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ABSTRACT

Video Joint Embedding Predictive Architectures (V-JEPA) learn generalizable
off-the-shelf video representation by predicting masked regions in latent space
with an exponential moving average (EMA)-updated teacher. While EMA pre-
vents representation collapse, it complicates scalable model selection and cou-
ples teacher and student architectures. We revisit masked-latent prediction and
show that a frozen teacher suffices. Concretely, we (i) train a target encoder with
a simple pixel-reconstruction objective under V-JEPA masking, then (ii) freeze
it and train a student to predict the teacher’s latents on masked regions. This
leads to a two-stage, unregularized scheme that we refer to as SALT (Static-
teacher Asymmetric Latent Training). SALT decouples optimization into pixel
reconstruction (teacher) and masked latent prediction (student), increasing trans-
parency, efficiency, and scalability while preserving the ability of representation to
generalize under frozen evaluation. Empirically, our student models outperform
recently proposed V-JEPA 2 encoders under frozen backbone evaluation across
diverse benchmarks. They are also more compute-optimal: at matched pretrain-
ing FLOPs, our method achieves higher probing accuracy, and its scaling curves
dominate V-JEPA’s accuracy—FLOPs Pareto frontier. Finally, we find that student
quality is remarkably robust to teacher quality: high-performing students emerge
even with small, sub-optimal teachers. This points to a compute budget allocation
that should overwhelmingly favor the student. These results position SALT as a
simple, scalable, and compute-efficient alternative to EMA-based self-distillation
for video representation learning.

1 INTRODUCTION

Self-supervised learning (SSL)-based methods have emerged as a standard approach for represen-
tation learning in computer vision. These methods pretrain neural networks that use vast amounts
of image (He et al.l 2021} |Assran et al., 2023} (Caron et al., 2021; Oquab et al., |2024; [EI-Nouby
et al.;,2024) or video (Tong et al., 2022} Wang et al., 2023bj |Bardes et al.| [2024} |Assran et al., [2025))
data to learn backbones that have been shown to work well on many downstream tasks. Among
these methods, Joint Embedding Predictive Architecture (JEPA)-based methods (LeCun,|2022) have
demonstrated a strong ability to learn powerful semantic features that perform well on downstream
image (I-JEPA) (Assran et al.| 2023)) and video (V-JEPA) (Bardes et al., |2024; |Assran et al., [2025))
tasks.

As concrete instantiations of the Joint Embedding Predictive Architecture (JEPA), I-JEPA (Assran
et al., [2023) and V-JEPA (Bardes et al., 2024; |Assran et al., [2025)) are masking-based pretraining
methods that learn powerful semantic representation by predicting masked-out portions of the
input in a learned embedding space. Specifically, these methods consist of a context (student)
encoder and a predictor that are trained to make predictions that match the embeddings provided
by a target (teacher) encoder. While powerful, the JEPA family of models are often complex,
hyperparameter-brittle, and use an uninformative loss metric that is a poor proxy for representation
quality, requiring practitioners to rely on other more downstream-predictive metrics (Agrawal
et al.l 2022; \Garrido et al., 2023 Thilak et al., 2024). These issues stem from the core JEPA
design: because student and teacher representation co-evolve, trivial collapsed solutions with
near-zero loss exist, and must be avoided. To prevent representation collapse, these models are
implicitly regularized using the self-distillation approach pioneered by BYOL (Grill et al.l [2020).
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Namely, the stop-gradient operation is applied on the target encoder, and its weights are updated
by an exponential moving average (EMA) copy of the student weights, according to some EMA
scheduler. It is worth mentioning that other variants of joint-embedding SSL models utilize more
explicit regularizers to prevent collapse (Zbontar et al., 2021} |Bardes et al.| 2021)).

In this paper, we present a comprehensive empirical study that challenges the common assumption
that involved collapse prevention mechanisms are required for learning high-quality semantic fea-
tures. Specifically, we show that a dynamic teacher is unnecessary, and that stable, high-quality
targets needed to optimize the student model can be obtained in a more efficient manner with a
frozen encoder. This design obviates the need for both the EMA update and the stop-gradient,
streamlining the self-distillation process and reducing implementation complexity. We start with a
simple two-stage pretraining scheme: (i) train a target encoder with a pixel-reconstruction objective
under V-JEPA-style masking; (ii) freeze this encoder and train a student with the JEPA objective to
predict the teacher’s latents on masked regions (Bardes et al., 2024)). Prior work has explored using
pretrained frozen encoders as masked-prediction targets (Wang et al., 2023c} [Li et al.l [2023), but
typically assumes access to strong teachers and often relies on fine-tuning the student to realize the
benefits. In contrast, our study provides a fair and direct comparison against strong baselines, includ-
ing V-JEPA 2, on larger datasets and models; we dub our method SALT (Static-teacher Asymmetric
Latent Training) and show that:

1. Small, “sub-optimal” teachers suffice. High-quality semantic features competitive with
state-of-the-art under frozen evaluation protocols can be learned from much smaller and
cheaper teachers. Using the strongest available pretrained encoders is unnecessary and
yields at most marginal gains for the student.

2. Compute efficiency. Our two-stage design is more compute-efficient than EMA-based
self-distillation (e.g., V-JEPA): at matched FLoating Point Operations (FLOPs) and
wall-clock, and even when accounting for the cost of training the teacher, our method
achieves a better accuracy—FLOPs trade—ofiﬂ

3. Interpretable model selection. Our design yields a student loss that provides an infor-
mative, training-time metric that correlates strongly with downstream accuracy under the
frozen-backbone protocol, in contrast to EMA-based methods that require proxy heuristics
for model selection.

Taken together, our results suggest that elaborate online student-teacher dynamics and EMA-based
collapse prevention machinery may be unnecessary for learning high-quality representation.

2 METHOD OVERVIEW

We first review video-based JEPA models that include both V-JEPA and V-JEPA 2, and then describe
our simple approach named SALT for representation learning from videos. Note that V-JEPA 2 uses
the same pretraining method described in V-JEPA but employs updated hyperparameters so our
method review applies to both models.

2.1 V-JEPA

V-JEPA employs a masked prediction objective: the context encoder—predictor reconstructs masked
regions from visible frames in a learned representation space, while an EM A-updated target encoder
supplies the supervision. Following the notation used by Bardes et al. (2024), the latent space
prediction objective can be written:

minEq, g4 (fo(2), 5y) — stop-grad(fo(y)) Il (1

where x and y denote two disjoint regions of the input, f, f and g denote the encoder, target encoder
and predictor respectively, stop_grad denotes the stop-gradient operation and dy denotes the spatio-
temporal positions of missing regions in the input that act as context for the predictor.

'"FLOPs and total number of training steps are used interchangeably to refer to compute. Appendix
includes an explanation for this choice
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Figure 1: (Left) SALT Stage 2: Frozen-teacher, learnable student and predictor. The frozen
teacher encoder is obtained via Stage 1 (not pictured above) by training using a pixel reconstruction
objective. The student and predictor are jointly optimized to learn representation from video in Stage
2 using a latent space prediction objective. (Right): SALT’s compute-accuracy curve dominates V-
JEPA 2.

2.2 STATIC-TEACHER ASYMMETRIC LATENT TRAINING (SALT) - A SIMPLIFIED VIDEO
REPRESENTATION LEARNING METHOD

The V-JEPA method, uses a self-distillation approach incorporating stop-gradient and exponential
moving average (EMA). This approach requires properly setting the associated hyperparameters to
prevent representation collapse. In this work, we advocate for an alternative solution, which we
refer to as SALT, that does not require the use of EMA operation. Specifically, we simplify the
architecture by breaking down video representation learning into two steps:

» Stage 1 - The teacher or target encoder is trained to optimize a pixel reconstruction objec-
tive in Stage 1. The objective is identical to the objective used in VideoMAE (Tong et al.,
2022). However, our Stage 1 method differs from VideoMAE as we use a more efficient
masking scheme, the details of which are described in Section@

» Stage 2 - The weights of the teacher from Stage 1 are frozen and used to train a student and
predictor network as shown in Figure[T] The JEPA objective, described by Equation (T)), is
used to optimize the student and the predictor.

The simplification described above results in two loss objectives that are proper loss functions which
are easier to interpret in practice, and are immune to representation collapse by design. This stands in
contrast to V-JEPA’s objective in Equation (T)), which is difficult to interpret due to its self-distillation
nature that, in turn, necessitates the use of surrogate metrics (Garrido et al.,[2023}Thilak et al.,[2024).
Moreover, our two-stage approach completely decouples the teacher and student architectures, un-
locking considerable compute efficiency gains by utilizing small teachers to train larger students, as
shown in Figure [T] and Table[I] We observe from Figure[T|that SALT shows a remarkable improve-
ment over V-JEPA 2 on Something-Something-v2 (SSv2) (Goyal et al.| |2017), which is a temporal
understanding task. Furthermore Table [T| shows that a smaller but noticeable improvement is ob-
served on Kinetics-400 (Kay et al., [2017), an appearance understanding benchmark. We describe
the experimental setup in Section [3|and discuss results in detail in Section A}

2.2.1 SALT DESIGN PRINCIPLES

SALT follows the contemporary trend toward simple, principled architectures and objectives, avoid-
ing elaborate engineering. We provide a simple recipe to train the teacher in Stage 1 with method
that we call V-Pixel that uses a pixel reconstruction objective along with the multi-block masking
method described in V—JEPAH The decoupled design of SALT allows us to study the role of archi-

2This method is implicitly described in Table 1 by [Bardes et al. (2024). We name the method V-Pixel for
clarity in presentation.
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tecture and dataset choices for training the teacher and student in a granular manner. We uncover
a surprising finding that, a high performing teacher, as measured by its downstream performance,
is not necessary to train a high-quality student. As we show in Section[5.1] Section [5.3]and Sec-
tion[5.4] the student’s ultimate quality is surprisingly robust to suboptimal data mixture, teacher size
and compute budget. Overall, our simplified design demonstrates superior efficiency, scalability,
and interpretability over the baseline V-JEPA.

3 EXPERIMENTAL SETUP

Training Our training data includes Kinetics-710 (K710) Kay et al.| (2017), constructed by
merging Kinetics-400/600/700 and removing all validation samples, Something-Something V2
(SSV2) Goyal et al.| (2017), and a 2.8 million subset of the Panda70M |Chen et al.| (2024)) result-
ing in approximately 3.6 million (3.6M) video dataset that we refer to as V-3.6M dataset in our
work. Note that our training dataset differs from the training datasets used in V-JEPA and V-JEPA
2 as the latter methods use Howto100M (Miech et al.,2019) and YT-Temporal-1B datasets (Zellers
et al.| 2022)) while we use a subset of Panda70M in V-3.6M. Our models are standard Vision Trans-
formers (ViT) (Dosovitskiy et al.l 2020) with rotary positional embeddings (RoPE) (Su et al., [2024)
which is identical to the architecture described in V-JEPA 2. Specifically, we use ViT-Large (ViT-
L), ViT-Huge (ViT-H) and ViT-giant (ViT-g) in our experiments, the details of which are described
in Appendix |B} All baseline models (V-JEPA and V-Pixel) are trained with the same batch size of
3072 using the AdamW optimizer with hyperparameters described in detail in Appendix [C] To en-
sure fair comparisons, we keep the number of optimization steps fixed for both our baseline methods
and SALT. In other words, the total number of steps for Stage 1 and Stage 2 is identical to the num-
ber of steps used by baseline methods. The optimal number of steps to train a teacher and student is
obtained via an ablation described in Section[5.4

Evaluation We evaluate our models on a variety of video and image tasks. For video classifica-
tion, following, we use Kinetics-400 (K400), Something-Something-v2, COIN classification (Tang
et al.| [2019), Jester (Materzynska et al., [2019) and Diving-48 (Li et al.| 2018) freezing the back-
bone and training an attentive classifier to assess performance. For image classification, we adopt
the same protocol on ImageNet-1K (Russakovsky et al.| 2015), replicating each image 16 times to
form the input sequence. Furthermore, we evaluate our models on intuitive physics understanding
benchmarks, which measure performance by comparing the model’s surprise scores for possible
versus impossible videos. Following (Garrido et al.l [2025)), we use the predictor to forecast future
representation. We assess performance on the IntPhys (Riochet et al.,[2018), GRASP (Jassim et al.|
2023)), and InfLevel (Weihs et al.,[2022) datasets. All setup information and hyperparameters used
for our evaluations are described in detail in Appendix D}

4 EXPERIMENTAL RESULTS

Systematic comparison of SALT with existing baselines  Table[]lists the performance of SALT
and existing work that serve as strong baselines including V-JEPA 2, VideoPrism (Zhao et al.,|[2024)),
InternVideo2 (Wang et al.l [2024), VideoMAEv2 (Wang et al.| [2023b)), Perception Encoder (Bolya
et al.,|2025)) and image encoders that include DINOv2 (Oquab et al., 2024)) and SigL.IP2 (Tschannen
et al} [2025). We use the Kinetics-400 (K400) and Something-Something-v2 (SSv2) as benchmark
datasets and evaluate SALT following the same multiclip, multiview setting used in existing baseline.
‘We observe from Table E]that our largest models, ViT-g, and ViT-G, trained with SALT outperforms
all of the baseline methods on SSv2, which tests the motion understanding ability of video models.
On K400, which is an appearance understanding benchmark, the encoders trained with our method
exceeds the performance of V-JEPA 2 across all scales and remains highly competitive with other
state-of-the-art methods including the recently proposed Perception Encoder.

Static teacher improves representation quality A key design choice of SALT is the use of a
static teacher which differs from the dynamic momentum-encoder teacher used in V-JEPA 2. In
order to ascertain the differences between these two approaches, we use the same V-3.6M dataset
and same input resolution of 224 x 224 to train SALT and V-JEPA 2. We train both methods for a
total of 240k steps in this study. Figure |[2a| shows the downstream performance results of this study
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Table 1: Systematic comparison of state-of-the-art video encoders under frozen-backbone eval-
uation, using SSv2 (16x2x3) and K400 (16x2x3). The comparison includes several baselines
including encoders trained with V-JEPA 2 method on our V-3.6M dataset. The V-JEPA 2 encoders
trained on V3.6M and SALT encoders are evaluated using the protocol in Section[3|and Appendix[D}
The results for other models are duplicated from Table 4 in V-JEPA (Assran et al.,2025). A detailed
description of FLOPs calculation is available in Appendixﬁ

Method Param. Pretraining Dataset Teacher (Params) Total Compute # Seen Samples SSv2 K400
1B UnlabeledHybrid-1.4M N/A 22 1.6B 56.1 828

300M IN1K+K400 N/A — — 665 794

19B  MetaCLIP-5B 2024 N/A — 86B 554 885

1B 1V-255M InternVL-6B + VideoMAEv2-g (6B + 1.0B) — — 673 879

1B VT-36M Stage-1-ViT-g ( 1.0B) — 2.0B 685 876

1B LVD-142M EMA teacher (1.1B) — 1.9B 507 836

12B WebLI-10B EMA teacher (1.2B) — 40B 499 873

300M VM22M EMA teacher (300M) 1.9 0.7B 737 85.1

A 600M VM-22M EMA teacher (600M) 35 0.7B 740 853

V-JEPA 2 ViT-g {Assran et al.] 1B VM-22M EMA teacher (1B) 53 0.7B 753 866
V-JEPA 2 ViT-L 300M V-3.6M EMA teacher (300M) 14 0.7B 682 838
V-JEPA 2 ViT-H 600M V-3.6M EMA teacher (600M) 2.6 0.7B 734 846
SALT ViT-L 300M V-3.6M 1.2 0.7B 749 854
SALT ViT-H 600M V-3.6M ] 15 0.7B 754 86.0
SALT ViT-g 1B V-3.6M SALT-WIT-L (300M) 19 0.78 762 868
SALT ViT-G 2B V-3.6M 2.6 0.7B 76.1 872

[ V-JEPA-2 (ViT-L, 240k) EZZ SALT - Stage-1 (ViT-L, 80k) [l SALT - Stage-2 (ViT-L, 160k)
84
97.0 96.9 97.2 ,\5 824
v <
>
é E 80 4
5
- 3
S 3 78 {
E % :
H / & 76
g 7 g
:(d / g'~ 74
<
é 2] o =O- sALT
/ - V-JEPA 2
/ 70 T T T 1
4 100 300 500 700
Params. (in million)
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Figure 2: V-JEPA 2 vs. SALT at matched total steps on V-3.6M. Both methods are trained on the
same V-3.6M dataset for an identical number of pretraining steps. SALT uses an 80k-step teacher
and a 160k-step student. We evaluate all models under the same frozen-backbone protocol across
standard video/image benchmarks: K400 with 16x1x1 input; SSv2 with 16x1x1; Diving48 and
Jester with 16x4x3; and COIN 16x8x3. Table [12] provides a breakdown of downstream perfor-
mance for each dataset used in this evaluation.

for ViT-L-based teacher and student model setup while Figure [2b|shows the scaling behavior of the
two methods as we scale up the student encoder while using a teacher encoder that is the same size
or smaller than the student. We observe from Figure [2a] that SALT improves the average accuracy
over the V-JEPA 2-based encoder by 2.3% where the average is calculated over six benchmarks.
Furthermore, we observe from Figure [2b] that SALT displays improved performance as we scale up
the student. Note that we use the same-sized teacher student for ViT-B and ViT-L while we use a
smaller ViT-L teacher model for training ViT-H student encoder. We refer the reader to Appendix [B]
for detailed model size and other architecture information. Together, Figure [2] suggests that the
static teacher-based SALT learns higher quality features when compared to V-JEPA 2 that uses an
EMA-based teacher.

Small teachers unlock compute efficiency Table [I] and fig. 2] show that strong students can
be trained from a frozen teacher, which is considerably cheaper: a fixed ViT-L teacher success-
fully trains same-size ViT-L students, and much larger ViT-H/g/G students. Consequently, SALT
achieves lower total pretraining FLOPs than the EM A-based baseline across model sizes, even when
accounting for the teacher pretraining stage. The savings stem from the simple, efficient teacher
pretraining (e.g., ViT-L on V-3.6M) and grow with both model size and spatial resolution. FLOPs
computation details appear in Appendix [

SALT enables interpretable model selection A key challenge with using joint-embedding meth-
ods including JEPA is that the training loss is typically uninformative of representation quality. Fig-
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Figure 3: Correlation between student loss and downstream accuracy. Observe that the student
model’s training loss is predictive of downstream accuracy.

ure [3a] shows a student training loss versus student downstream accuracy plot for various student
checkpoints that use the same SALT Stage 1 checkpoint as the teacher. This checkpoint is obtained
by training a teacher for 80K steps. The plot shows that the student loss is highly predictive of the
downstream accuracy with an R? value of 0.951, suggesting an almost linear relationship. This re-
sult implies that SALT significantly simplifies tracking the quality of representation during student
pretraining, and provides a clear signal for improvement via simple loss minimization. Similar ob-
servations can be made by a teacher trained for 40K and 20K iterations in Figure[3] Lastly, we study
whether teacher-related metrics such as teacher loss or RankMe (Garrido et al [2023) are predictive
of downstream performance in Figure[9] We find that neither the teacher’s loss nor embedding rank
are predictive of the student encoder’s downstream performance.

Intuitive physics evaluation |Garrido et al.|(2025) have shown that video models trained with the
JEPA objective show an emergent understanding of intuitive physics. We follow the setup described
in (Garrido et al.} [2025)) to measure the intuitive understanding ability of video models trained with
SALT. The evaluation setup and results are discussed in detail in Appendix [E.I]due to space limi-
tations. The main finding is that intuitive physics understanding is observed on models trained via
SALT as well as V-JEPA 2.

—== V-JEPA-2 (ViT-L, 160k) [Z3 SALT - Stage-1 (ViT-L, 80k) EEE SALT - Stage-2 (ViT-L, 80k)

80

IN1K K710 Panda2.8M SSv2 K710+SSV2 K710+SSV2+
Panda2.8M

Figure 4: Training data of static-teacher. We ablate the impact of training data of teacher, thus
fixed the student’s training data as the whole data-mix by default. Table [T3] provides a detailed
breakdown of the results show above.

5 TEACHER DESIGN CHOICE ABLATION

The empirical analysis in Section ] shows that SALT provides high-quality representation that out-
performs several existing methods. A key aspect of SALT is the static (frozen) teacher that provides
high-quality prediction targets. We study the design choices involved in training the teacher model
and student model that lead to optimal representation via a series of ablations described in the fol-
lowing.
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5.1 TRAINING DATASET

In this section, we study the role of pretraining data distribution on a teacher model. Specifically,
we train a ViT-L teacher model with six training datasets: (i) Kinetics-710 (K710), (ii) Something-
Something-V2 (SSv2), (iii) a 2.8 million subset of Panda70M, (iv) ImageNet-1k, (v) data aggregated
from K710 and SSv2, and (vi) V-3.6M which is data aggregated from K710, SSv2 and Panda70M
subset. The exact details of the datasets are described in Section[3l The teacher model is trained
using the Stage 1 approach (V-Pixel) described in Section 2.2} For each teacher model from Stage
1, we train a ViT-L-based student model on the combined V-3.6M dataset using Stage 2 approach
described in Section 2.2

Figure ] shows the result of benchmarking the teacher and student models trained with the datasets
described above. We observe that the performance of each student model described above improves
over that of its corresponding teacher. Additionally, each student model’s downstream performance
exceeds the performance of a V-JEPA 2-based encoder with the exception of the student model
trained on ImagetNet-1K-based teacher model. Among the teacher models trained on video datasets
considered in this study, we observe comparable performance with the notable exception of the
teacher model trained on Something-Something-V2. Taken together, these results suggest that an
effective teacher maybe trained with a relatively small amount of data to build strong foundation
models.

5.2 TEACHER MASKING STRATEGY

We study the role of masking strategy used to

train the teacher that provides targets to opti- e VEPA2(TL 1600 D2 SALT- Stage-d (VTL, 60K EEEI SALT - Stage-2 (VI 80K)
mize the student model. To this end, we train
a ViT-L using random masking used in Video-
MAE, multi-block masking used in V-JEPA and
a modified method that we call multi-random
tube where we adapt the short-range and long-
range masking idea from V-JEPA to random
masking. We refer the reader to Table [T3] for
setup details used in this ablation. Figure [3]
shows the results for this ablation. We observe T (5L Block 2xRandom tube  1x Random tube 2 Causal mask
that the multi-block masking approach works

the best for V-Pixel model achieving an accu- Figure 5: Masking Strategy of static-teacher.
racy of 72.5%. This finding in and of itself is We study the impact of random vs multi-block
a new empirical finding as VideoMAE models masking strategy influences a student’s perfor-
typically use random-tube masking. Further- mance. Table[I3]includes hyperparameters and re-
more, we observe from Figure[]that the student ~ sults information.

trained with a multi-block teacher achieves the

highest accuracy while the other student models also show a big improvement over their correspond-
ing teachers. We conclude that multi-block masking strategy is effective with training our teacher
and name the pixel reconstruction method with multi-block masking as V-Pixel.

Avg. Top-1 Accuracy (%)

5.3 TEACHER MODEL SIZE

Next, we study the impact of a teacher model’s size on a student model’s performance. We train a
ViT-B, ViT-L, ViT-H and ViT-G based V-Pixel models and use these models to supervise a ViT-L
and ViT-G based student models. Figure [6] shows the results of this ablation. We observe that the
best performing ViT-L student has an average accuracy of 77.4% and is obtained by training with a
ViT-L teacher. This result is remarkable as this accuracy is better than the accuracy obtained with
ViT-H and ViT-G based teachers that are larger than the student. A similar observation can be made
about the ViT-G student where the highest average accuracy of 78% is obtained with a ViT-L teacher.
Additionally we observe that all student models show improvement over their teachers which are of
the same or smaller size. These observations suggest that the multi-stage training proposed in SALT
allow the student to bootstrap from a weaker teacher to learn high-quality representation.
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Figure 6: Teacher model size ablation. We train ViT-B, ViT-L, ViT-H and ViT-G based teacher
and use the teacher to train a ViT-L and ViT-G student. Observe that the best performing student is
obtained from ViT-L teacher with modest performance. Table [14] provides a detailed breakdown of
results on downstream benchmarks.

5.4 IMPACT OF TEACHER-STUDENT COMPUTE ALLOCATION

Due to a frozen teacher approach used in SALT, we are confronted with the problem of allocat-
ing compute between the teacher and the student. Training compute is a function of the model
size, the number of optimization steps as well as the number of FLOPs per step. In this abla-
tion, we hold the model size, the total number of optimization steps, and the training dataset (V-
3.6M) constant as that allows us to conduct a fair comparison of SALT and V-JEPA 2 baseline.
We use ViT-L based model for both teacher and

student in this ablation where we vary the num- 785

ber of steps used to train the teacher and stu- g
dent for a fixed total number of optimization " ataszol e &
steps. We observe from Figure [7] that SALT 7751 — 20220
outperforms V-JEPA 2 baseline over a range 1701 g 2060k

20k+140k

of optimization steps considered in our experi-
ments. Furthermore, we observe that SALT ex-
ceeds V-JEPA 2’s performance at ~ the same
FLOPs level which in turn suggests that SALT
is more compute efficient than V-JEPA 2. The

76.54 20k+100k
o — V-JEPA2 SALT - 160k
80k-+40k SALT - 120k SALT - 240k

Avg. Top-1 Accuracy (%)

best performing student is obtained by training 9] o l
on 240k total steps, as can be seen from Fig- 745 ] 1‘o(k/'\o
ure [/} that is supervised by a teacher that is

only trained for 40k steps. This finding under- "i07 6x107! 100 2% 100

Total Compute (x10%! FLOPs)

scores the effectiveness of our multi-stage train-
ing approach and demonstrates that we should Figure 7: Comparison of compute allocation in
focus on students in SALT, and that aiming for SALT. We ShOW_ average TOP'.l accuracy across
a high-performing teacher maybe wasteful. Ad- benchmarks against total training FLOPs. Our
ditional visualization and analysis that supports SALT curves dominate V-JEPA-2 at matched bud-

these claims are provided in Appendix [E2} gets. See Table [T€] for additional details.

6 RELATED WORK

Video foundation models: Masking-based self-supervised learning (SSL) (Tong et al. 2022

ichtenhofer et all, 2022} [Wang et al.} [2023a} [Bardes et al., 2024} [Assran et al., 2025} [Wang et al.,
2023¢; |Li et al., 2023; [Zhao et al., [2024; Wang et al., 2022) is a prominent approach used to

learn representation from large-scale video datasets for building video foundation models. Several
works (Tong et al 2022 [Feichtenhofer et al.| 2022} [Wang et al.,[2023b) have extended image-based
masked autoencoders (He et al., 2021) to video data by using random masking to learn representa-
tion via pixel-space reconstruction. Recent works incorporate motion-aware masking and temporal
correspondence to better capture temporal dynamics (Thoker et all, 2025} [Sun et al.] 2023} [Salehil
et al}, 2024} [Huang et al, 2023). An alternate approach for representation learning is to learn via
latent-space predictions. These methods are known to learn features that differ in quality from those
obtained via reconstruction-based methods (Littwin et al.,[2024}; [Balestriero & Lecunl 2024). Promi-
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nent among latent-space prediction methods for video are V-JEPA (Bardes et al.|[2024) and V-JEPA
2 (Assran et al., [2025)) that use an online/momentum encoder to learn the teacher that provides pre-
diction targets. SALT simplifies the JEPA pipeline by using a frozen teacher that is reliable and
efficient that leads to higher quality representation as shown in our analysis.

Distillation from frozen teacher encoder: = While many studies utilize frozen pretrained models
as teachers for student encoder supervision, we limit our review to prior work that is directly relevant
to our core method and refer the interested reader to (Balestriero et al.,[2023) for a comprehensive
survey on SSL literature. MVD (Wang et al.,|2023c) and InternVideo (Wang et al.,[2022)) use Video-
MAE (Tong et al.l 2022)) while other works such as UnMasked Teacher (Li et al., |2023)), Video-
Prism [Zhao et al.| (2024)), InternVideo2 [Wang et al.| (2024)) and many more use a vision-language
model (Radford et al.,[2021)), as a frozen teacher. PerceptionEncoder (Bolya et al., 2025) is a recent
vision foundation model that uses features from a predefined layer from within the model as well
as features from an external teacher SAM (Kirillov et al.| 2023)) to encourage feature locality. AM-
RADIO (Ranzinger et al., |2024) proposes to learn a student from multiple teacher models. Be-
yond prior work, which require access to powerful pretrained encoders, we uncover a weak-teacher,
strong-student effect: students supervised by much weaker frozen teachers consistently outperform
those trained with EMA-based teachers. Our method is purely self-supervised and unregularized,
unlike self-training Xie et al.| (2020), which relies on labeled+unlabeled data and explicit noise reg-
ularization. Related world-modeling approaches (Karypidis et al., 2024} [Baldassarre et al., [2025bj
Zhou et al., 2024) also fix encoders for stability but optimize for future-state prediction, while our
aim is representation learning. Nevertheless, SALT ’s strong video features make it a promising
backbone for world models. Lastly, recent advancements in image-to-video distillation (Li & Liul
2023 |Hu et al., 2022} |Liu et al., 2025) incorporate temporal information into strong representation
models during distillation while we learn representations directly from video.

Masked video distillation:  Wang et al.| (2023c) propose a two-stage method called masked video
distillation (MVD) that first trains two separate encoders one each for image and video input using an
MAE (He et al.l 2021} [Tong et al.,|2022)-like approach. These teacher encoders then provide targets
(latent features) used to optimize a smaller student encoder. SALT resembles the approach taken by
MVD but has several critical differences. The first difference is that we provide an improved method
to train the video teacher encoder as a result of careful empirical analysis in Figure[5] Additionally,
we do not use a separate encoder for image data but instead focus on learning representation from
large-scale video datasets. The most critical difference is that we use a teacher model whose size
is the same or smaller than that of the student model. Furthermore, we conduct detailed ablations
in Section [5] to show how to choose a teacher model (checkpoint). Finally, SALT learns superior
features as our benchmark results are based on frozen backbone evaluations while MVD uses fine-
tuning for downstream evaluation.

7 LIMITATIONS AND CONCLUSION

We present SALT, a simple, compute-efficient, and scalable framework for video representation
learning. Across standard benchmarks, SALT consistently outperforms strong baselines, including
V-JEPA-2 in frozen-evaluation protocols. Strikingly, we find that sub-optimal, often smaller teach-
ers can yield much stronger students, raising questions as to how the quality of the teacher should be
assessed, and whether EMA-based machinery is necessary to learn highly-semantic representation.
A principled characterization of teacher quality and a fuller study of SALT ’s scaling behavior with
respect to data and model size is left for future work.

While SALT improves compute efficiency and downstream performance over self-distillation, it has
limitations. Our ablations (Section[5)) suggest that a simple V-Pixel recipe usually suffices to train an
effective teacher and that compute is best allocated to the student; however, they do not fully explain
what makes a “good” teacher. We also observe modest gains from an additional student-training
stage, but the mechanism remains unclear. Given the experiment volume, we focused compute on
simple scalar diagnostics of teacher quality (Section [5] and Appendix [E.3). Finally, performance
plateaus as model size grows in our setting, likely reflecting data limits, and that larger pretraining
sets may extend the scaling trend.
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A TRAINING DATASET

We describe the datasets used to train vision transformer (ViT) models with SALT. We form the
Kinetics-710 (K710) dataset by combining training samples from Kinetics-400/600/700 (Kay et al.,
2017) and removing duplicated samples as well as samples that are in the validation sets of the above
datasets. We then add training samples from the Something-Something-v2 (SSv2) (Goyal et al.,
2017) dataset. Finally, we add an approximately 2.8 million video clips subset of Panda70M (Chen
et al.} |2024) to form our dataset that we refer to as V-3.6M to train our models. We apply stratified
sampling to select the subset of clips from Panda70M that enables us to have clips whose duration
ranges from 4 seconds to 50 seconds. We do not apply any other form of filtering or curation to form
our training dataset. Table [2]lists the sample count information for our V-3.6M dataset.

Table 2: V-3.6M Training dataset details.

Dataset Sample Count
Kinetics-710 657,257
Something-Something-v2 168,913
Panda70M 2,799,959
V-3.6M 3,626,129

B ARCHITECTURE DETAILS

We use Vision Transformers (ViTs) (Dosovitskiy et al., [2020) to implement our video encoders
and predictors. We use a spatial patch size of 16 x 16 and temporal patch size of 2 in all of our
models. Table [3]and Table[]lists the model architecture in detail for our encoders and predictors re-
spectively. We follow V-JEPA 2 (Assran et al.,[2025)) and use rotary position embedding (RoPE) (Su
et al.| 2024)) to encode position information in all of our models. Note that our predictor’s last layer
projects the embedding dimension to be compatible with that of the teacher encoder. This informa-
tion is captured in the input and output dimension columns in Table [d] We use a ViT-L teacher to
train all encoders except the ViT-B model which uses a ViT-B teacher. This information is captured
in the output dimension column in Table[4]

Table 3: Encoder model architecture details. M indicates a million and B a billion.

Model Parameter Count Width Depth Heads

ViT-B 86M 768 12 12
ViT-L 303M 1024 24 16
ViT-H 632M 1280 32 16
ViT-g 1.012B 1408 40 16
ViT-G 1.843B 1664 48 16

Table 4: Predictor model architecture details. M indicates a million.

Predictor & Input Output Parameter Width Depth Heads
(Encoder) Dimension Dimension Count
ViT-Predictor (ViT-B) 768 768 21.88M 384 12 16
ViT-Predictor (ViT-L) 1024 1024 22.08M 384 12 16
ViT-Predictor (ViT-H) 1280 1024 22.18M 384 12 16
ViT-Predictor (ViT-g) 1408 1024 22.23M 384 12 16
ViT-Predictor (ViT-G) 1664 1024 22.32M 384 12 16
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Table 5: Hyperparameter details used to train models with SALT. Note that "indicates that Stage 2
uses the same hyperparameter value as listed in Stage 1.

Parameter Stage 1 Stage 2
Input spatial resolution 224 x 224 "
Tubelet size 2 "
Patch size 16 x 16 x 2 "
Number of frames 16 "
Frame step 4 "
Random resize aspect ratio [0.75, 1.35] "
Random resize scale [0.3, 1] "
Short-range Spatial mask scale 0.15 "
Long-range Spatial mask scale 0.7 "
Temporal mask scale 1 "
Mask aspect ratio [0.75, 1.5] "
Batch size 3072 "

Number of Steps Variable Variable
Steps per epoch scale 1 "
Start learning rate 0.0002 "
learning rate 0.000625 "
Final learning rate le-6 "
Start Weight decay 0.04 "
End Weight decay 0.4 "
Clip grad 0.02 "
Learning rate schedule Cosine "
Warmup steps 10000 "
AdamW 4 0.9 "
AdamW (o 0.95 "

C TRAINING DETAILS

Recall from Section [2.2] SALT is a multi-stage training approach in which the teacher is trained
at first via V-Pixel method followed by student training using a frozen or static teacher in the last
stage. Table [5] lists hyperparameter information in detail that are used to train video encoders with
SALT. Observe that we use multi-block masking method (Bardes et al.,[2024) for V-Pixel. Note that
the hyperparamters for setting up multi-block are copied over from those used in V-JEPA (Bardes
et al.,|2024).

Table [5] also lists optimization-related hyperparametrs that we used to train video encoders. We
use a value of 240, 000 steps in total to show results in Table [l We conduct ablations with the
number of steps set to 120, 000, 160, 000, or 240, 000 for results shown in Figure E] and discussed
in Section[5] Observe that we use the standard cosine weight-decay strategy during training (Bardes
et al.,[2024). We use a value of 0.95 for 55 in AdamW (Loshchilov & Hutter, 2017) as this value is
used by |Carreira et al.| (2024)) to train VideoMAE-like models both at scale but most importantly at
large scale. We also opt not to use virtual early stopping approach adopted in V-JEPA (Bardes et al.,
2024) and V-JEPA 2 (Assran et al. [2025) that scales the training steps by 25% to avoid training
instabilities in the latter part of training. Empirically, we observe that frozen teacher provides a
stable representation that allows SALT to be stable throughout training.

D EVALUATION DETAILS

We adopt the evaluation protocol used in V-JEPA 2 (Assran et al.l [2025)) that uses attentive probing
to ensure fair comparison between SALT, V-JEPA 2 and several baselines reported by |Assran et al.
(2025). We use Kinetics-400 (Kay et al., [2017), Something-Something-v2 (SSv2) (Goyal et al.
2017) to systematically compare against state-of-the-art baselines the results of which are reported
in Table [Tl
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Systematic evaluation setup for K400 and SSv2 We use inputs with 16 frames, 8 segments or
clips per input and 3 spatial views per segment which is identical to the setting used in V-JEPA
2 (Assran et al.,2025)) for this dataset. The probe consists of attentive pooling which is implemented
via four Transformer blocks where the first three blocks are self-attention based blocks while the
last layer uses cross-attention with a learnable query token. This pooling operation is followed by a
standard linear layer where the number of outputs is set to the number of classes for a classification
dataset. This value is 400 for Kinetics-400 dataset and 174 for SSv2 dataset.

The attentive probe is trained with AdamW for 20 epochs using a learning and weight decay hy-
perparameters that are determined via a grid search. Table [6] reports the hyperparametrs that are
common to SALT and V-JEPA 2.

The key difference between SALT and V-JEPA 2 is that we use a spatial crop of 224 x 224 while
V-JEPA 2 uses 256 x 256. This difference makes the results obtained with SALT even more remark-
able as we spend much less compute during probing compared to V-JEPA 2 due to using smaller
resolution.

Table 6: Kinetics-400 and Something-Something-v2 evaluation hyperparameters that are common
to SALT and V-JEPA 2. The results of this evaluation are shown in Table [Tl Note that "denotes the
value is the same as the one used in K400 evaluation.

Parameter K400 SSv2
Number of frames 16 "
Segments / Clip 8 2
Views / Segment 3 "
Frame step 4 "
Epochs 20 "
Batch size (global) 256 "
Classifier heads 20 "
Classifier learning rates  [5e-3, 3e-3, le-3, 3e-4, le-4] "
Classifier weight decay [.8, .4,.1,.01] "

Fast evaluation setup for K400 and SSv2 Due to the sheer volume of compute involved with
training and probing our methods over a range of downstream datasets, we use a more efficient
evaluation protocol for many ablations and results shown in the main paper. The main difference is
the use of 1 clip and 1 view per frame while keeping the 16 frames per input clip as described above.
The evaluation hyperparameters identical to the values used in V-JEPA (Bardes et al.,|2024) and are
described in Table [/| for completeness. The results of these evaluations are described in Figures

to[7} [B]and [}

Table 7: Kinetics-400 and Something-Something-v2 evaluation hyperparameters that are common
to SALT and V-JEPA 2.

Parameter K400 & SSv2
Number of frames 16
Segments / Clip 1
Views / Segment 1
Frame step 4
Epochs 20
Batch size (global) 256
Classifier heads 1
Classifier learning rates le-3
Classifier weight decay .01

COIN, Diving-48 and Jester Evaluations We report results using COIN classification (Tang
et al} 2019), Diving-48 (Li et al., 2018)), Jester (Materzynska et al.l 2019) and ImageNet-1K (Rus-
sakovsky et al.,[2015) benchmarks in addition to Kinetics-400 and Something-Something-v2 bench-
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marks. The number of classes in COIN, Diving-48, Jester, and ImageNet-1K are 180, 48, 27 and
1000 respectively. Table [8| reports the hyperparameters used to evaluate frozen backbones with
these benchmarks. The results of these evaluations are reported in Figures [I|to[7] [§]and 0]

Table 8: COIN (Tang et al., 2019), Jester (Materzynska et al.,[2019), Diving-48 (Li et al., 2018) and
ImageNet-1K (Russakovsky et al.||2015) evaluation hyperparameters that are common to SALT and
V-JEPA 2. Note that "denotes the value is the same as the one used in COIN evaluation.

Parameter COIN  Jester/Diving-48 ImageNet-1K

Number of frames 16 " "
Segments / Clip 8 4 1
Views / Segment 3 " "

Frame step 4 2 NA
Epochs 20 " "

Batch size (global) 256 128 1024
Classifier heads 1 " "

Classifier learning rates  le-3 " "
Classifier weight decay .01 " "

Intuitive physics We follow the protocol established by (Garrido et al.| (2025) and use the surprise
score in our evaluations with IntPhys-2019 or IntPhys (Riochet et al.l 2018)), GRASP (Jassim et al.,
2023) and InfLevel (Weihs et al., 2022) datasets. In the following, we reproduce the equations used
by Garrido et al.|(2025) to quantify surprise. We let f be the context encoder, g be the predictor or
the decoder and h be the target encoder. V' denotes a frames of a video clip, C' denotes the context
frames count and M denotes the number of future frames. The surprise at time ¢ is given by:

St = lgg (fo Vierc)) = hy Vistrornr) |1 )

The surprise above can then be calculated over all windows to obtain the following global surprise
score:

1
Average Surprise = — E S; or Maximum Surprise =
8 P T ¢ Kimum Surpt tE{l,l-&-sE.I.l,aTX—(C—i-M)}
te{l,1+s,....T—(C+M)}

3)

b}

where we set s to 2 and use the average surprise score to quantify the surprise between a pair of
videos following the methodology used by |Garrido et al.| (2025). The scores are then converted
to relative accuracy using label information for video pairs to obtain the relative accuracy values
discussed in Table [0l

E ADDITIONAL RESULTS

In this section, we include additional tables and results to support figures and tables in the main
paper.

E.1 INTUITIVE PHYSICS BENCHMARKS

In this section, we evaluate the intuitive physics understanding of video models. We follow the
protocol and datasets described in |Garrido et al.| (2025) to test a video model’s understanding of
intuitive physics in a zero-shot setting. Following the protocol of |Garrido et al.|(2025) we calculate
a surprise metric that measures the deviations from expected physical behavior. The benchmark
probes the predictor or the decoder to test for physical attributes such as object permanence, spatio-
temporal continuity, shape and color constancy, gravity, support, solidity, inertia and collision. We
refer the interested reader to |Garrido et al.|(2025])) for additional details on datasets and definition of
the attributes mentioned above.
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Table 9: Comparison on Intuitive physics benchmarks (IntPhys, GRASP, InfLevel).

Method Encoder Predictor IntPhys GRASP InfLevel Avg
Results reported in (Baldassarre et al. 2025a!

COSMOS-4B (Agarwal et al. 4B 99.5 60.1 44.8 68.1
V-JEPA (Bardes et al.[2024 ViT-L 22M 92.2 67.0 58.9 72.7
V-JEPA (Bardes et al.|[2024 ViT-H 22M 89.4 73.0 59.9 74.1
Results reported in (Bordes et al.||2025 '

V-JEPA 2|Assran et al. ViT-H 22M 87.2 - - -
Our Eval

VideoMAE V2 (Wang et al.}[2023b. ViT-g 12M 59.4 61.3 54.4 58.4
V-JEPA 2 (V-3.6M ViT-B 22M 76.6 56.1 52.4 61.7
V-JEPA 2 (V-3.6M) ViT-L 22M 96.9 53.0 57.4 69.1
V-JEPA 2 (V-3.6M) ViT-H 22M 88.5 65.1 60.0 71.2
SALT ViT-B 22M 72.4 56.4 54.9 61.2
SALT ViT-L 22M 90.6 53.5 54.2 66.1
SALT ViT-H 22M 95.8 58 58.2 70.7

Table [0 shows the results of this benchmark for SALT as well as several baseline video models. Ta-

ble 0] shows that SALT’s average accuracy scales with model size. SALT compares favorably with
published baselines including COSMOS-4B (Agarwal et al [2025), V-JEPA (Bardes et al., [2024)
and V-JEPA 2 (Assran et all,[2025) and VideoMAEvV2 (Wang et al.,2023b). Finally, we consider a
setup where we train V-JEPA 2 and SALT models using the same dataset and optimization budget.
We observe that V-JEPA 2 models trained under the conditions stated above compare favorably with
SALT. These results suggests that emergent intuitive physics understanding behavior observed in
video models trained with V-JEPA objective (Garrido et al.,[2025)) is seen with SALT as well.

E.2 IMPACT OF TEACHER-STUDENT COMPUTE ALLOCATION

(a) Total steps = 120k (b) Total steps = 160k (c) Total steps = 240k

78.2 77.9

Avg. Top-1 Accuracy (%)
3
>

40k 80k
Teacher training steps

Figure 8: SALT trained with a compute budget of (a) 120K steps (b) 160K steps and (c) 240K steps.
The X-axis shows the number of steps allocated to the teacher with the rest used to optimize the
student. Observe that the optimal allocation favors training the student longer than the teacher.

Figure [8] provides an alternative view of the plot shown in Figure [/l We train a ViT-L model in
this ablation. It is clear from Figure ] that the teacher encoder’s downstream performance increases
with the number of training steps across all values of total number of training steps. Remarkably,
the student encoders improve over the teachers that they use to obtain predictions targets. The best
performing model is obtained by training a teacher for 40,000 steps and using the remaining steps on
the student. This observation suggests that the optimal compute allocation should favor the student.

E.3 HOW TO CHOOSE A TEACHER CHECKPOINT?

A question that arises naturally with SALT is whether there is a principled way choose an optimal
teacher checkpoint. By optimal, we here mean choosing a checkpoint that maximizes the student’s
performance. We study this question empirically by looking at the correlation between the student’s
benchmark accuracy and teacher’s embedding rank, training loss and teacher model’s downstream
accuracy. Figure [Op shows a plot of embeddings rank where the embeddings are extracted from a
teacher model versus student accuracy. We use RankMe (Garrido et al.| [2023) to estimate the em-
bedding rank. |Garrido et al.| (2023) have shown that high embedding rank is a necessary condition
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Figure 9: Teacher quality vs. student performance. We take all the teachers trained in SALT and
measure the RankME(Garrido et al. [2023) of the embedding and pretraining loss and analyze the
corelation between them and student’s downstream performance. Each point represents a single
SALT run. We control the total training budgets of 160k for both stages to the be same for all
models in this comparison.

for good downstream performance in joint-embedding self-supervised learning (JE-SSL) models.
We observe from Figure [J]that the the teacher’s embedding rank is not predictive of student’s down-
stream performance. A similar trend can be observed from Figure[Op with the teacher’s pixel recon-
struction or training loss. We see that neither the teacher loss nor its embedding rank are predictive
of downstream student’s performance.

F FLOATING POINT OPERATIONS (FLOPS) ESTIMATION

A common approach to estimating the total training compute for Transformers, including ViTs, is
by using the well-known 6NV D formula (Kaplan et al.,|2020; Hoffmann et al.|[2022)). Here N stands
the for the model parameter count while D represents the total number of tokens used to train the
model. This simple approximation assumes that the backward pass during training costs twice as
much as the forward pass. Consequently, we use 2N D to approximate the training compute of a
teacher model that provides targets in distillation-based methods. The total number of input tokens
observed by a model during training is a function of input resolution, spatial for image models and
spatio-temporal for video models, the patch size, the batch size per step and the total number of
optimization steps. Note that we include the embedding layer in our parameter count. With these
preliminaries in place, we present the total compute estimate for models presented in Table

VideoMAEv2 (Wang et al,, 2023b) We use a masking ratio of 0.9 and 0.5 for Video-
MAEV2 (Wang et al., |2023b) encoder and decoder respectively. The model considered here is a
ViT-g model with an input patch size of 14 that operates on a spatial input of size 16 x 16. Our
analysis uses 1200 epochs for calculating the number of tokens in the encoder and decoder. The
other details used to estimate FLOPs is shown in Table 10l

V-JEPA 2 (Assran et al.,2025) The spatial resolution is 256 x 256 with a patch size of 16. We
use a masking ratio of 0.9 for the encoder on average following the recommendation made in V-
JEPA (Bardes et al.l [2024). The predictor operates on a token count that is half of that seen by the
encoder due to temporal stride being set to 2. In other words, the predictor sees the union of mask
tokens used for missing regions and context tokens used for visible regions. We assume that the
model is trained for 240,000 steps using a batch size of 3072. Note that we need to account for the
teacher forward call that we do in our analysis.

SALT The spatial resolution is 224 x 224 with a patch size of 16. We use a masking ratio of 0.9
for all stages in our training as we use the same multi-block masking for training teacher and student
encoders. The rest of the details are identical to those described above for V-JEPA 2. The main
difference between our method and V-JEPA 2 is the use of same-sized or smaller teacher encoder
as well using a smaller resolution for the inputs. Together, these significantly lower the training
compute requirements for SALT over V-JEPA 2.
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Finally, we report the GPU-hours estimated by running training for a 20 steps on a single NVIDIA
A100 GPU in Table We observe a strong correlation between the ordering of models provided
by GPU-hours versus that obtained from “6ND” FLOPs estimate.

Table 10: FLOPs estimate for VideoMAEv2, V-JEPA 2 and SALT models.

Model Input N, Nt N, D, D, D, # Samples  Total FLOPs
Resolution B) (B) B) (x10%) (x10%) (x10%) B) (x10%h)

VideoMAEv2-g/14 16 x 224 x 224 1.1 — 0.012 3318 165.9 — 1.6 22
V-JEPA 2 L/16 16 x 256 x 256 0.303 0.303 0.022 302.0 3019.9 1510.2 0.7 1.9
V-JEPA 2 H/16 16 x 256 x 256  0.632 0.632 0.022 302.0 30199 1509.9 0.7 3.5
V-JEPA 2 g/16 16 x 256 x 256 1.012 1.012 0.022 302.0 3019.9 1509.9 0.7 5.3
SALT-L/16 16 x 224 x 224 03 0303 0.022 154.1 15414 770.7 0.7 1.2
SALT-H/16 16 x 224 x 224 0.6 0303 0.022 154.1 15414  770.7 0.7 1.5
SALT-g/16 16 x 224 x 224 1.0 0303 0.022 154.1 15414 770.7 0.7 1.8
SALT-G/16 16 x 224 x 224 1.8 0303 0.022 154.1 15414  770.7 0.7 2.6

Table 11: Training compute and GPU hours. We evaluate our models on SSv2 with input of 16x2x3
(*V-JEPA 2 uses a spatial resolution of 256 x 256, and SALT utilizes 224 x 224.). We compute
TFLOPs under the same batch size and masking strategy, and measure on one single A100 GPU
for all methods to ensure fairness and we exclude data-loading overhead and GPU-communication
load from all measurements to ensure they are CPU-agnostic. The results in this table are used

in Figure

SSv2 Top-1 (%)

Method Teacher Params ~ Student Params  # Seen Samples (x10°)  Total Compute (x 102! FLOPs) GPU-hrs
16x2x3  16x1x1

V-JEPA 2 ViT-L|Assran et al.|(2025] 302M 302M 7.4 1.9 9800 73.7 69.6
V-JEPA 2 ViT-H|Assran et al. {(2025) 631M 631M 74 35 14377 74.0 69.6
V-JEPA 2 ViT-g|Assran et al. (2025} 1B 1B 74 53 18708 75.3 722
SALT-Stage-1 ViT-L N/A 302M 74 0.24 9062 - 66.2
SALT ViT-L 302M 302M 74 1.2 8263 749 1.3
SALT ViT-H 302M 631M 74 15 9574 75.4 72.6
SALT ViT-g* 302M 1B 74 1.9 10476 76.2 72.9
SALT ViT-G* 302M 2B 74 2.6 12379 76.1 73.2

G COMPUTE BUDGET SPECIFIED VIA FLOPS AND OPTIMIZATION STEPS

While we use FLOPs in our accuracy-compute trade-off analysis, we specify compute via the total
number of optimization steps in our experiments. The use of latter quantity is natural in our setup as
the teacher’s EMA update in V-JEPA 2 (Assran et al.,[2025) depends on the student getting updated
first which is similar to the nature of the update in our two-stage training as the teacher needs to
be trained first followed by the student. The advantage with SALT is due from the fact that the
teacher training is light-weight, and crucially, once a teacher model is trained, it may be used to
train multiple student models.
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H ADDITIONAL TABLES AND FIGURES

Table 12: V-JEPA 2 vs. SALT on same pretraining set. Kinetics-400 uses 16 x 1 x 1 (number of
frames in clip by temporal crops by spatial crops), Something-Something v2 (SSv2) uses 16 x 1 x 1
while COIN is run with 16 x 8 x 3. All models are evaluated using a spatial resolution of 224 x 224
pixels. The results in this table are used in Figure

Method | Teacher Student IN-1K K400 SSv2 COIN Diving-48 Jester Avg
VITB  VILB 669 669 614 684 710 959 718

VJEPA 2 (w/our dataset) | VITL ~ VITL 737 733 684  83.1 82.1 970 796
VITH  VITH 767 736 689 849 845 971 81.0

. N/A VITB 703 652 609 733 729 957 731

SALT Stage 1 (V-Pixel) | ;o VITL 755 704 662 779 76.8 9.9 773
VILB  ViLB 748 709 661 805 787 9.7 780

VITL 790 760 713 853 825 972 819

VITL  ViTH 796 772 726  87.0 864 973 834

SALT Stage 2 ViTg 797 780 729 870 85.5 974 834
VITG 803 789 732 875 853 974 838

Table 13: Ablation on teacher pretraining datasets. We test teacher and student model using frozen-
backbone evaluation %). We report Top-1 accuracy on K400, SSv2, and ImageNet-1k, and COIN.
This ablation is used in Figure {4}

Dataset #Samples K400 SSv2 INlk COIN Avg
SALT-teacher
V-3.6M (default) 3,626,089 704 662 755 779 725
K710 657,217 71.0 652 742 789 723
Panda2.8M 2,799.959 692 649 753 795 722
SSv2 168913 568 63.6 61.7 69.0 62.8
K710 + SSv2 826,130 70.0 67.8 740 792 728
ImageNet-1k 1,281,167 519 393  80.6 674 598
SALT-student
V-3.6M (default) 755 709 784 849 774
K710 757 70.6 784 85.0 774
SSv2 729 69.8 762 83.1 75.5
Panda2.8M V-3.6M (default) 553 505 g4 ga4 772
K710 + SSv2 75.1 71.1  78.0 849 773
ImageNet-1k 72.1 66.5 79.1 82.0 749
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Table 14: Teacher model size ablation. We report frozen-backbone Top-1 on K400, SSv2, IN1K,
and COIN. The top block shows teachers evaluated directly. The lower blocks show students distilled
from different teacher sizes (two student sizes: ViT-L and ViT-G). The data in this table is used
in Figure [6]

Model size K400 SSv2 1INlk COIN Avg
Teacher Student
ViT-B — 652 609 703 733 674
ViT-L (default) — 704 662 755 779 725
ViT-H — 71.1 674  76.7 815 742
ViT-G — 73.6 685 774 814 752

SALT-student

ViT-B 744  69.5 78.0 84.0 76.5
ViT-L (default) VITL 75,5 709 784 849 774
ViT-H 75.6 707 783 844 773
ViT-G 755 715 785 847 776
ViT-B 769 71.8 79.0 854 783
ViT-L (default) ViT-G 776 719 793 87.0 79.0
ViT-H 775 724 79.6 853  78.7

Table 15: Masking strategy ablation. We report frozen-backbone Top-1 on K400, SSv2, IN1k, and
COIN; Top block: teachers evaluated directly. Bottom block: students (fixed student recipe) trained
from different teachers. The data in this table is used in Figure E}

Teacher masking strategy #masks Masking ratio Student Mmsking strategy K400 SSv2 INlk COIN Avg
SALT-teacher

Long-short block mask (default) X2 ~0.9 — 70.4 66.2 75.5 71.9 72.5

Random tube x2 [0.9,0.9] — 69.2 647 741 749 707

Random tube x1 [0.9] — 679 633 726 735 693

Causal mask X2 [0.9,0.9] — 474 34.3 57.3 588 495
SALT-student

Long-short block mask (default) x2 ~0.9 755 709 784 849 774

Random tube x2 [0.9,0.9] L short block mask 750 703 78.1 843 769

Random tube x1 [0.9] ong-short block mas 750 704 780 848 77.1

Causal mask X2 [0.9,0.9] 71.7 66.3 750 81.7 737

Table 16: Compute-accuracy tradeoffs at matched total steps. Each block fixes the total pretrain-
ing steps (budget) and compares V-JEPA,2 to our two—stage schedule (teacher+student). FLOPs are
reported as X 1021, Metrics are frozen—backbone Top-1 on K400, SSv2, IN1k, and COIN. This table
includes data presented in Figure

Teacher Steps Teacher FLOPs Student Steps Student FLOPs Total FLOPs Total Steps K400 SSv2 INlk COIN Avg
Budget: 240k total steps

V-JEPA 2 (baseline) 1.900 — — 1.900 240k 733 684 737 83.1 746

80k+80k 0.717 80k 0.476 1.193 240k 765 718 790 86.8 785

40k+80k 0.597 120k 0.714 1.311 240k 768  71.7  79.3 86.7 8.6

80k 0.241 160k 0.951 1.192 240k 760 713 790 853 779

40k 0.121 200k 1.190 1.311 240k 763 717 79.1 85.6 782

20k 0.061 220k 1.309 1.370 240k 758 712 187 849 717
Budget: 160k total steps

V-JEPA 2 (baseline) 1.260 — — 1.260 160k 735 683 74.8 829 749

0.241 80k 0.476 0.717 160k 755 709 784 849 774

40k 0.121 120k 0.714 0.835 160k 755 709 784 854 776

20k 0.061 140k 0.833 0.894 160k 749 706 780 846 770
Budget: 120k total steps

V-JEPA 2 (baseline) 0.951 — — 0.951 120k 733 679 747 815 744

80k 0.241 40k 0.238 0.479 120k 740 695 717 845 764

40k 0.121 80k 0.476 0.597 120k 750 702 780 849 770

20k 0.061 100k 0.595 0.656 120k 746 701 715 845 767
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Figure 10: Correlation between RankME and downstream accuracy. We use the same SALT-Stage-
1-80k teacher checkpoint.
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During manuscript preparation, LLMs were used to help with editing and polishing the draft.
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