimization
method achieves larger performance gains on both
1.5B and 7B models. Furthermore, Fig.3 shows
the prediction score gap between correct and incor-
rect solutions. Compared to the BCELoss, SPR-
Loss demonstrates stronger discriminative capabil-
ity with a larger score gap. This indicates that treat-
ing final answer correctness as process-level labels
introduces substantial label noise, which harms the
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optimization. In contrast, SPRLoss leverages self-
supervised signals to reduce the impact of noisy
supervision, leading to stable and accurate training.

5.4 Aha Moment of RGMs

In Fig. 4, we present the final evaluation scores
from RGM for both correct and incorrect reasoning
trajectories throughout the training process. During
the initial phase of training, the optimization trajec-
tories for all samples follow a similar trend, indicat-
ing that the model has not yet learned to distinguish
between correct and incorrect reasoning trajecto-
ries. However, after a certain number of training
steps (e.g., around 10/20/50 steps, 1280/2560/6400
samples for RGM-1.5B/7B/32B, respectively), we
observe a distinct "aha moment" point where the
optimization trends of different reasoning trajecto-
ries begin to diverge. This suggests that the model
is starting to judge the correctness based on the
reasoning contents. With this aha moment, RGM
can progressively refine its SPRM head through
our proposed self-supervised SPRLoss, leading to
a clear score gap between correct and incorrect
reasoning trajectories, and enabling effective TTS.
The typical “aha moment” case study can be found

in Appendix.A.3

5.5 Scaling Law of RGMs

In Fig. 5, we present the scaling law for reflec-
tive generative models, which shows the relation-
ship between the total reasoning computation in
TTS and the final performance. Following Snell
et al. (2024), we define the computation budget C'
as the product of the model’s parameter (B) and
the total number of reasoning tokens (k): C' =
Paramyolicy X Token;p fer. Notably, when the to-
tal reasoning length is scaled to more than 32 times
the baseline (e.g., Best-of-64), the performance im-
proves slowly. Therefore, we mainly focus on TTS
results up to Best-of-32 for each model scale. We
observe that the final performance shows a positive
correlation with the logarithm of the computation
budget (the specific scaling factor depends on the
baseline model architecture). This indicates that
the final performance of our model can be enhanced
by exponentially scaling on parameter size or the
reasoning length.

6 Conclusion

In this work, we propose a novel Reflective Genera-
tive Form, which enables a single LLLM to both gen-
erate and select high-quality reasoning trajectories
for Test-Time Scaling (TTS). Based on this form,
we present the reflective generative model (RGM).
Specifically, we design a unified interface that inte-
grates the policy model and process reward model
(PRM) within a single network, resulting in low
parameter overhead and efficient TTS inference.
A self-supervised process reward model (SPRM)
is proposed to learn process-level evaluation with
only final answer annotations. With 32B parame-
ters, RGM achieves comparable performance to the
OpenAl 03-mini series across mathematics, coding,
and Chinese reasoning benchmarks.



7 Limitations

Despite the promising performance, our Reflective
Generative Model has several limitations. First,
the best-of-N strategy requires the policy model to
generate N complete reasoning trajectories before
selecting the final output, which cannot be used
for streaming output and may introduce additional
latency. This is a common problem for Test-Time
Scaling based methods. Second, the model’s im-
provements on non-mathematical tasks remain lim-
ited. For the models on 32B level, the improvement
on LiveCodeBench and C-Eval are only 0.8 and
0.3 points compared with the baseline. This is due
to our training set only containing mathematical
data. Building a large-scale training set including
more domains could help address this issue. Third,
we only use Qwen and QWQ-32B architectures as
the backbone. The detailed step of aha moment
and the specific growth rate of scaling law may
be different for other architectures. Moreover, the
effectiveness of our method on large-scale models
with over 32B parameters remains to be explored.
Finally, our model with QwQ-32B backbone still
underperforms OpenAl 03-mini-medium on some
benchmarks, such as AIME25 and LiveCodeBench.
Using a stronger backbone could help mitigate this

gap.
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A Appendix

A.1 Extend on MCTS

Since SPRM produces process scores for each step,
our reflective generative models can be naturally
used in step-level search-based TTS methods such
as Monte Carlo Tree Search (MCTS). In our setup,
instead of performing full simulations to the end
of a reasoning trajectory, we directly use SPRM to
estimate the value of each node during the search.
This enables a more efficient evaluation at each
expansion step. In the expanding stage, we expand
4 children for the selected node and generate 1024
tokens in each child node. To balance the computa-
tion cost, we set the maximum number of tokens
in the MCTS process from 0 (without MCTS) to
160k for each question.

Table.4 presents the performance of MCTS on
the AIME24 dataset. By increasing the maximum
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number of searching tokens, the performance im-
proved from 39.3 to 52.8, demonstrating the effec-
tiveness of SPRM in providing high-quality step-
level guidance in the reasoning stage. However, the
performance of MCTS is still lower than the results
under the Best-of-N strategy reported in Table 1.
This is primarily due to the computational overhead
inherent in tree-based search methods, which leads
to incomplete searching in our setting. Nonethe-
less, the observed gains over the baseline validate
the potential of our reflective generative models
for integration with more advanced search-based
inference methods.

Tokens(k) 0 40 80 120 160
Accuracy(%) 393 48.8 50.0 51.7 528

Table 4: Performance of RGM-1.5B with MCTS on
AIME24.

A.2 Generalization on advanced architecture.

To further assess the performance upper bound of
our Reflective Generative Form, we integrate it
with a more capable open-source model, Qwen3-
32B (Yang et al., 2025), denoted as RGM-Qwen3-
32B. Experimental results are displayed in Ta-
ble.5. Across all four benchmarks, RGM-Qwen3-
32B consistently outperforms the original Qwen3-
32B model. On mathematical reasoning tasks,
it achieves a stable improvement of +3.2% on
AIME24 and +4.4% on AIME25. Similar gains
are observed on other general benchmarks, with
+1.5% on LivecodeBench and +2.4% on C-Eval.
These results demonstrate that RGM scales effec-
tively with the capacity of the backbone model,
highlighting its generalization potential on more
advanced models.

RGM-Qwen3-32B

Benchmark  Qwen3-32B

low medium high
AIME24 81.4 81.7 83.8 84.6
AIME25 72.9 74.8 77.1 77.3
LivecodeBench  65.7 66.6 67.0 67.2
C-Eval 87.3 89.4 89.5 89.7
Table 5: Evaluation with Qwen3 backbone. The v5

version of LivecodeBench is used for comparison.
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A.3 Case study

Case study of SPRM Fig.6 shows the visualiza-
tion of step-wise evaluation scores from SPRM.
It can be observed that SPRM effectively identi-
fies low-quality processes generated by the policy
model, including logical error (e.g. the misunder-
standing of b in step 58 of example 1) and calcula-
tion error (e.g., the incorrect computation 9 x 21 +
7 =193 in step 32 of example 2). SPRM assigns
low scores to these low-quality steps. Since SPRM
only outputs process scores, we additionally pro-
vide post-descriptions within the dashed boxes for
better clarity.

Case study of aha moment. We show an exam-
ple in Fig.7. We fix the reasoning trajectory and use
RGM before and after the aha moment for scoring.
In this case, the model mistakenly confuses ¢ and
€k+1, resulting in an incorrect solution. Our model
fails to recognize the error before the aha moment,
while the model after the aha moment can correctly
discriminate it.

A.4 Artifacts Statement

All models and datasets utilized in this study are
publicly available and distributed under permissible
licenses.



Example 1

Question: Among the 900 residents of Aimeville, there are 195 who own a diamond ring, 367 who own a set of golf
clubs, and 562 who own a garden spade. In addition, each of the 900 residents owns a bag of candy hearts. There are
437 residents who own exactly two of these things, and 234 residents who own exactly three of these things. Find the
number of residents of Aimeville who own all four of these things.

Reasoning Trajectories:

However, in this case, we have four sets: diamond rings (D), golf clubs (G), garden spade (S), and candy hearts
©.
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The number of residents who own exactly two things is b = 437. This includes those who own exactly two
things among D, G, S, and those who own exactly one thing in D, G, S and exactly one thing in C.

Score: 0.44. Post-description: Encounter logical error. As everyone owns C, b should not include those who

Step 58: |
own exactly two things among D, G, S. b

Question: Find the sum of all integer bases b > 9 for which 17, is a divisor of 97;.

Reasoning Trajectories:

Step 30:
Therefore, possible bases are 21 and 49.

1+ Score: 1.00. Post-description: The model successfully solved the question and the correct answer is
i 21+49=70.

Step 32:

Let me check b = 21:

Compute (1721) : (1%21+7 =28)

Compute (971) : (9%21+7 =186+7 = 193)

Check if 28 divides 193? Wait, no, because 28*7=196, which is more than 193. Wait, perhaps my earlier
assumption was wrong.

1 Score: 0.04. Post-description: Encounter calculation error. 9 x 21 +7 should be 196 rather than 193.
i This causes the model to discard 21.

Figure 6: SPRM’s predictions on reasoning trajectories. Only key steps are listed. Correct and error steps are
marked in green and red.



Example of Aha Moment in SPRM

Question: Let the sequence of rationals xj,x2,... be defined such that x; = % and [xg41 =
% (xk + xlk = 1)]. x2025 can be expressed as ™ for relatively prime positive integers m and n. Find the

remainder when m + n is divided by 1000.

Reasoning Trajectories:

Step:

Alternatively, perhaps make a substitution. Let me define pj = 1/¢x. Then,
1/er1 = —1/ec + (8/9) /&i®

Multiply both sides by &>:

E = —€ + (8/9)

Thus,

Ek + k1 = 8/ 9

But no, not quite.

1
! Score: 0.52 (before Aha Moment) -> 0.12 (after Aha Moment).

+  Post-description: Encounter calculation error, model confuses ¢ and &,,1 during the simplifi-
1 cation.

1

Figure 7: Comparison of SPRM’s predictions before and after the aha moment. Only key steps are listed. The error
steps are marked in red.
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