

000 001 002 003 004 005 006 007 008 009 010 RETHINKING JEPA: COMPUTE-EFFICIENT VIDEO SSL WITH FROZEN TEACHERS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Video Joint Embedding Predictive Architectures (V-JEPA) learn generalizable
 012 off-the-shelf video representation by predicting masked regions in latent space
 013 with an exponential moving average (EMA)-updated teacher. While EMA pre-
 014 vents representation collapse, it complicates scalable model selection and cou-
 015 ples teacher and student architectures. We revisit masked-latent prediction and
 016 show that a frozen teacher suffices. Concretely, we (i) train a target encoder with
 017 a simple pixel-reconstruction objective under V-JEPA masking, then (ii) freeze
 018 it and train a student to predict the teacher’s latents on masked regions. This
 019 leads to a two-stage, unregularized scheme that we refer to as SALT (Static-
 020 teacher Asymmetric Latent Training). SALT decouples optimization into pixel
 021 reconstruction (teacher) and masked latent prediction (student), increasing trans-
 022 parency, efficiency, and scalability while preserving the ability of representation to
 023 generalize under frozen evaluation. Empirically, our student models outperform
 024 recently proposed V-JEPA 2 encoders under frozen backbone evaluation across
 025 diverse benchmarks. They are also more compute-optimal: at matched pretrain-
 026 ing FLOPs, our method achieves higher probing accuracy, and its scaling curves
 027 dominate V-JEPA’s accuracy–FLOPs Pareto frontier. Finally, we find that student
 028 quality is remarkably robust to teacher quality: high-performing students emerge
 029 even with small, sub-optimal teachers. This points to a compute budget allocation
 030 that should overwhelmingly favor the student. These results position SALT as a
 031 simple, scalable, and compute-efficient alternative to EMA-based self-distillation
 032 for video representation learning.

033 1 INTRODUCTION

035 Self-supervised learning (SSL)-based methods have emerged as a standard approach for represen-
 036 tation learning in computer vision. These methods pretrain neural networks that use vast amounts
 037 of image (He et al., 2021; Assran et al., 2023; Caron et al., 2021; Oquab et al., 2024; El-Nouby
 038 et al., 2024) or video (Tong et al., 2022; Wang et al., 2023b; Bardes et al., 2024; Assran et al., 2025)
 039 data to learn backbones that have been shown to work well on many downstream tasks. Among
 040 these methods, Joint Embedding Predictive Architecture (JEPA)-based methods (LeCun, 2022) have
 041 demonstrated a strong ability to learn powerful semantic features that perform well on downstream
 042 image (I-JEPA) (Assran et al., 2023) and video (V-JEPA) (Bardes et al., 2024; Assran et al., 2025)
 043 tasks.

044 As concrete instantiations of the Joint Embedding Predictive Architecture (JEPA), I-JEPA (Assran
 045 et al., 2023) and V-JEPA (Bardes et al., 2024; Assran et al., 2025) are masking-based pretraining
 046 methods that learn powerful semantic representation by predicting masked-out portions of the
 047 input in a learned embedding space. Specifically, these methods consist of a context (student)
 048 encoder and a predictor that are trained to make predictions that match the embeddings provided
 049 by a target (teacher) encoder. While powerful, the JEPA family of models are often complex,
 050 hyperparameter-br brittle, and use an uninformative loss metric that is a poor proxy for representation
 051 quality, requiring practitioners to rely on other more downstream-predictive metrics (Agrawal
 052 et al., 2022; Garrido et al., 2023; Thilak et al., 2024). These issues stem from the core JEPA
 053 design: because student and teacher representation co-evolve, trivial collapsed solutions with
 near-zero loss exist, and must be avoided. To prevent representation collapse, these models are
 implicitly regularized using the self-distillation approach pioneered by BYOL (Grill et al., 2020).

054 Namely, the stop-gradient operation is applied on the target encoder, and its weights are updated
 055 by an exponential moving average (EMA) copy of the student weights, according to some EMA
 056 scheduler. It is worth mentioning that other variants of joint-embedding SSL models utilize more
 057 explicit regularizers to prevent collapse (Zbontar et al., 2021; Bardes et al., 2021).
 058

059 In this paper, we present a comprehensive empirical study that challenges the common assumption
 060 that involved collapse prevention mechanisms are required for learning high-quality semantic fea-
 061 tures. Specifically, we show that a *dynamic* teacher is unnecessary, and that stable, high-quality
 062 targets needed to optimize the student model can be obtained in a more efficient manner with a
 063 frozen encoder. This design obviates the need for both the EMA update and the stop-gradient,
 064 streamlining the self-distillation process and reducing implementation complexity. We start with a
 065 simple two-stage pretraining scheme: (i) train a target encoder with a pixel-reconstruction objective
 066 under V-JEPA-style masking; (ii) freeze this encoder and train a student with the JEPA objective to
 067 predict the teacher’s latents on masked regions (Bardes et al., 2024). Prior work has explored using
 068 pretrained frozen encoders as masked-prediction targets (Wang et al., 2023c; Li et al., 2023), but
 069 typically assumes access to strong teachers and often relies on fine-tuning the student to realize the
 070 benefits. In contrast, our study provides a fair and direct comparison against strong baselines, includ-
 071 ing V-JEPA 2, on larger datasets and models; we dub our method SALT (Static-teacher Asymmetric
 072 Latent Training) and show that:
 073

- 074 **1. Small, “sub-optimal” teachers suffice.** High-quality semantic features competitive with
 075 state-of-the-art under frozen evaluation protocols can be learned from much smaller and
 076 cheaper teachers. Using the strongest available pretrained encoders is unnecessary and
 077 yields at most marginal gains for the student.
- 078 **2. Compute efficiency.** Our two-stage design is more compute-efficient than EMA-based
 079 self-distillation (e.g., V-JEPA): at matched **Floating Point Operations** (FLOPs) and
 080 wall-clock, and even when accounting for the cost of training the teacher, our method
 081 achieves a better accuracy–FLOPs trade-off¹.
- 082 **3. Interpretable model selection.** Our design yields a student loss that provides an infor-
 083 mative, training-time metric that correlates strongly with downstream accuracy under the
 084 frozen-backbone protocol, in contrast to EMA-based methods that require proxy heuristics
 085 for model selection.

086 Taken together, our results suggest that elaborate online student-teacher dynamics and EMA-based
 087 collapse prevention machinery may be unnecessary for learning high-quality representation.
 088

089 2 METHOD OVERVIEW

090 We first review video-based JEPA models that include both V-JEPA and V-JEPA 2, and then describe
 091 our simple approach named SALT for representation learning from videos. Note that V-JEPA 2 uses
 092 the same pretraining method described in V-JEPA but employs updated hyperparameters so our
 093 method review applies to both models.
 094

095 2.1 V-JEPA

096 V-JEPA employs a masked prediction objective: the context encoder–predictor reconstructs masked
 097 regions from visible frames in a learned representation space, while an EMA-updated target encoder
 098 supplies the supervision. Following the notation used by Bardes et al. (2024), the latent space
 099 prediction objective can be written:
 100

$$101 \min_{\theta, \phi} \mathbb{E}_{x, y} \|g_{\phi}(f_{\theta}(x), \delta y) - \mathbf{stop_grad}(\bar{f}_{\theta}(y))\|_1 \quad (1)$$

102 where x and y denote two disjoint regions of the input, f , \bar{f} and g denote the encoder, target encoder
 103 and predictor respectively, **stop_grad** denotes the stop-gradient operation and δy denotes the spatio-
 104 temporal positions of missing regions in the input that act as context for the predictor.
 105

106 ¹FLOPs and total number of training steps are used interchangeably to refer to compute. Appendix G
 107 includes an explanation for this choice

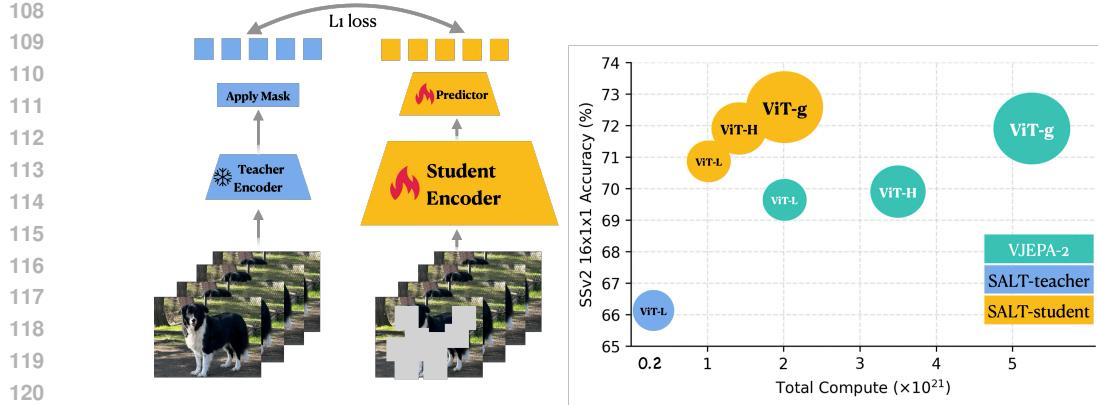


Figure 1: **(Left)** **SALT Stage 2:** Frozen-teacher, learnable student and predictor. The frozen teacher encoder is obtained via **Stage 1** (not pictured above) by training using a pixel reconstruction objective. The student and predictor are jointly optimized to learn representation from video in Stage 2 using a latent space prediction objective. **(Right):** SALT’s compute-accuracy curve dominates V-JEPA 2.

2.2 STATIC-TEACHER ASYMMETRIC LATENT TRAINING (SALT) - A SIMPLIFIED VIDEO REPRESENTATION LEARNING METHOD

The V-JEPA method, uses a self-distillation approach incorporating stop-gradient and exponential moving average (EMA). This approach requires properly setting the associated hyperparameters to prevent representation collapse. In this work, we advocate for an alternative solution, which we refer to as SALT, that does not require the use of EMA operation. Specifically, we simplify the architecture by breaking down video representation learning into two steps:

- **Stage 1** - The teacher or target encoder is trained to optimize a pixel reconstruction objective in Stage 1. The objective is identical to the objective used in VideoMAE (Tong et al., 2022). However, our Stage 1 method differs from VideoMAE as we use a more efficient masking scheme, the details of which are described in Section 5.2.
- **Stage 2** - The weights of the teacher from Stage 1 are frozen and used to train a student and predictor network as shown in Figure 1. The JEPA objective, described by Equation (1), is used to optimize the student and the predictor.

The simplification described above results in two loss objectives that are proper loss functions which are easier to interpret in practice, and are immune to representation collapse by design. This stands in contrast to V-JEPA’s objective in Equation (1), which is difficult to interpret due to its self-distillation nature that, in turn, necessitates the use of surrogate metrics (Garrido et al., 2023; Thilak et al., 2024). Moreover, our two-stage approach completely decouples the teacher and student architectures, unlocking considerable compute efficiency gains by utilizing small teachers to train larger students, as shown in Figure 1 and Table 1. We observe from Figure 1 that SALT shows a remarkable improvement over V-JEPA 2 on Something-Something-v2 (SSv2) (Goyal et al., 2017), which is a temporal understanding task. Furthermore Table 1 shows that a smaller but noticeable improvement is observed on Kinetics-400 (Kay et al., 2017), an appearance understanding benchmark. We describe the experimental setup in Section 3 and discuss results in detail in Section 4.

2.2.1 SALT DESIGN PRINCIPLES

SALT follows the contemporary trend toward simple, principled architectures and objectives, avoiding elaborate engineering. We provide a simple recipe to train the teacher in **Stage 1** with method that we call V-Pixel that uses a pixel reconstruction objective along with the multi-block masking method described in V-JEPA ². The decoupled design of SALT allows us to study the role of archi-

²This method is implicitly described in Table 1 by Bardes et al. (2024). We name the method V-Pixel for clarity in presentation.

162 tecture and dataset choices for training the teacher and student in a granular manner. We uncover
 163 a surprising finding that, a high performing teacher, as measured by its downstream performance,
 164 is not necessary to train a high-quality student. As we show in Section 5.1, Section 5.3 and Sec-
 165 tion 5.4, the student’s ultimate quality is surprisingly robust to suboptimal data mixture, teacher size
 166 and compute budget. Overall, our simplified design demonstrates superior efficiency, scalability,
 167 and interpretability over the baseline V-JEPA.
 168

169 3 EXPERIMENTAL SETUP 170

171 **Training** Our training data includes Kinetics-710 (K710) Kay et al. (2017), constructed by
 172 merging Kinetics-400/600/700 and removing all validation samples, Something-Something V2
 173 (SSV2) Goyal et al. (2017), and a 2.8 million subset of the Panda70M Chen et al. (2024) result-
 174 ing in approximately 3.6 million (3.6M) video dataset that we refer to as V-3.6M dataset in our
 175 work. Note that our training dataset differs from the training datasets used in V-JEPA and V-JEPA
 176 2 as the latter methods use Howto100M (Miech et al., 2019) and YT-Temporal-1B datasets (Zellers
 177 et al., 2022) while we use a subset of Panda70M in V-3.6M. Our models are standard Vision Trans-
 178 formers (ViT) (Dosovitskiy et al., 2020) with rotary positional embeddings (RoPE) (Su et al., 2024)
 179 which is identical to the architecture described in V-JEPA 2. Specifically, we use ViT-Large (ViT-
 180 L), ViT-Huge (ViT-H) and ViT-giant (ViT-g) in our experiments, the details of which are described
 181 in Appendix B. All baseline models (V-JEPA and V-Pixel) are trained with the same batch size of
 182 3072 using the AdamW optimizer with hyperparameters described in detail in Appendix C. To en-
 183 sure fair comparisons, we keep the number of optimization steps fixed for both our baseline methods
 184 and SALT. In other words, the total number of steps for Stage 1 and Stage 2 is identical to the num-
 185 ber of steps used by baseline methods. The optimal number of steps to train a teacher and student is
 186 obtained via an ablation described in Section 5.4.
 187

188 **Evaluation** We evaluate our models on a variety of video and image tasks. For video classifica-
 189 tion, following, we use Kinetics-400 (K400), Something-Something-v2, COIN classification (Tang
 190 et al., 2019), Jester (Materzynska et al., 2019) and Diving-48 (Li et al., 2018) freezing the back-
 191 bone and training an attentive classifier to assess performance. For image classification, we adopt
 192 the same protocol on ImageNet-1K (Russakovsky et al., 2015), replicating each image 16 times to
 193 form the input sequence. Furthermore, we evaluate our models on intuitive physics understanding
 194 benchmarks, which measure performance by comparing the model’s surprise scores for possible
 195 versus impossible videos. Following (Garrido et al., 2025), we use the predictor to forecast future
 196 representation. We assess performance on the IntPhys (Riochet et al., 2018), GRASP (Jassim et al.,
 197 2023), and InflLevel (Weihs et al., 2022) datasets. All setup information and hyperparameters used
 198 for our evaluations are described in detail in Appendix D.
 199

200 4 EXPERIMENTAL RESULTS 201

202 **Systematic comparison of SALT with existing baselines** Table 1 lists the performance of SALT
 203 and existing work that serve as strong baselines including V-JEPA 2, VideoPrism (Zhao et al., 2024),
 204 InternVideo2 (Wang et al., 2024), VideoMAEv2 (Wang et al., 2023b), Perception Encoder (Bolya
 205 et al., 2025) and image encoders that include DINOv2 (Oquab et al., 2024) and SigLIP2 (Tschannen
 206 et al., 2025). We use the Kinetics-400 (K400) and Something-Something-v2 (SSV2) as benchmark
 207 datasets and evaluate SALT following the same multiclip, multiview setting used in existing baseline.
 208 We observe from Table 1 that our largest models, ViT-g, and ViT-G, trained with SALT outperforms
 209 all of the baseline methods on SSV2, which tests the motion understanding ability of video models.
 210 On K400, which is an appearance understanding benchmark, the encoders trained with our method
 211 exceeds the performance of V-JEPA 2 across all scales and remains highly competitive with other
 212 state-of-the-art methods including the recently proposed Perception Encoder.
 213

214 **Static teacher improves representation quality** A key design choice of SALT is the use of a
 215 *static* teacher which differs from the dynamic momentum-encoder teacher used in V-JEPA 2. In
 216 order to ascertain the differences between these two approaches, we use the same V-3.6M dataset
 217 and same input resolution of 224×224 to train SALT and V-JEPA 2. We train both methods for a
 218 total of 240k steps in this study. Figure 2a shows the downstream performance results of this study

Table 1: **Systematic comparison** of state-of-the-art video encoders under frozen-backbone evaluation, using SSv2 ($16 \times 2 \times 3$) and K400 ($16 \times 2 \times 3$). The comparison includes several baselines including encoders trained with V-JEPA 2 method on our V-3.6M dataset. The V-JEPA 2 encoders trained on V3.6M and SALT encoders are evaluated using the protocol in Section 3 and Appendix D. The results for other models are duplicated from Table 4 in V-JEPA (Assran et al., 2025). A detailed description of FLOPs calculation is available in Appendix F.

Method	Param.	Pretraining Dataset	Teacher (Params)	Total Compute	# Seen Samples	SSv2	K400
VideoMAEv2 (Tong et al., 2022)	1B	UnlabeledHybrid-1.4M	N/A	2.2	1.6B	56.1	82.8
MVD (Wang et al., 2023c)	300M	IN1K+K400	N/A	—	—	66.5	79.4
PF _{core} G (Bolya et al., 2025)	1.9B	MetaCLIP-5B (Xu et al., 2024)	N/A	—	86B	55.4	88.5
InternVideo2-1B (Wang et al., 2024)	1B	IV-25.5M	InternVL-6B + VideoMAEv2-g (6B + 1.0B)	—	—	67.3	87.9
VideoPrism (Zhai et al., 2024)	1B	VT-36M	Stage-1-ViT-g (1.0B)	—	2.0B	68.5	87.6
DINOv2 (Oquab et al., 2024)	1.1B	LVD-142M	EMA teacher (1.1B)	—	1.9B	50.7	83.6
SigLIP2 (Tschannen et al., 2025)	1.2B	WebLI-10B (Chen et al., 2022)	EMA teacher (1.2B)	—	40B	49.9	87.3
V-JEPA 2 ViT-L (Assran et al., 2025)	300M	VM-22M	EMA teacher (300M)	1.9	0.7B	73.7	85.1
V-JEPA 2 ViT-H (Assran et al., 2025)	600M	VM-22M	EMA teacher (600M)	3.5	0.7B	74.0	85.3
V-JEPA 2 ViT-g (Assran et al., 2025)	1B	VM-22M	EMA teacher (1B)	5.3	0.7B	75.3	86.6
V-JEPA 2 ViT-L	300M	V-3.6M	EMA teacher (300M)	1.4	0.7B	68.2	83.8
V-JEPA 2 ViT-H	600M	V-3.6M	EMA teacher (600M)	2.6	0.7B	73.4	84.6
SALT ViT-L	300M	V-3.6M	—	1.2	0.7B	74.9	85.4
SALT ViT-H	600M	V-3.6M	—	1.5	0.7B	75.4	86.0
SALT ViT-g	1B	V-3.6M	SALT-ViT-L (300M)	1.9	0.7B	76.2	86.8
SALT ViT-G	2B	V-3.6M	—	2.6	0.7B	76.1	87.2

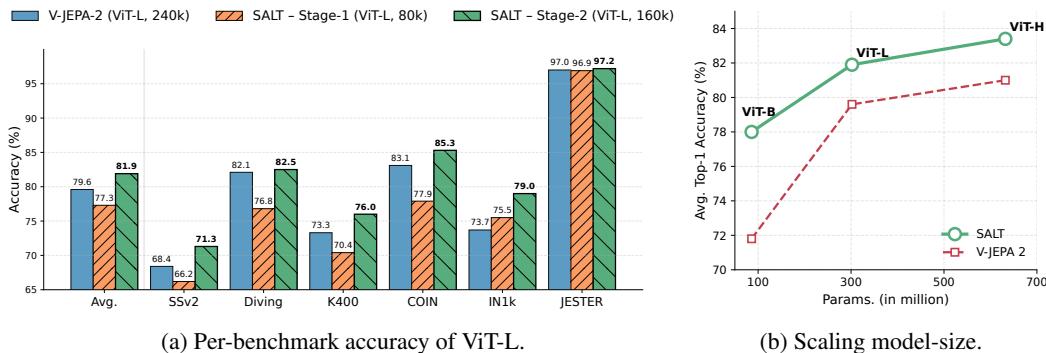


Figure 2: **V-JEPA 2 vs. SALT at matched total steps on V-3.6M.** Both methods are trained on the same V-3.6M dataset for an identical number of pretraining steps. SALT uses an 80k-step teacher and a 160k-step student. We evaluate all models under the *same frozen-backbone protocol* across standard video/image benchmarks: K400 with $16 \times 1 \times 1$ input; SSv2 with $16 \times 1 \times 1$; Diving48 and Jester with $16 \times 4 \times 3$; and COIN $16 \times 8 \times 3$. Table 12 provides a breakdown of downstream performance for each dataset used in this evaluation.

for ViT-L-based teacher and student model setup while Figure 2b shows the scaling behavior of the two methods as we scale up the student encoder while using a teacher encoder that is the same size or smaller than the student. We observe from Figure 2a that SALT improves the average accuracy over the V-JEPA 2-based encoder by 2.3% where the average is calculated over six benchmarks. Furthermore, we observe from Figure 2b that SALT displays improved performance as we scale up the student. Note that we use the same-sized teacher student for ViT-B and ViT-L while we use a smaller ViT-L teacher model for training ViT-H student encoder. We refer the reader to Appendix B for detailed model size and other architecture information. Together, Figure 2 suggests that the *static* teacher-based SALT learns higher quality features when compared to V-JEPA 2 that uses an EMA-based teacher.

Small teachers unlock compute efficiency Table 1 and fig. 2 show that strong students can be trained from a *frozen* teacher, which is considerably cheaper: a fixed ViT-L teacher successfully trains same-size ViT-L students, and much larger ViT-H/g/G students. Consequently, SALT achieves lower *total* pretraining FLOPs than the EMA-based baseline across model sizes, even when accounting for the teacher pretraining stage. The savings stem from the simple, efficient teacher pretraining (e.g., ViT-L on V-3.6M) and grow with both model size and spatial resolution. FLOPs computation details appear in Appendix F.

SALT enables interpretable model selection A key challenge with using joint-embedding methods including JEPA is that the training loss is typically uninformative of representation quality. Fig-

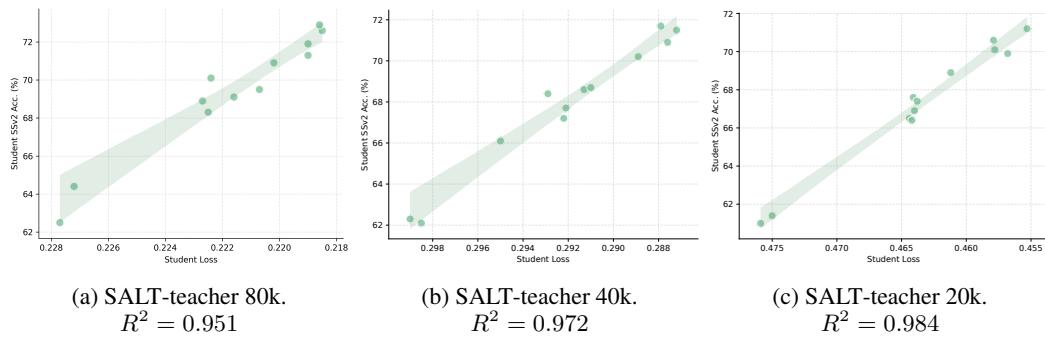


Figure 3: **Correlation between student loss and downstream accuracy.** Observe that the student model’s training loss is predictive of downstream accuracy.

Figure 3a shows a student training loss versus student downstream accuracy plot for various student checkpoints that use the same SALT Stage 1 checkpoint as the teacher. This checkpoint is obtained by training a teacher for 80K steps. The plot shows that the student loss is highly predictive of the downstream accuracy with an R^2 value of 0.951, suggesting an almost linear relationship. This result implies that SALT significantly simplifies tracking the quality of representation during student pretraining, and provides a clear signal for improvement via simple loss minimization. Similar observations can be made by a teacher trained for 40K and 20K iterations in Figure 3. Lastly, we study whether teacher-related metrics such as teacher loss or RankMe (Garrido et al., 2023) are predictive of downstream performance in Figure 9. We find that neither the teacher’s loss nor embedding rank are predictive of the student encoder’s downstream performance.

Intuitive physics evaluation Garrido et al. (2025) have shown that video models trained with the JEPA objective show an emergent understanding of intuitive physics. We follow the setup described in (Garrido et al., 2025) to measure the intuitive understanding ability of video models trained with SALT. The evaluation setup and results are discussed in detail in Appendix E.1 due to space limitations. The main finding is that intuitive physics understanding is observed on models trained via SALT as well as V-JEPA 2.

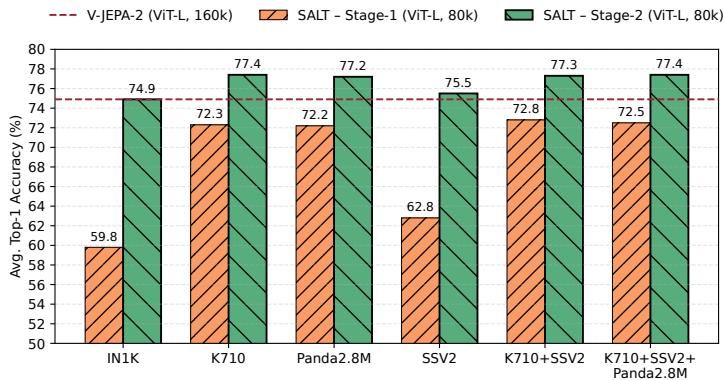


Figure 4: **Training data of static-teacher.** We ablate the impact of training data of teacher, thus fixed the student’s training data as the whole data-mix by default. Table 13 provides a detailed breakdown of the results show above.

5 TEACHER DESIGN CHOICE ABLATION

The empirical analysis in Section 4 shows that SALT provides high-quality representation that outperforms several existing methods. A key aspect of SALT is the static (frozen) teacher that provides high-quality prediction targets. We study the design choices involved in training the teacher model and student model that lead to optimal representation via a series of ablations described in the following.

324 5.1 TRAINING DATASET
325

326 In this section, we study the role of pretraining data distribution on a teacher model. Specifically,
327 we train a ViT-L teacher model with six training datasets: (i) Kinetics-710 (K710), (ii) Something-
328 Something-V2 (SSv2), (iii) a 2.8 million subset of Panda70M, (iv) ImageNet-1k, (v) data aggregated
329 from K710 and SSV2, and (vi) V-3.6M which is data aggregated from K710, SSV2 and Panda70M
330 subset. The exact details of the datasets are described in Section 3. The teacher model is trained
331 using the Stage 1 approach (V-Pixel) described in Section 2.2. For each teacher model from Stage
332 1, we train a ViT-L-based student model on the combined V-3.6M dataset using Stage 2 approach
333 described in Section 2.2.

334 Figure 4 shows the result of benchmarking the teacher and student models trained with the datasets
335 described above. We observe that the performance of each student model described above improves
336 over that of its corresponding teacher. Additionally, each student model’s downstream performance
337 exceeds the performance of a V-JEPA 2-based encoder with the exception of the student model
338 trained on ImageNet-1K-based teacher model. Among the teacher models trained on video datasets
339 considered in this study, we observe comparable performance with the notable exception of the
340 teacher model trained on Something-Something-V2. Taken together, these results suggest that an
341 effective teacher maybe trained with a relatively small amount of data to build strong foundation
342 models.

343

344 5.2 TEACHER MASKING STRATEGY
345

346 We study the role of masking strategy used to
347 train the teacher that provides targets to opti-
348 mize the student model. To this end, we train
349 a ViT-L using random masking used in Video-
350 MAE, multi-block masking used in V-JEPA and
351 a modified method that we call multi-random
352 tube where we adapt the short-range and long-
353 range masking idea from V-JEPA to random
354 masking. We refer the reader to Table 15 for
355 setup details used in this ablation. Figure 5
356 shows the results for this ablation. We observe
357 that the multi-block masking approach works
358 the best for V-Pixel model achieving an accu-
359 racy of 72.5%. This finding in and of itself is
360 a new empirical finding as VideoMAE models
361 typically use random-tube masking. Furthermore,
362 we observe from Figure 5 that the student
363 trained with a multi-block teacher achieves the
364 highest accuracy while the other student models
365 also show a big improvement over their correspond-
366 ing teachers. We conclude that multi-block masking strategy is effective with training our teacher
367 and name the pixel reconstruction method with multi-block masking as V-Pixel.

368

369 5.3 TEACHER MODEL SIZE
370

371 Next, we study the impact of a teacher model’s size on a student model’s performance. We train a
372 ViT-B, ViT-L, ViT-H and ViT-G based V-Pixel models and use these models to supervise a ViT-L
373 and ViT-G based student models. Figure 6 shows the results of this ablation. We observe that the
374 best performing ViT-L student has an average accuracy of 77.4% and is obtained by training with a
375 ViT-L teacher. This result is remarkable as this accuracy is better than the accuracy obtained with
376 ViT-H and ViT-G based teachers that are larger than the student. A similar observation can be made
377 about the ViT-G student where the highest average accuracy of 78% is obtained with a ViT-L teacher.
378 Additionally we observe that all student models show improvement over their teachers which are of
379 the same or smaller size. These observations suggest that the multi-stage training proposed in SALT
380 allow the student to bootstrap from a weaker teacher to learn high-quality representation.

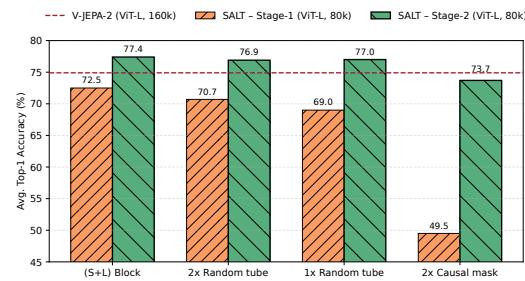


Figure 5: **Masking Strategy of static-teacher.**
We study the impact of random vs multi-block
masking strategy influences a student’s perfor-
mance. Table 15 includes hyperparameters and re-
sults information.

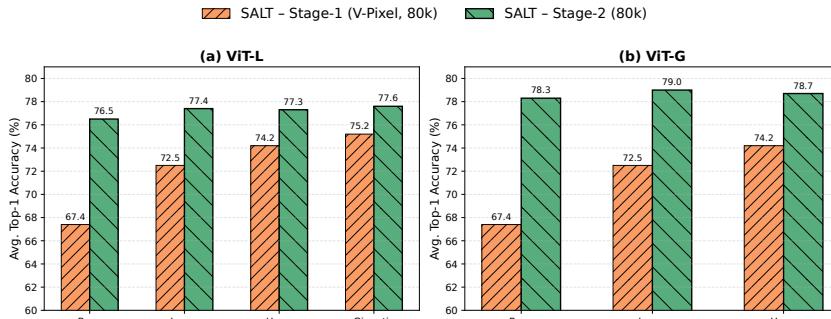
378
379
380
381
382
383
384
385
386
387
388

Figure 6: **Teacher model size ablation.** We train ViT-B, ViT-L, ViT-H and ViT-G based teacher and use the teacher to train a ViT-L and ViT-G student. Observe that the best performing student is obtained from ViT-L teacher with modest performance. Table 14 provides a detailed breakdown of results on downstream benchmarks.

5.4 IMPACT OF TEACHER-STUDENT COMPUTE ALLOCATION

Due to a frozen teacher approach used in SALT, we are confronted with the problem of allocating compute between the teacher and the student. Training compute is a function of the model size, the number of optimization steps as well as the number of FLOPs per step. In this ablation, we hold the model size, the total number of optimization steps, and the training dataset (V-3.6M) constant as that allows us to conduct a fair comparison of SALT and V-JEPA 2 baseline. We use ViT-L based model for both teacher and student in this ablation where we vary the number of steps used to train the teacher and student for a fixed total number of optimization steps. We observe from Figure 7 that SALT outperforms V-JEPA 2 baseline over a range of optimization steps considered in our experiments. Furthermore, we observe that SALT exceeds V-JEPA 2’s performance at \approx the same FLOPs level which in turn suggests that SALT is more compute efficient than V-JEPA 2. The best performing student is obtained by training on 240k total steps, as can be seen from Figure 7, that is supervised by a teacher that is only trained for 40k steps. This finding underscores the effectiveness of our multi-stage training approach and demonstrates that we should focus on students in SALT, and that aiming for a high-performing teacher maybe wasteful. Additional visualization and analysis that supports these claims are provided in Appendix E.2.

6 RELATED WORK

Video foundation models: Masking-based self-supervised learning (SSL) (Tong et al., 2022; Feichtenhofer et al., 2022; Wang et al., 2023a; Bardes et al., 2024; Assran et al., 2025; Wang et al., 2023c; Li et al., 2023; Zhao et al., 2024; Wang et al., 2022) is a prominent approach used to learn representation from large-scale video datasets for building video foundation models. Several works (Tong et al., 2022; Feichtenhofer et al., 2022; Wang et al., 2023b) have extended image-based masked autoencoders (He et al., 2021) to video data by using random masking to learn representation via pixel-space reconstruction. Recent works incorporate motion-aware masking and temporal correspondence to better capture temporal dynamics (Thoker et al., 2025; Sun et al., 2023; Salehi et al., 2024; Huang et al., 2023). An alternate approach for representation learning is to learn via latent-space predictions. These methods are known to learn features that differ in quality from those obtained via reconstruction-based methods (Littwin et al., 2024; Balestrieri & Lecun, 2024). Promi-

432 nent among latent-space prediction methods for video are V-JEPA (Bardes et al., 2024) and V-JEPA
 433 2 (Assran et al., 2025) that use an online/momentum encoder to learn the teacher that provides pre-
 434 diction targets. SALT simplifies the JEPA pipeline by using a frozen teacher that is reliable and
 435 efficient that leads to higher quality representation as shown in our analysis.
 436

437 **Distillation from frozen teacher encoder:** While many studies utilize frozen pretrained models
 438 as teachers for student encoder supervision, we limit our review to prior work that is directly relevant
 439 to our core method and refer the interested reader to (Balestriero et al., 2023) for a comprehensive
 440 survey on SSL literature. MVD (Wang et al., 2023c) and InternVideo (Wang et al., 2022) use Video-
 441 MAE (Tong et al., 2022) while other works such as UnMasked Teacher (Li et al., 2023), Video-
 442 Prism Zhao et al. (2024), InternVideo2 Wang et al. (2024) and many more use a vision-language
 443 model (Radford et al., 2021), as a frozen teacher. PerceptionEncoder (Bolya et al., 2025) is a recent
 444 vision foundation model that uses features from a predefined layer from within the model as well
 445 as features from an external teacher SAM (Kirillov et al., 2023) to encourage feature locality. AM-
 446 RADIO (Ranzinger et al., 2024) proposes to learn a student from multiple teacher models. Be-
 447 yond prior work, which require access to powerful pretrained encoders, we uncover a *weak-teacher;*
 448 *strong-student* effect: students supervised by much weaker *frozen* teachers consistently outperform
 449 those trained with EMA-based teachers. Our method is purely self-supervised and unregularized,
 450 unlike self-training Xie et al. (2020), which relies on labeled+unlabeled data and explicit noise reg-
 451 ularization. Related world-modeling approaches (Karypis et al., 2024; Baldassarre et al., 2025b;
 452 Zhou et al., 2024) also fix encoders for stability but optimize for future-state prediction, while our
 453 aim is representation learning. Nevertheless, SALT’s strong video features make it a promising
 454 backbone for world models. Lastly, recent advancements in image-to-video distillation (Li & Liu,
 455 2023; Hu et al., 2022; Liu et al., 2025) incorporate temporal information into strong representation
 456 models during distillation while we learn representations directly from video.
 457

458 **Masked video distillation:** Wang et al. (2023c) propose a two-stage method called masked video
 459 distillation (MVD) that first trains two separate encoders one each for image and video input using an
 460 MAE (He et al., 2021; Tong et al., 2022)-like approach. These teacher encoders then provide targets
 461 (latent features) used to optimize a smaller student encoder. SALT resembles the approach taken by
 462 MVD but has several critical differences. The first difference is that we provide an improved method
 463 to train the video teacher encoder as a result of careful empirical analysis in Figure 5. Additionally,
 464 we do not use a separate encoder for image data but instead focus on learning representation from
 465 large-scale video datasets. The most critical difference is that we use a teacher model whose size
 466 is the same or smaller than that of the student model. Furthermore, we conduct detailed ablations
 467 in Section 5 to show how to choose a teacher model (checkpoint). Finally, SALT learns superior
 468 features as our benchmark results are based on frozen backbone evaluations while MVD uses fine-
 469 tuning for downstream evaluation.
 470

7 LIMITATIONS AND CONCLUSION

471 We present SALT, a simple, compute-efficient, and scalable framework for video representation
 472 learning. Across standard benchmarks, SALT consistently outperforms strong baselines, including
 473 V-JEPA-2 in frozen-evaluation protocols. Strikingly, we find that *sub-optimal*, often smaller teach-
 474 ers can yield much stronger students, raising questions as to how the quality of the teacher should be
 475 assessed, and whether EMA-based machinery is necessary to learn highly-semantic representation.
 476 A principled characterization of teacher quality and a fuller study of SALT’s scaling behavior with
 477 respect to data and model size is left for future work.
 478

479 While SALT improves compute efficiency and downstream performance over self-distillation, it has
 480 limitations. Our ablations (Section 5) suggest that a simple *V-Pixel* recipe usually suffices to train an
 481 effective teacher and that compute is best allocated to the student; however, they do not fully explain
 482 what makes a “good” teacher. We also observe modest gains from an additional student-training
 483 stage, but the mechanism remains unclear. Given the experiment volume, we focused compute on
 484 simple scalar diagnostics of teacher quality (Section 5 and Appendix E.3). Finally, performance
 485 plateaus as model size grows in our setting, likely reflecting data limits, and that larger pretraining
 486 sets may extend the scaling trend.
 487

486 REFERENCES
487

488 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
489 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
490 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

491 Kumar Krishna Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Aaron Richards. α -ReQ :
492 Assessing Representation Quality in self-supervised learning by measuring eigenspectrum decay.
493 In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in*
494 *Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=ii9X4vtZGTZ>.

495

496 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael G.
497 Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-
498 embedding predictive architecture. *2023 IEEE/CVF Conference on Computer Vision and Pattern*
499 *Recognition (CVPR)*, pp. 15619–15629, 2023. URL <https://api.semanticscholar.org/CorpusID:255999752>.

500

501 Mahmoud Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili,
502 Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zhulus, Sergio Ar-
503 naud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil
504 Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xi-
505 aodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, and Nicolas Ballas.
506 V-jepa 2: Self-supervised video models enable understanding, prediction and planning. *arXiv*
507 *preprint arXiv:2506.09985*, 2025.

508

509 Federico Baldassarre, Marc Szafraniec, Basile Terver, Vasil Khalidov, Francisco Massa, Yann Le-
510 Cun, Patrick Labatut, Maximilian Seitzer, and Piotr Bojanowski. Back to the features: Dino as a
511 foundation for video world models. *arXiv preprint arXiv:2507.19468*, 2025a.

512

513 Federico Baldassarre, Marc Szafraniec, Basile Terver, Vasil Khalidov, Francisco Massa, Yann Le-
514 Cun, Patrick Labatut, Maximilian Seitzer, and Piotr Bojanowski. Back to the features: Dino as a
515 foundation for video world models. *arXiv preprint arXiv:2507.19468*, 2025b.

516

517 Randall Balestriero and Yann Lecun. How learning by reconstruction produces uninformative fea-
518 tures for perception. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
519 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International*
520 *Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
521 2566–2585. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/balestriero24b.html>.

522

523 Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
524 Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
525 supervised learning. *arXiv preprint arXiv:2304.12210*, 2023.

526

527 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
528 ization for self-supervised learning. *ArXiv*, abs/2105.04906, 2021. URL <https://api.semanticscholar.org/CorpusID:234357520>.

529

530 Adrien Bardes, Quentin Garrido, Jean Ponce, Michael Rabbat, Yann LeCun, Mahmoud Assran, and
531 Nicolas Ballas. Revisiting feature prediction for learning visual representations from video. *arXiv*
532 *preprint arXiv:2404.08471*, 2024.

533

534 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
535 Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, et al. Perception encoder: The best visual
536 embeddings are not at the output of the network. *arXiv preprint arXiv:2504.13181*, 2025.

537

538 Florian Bordes, Quentin Garrido, Justine T Kao, Adina Williams, Michael Rabbat, and Emmanuel
539 Dupoux. Intphys 2: Benchmarking intuitive physics understanding in complex synthetic environ-
540 ments. *arXiv preprint arXiv:2506.09849*, 2025.

540 Mathilde Caron, Hugo Touvron, Ishan Misra, Herv'e J'egou, Julien Mairal, Piotr Bojanowski, and
 541 Armand Joulin. Emerging properties in self-supervised vision transformers. *2021 IEEE/CVF*
 542 *International Conference on Computer Vision (ICCV)*, pp. 9630–9640, 2021. URL <https://api.semanticscholar.org/CorpusID:233444273>.

543

544 João Carreira, Dilara Gokay, Michael King, Chuhan Zhang, Ignacio Rocco, Aravindh Mahendran,
 545 Thomas Albert Keck, Joseph Heyward, Skanda Koppula, Etienne Pot, et al. Scaling 4d representations.
 546 *arXiv preprint arXiv:2412.15212*, 2024.

547

548 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao,
 549 Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, and Sergey Tulyakov.
 550 Panda-70m: Captioning 70m videos with multiple cross-modality teachers. *arXiv preprint*
 551 *arXiv:2402.19479*, 2024. URL <https://arxiv.org/abs/2402.19479>.

552

553 Xi Chen, Xiao Wang, Soravit Changpinyo, Anthony J Piergiovanni, Piotr Padlewski, Daniel Salz,
 554 Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled
 555 multilingual language-image model. *arXiv preprint arXiv:2209.06794*, 2022.

556

557 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 558 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 559 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 560 *arXiv:2010.11929*, 2020.

561

562 Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Ángel Bautista, Vaishaal Shankar,
 563 Alexander T Toshev, Joshua M. Susskind, and Armand Joulin. Scalable pre-training of large
 564 autoregressive image models. In *Proceedings of the 41st International Conference on Machine
 Learning*, pp. 12371–12384, 2024.

565

566 Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
 567 learners. *Advances in neural information processing systems*, 35:35946–35958, 2022.

568

569 Quentin Garrido, Randall Balestrieri, Laurent Najman, and Yann Lecun. RankMe: Assessing the
 570 downstream performance of pretrained self-supervised representations by their rank. In *Proceed-
 ings of the 40th International Conference on Machine Learning*, 2023.

571

572 Quentin Garrido, Nicolas Ballas, Mahmoud Assran, Adrien Bardes, Laurent Najman, Michael Rab-
 573 bat, Emmanuel Dupoux, and Yann LeCun. Intuitive physics understanding emerges from self-
 574 supervised pretraining on natural videos. *arXiv preprint arXiv:2502.11831*, 2025.

575

576 Raghad Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
 577 phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
 578 The “something something” video database for learning and evaluating visual common sense. In
 579 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 5842–5850,
 2017.

580

581 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 582 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 583 Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new
 584 approach to self-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 585 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 21271–21284.
 586 Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf.

587

588 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll'ar, and Ross B. Girshick.
 589 Masked autoencoders are scalable vision learners. *2022 IEEE/CVF Conference on Computer
 590 Vision and Pattern Recognition (CVPR)*, pp. 15979–15988, 2021. URL <https://api.semanticscholar.org/CorpusID:243985980>.

591

592 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 593 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 594 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

594 Yingdong Hu, Renhao Wang, Kaifeng Zhang, and Yang Gao. Semantic-aware fine-grained corre-
 595 spondence. In *European Conference on Computer Vision*, pp. 97–115. Springer, 2022.
 596

597 Bingkun Huang, Zhiyu Zhao, Guozhen Zhang, Yu Qiao, and Limin Wang. Mgmae: Motion guided
 598 masking for video masked autoencoding. In *Proceedings of the IEEE/CVF International Confer-
 599 ence on Computer Vision*, pp. 13493–13504, 2023.

600 Serwan Jassim, Mario Holubar, Annika Richter, Cornelius Wolff, Xenia Ohmer, and Elia Bruni.
 601 Grasp: A novel benchmark for evaluating language grounding and situated physics understanding
 602 in multimodal language models. *arXiv preprint arXiv:2311.09048*, 2023.
 603

604 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 605 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 606 models. *arXiv preprint arXiv:2001.08361*, 2020.
 607

608 Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. Dino-foresight:
 609 Looking into the future with dino. *arXiv preprint arXiv:2412.11673*, 2024.
 610

611 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
 612 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
 613 video dataset. *arXiv preprint arXiv:1705.06950*, 2017.
 614

615 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 616 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 617 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
 618

619 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open
 Review*, 62(1):1–62, 2022.
 620

621 Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked
 622 teacher: Towards training-efficient video foundation models. In *Proceedings of the IEEE/CVF
 623 international conference on computer vision*, pp. 19948–19960, 2023.
 624

625 Rui Li and Dong Liu. Spatial-then-temporal self-supervised learning for video correspondence.
 626 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 627 2279–2288, 2023.
 628

629 Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without repres-
 630 entation bias. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September
 631 2018.
 632

633 Etai Littwin, Omid Saremi, Madhu Advani, Vimal Thilak, Preetum Nakkiran, Chen
 634 Huang, and Joshua Susskind. How jepa avoids noisy features: The implicit bias
 635 of deep linear self distillation networks. In A. Globerson, L. Mackey, D. Bel-
 636 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 637 formation Processing Systems*, volume 37, pp. 91300–91336. Curran Associates, Inc.,
 638 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/a600f0f740605205133553cb74a1c107-Paper-Conference.pdf.
 639

640 Yang Liu, Qianqian Xu, Peisong Wen, Siran Dai, and Qingming Huang. When the future becomes
 641 the past: Taming temporal correspondence for self-supervised video representation learning. In
 642 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 24033–24044,
 643 2025.
 644

645 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 646 arXiv:1711.05101*, 2017.
 647

648 Joanna Materzynska, Guillaume Berger, Ingo Bax, and Roland Memisevic. The jester dataset:
 649 A large-scale video dataset of human gestures. In *Proceedings of the IEEE/CVF international
 650 conference on computer vision workshops*, pp. 0–0, 2019.

648 Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
 649 Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
 650 clips. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 651 2630–2640, 2019.

652 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 653 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 654 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 655 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
 656 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 657 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 658 <https://openreview.net/forum?id=a68SUt6zFt>. Featured Certification.

659 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 660 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 661 models from natural language supervision. In *International conference on machine learning*, pp.
 662 8748–8763. PMLR, 2021.

664 Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Am-radio: Agglomerative vision
 665 foundation model reduce all domains into one. In *Proceedings of the IEEE/CVF Conference on*
 666 *Computer Vision and Pattern Recognition (CVPR)*, pp. 12490–12500, June 2024.

667 Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique
 668 Izard, and Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics
 669 reasoning. *arXiv preprint arXiv:1803.07616*, 2018.

671 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 672 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 673 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

674 Mohammadreza Salehi, Michael Dorkenwald, Fida Mohammad Thoker, Efstratios Gavves,
 675 Cees GM Snoek, and Yuki M Asano. Sigma: Sinkhorn-guided masked video modeling. In
 676 *European Conference on Computer Vision*, pp. 293–312. Springer, 2024.

678 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 679 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

681 Xinyu Sun, Peihao Chen, Liangwei Chen, Changhao Li, Thomas H Li, Mingkui Tan, and Chuang
 682 Gan. Masked motion encoding for self-supervised video representation learning. In *The*
 683 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

684 Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie
 685 Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In *Proceedings*
 686 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1207–1216, 2019.

687 Vimal Thilak, Chen Huang, Omid Saremi, Laurent Dinh, Hanlin Goh, Preetum Nakkiran, Joshua M.
 688 Susskind, and Etaï Littwin. LiDAR: Sensing linear probing performance in joint embedding SSL
 689 architectures. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 690 <https://openreview.net/forum?id=f3g5XpL9Kb>.

692 Fida Mohammad Thoker, Letian Jiang, Chen Zhao, and Bernard Ghanem. Smile: Infusing spatial
 693 and motion semantics in masked video learning. In *Proceedings of the Computer Vision and*
 694 *Pattern Recognition Conference*, pp. 8438–8449, 2025.

695 Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
 696 efficient learners for self-supervised video pre-training. *Advances in neural information process-
 697 ing systems*, 35:10078–10093, 2022.

698 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 699 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 700 Multilingual vision-language encoders with improved semantic understanding, localization, and
 701 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

702 Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and
 703 Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking, 2023a.
 704

705 Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and
 706 Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In *Proceed-
 707 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 708 14549–14560, June 2023b.

709 Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan,
 710 and Yu-Gang Jiang. Masked video distillation: Rethinking masked feature modeling for self-
 711 supervised video representation learning. In *CVPR*, 2023c.

712 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 713 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 714 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

715

716 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 717 Zun Wang, Yansong Shi, et al. Internvideo2: Scaling foundation models for multimodal video
 718 understanding. In *European Conference on Computer Vision*, pp. 396–416. Springer, 2024.

719 Luca Weihs, Amanda Yuile, Renée Baillargeon, Cynthia Fisher, Gary Marcus, Roozbeh Mot-
 720 taghi, and Aniruddha Kembhavi. Benchmarking progress to infant-level physical reasoning in
 721 AI. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=9NjqD9i48M>.

722

723 Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
 724 improves imagenet classification. In *Proceedings of the IEEE/CVF conference on computer vision
 725 and pattern recognition*, pp. 10687–10698, 2020.

726

727 Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen
 728 Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. In
 729 *ICLR*, 2024.

730

731 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
 732 supervised learning via redundancy reduction. *ArXiv*, abs/2103.03230, 2021. URL <https://api.semanticscholar.org/CorpusID:232110471>.

733

734 Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya
 735 Kusupati, Jack Hessel, Ali Farhadi, and Yejin Choi. Merlot reserve: Neural script knowledge
 736 through vision and language and sound. In *Proceedings of the IEEE/CVF conference on computer
 737 vision and pattern recognition*, pp. 16375–16387, 2022.

738

739 Long Zhao, Nitesh B Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J Sun, Luke
 740 Friedman, Rui Qian, Tobias Weyand, Yue Zhao, et al. Videoprism: A foundational visual encoder
 741 for video understanding. *arXiv preprint arXiv:2402.13217*, 2024.

742

743 Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
 744 visual features enable zero-shot planning. *arXiv preprint arXiv:2411.04983*, 2024.

745

746

747

748

749

750

751

752

753

754

755

756 A TRAINING DATASET
757

758 We describe the datasets used to train vision transformer (ViT) models with SALT. We form the
 759 Kinetics-710 (K710) dataset by combining training samples from Kinetics-400/600/700 (Kay et al.,
 760 2017) and removing duplicated samples as well as samples that are in the validation sets of the above
 761 datasets. We then add training samples from the Something-Something-v2 (SSv2) (Goyal et al.,
 762 2017) dataset. Finally, we add an approximately 2.8 million video clips subset of Panda70M (Chen
 763 et al., 2024) to form our dataset that we refer to as V-3.6M to train our models. We apply stratified
 764 sampling to select the subset of clips from Panda70M that enables us to have clips whose duration
 765 ranges from 4 seconds to 50 seconds. We do not apply any other form of filtering or curation to form
 766 our training dataset. Table 2 lists the sample count information for our V-3.6M dataset.
 767

768 Table 2: **V-3.6M** Training dataset details.
769

770	Dataset	Sample Count
771	Kinetics-710	657,257
772	Something-Something-v2	168,913
773	Panda70M	2,799,959
774	V-3.6M	3,626,129
775		

776
777 B ARCHITECTURE DETAILS
778

781 We use Vision Transformers (ViTs) (Dosovitskiy et al., 2020) to implement our video encoders
 782 and predictors. We use a spatial patch size of 16×16 and temporal patch size of 2 in all of our
 783 models. Table 3 and Table 4 lists the model architecture in detail for our encoders and predictors re-
 784 spectively. We follow V-JEPA 2 (Assran et al., 2025) and use rotary position embedding (RoPE) (Su
 785 et al., 2024) to encode position information in all of our models. Note that our predictor’s last layer
 786 projects the embedding dimension to be compatible with that of the teacher encoder. This informa-
 787 tion is captured in the input and output dimension columns in Table 4. We use a ViT-L teacher to
 788 train all encoders except the ViT-B model which uses a ViT-B teacher. This information is captured
 789 in the output dimension column in Table 4.

790 Table 3: Encoder model architecture details. M indicates a million and B a billion.
791

792	Model	Parameter Count	Width	Depth	Heads
793	ViT-B	86M	768	12	12
794	ViT-L	303M	1024	24	16
795	ViT-H	632M	1280	32	16
796	ViT-g	1.012B	1408	40	16
797	ViT-G	1.843B	1664	48	16
798					

800 Table 4: Predictor model architecture details. M indicates a million.
801

802	Predictor & (Encoder)	Input Dimension	Output Dimension	Parameter Count	Width	Depth	Heads
803	ViT-Predictor (ViT-B)	768	768	21.88M	384	12	16
804	ViT-Predictor (ViT-L)	1024	1024	22.08M	384	12	16
805	ViT-Predictor (ViT-H)	1280	1024	22.18M	384	12	16
806	ViT-Predictor (ViT-g)	1408	1024	22.23M	384	12	16
807	ViT-Predictor (ViT-G)	1664	1024	22.32M	384	12	16
808							
809							

810
811 Table 5: Hyperparameter details used to train models with SALT. Note that " indicates that Stage 2
812 uses the same hyperparameter value as listed in Stage 1.

Parameter	Stage 1	Stage 2
Input spatial resolution	224×224	"
Tubelet size	2	"
Patch size	$16 \times 16 \times 2$	"
Number of frames	16	"
Frame step	4	"
Random resize aspect ratio	[0.75, 1.35]	"
Random resize scale	[0.3, 1]	"
Short-range Spatial mask scale	0.15	"
Long-range Spatial mask scale	0.7	"
Temporal mask scale	1	"
Mask aspect ratio	[0.75, 1.5]	"
Batch size	3072	"
Number of Steps	Variable	Variable
Steps per epoch scale	1	"
Start learning rate	0.0002	"
learning rate	0.000625	"
Final learning rate	1e-6	"
Start Weight decay	0.04	"
End Weight decay	0.4	"
Clip grad	0.02	"
Learning rate schedule	Cosine	"
Warmup steps	10000	"
AdamW β_1	0.9	"
AdamW β_2	0.95	"

C TRAINING DETAILS

811 Recall from Section 2.2 SALT is a multi-stage training approach in which the teacher is trained
812 at first via V-Pixel method followed by student training using a frozen or static teacher in the last
813 stage. Table 5 lists hyperparameter information in detail that are used to train video encoders with
814 SALT. Observe that we use multi-block masking method (Bardes et al., 2024) for V-Pixel. Note that
815 the hyperparamters for setting up multi-block are copied over from those used in V-JEPA (Bardes
816 et al., 2024).

817 Table 5 also lists optimization-related hyperparametrts that we used to train video encoders. We
818 use a value of 240,000 steps in total to show results in Table 1. We conduct ablations with the
819 number of steps set to 120,000, 160,000, or 240,000 for results shown in Figure 2 and discussed
820 in Section 5. Observe that we use the standard cosine weight-decay strategy during training (Bardes
821 et al., 2024). We use a value of 0.95 for β_2 in AdamW (Loshchilov & Hutter, 2017) as this value is
822 used by Carreira et al. (2024) to train VideoMAE-like models both at scale but most importantly at
823 large scale. We also opt not to use virtual early stopping approach adopted in V-JEPA (Bardes et al.,
824 2024) and V-JEPA 2 (Assran et al., 2025) that scales the training steps by 25% to avoid training
825 instabilities in the latter part of training. Empirically, we observe that frozen teacher provides a
826 stable representation that allows SALT to be stable throughout training.

D EVALUATION DETAILS

859 We adopt the evaluation protocol used in V-JEPA 2 (Assran et al., 2025) that uses attentive probing
860 to ensure fair comparison between SALT, V-JEPA 2 and several baselines reported by Assran et al.
861 (2025). We use Kinetics-400 (Kay et al., 2017), Something-Something-v2 (SSv2) (Goyal et al.,
862 2017) to systematically compare against state-of-the-art baselines the results of which are reported
863 in Table 1.

864 **Systematic evaluation setup for K400 and SSv2** We use inputs with 16 frames, 8 segments or
 865 clips per input and 3 spatial views per segment which is identical to the setting used in V-JEPA
 866 2 (Assran et al., 2025) for this dataset. The probe consists of attentive pooling which is implemented
 867 via four Transformer blocks where the first three blocks are self-attention based blocks while the
 868 last layer uses cross-attention with a learnable query token. This pooling operation is followed by a
 869 standard linear layer where the number of outputs is set to the number of classes for a classification
 870 dataset. This value is 400 for Kinetics-400 dataset and 174 for SSv2 dataset.

871 The attentive probe is trained with AdamW for 20 epochs using a learning and weight decay hy-
 872 perparameters that are determined via a grid search. Table 6 reports the hyperparametr that are
 873 common to SALT and V-JEPA 2.

874 The key difference between SALT and V-JEPA 2 is that we use a spatial crop of 224×224 while
 875 V-JEPA 2 uses 256×256 . This difference makes the results obtained with SALT even more remark-
 876 able as we spend much less compute during probing compared to V-JEPA 2 due to using smaller
 877 resolution.

878 Table 6: Kinetics-400 and Something-Something-v2 evaluation hyperparameters that are common
 879 to SALT and V-JEPA 2. The results of this evaluation are shown in Table 1. Note that " denotes the
 880 value is the same as the one used in K400 evaluation.

Parameter	K400	SSv2
Number of frames	16	"
Segments / Clip	8	2
Views / Segment	3	"
Frame step	4	"
Epochs	20	"
Batch size (global)	256	"
Classifier heads	20	"
Classifier learning rates	[5e-3, 3e-3, 1e-3, 3e-4, 1e-4]	"
Classifier weight decay	[.8, .4, .1, .01]	"

894 **Fast evaluation setup for K400 and SSv2** Due to the sheer volume of compute involved with
 895 training and probing our methods over a range of downstream datasets, we use a more efficient
 896 evaluation protocol for many ablations and results shown in the main paper. The main difference is
 897 the use of 1 clip and 1 view per frame while keeping the 16 frames per input clip as described above.
 898 The evaluation hyperparameters identical to the values used in V-JEPA (Bardes et al., 2024) and are
 899 described in Table 7 for completeness. The results of these evaluations are described in Figures 1
 900 to 7, 8 and 9.

901 Table 7: Kinetics-400 and Something-Something-v2 evaluation hyperparameters that are common
 902 to SALT and V-JEPA 2.

Parameter	K400 & SSv2
Number of frames	16
Segments / Clip	1
Views / Segment	1
Frame step	4
Epochs	20
Batch size (global)	256
Classifier heads	1
Classifier learning rates	1e-3
Classifier weight decay	.01

916 **COIN, Diving-48 and Jester Evaluations** We report results using COIN classification (Tang
 917 et al., 2019), Diving-48 (Li et al., 2018), Jester (Materzynska et al., 2019) and ImageNet-1K (Rus-
 sakovsky et al., 2015) benchmarks in addition to Kinetics-400 and Something-Something-v2 bench-

918 marks. The number of classes in COIN, Diving-48, Jester, and ImageNet-1K are 180, 48, 27 and
 919 1000 respectively. Table 8 reports the hyperparameters used to evaluate frozen backbones with
 920 these benchmarks. The results of these evaluations are reported in Figures 1 to 7, 8 and 9.
 921

922 Table 8: COIN (Tang et al., 2019), Jester (Materzynska et al., 2019), Diving-48 (Li et al., 2018) and
 923 ImageNet-1K (Russakovsky et al., 2015) evaluation hyperparameters that are common to SALT and
 924 V-JEPA 2. Note that "denotes the value is the same as the one used in COIN evaluation.
 925

Parameter	COIN	Jester/Diving-48	ImageNet-1K
Number of frames	16	"	"
Segments / Clip	8	4	1
Views / Segment	3	"	"
Frame step	4	2	NA
Epochs	20	"	"
Batch size (global)	256	128	1024
Classifier heads	1	"	"
Classifier learning rates	1e-3	"	"
Classifier weight decay	.01	"	"

937 **Intuitive physics** We follow the protocol established by Garrido et al. (2025) and use the surprise
 938 score in our evaluations with IntPhys-2019 or IntPhys (Riochet et al., 2018), GRASP (Jassim et al.,
 939 2023) and InfLevel (Weihs et al., 2022) datasets. In the following, we reproduce the equations used
 940 by Garrido et al. (2025) to quantify surprise. We let f be the context encoder, g be the predictor or
 941 the decoder and h be the target encoder. V denotes a frames of a video clip, C denotes the context
 942 frames count and M denotes the number of future frames. The surprise at time t is given by:
 943

$$S_t = \|g_\phi(f_\theta(V_{t:t+C})) - h_\psi(V_{t:t+C+M})\|_1. \quad (2)$$

945 The surprise above can then be calculated over all windows to obtain the following **global surprise**
 946 **score**:

$$\text{Average Surprise} = \frac{1}{T} \sum_{t \in \{1, 1+s, \dots, T-(C+M)\}} S_t \quad \text{or} \quad \text{Maximum Surprise} = \max_{t \in \{1, 1+s, \dots, T-(C+M)\}} S_t. \quad (3)$$

953 ,
 954 where we set s to 2 and use the average surprise score to quantify the surprise between a pair of
 955 videos following the methodology used by Garrido et al. (2025). The scores are then converted
 956 to relative accuracy using label information for video pairs to obtain the relative accuracy values
 957 discussed in Table 9.

958 E ADDITIONAL RESULTS

960 In this section, we include additional tables and results to support figures and tables in the main
 961 paper.

963 E.1 INTUITIVE PHYSICS BENCHMARKS

965 In this section, we evaluate the intuitive physics understanding of video models. We follow the
 966 protocol and datasets described in Garrido et al. (2025) to test a video model's understanding of
 967 intuitive physics in a zero-shot setting. Following the protocol of Garrido et al. (2025) we calculate
 968 a surprise metric that measures the deviations from expected physical behavior. The benchmark
 969 probes the predictor or the decoder to test for physical attributes such as object permanence, spatio-
 970 temporal continuity, shape and color constancy, gravity, support, solidity, inertia and collision. We
 971 refer the interested reader to Garrido et al. (2025) for additional details on datasets and definition of
 the attributes mentioned above.

972
973
974 Table 9: Comparison on Intuitive physics benchmarks (IntPhys, GRASP, InfLevel).
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Method	Encoder	Predictor	IntPhys	GRASP	InfLevel	Avg
<i>Results reported in (Baldassarre et al., 2025a)</i>						
COSMOS-4B (Agarwal et al., 2025)	VAE	4B	99.5	60.1	44.8	68.1
V-JEPA (Bardes et al., 2024)	ViT-L	22M	92.2	67.0	58.9	72.7
V-JEPA (Bardes et al., 2024)	ViT-H	22M	89.4	73.0	59.9	74.1
<i>Results reported in (Bordes et al., 2025)</i>						
V-JEPA 2 Assran et al. (2025)	ViT-H	22M	87.2	—	—	—
<i>Our Eval</i>						
VideoMAE V2 (Wang et al., 2023b)	ViT-g	12M	59.4	61.3	54.4	58.4
V-JEPA 2 (V-3.6M)	ViT-B	22M	76.6	56.1	52.4	61.7
V-JEPA 2 (V-3.6M)	ViT-L	22M	96.9	53.0	57.4	69.1
V-JEPA 2 (V-3.6M)	ViT-H	22M	88.5	65.1	60.0	71.2
SALT	ViT-B	22M	72.4	56.4	54.9	61.2
SALT	ViT-L	22M	90.6	53.5	54.2	66.1
SALT	ViT-H	22M	95.8	58	58.2	70.7

Table 9 shows the results of this benchmark for SALT as well as several baseline video models. Table 9 shows that SALT’s average accuracy scales with model size. SALT compares favorably with published baselines including COSMOS-4B (Agarwal et al., 2025), V-JEPA (Bardes et al., 2024) and V-JEPA 2 (Assran et al., 2025) and VideoMAEv2 (Wang et al., 2023b). Finally, we consider a setup where we train V-JEPA 2 and SALT models using the same dataset and optimization budget. We observe that V-JEPA 2 models trained under the conditions stated above compare favorably with SALT. These results suggests that emergent intuitive physics understanding behavior observed in video models trained with V-JEPA objective (Garrido et al., 2025) is seen with SALT as well.

E.2 IMPACT OF TEACHER-STUDENT COMPUTE ALLOCATION

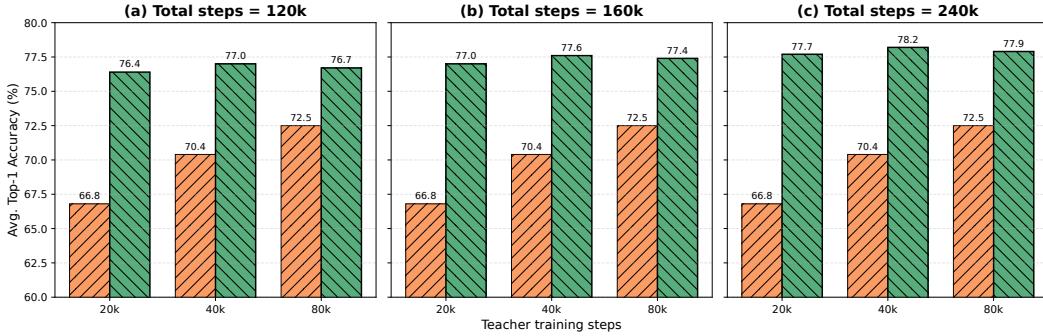


Figure 8: SALT trained with a compute budget of (a) 120K steps (b) 160K steps and (c) 240K steps. The X-axis shows the number of steps allocated to the teacher with the rest used to optimize the student. Observe that the optimal allocation favors training the student longer than the teacher.

Figure 8 provides an alternative view of the plot shown in Figure 7. We train a ViT-L model in this ablation. It is clear from Figure 8 that the teacher encoder’s downstream performance increases with the number of training steps across all values of total number of training steps. Remarkably, the student encoders improve over the teachers that they use to obtain predictions targets. The best performing model is obtained by training a teacher for 40,000 steps and using the remaining steps on the student. This observation suggests that the optimal compute allocation should favor the student.

E.3 HOW TO CHOOSE A TEACHER CHECKPOINT?

A question that arises naturally with SALT is whether there is a principled way choose an optimal teacher checkpoint. By optimal, we here mean choosing a checkpoint that maximizes the student’s performance. We study this question empirically by looking at the correlation between the student’s benchmark accuracy and teacher’s embedding rank, training loss and teacher model’s downstream accuracy. Figure 9a shows a plot of embeddings rank where the embeddings are extracted from a teacher model versus student accuracy. We use RankMe (Garrido et al., 2023) to estimate the embedding rank. Garrido et al. (2023) have shown that high embedding rank is a necessary condition

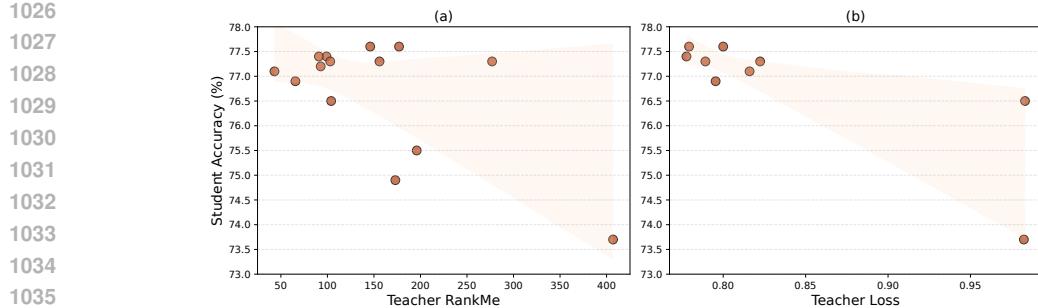


Figure 9: Teacher quality vs. student performance. We take all the teachers trained in SALT and measure the RankME(Garrido et al., 2023) of the embedding and pretraining loss and analyze the corelation between them and student’s downstream performance. Each point represents a single SALT run. We control the total training budgets of 160k for both stages to the be same for all models in this comparison.

for good downstream performance in joint-embedding self-supervised learning (JE-SSL) models. We observe from Figure 9 that the the teacher’s embedding rank is not predictive of student’s downstream performance. A similar trend can be observed from Figure 9b with the teacher’s pixel reconstruction or training loss. We see that neither the teacher loss nor its embedding rank are predictive of downstream student’s performance.

F FLOATING POINT OPERATIONS (FLOPs) ESTIMATION

A common approach to estimating the total training compute for Transformers, including ViTs, is by using the well-known $6ND$ formula (Kaplan et al., 2020; Hoffmann et al., 2022). Here N stands for the model parameter count while D represents the total number of tokens used to train the model. This simple approximation assumes that the backward pass during training costs twice as much as the forward pass. Consequently, we use $2ND$ to approximate the training compute of a teacher model that provides targets in distillation-based methods. The total number of input tokens observed by a model during training is a function of input resolution, spatial for image models and spatio-temporal for video models, the patch size, the batch size per step and the total number of optimization steps. Note that we include the embedding layer in our parameter count. With these preliminaries in place, we present the total compute estimate for models presented in Table 1.

VideoMAEv2 (Wang et al., 2023b) We use a masking ratio of 0.9 and 0.5 for Video-MAEv2 (Wang et al., 2023b) encoder and decoder respectively. The model considered here is a ViT-g model with an input patch size of 14 that operates on a spatial input of size 16×16 . Our analysis uses 1200 epochs for calculating the number of tokens in the encoder and decoder. The other details used to estimate FLOPs is shown in Table 10.

V-JEPA 2 (Assran et al., 2025) The spatial resolution is 256×256 with a patch size of 16. We use a masking ratio of 0.9 for the encoder on average following the recommendation made in V-JEPA (Bardes et al., 2024). The predictor operates on a token count that is half of that seen by the encoder due to temporal stride being set to 2. In other words, the predictor sees the union of mask tokens used for missing regions and context tokens used for visible regions. We assume that the model is trained for 240,000 steps using a batch size of 3072. Note that we need to account for the teacher forward call that we do in our analysis.

SALT The spatial resolution is 224×224 with a patch size of 16. We use a masking ratio of 0.9 for all stages in our training as we use the same multi-block masking for training teacher and student encoders. The rest of the details are identical to those described above for V-JEPA 2. The main difference between our method and V-JEPA 2 is the use of same-sized or smaller teacher encoder as well using a smaller resolution for the inputs. Together, these significantly lower the training compute requirements for SALT over V-JEPA 2.

Finally, we report the GPU-hours estimated by running training for a 20 steps on a single NVIDIA A100 GPU in Table 11. We observe a strong correlation between the ordering of models provided by GPU-hours versus that obtained from “6ND” FLOPs estimate.

Table 10: FLOPs estimate for VideoMAEv2, V-JEPA 2 and SALT models.

Model	Input Resolution	N_e (B)	N_T (B)	N_p (B)	D_e ($\times 10^9$)	D_p ($\times 10^9$)	D_t ($\times 10^9$)	# Samples (B)	Total FLOPs ($\times 10^{21}$)
VideoMAEv2-g/14	$16 \times 224 \times 224$	1.1	—	0.012	331.8	165.9	—	1.6	2.2
V-JEPA 2 L/16	$16 \times 256 \times 256$	0.303	0.303	0.022	302.0	3019.9	1510.2	0.7	1.9
V-JEPA 2 H/16	$16 \times 256 \times 256$	0.632	0.632	0.022	302.0	3019.9	1509.9	0.7	3.5
V-JEPA 2 g/16	$16 \times 256 \times 256$	1.012	1.012	0.022	302.0	3019.9	1509.9	0.7	5.3
SALT-L/16	$16 \times 224 \times 224$	0.3	0.303	0.022	154.1	1541.4	770.7	0.7	1.2
SALT-H/16	$16 \times 224 \times 224$	0.6	0.303	0.022	154.1	1541.4	770.7	0.7	1.5
SALT-g/16	$16 \times 224 \times 224$	1.0	0.303	0.022	154.1	1541.4	770.7	0.7	1.8
SALT-G/16	$16 \times 224 \times 224$	1.8	0.303	0.022	154.1	1541.4	770.7	0.7	2.6

Table 11: Training compute and GPU hours. We evaluate our models on **SSv2** with input of $16 \times 2 \times 3$ (*V-JEPA 2 uses a spatial resolution of 256×256 , and SALT utilizes 224×224). We compute TFLOPs under the same batch size and masking strategy, and measure on one single A100 GPU for all methods to ensure fairness and we exclude data-loading overhead and GPU-communication load from all measurements to ensure they are CPU-agnostic. The results in this table are used in Figure 1.

Method	Teacher Params	Student Params	# Seen Samples ($\times 10^9$)	Total Compute ($\times 10^{21}$ FLOPs)	GPU-hrs	SSv2 Top-1 (%)	
						$16 \times 2 \times 3$	$16 \times 1 \times 1$
V-JEPA 2 ViT-L Assran et al. (2025)	302M	302M	7.4	1.9	9800	73.7	69.6
V-JEPA 2 ViT-H Assran et al. (2025)	631M	631M	7.4	3.5	14377	74.0	69.6
V-JEPA 2 ViT-g Assran et al. (2025)	1B	1B	7.4	5.3	18708	75.3	72.2
SALT-Stage-1 ViT-L	N/A	302M	7.4	0.24	9062	-	66.2
SALT ViT-L	302M	302M	7.4	1.2	8263	74.9	71.3
SALT ViT-H	302M	631M	7.4	1.5	9574	75.4	72.6
SALT ViT-g*	302M	1B	7.4	1.9	10476	76.2	72.9
SALT ViT-G*	302M	2B	7.4	2.6	12379	76.1	73.2

G COMPUTE BUDGET SPECIFIED VIA FLOPS AND OPTIMIZATION STEPS

While we use FLOPs in our accuracy-compute trade-off analysis, we specify compute via the total number of optimization steps in our experiments. The use of latter quantity is natural in our setup as the teacher’s EMA update in V-JEPA 2 (Assran et al., 2025) depends on the student getting updated first which is similar to the nature of the update in our two-stage training as the teacher needs to be trained first followed by the student. The advantage with SALT is due from the fact that the teacher training is light-weight, and crucially, once a teacher model is trained, it may be used to train multiple student models.

1134 **H ADDITIONAL TABLES AND FIGURES**
1135

1136 Table 12: V-JEPA 2 vs. SALT on same pretraining set. Kinetics-400 uses $16 \times 1 \times 1$ (number of
1137 frames in clip by temporal crops by spatial crops), Something-Something v2 (SSv2) uses $16 \times 1 \times 1$
1138 while COIN is run with $16 \times 8 \times 3$. All models are evaluated using a spatial resolution of 224×224
1139 pixels. The results in this table are used in Figure 2.
1140

Method	Teacher	Student	IN-1K	K400	SSv2	COIN	Diving-48	Jester	Avg
V-JEPA 2 (w/ our dataset)	ViT-B	ViT-B	66.9	66.9	61.4	68.4	71.0	95.9	71.8
	ViT-L	ViT-L	73.7	73.3	68.4	83.1	82.1	97.0	79.6
	ViT-H	ViT-H	76.7	73.6	68.9	84.9	84.5	97.1	81.0
SALT Stage 1 (V-Pixel)	N/A	ViT-B	70.3	65.2	60.9	73.3	72.9	95.7	73.1
	N/A	ViT-L	75.5	70.4	66.2	77.9	76.8	96.9	77.3
SALT Stage 2	ViT-B	ViT-B	74.8	70.9	66.1	80.5	78.7	96.7	78.0
		ViT-L	79.0	76.0	71.3	85.3	82.5	97.2	81.9
	ViT-L	ViT-H	79.6	77.2	72.6	87.0	86.4	97.3	83.4
		ViT-g	79.7	78.0	72.9	87.0	85.5	97.4	83.4
		ViT-G	80.3	78.9	73.2	87.5	85.3	97.4	83.8

1151
1152 Table 13: Ablation on teacher pretraining datasets. We test teacher and student model using frozen-
1153 backbone evaluation (%). We report Top-1 accuracy on K400, SSv2, and ImageNet-1k, and COIN.
1154 This ablation is used in Figure 4.
1155

Dataset	# Samples	K400	SSv2	IN1k	COIN	Avg
SALT-teacher						
V-3.6M (default)	3,626,089	70.4	66.2	75.5	77.9	72.5
K710	657,217	71.0	65.2	74.2	78.9	72.3
Panda2.8M	2,799,959	69.2	64.9	75.3	79.5	72.2
SSv2	168,913	56.8	63.6	61.7	69.0	62.8
K710 + SSv2	826,130	70.0	67.8	74.0	79.2	72.8
ImageNet-1k	1,281,167	51.9	39.3	80.6	67.4	59.8
SALT-student						
V-3.6M (default)	75.5	70.9	78.4	84.9	77.4	
K710	75.7	70.6	78.4	85.0	77.4	
SSv2	72.9	69.8	76.2	83.1	75.5	
Panda2.8M	75.3	70.5	78.4	84.4	77.2	
K710 + SSv2	75.1	71.1	78.0	84.9	77.3	
ImageNet-1k	72.1	66.5	79.1	82.0	74.9	

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188

1189
1190
1191
1192
Table 14: **Teacher model size ablation.** We report frozen-backbone Top-1 on K400, SSv2, IN1K, and COIN. The top block shows teachers evaluated directly. The lower blocks show students distilled from different teacher sizes (two student sizes: ViT-L and ViT-G). The data in this table is used in Figure 6.

1193

Model size		K400	SSv2	IN1k	COIN	Avg
Teacher	Student					
ViT-B	—	65.2	60.9	70.3	73.3	67.4
ViT-L (default)	—	70.4	66.2	75.5	77.9	72.5
ViT-H	—	71.1	67.4	76.7	81.5	74.2
ViT-G	—	73.6	68.5	77.4	81.4	75.2
SALT-student						
ViT-B	ViT-L	74.4	69.5	78.0	84.0	76.5
ViT-L (default)	ViT-L	75.5	70.9	78.4	84.9	77.4
ViT-H	ViT-L	75.6	70.7	78.3	84.4	77.3
ViT-G	ViT-L	75.5	71.5	78.5	84.7	77.6
ViT-B	ViT-G	76.9	71.8	79.0	85.4	78.3
ViT-L (default)	ViT-G	77.6	71.9	79.3	87.0	79.0
ViT-H	ViT-G	77.5	72.4	79.6	85.3	78.7

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

Table 15: **Masking strategy ablation.** We report frozen-backbone Top-1 on K400, SSv2, IN1k, and COIN; Top block: teachers evaluated directly. Bottom block: students (fixed student recipe) trained from different teachers. The data in this table is used in Figure 5.

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

Table 16: **Compute-accuracy tradeoffs at matched total steps.** Each block fixes the *total* pre-training steps (budget) and compares V-JEPA,2 to our two-stage schedule (teacher+student). FLOPs are reported as $\times 10^{21}$. Metrics are frozen-backbone Top-1 on K400, SSv2, IN1k, and COIN. This table includes data presented in Figure 7.

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

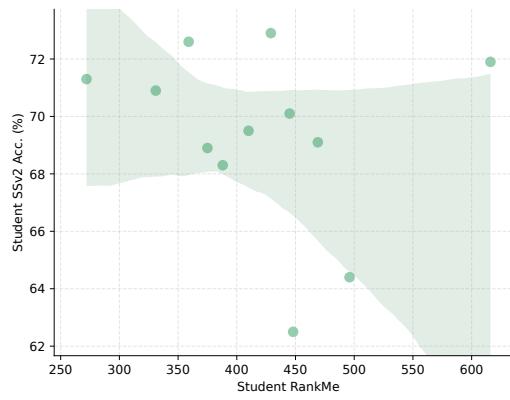
1239

1240

1241

Teacher Steps	Teacher FLOPs	Student Steps	Student FLOPs	Total FLOPs	Total Steps	K400	SSv2	IN1k	COIN	Avg
Budget: 240k total steps										
V-JEPA 2 (baseline)	1.900	—	—	1.900	240k	73.3	68.4	73.7	83.1	74.6
80k+80k	0.717	80k	0.476	1.193	240k	76.5	71.8	79.0	86.8	78.5
40k+80k	0.597	120k	0.714	1.311	240k	76.8	71.7	79.3	86.7	78.6
80k	0.241	160k	0.951	1.192	240k	76.0	71.3	79.0	85.3	77.9
40k	0.121	200k	1.190	1.311	240k	76.3	71.7	79.1	85.6	78.2
20k	0.061	220k	1.309	1.370	240k	75.8	71.2	78.7	84.9	77.7
Budget: 160k total steps										
V-JEPA 2 (baseline)	1.260	—	—	1.260	160k	73.5	68.3	74.8	82.9	74.9
80k	0.241	80k	0.476	0.717	160k	75.5	70.9	78.4	84.9	77.4
40k	0.121	120k	0.714	0.835	160k	75.5	70.9	78.4	85.4	77.6
20k	0.061	140k	0.833	0.894	160k	74.9	70.6	78.0	84.6	77.0
Budget: 120k total steps										
V-JEPA 2 (baseline)	0.951	—	—	0.951	120k	73.3	67.9	74.7	81.5	74.4
80k	0.241	40k	0.238	0.479	120k	74.0	69.5	77.7	84.5	76.4
40k	0.121	80k	0.476	0.597	120k	75.0	70.2	78.0	84.9	77.0
20k	0.061	100k	0.595	0.656	120k	74.6	70.1	77.5	84.5	76.7

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274



1275 Figure 10: Correlation between RankME and downstream accuracy. We use the same SALT-Stage-
1276 1-80k teacher checkpoint.

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **I LLM USAGE STATEMENT**

1297
1298 During manuscript preparation, LLMs were used to help with editing and polishing the draft.

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349