
SAFE-SQL: Self-Augmented In-Context Learning with Fine-grained
Example Selection for Text-to-SQL

Anonymous ACL submission

Abstract
Text-to-SQL aims to convert natural language001
questions into executable SQL queries. While002
previous approaches, such as skeleton-masked003
selection, have demonstrated strong perfor-004
mance by retrieving similar training examples005
to guide large language models (LLMs), they006
struggle in real-world scenarios where such007
examples are unavailable. To overcome this008
limitation, we propose Self-Augmentation in-009
context learning with Fine-grained Example se-010
lection for Text-to-SQL (SAFE-SQL), a novel011
unsupervised framework that enhances SQL012
generation by generating and intelligently fil-013
tering self-augmented examples. SAFE-SQL014
leverages an LLM to generate diverse Text-015
to-SQL examples, which are then filtered by016
a novel fine-grained mechanism using crite-017
ria for semantic similarity, structural align-018
ment, and reasoning path quality to curate high-019
quality in-context learning examples. Lever-020
aging these carefully selected self-generated021
examples, SAFE-SQL significantly surpasses022
previous zero-shot and few-shot Text-to-SQL023
frameworks, achieving superior execution ac-024
curacy. Notably, our approach demonstrates025
substantial performance gains in challenging026
extra hard and unseen scenarios, where conven-027
tional methods often struggle.028

1 Introduction029

Text-to-SQL generation converts questions into030

SQL queries that help users access information in031

databases. Traditional approaches on Text-to-SQL032

rely on hand-crafted rules or simple pattern match-033

ing to generate SQL queries. They often strug-034

gle with the ambiguity and context-dependence035

of natural language, making it challenging to ac-036

curately translate user intent into structured SQL037

commands (El Boujddaini et al., 2024; Moham-038

madjafari et al., 2025; Li and Jagadish, 2014).039

As the field progressed, more sophisticated ap-040

proaches emerged, including skeleton-masked se-041

lection (Gao et al., 2023), relying on retrieving042

Figure 1: The example on the left shows a failure in
retrieving relevant examples due to masked keywords,
which results in superficially similar but actually un-
related questions being selected. In contrast, our self-
augmented approach generates N-examples and filters
them using 3 criteria, resulting in appropriate example
retrieval.

similar examples from training data to guide query 043

generation. However, these methods face signifi- 044

cant challenges in real-world scenarios where simi- 045

lar examples are often unavailable in the training 046

set (Gan et al., 2021; Hong et al., 2024) or un- 047

related examples are retrieved as shown in Fig- 048

ure 1. To overcome these problems, recent re- 049

search has introduced methods to generate syn- 050

thetic data. SQL-GEN, presents by (Pourreza 051

et al., 2024), introduces dialect-specific synthetic 052

data to resolve the diverse SQL dialect challenges 053

in Text-to-SQL systems. Another important as- 054

pect of synthetic data generation is incorporating 055

key relationships from the schema and employing 056

schema-distance-weighted column sampling (Zhao 057

et al., 2022). However, these synthetic data gen- 058

eration methodologies predominantly require su- 059

pervised fine-tuning, which demands substantial 060

computational resources and time (Yang et al., 061

2024b). Moreover, self-generated examples can 062

introduce significant noise and inaccuracies that 063

undermine the quality of in-context learning. Er- 064

1

rors in synthetic SQL queries or flawed reason-065

ing paths may lead to incorrect interpretations of066

database schemas (Wretblad et al., 2024). As a re-067

sult, relying on unfiltered self-generated examples068

for Text-to-SQL tasks can pose a risk of degrad-069

ing overall model performance. Consequently, it070

is necessary to develop more efficient approaches071

that enhance the accuracy of Text-to-SQL while072

eliminating extra training costs and mitigating the073

adverse impacts of noisy self-generated examples074

by implementing a robust filtering mechanism.075

In this paper, we propose SAFE-SQL, a novel076

approach that fully exploits the generative power077

of large language models (LLMs) to create high-078

quality synthetic examples in an unsupervised man-079

ner. SAFE-SQL enhances its inference capabil-080

ities without additional fine-tuning through four081

key steps: (1) Schema Linking: Analyzing SQL082

test questions, database tables, and foreign keys083

to map relationships between queries and database084

structures (2) Example Generation: Generating085

N-question-SQL query-reasoning path triplets per086

input using schema-linked information with LLMs087

(3) Threshold-based example selection: Filtering088

generated examples using specifically designed rel-089

evance criteria based on semantic similarity, Struc-090

tural alignment, and reasoning path validity, retain-091

ing only those scoring above a specific threshold092

to ensure high quality and relevance for in-context093

learning examples and (4) Final SQL Inference:094

Leveraging the curated examples, this step utilizes095

in-context learning to enhance the performance096

of large language models. This approach benefits097

from carefully selected examples that align with098

the natural language question and database schema,099

ensuring accurate and efficient SQL generation.100

By relying on LLM-generated and filtered exam-101

ples, SAFE-SQL significantly improves robustness102

and accuracy, particularly in complex or unseen103

scenarios where retrieval-based approaches strug-104

gle. Our approach eliminates the need for addi-105

tional model training while achieving superior per-106

formance in Text-to-SQL tasks. Our contributions107

can be listed as follows:108

• We propose SAFE-SQL, a fully unsupervised ap-109

proach that leverages LLMs to generate synthetic110

examples.111

• Our method leverages schema linking to dynam-112

ically adapt examples, boosting the performance113

of Text-to-SQL in complex scenarios.114

• We introduce a structured filtering mechanism 115

that selects high-quality question-SQL pairs 116

based on semantic similarity, structural align- 117

ment, and reasoning path validation. 118

2 Related Work 119

Structural and Semantic Information for Text- 120

to-SQL Advances in Text-to-SQL have increas- 121

ingly emphasized the importance of effectively uti- 122

lizing structural and semantic information derived 123

from the database schema. RAT-SQL (Wang et al., 124

2021) introduces relation-aware transformer archi- 125

tectures capable of encoding both the natural lan- 126

guage question and the complex structure of the 127

database schema, leading to improved schema link- 128

ing performance. Concurrently, PICARD (Scholak 129

et al., 2021) demonstrates that leveraging con- 130

strained decoding with step-by-step execution dur- 131

ing generation can reduce the likelihood of pro- 132

ducing invalid SQL queries. Rather than treating 133

SQL generation as a pure sequence prediction task, 134

PICARD executes partial SQL statements during 135

generation, thus enforcing syntactic and semantic 136

correctness. Both of these approaches highlight 137

the importance of integrating structural and seman- 138

tic information to generate correct SQL queries. 139

Building on this line of research, our work explores 140

how self-augmented examples can effectively in- 141

corporate structurally and semantically relevant in- 142

formation for in-context learning, particularly in 143

scenarios where large annotated datasets are un- 144

available. 145

In-context Learning with Example Augmen- 146

tation and Filtering As LLMs have demon- 147

strated strong performance in in-context learning 148

settings, recent work has focused on improving 149

the effectiveness of demonstrations through bet- 150

ter example augmentation and selection (Toteja 151

et al., 2025). Self-Instruct (Wang et al., 2023) in- 152

troduces a framework for generating instruction- 153

tuning data by prompting the model to synthesize 154

and filter examples, leveraging synthetic supervi- 155

sion. Further studies on demonstration selection 156

for in-context learning (Wang et al., 2024) have 157

systematically studied strategies for selecting ef- 158

fective in-context examples, including similarity- 159

based retrieval and clustering methods. Integrat- 160

ing self-generated prompts with explicit reasoning 161

chains has also been shown to significantly im- 162

prove in-context learning outcomes by guiding the 163

model’s thought process (Shum et al., 2023; Wei 164

2

Figure 2: Overall flow of our proposed SAFE-SQL.

et al., 2023). These studies collectively underscore165

the impact of demonstration quality on LLM perfor-166

mance and highlight the potential of intelligently167

curating examples. Focusing on the Text-to-SQL168

task, our work distinguishes itself by generating169

synthetic examples and filtering them using a novel170

fine-grained mechanism that considers semantic171

similarity, structural similarity, and reasoning path172

quality. This allows us to generate multiple candi-173

date examples and select the most effective through174

this tailored fine-grained filtering process.175

3 Fine-grained Self-Augmentation for176

Text-to-SQL177

We propose SAFE-SQL, a framework that auto-178

matically generates high-quality examples for in-179

context learning in Text-to-SQL tasks. Unlike tradi-180

tional methods that rely on retrieving similar ques-181

tions or using predefined templates, SAFE-SQL182

uses LLMs to create synthetic examples tailored183

to the given database schema. These examples184

are then filtered based on their semantic similarity,185

structural alignment, and the quality of reasoning186

paths. Finally, we predict the final SQL query for187

the test input using the self-generated examples via188

in-context learning.189

3.1 Schema Linking190

The first step in SAFE-SQL is schema linking,191

which identifies and extracts relevant schema el-192

ements from the database to reduce noise and im-193

prove performance in Text-to-SQL tasks (Cao et al.,194

2024). As shown in Figure 2, the schema linking195

step involves analyzing the test question to detect196

keywords and phrases that correspond to schema 197

elements such as tables, columns, rows, and foreign 198

keys within the database schema. This mapping 199

narrows the focus to the most pertinent parts of the 200

schema and provides the necessary context for gen- 201

erating relevant examples that are both meaningful 202

and grounded in the database structure. 203

3.2 Example Generation 204

Using the information obtained from schema link- 205

ing, the LLM generates a pool of multiple synthetic 206

examples for each test question. As illustrated in 207

Figure 2, for each test question, we generate ten 208

examples—each comprising a similar question, its 209

corresponding SQL query, and a detailed reason- 210

ing path. The generated SQL questions maintain 211

structural similarity while varying elements such as 212

numerical values, table names, and key attributes. 213

This ensures that the generated examples remain 214

relevant while encouraging the model to general- 215

ize beyond surface-level patterns. By observing 216

these modified instances, the model can infer the 217

correct SQL query even when face with unseen 218

but structurally similar questions. In particular, the 219

reasoning path outlines the logical steps required 220

to derive the correct SQL query result, providing a 221

comprehensive explanation of the query execution 222

process. We provide the full prompt used for LLMs 223

in Appendix B.1. 224

3.3 Relevance Scoring 225

After generating a set of synthetic examples, SAFE- 226

SQL employs a crucial evaluation process rooted 227

in novel fine-grained example selection to deter- 228

mine the relevance of each generated example to 229

3

the test question. This fine-grained selection pro-230

cess is integral to our method, ensuring that only231

high-quality, contextually appropriate examples are232

used for in-context learning, moving beyond sim-233

ple retrieval to curate examples truly relevant and234

beneficial for the Text-to-SQL task.235

To achieve this, we assign composite relevance236

score Rel on a scale from 0 to 10 to each example237

e, which is calculated as follows:238

Rel = α · S(Qe, Qt) + β ·A(Qe, Qt) + γ ·R (1)239

Here, Qt represents the test question, Qe denotes240

the generated example question. The coefficients241

α, β, and γ are weighting factors that sum to 1, al-242

lowing for adjustment of the relative importance of243

each component in the fine-grained selection score.244

The three components are defined as follows:245

• Semantic Similarity S(Qe, Qt): assesses if246

the generated question preserves the underly-247

ing meaning and intent to ensure the example248

aligns with the user’s core query objective.249

• Structural Alignment A(Qe, Qt): evalu-250

ates structural correspondence based on key251

database elements and their relationships,252

which is important for mapping natural lan-253

guage to a similar database structure and op-254

erations.255

• Reasoning Path Quality R: evaluates the256

alignment of the example’s logical derivation257

steps and database operations (e.g., filtering,258

aggregation, joins, subqueries) with the test259

question’s required logic.260

We utilize LLMs to compute the score for each261

of the three components based on our specifically262

designed instructions and criteria. Specifically,263

the LLM applies a predefined, multi-point scor-264

ing rubric (detailed in Appendix B.2) to assign a265

quantitative score (0-10) for each criterion. This266

process allows for a nuanced assessment of the de-267

gree of alignment between the generated example268

and the test question along each dimension, mov-269

ing beyond simple binary or qualitative judgments.270

By carefully evaluating these three factors through271

our fine-grained example selection process, SAFE-272

SQL ensures that the selected examples are highly273

relevant and informative, contributing to more ac-274

curate and effective SQL query generation.275

3.4 Threshold Selection 276

To further ensure quality, SAFE-SQL retains only 277

those examples with a relevance score above a pre- 278

defined threshold θ. Formally, the set of selected 279

examples is defined as: 280

Eselected = {e ∈ E | Rel ≥ θ} (2) 281

where E represents all generated examples. This 282

thresholding step filters out low-quality examples 283

and ensures that only the most informative and 284

contextually appropriate examples are used in the 285

final inference. The threshold is set to 8, as Figure 4 286

demonstrates that this value provides an optimal 287

balance between preserving high-quality examples 288

and maintaining sufficient diversity for robust SQL 289

generation. 290

3.5 Final Inference 291

In the final stage, the high-quality examples gener- 292

ated in previous steps are combined with the test 293

question to construct a comprehensive prompt for 294

the LLM. These examples, enriched with filtered 295

questions, corresponding SQL queries, and detailed 296

reasoning paths, guide the LLM in generating the 297

final SQL query. By integrating schema linking, 298

synthetic example generation, relevance scoring, 299

and threshold-based filtering, SAFE-SQL produces 300

SQL queries that are both syntactically correct and 301

semantically aligned with the intended database 302

operations, while also providing an interpretable 303

reasoning process. 304

4 Experiment 305

4.1 Experimental Setup 306

For our experiments, we employ six models for 307

comparison purposes: GPT-4o (Hurst et al., 2024), 308

GPT-4o-mini (Hurst et al., 2024), GPT-4 (Achiam 309

et al., 2023), Llama-3.1-70B-Instruct (Dubey et al., 310

2024), Llama3.3-70B-Instruct (Dubey et al., 2024), 311

Qwen2.5-72B (Yang et al., 2024a), Gemma3- 312

12b (Team et al., 2025), and Gemma3-27b (Team 313

et al., 2025). The evaluation is conducted on the 314

Spider dev dataset (Yu et al., 2018) and the Bird 315

dev dataset (Li et al., 2023), which are widely used 316

benchmarks for Text-to-SQL systems. The Spider 317

dev set contains 7,000 training samples covering 318

166 databases in various domains and 1,034 evalua- 319

tion samples from 20 databases, comprised of four 320

difficulty levels. BIRD is a large cross-domain 321

Text-to-SQL dataset with 12,751 question-SQL 322

4

pairs across 95 databases. Since the test sets of323

both the Spider and BIRD datasets are only accessi-324

ble through specific evaluation servers, we conduct325

our evaluation using their respective development326

sets.327

4.2 Baselines328

We use the following baseline Text-to-SQL meth-329

ods: Supervised fine tuning, which fine-tunes an330

open source model, Zero-shot, which infers with-331

out examples, Few-shot, which infers with few332

examples. Synthesizing Text-to-SQL data from333

weak and strong LLMs (Yang et al., 2024b) uti-334

lizes preference learning from the weak data from335

small LLMs and strong data from LLMs. SQL-336

Palm (Sun et al., 2024) introduces synthetic data337

augmentation to fine-tune open source models. Din338

SQL (Pourreza and Rafiei, 2023) breaking down339

the task into smaller sub-tasks, allowing large lan-340

guage models to improve their reasoning process341

through self-correction iteratively. C3-SQL (Dong342

et al., 2023) comprises clear prompting, calibra-343

tion with hints, and consistent output, which sys-344

tematically addresses model input, bias, and out-345

put to enhance performance using the zero-shot346

prompt. Dail-SQL (Gao et al., 2023) introduces347

effective few-shot learning, significantly reducing348

the number of tokens required per question. ACT-349

SQL (Zhang et al., 2023) enhances Text-to-SQL350

performance by automatically generating chain-of-351

thought exemplars, eliminating the need for manual352

labeling. PTD-SQL (Luo et al., 2024) categorizes353

queries into subproblems and focuses on targeted354

drilling to improve LLMs’ reasoning capabilities.355

4.3 Evaluation Metrics356

We use Execution Accuracy (EX) and Exact Match357

(EM) to evaluate the performance of our model. EX358

measures whether the SQL query generated by the359

model produces the same results as the ground truth360

query when executed on a database. Exact Match361

(EM), on the other hand, assesses whether the pre-362

dicted SQL query exactly matches the ground truth363

query in its structure and syntax. By combining364

these two metrics, we ensure a comprehensive eval-365

uation of both the correctness and execution relia-366

bility of the generated SQL queries.367

4.4 Performance Comparison368

Spider Dataset We analyze the performance of369

SAFE-SQL across different SQL difficulty levels370

and compare it with zero-shot, few-shot prompting371

Method Model Easy Medium Hard Extra All Time

Supervised Fine-Tuning (SFT)

SYN-SQL Sense 13B 95.2 88.6 75.9 60.3 83.5 16.34
SQL-Palm PaLM2 93.5 84.8 62.6 48.2 77.3 18.93

Zero-shot Methods

Baseline GPT-4 84.3 73.1 65.8 40.3 69.1 1.28
Baseline GPT-4o 87.2 77.2 68.4 48.7 73.4 0.93
Baseline GPT-4o-mini 84.8 75.6 67.0 46.1 71.5 1.07
C3-SQL GPT-4 90.2 82.8 77.3 64.3 80.6 19.34

Few-shot Methods

DIN-SQL GPT-4 91.1 79.8 64.9 43.4 74.2 4.37
DAIL-SQL GPT-4 91.9 90.1 75.2 63.8 83.6 16.79
ACT-SQL GPT-4 91.1 79.4 67.2 44.0 74.5 4.55
PTD-SQL GPT-4 94.8 88.8 85.1 64.5 85.7 7.89
DEA-SQL GPT-4 88.7 89.5 85.6 70.5 85.6 8.69

Self-augmented In-Context Learning

SAFE-SQL GPT-4 93.2 88.9 85.8 74.7 86.8 21.41
SAFE-SQL GPT-4o 93.4 89.3 88.4 75.8 87.9 14.92
SAFE-SQL GPT-4o-mini 93.6 87.5 86.1 75.2 87.4 15.33
SAFE-SQL Llama3.1-70B-Instruct 90.4 88.2 86.2 78.2 86.8 23.52
SAFE-SQL Llama3.3-70B-Instruct 92.0 80.5 81.0 62.9 80.5 22.46
SAFE-SQL Qwen2.5-72B 87.6 74.5 77.0 52.4 74.5 28.51
SAFE-SQL Gemma3-12B 92.4 90.7 85.1 78.8 88.2 13.28
SAFE-SQL Gemma3-27B 93.6 89.8 87.4 78.8 88.5 14.26

Table 1: Execution accuracy across difficulty levels on
the Spider development set. The highest score per row
is in bold, and the second highest is underlined.

methods, and supervised fine-tuning approaches. 372

The results, presented in Table 1, demonstrate that 373

SAFE-SQL achieves overall superior performance, 374

with particularly strong improvements in hard and 375

extra hard categories. Few-shot methods exhibit 376

higher accuracy in Easy and Medium categories, 377

which can be attributed to skeleton-masked selec- 378

tion which retrieves answers directly from the train- 379

ing set, leading to an inflated performance in sim- 380

pler queries. SAFE-SQL excels in hard and ex- 381

tra hard categories, achieving significantly higher 382

EX. This improvement is notably influenced by 383

the inclusion of reasoning paths, which provide 384

explicit guidance in SQL generation and enhance 385

the model’s ability to construct complex queries, as 386

well as the filtering of misleading examples, which 387

reduces potential confusion and prevents error prop- 388

agation. These multiple factors play a crucial role 389

in enabling the model to generate more accurate 390

and structurally sound SQL queries, especially 391

in challenging scenarios where other approaches 392

struggle. Notably, SAFE-SQL using open-source 393

models such as Gemma3-27B outperforms high- 394

cost methods based on GPT-4, highlighting its cost- 395

effectiveness and strong capability. 396

Bird Dataset We also conduct experiments on 397

the Bird Dev dataset in addition to the Spider 398

dataset. Similar to Spider, SAFE-SQL consis- 399

tently outperforms zero-shot and few-shot methods, 400

achieving 63.5% execution accuracy with GPT-4o, 401

which is even higher than Syn-SQL (63.4%), a 402

5

Method Model Execution Accuracy

Supervised Fine-Tuning (SFT)

Syn-SQL Sense13B 63.4
SQL-Palm Palm 53.6

Zero-shot Methods

Baseline GPT-4 49.2
Baseline GPT-4o 51.8
Baseline GPT-4o-mini 51.2
C3-SQL GPT-4 53.8

Few-shot Methods

Din-SQL GPT-4 55.9
Dail-SQL GPT-4 55.4
ACT-SQL GPT-4 52.8
PTD-SQL GPT-4 57.0
DEA-SQL GPT-4 52.4

Self-augmented In-Context Learning

SAFE-SQL GPT-4 58.9
SAFE-SQL GPT-4o 63.5
SAFE-SQL GPT-4o-mini 62.1
SAFE-SQL Llama3.1-70B-Instruct 60.9
SAFE-SQL Llama3.3-70B-Instruct 61.2
SAFE-SQL Qwen2.5-72B 56.2
SAFE-SQL Gemma3-12B 60.8
SAFE-SQL Gemma3-27B 61.5

Table 2: Execution accuracy on Bird dataset.

Models EX EM

SAFE-SQL - GPT-4o 87.9 78.3
w/o Reasoning path 84.4 (-3.5) 73.6(-4.7)
w/o Relevance filtering 82.1 (-5.8) 68.5(-9.7)
w/o Schema linking 80.4 (-7.5) 65.1(-13.2)
w/o Similar examples 77.1 (-10.8) 61.9(-16.4)

Table 3: Ablation study results for SAFE-SQL, where
removing each component leads to a performance drop.

supervised fine-tuning approach. This highlights403

the effectiveness of our SAFE-SQL using a self-404

augmented in-context learning method.405

4.5 Ablation Study406

To assess the contribution of each key component407

in our model, we conduct an ablation study by sys-408

tematically removing four critical modules: Rea-409

soning Path, Relevance Score, Schema Linking,410

and Similar Examples. We evaluate the resulting411

impact on performance using EX shown in Table 3.412

Our findings indicate that each component plays a413

crucial role in the model’s effectiveness. Removing414

the Reasoning Path leads to a 3.5-point drop in EX,415

highlighting its importance in guiding the model416

toward generating accurate SQL queries. The ab-417

sence of the Relevance Score resulted in a 5.8-point418

decrease in EX, underscoring its contribution to419

overall performance. Eliminating Schema Linking420

causes a 7.5-point drop in EX, which demonstrates421

its critical role in similar example construction.422

Overall, each of the four components—Reasoning423

Path, Relevance Score, Schema Linking, and Sim-424

ilar Examples—is essential for achieving optimal425

performance in SQL generation, empirically vali-426

dating our architectural and design choices. 427

4.6 Analysis 428

Inference Time per Query on Spider Dev Set 429

As shown in Table 1, we compare the inference 430

time of SAFE-SQL with other methods. While 431

baseline methods achieve faster inference via sim- 432

ple zero-shot prompts, they show lower accuracy. 433

Few-shot methods are faster than SAFE-SQL but 434

still underperform in execution accuracy. In con- 435

trast, SAFE-SQL leverages example augmentation 436

and filtering process, achieving higher performance 437

with a modest increase in inference time. Despite 438

requiring three LLM calls, SAFE-SQL demon- 439

strates strong zero-shot capabilities without relying 440

on a training set, making the trade-off in latency 441

worthwhile. 442

Score cos θ # of Generated EX % Filtered EX

≥ 0 0.581 10340 0 %
≥ 2 0.625 10185 1.50% (-155)
≥ 4 0.744 9883 4.41% (-457)
≥ 6 0.762 9378 9.30% (-962)
≥ 8 0.765 8606 16.76% (-1734)
≥ 10 0.769 6795 34.28% (-3545)

Table 4: Summary of data generation, filtering results,
and embedding similarity analysis by score.

Number of Generated and Filtered Examples 443

per Score, along with an Embedding Similar- 444

ity Analysis of the Filtered Examples For each 445

test question in the Spider dev set, 10 examples 446

are generated, resulting in a total of 10,340 exam- 447

ples. The quality of these examples is assessed 448

using a relevance score ranging from 0 to 10. As 449

shown in Table 4, the 65.71% of examples are as- 450

signed a score of 10, while the 0.59% of examples 451

are received a score of 0. This trend suggests that 452

the LLM tends to assign high relevance to its own 453

generated examples. The similarity is computed 454

using cosine similarity, where higher scores indi- 455

cate greater semantic alignment between the test 456

questions and the retained examples. As the fil- 457

tering threshold increases, the embedding similar- 458

ity also increases, suggesting that higher-relevance 459

examples exhibit stronger semantic consistency 460

with the test questions. However, we also observe 461

that overly strict filtering—selecting only examples 462

with a perfect score of 10—leads to a decline in per- 463

formance. This drop occurs because an excessively 464

high threshold significantly reduces the number of 465

available examples, limiting the diversity. 466

6

Figure 3: (Left) Correlation between question embedding similarity and average EX, (Right) Average EX across
embedding similarity bins

Effect of Question Embedding Similarity on Ex-467

ecution Accuracy. In Figure 3, the left graph468

illustrates the correlation between embedding simi-469

larity and EX. Each point represents one of the 11470

data points obtained by filtering examples based on471

different threshold scores (0 to 10). The data points472

follow an upward trend, suggesting that higher sim-473

ilarity tends to result in better EX. The red line474

indicates the overall correlation, with a coefficient475

of 0.82, showing a relatively strong positive rela-476

tionship. Building on this analysis, the right graph477

provides a more fine-grained view by examining478

the execution accuracy of individual generated ex-479

amples based on their embedding similarity with480

test questions. The x-axis represents the normal-481

ized similarity between the test question and the482

generated question, and the y-axis indicates EX.483

The results show that EX is lowest in the 0.0-0.1484

similarity range, suggesting that examples with485

very low similarity to test questions tend to be less486

useful. As similarity increases, EX generally im-487

proves, peaking in the 0.7-0.8 range. This suggests488

that examples with a moderate to high similarity489

to test questions are more effective in generating490

executable SQL queries. However, accuracy drops491

slightly in the 0.8-0.9 range before rising again in492

the 0.9-1.0 range. This indicates that excessively493

high similarity can reduce diversity, potentially lim-494

iting the model’s generalization ability.495

Effect of Relevance Scoring Thresholds on Per-496

formance. To further evaluate the effectiveness497

of SAFE-SQL, we conduct a detailed case study498

using varying thresholds for the relevance scor-499

ing mechanism as shown in Figure 4. The self-500

generated examples are filtered based on relevance501

scores, with thresholds ranging from 0 to 10. For502

each test question, the number of high-scoring503

examples varied due to the specific content and504

Figure 4: Performance of GPT-4o at different relevance
score thresholds.

schema structure (e.g., some test questions have 505

six examples with scores ≥ 8, while others have 506

three). The selected examples are then used during 507

the final inference stage to generate SQL queries. 508

The ≥ 8 threshold consistently produces the best 509

results, validating the robustness of SAFE-SQL’s 510

relevance score filtering. The results demonstrate 511

that selecting high-quality examples plays a critical 512

role in guiding LLMs to generate accurate SQL 513

queries, regardless of the underlying model. 514

Effect of Three Measuring Components on Per- 515

formance. To assess the impact of the three mea- 516

suring components—semantic similarity (α), struc- 517

tural similarity (β), and reasoning path quality 518

(γ)—on EX, we conduct experiments by varying 519

their respective weightings. The results, presented 520

in Table 6, highlight distinct performance trends 521

across different difficulty levels. Notably, the ex- 522

clusion of reasoning path quality leads to a drop 523

in EX, particularly in the Hard and Extra Hard. 524

This suggests that a well-structured reasoning path 525

is crucial for handling complex queries, as it pro- 526

vides essential logical steps that bridge the gap 527

between natural language understanding and SQL 528

formulation. Conversely, semantic similarity and 529

7

GOLD Question GOLD SQL Query Generated Question Reasoning Path Relevance Score

Question1: What are
the names, countries,
and ages for every
singer in descending or-
der of age?

SELECT name,
country, age FROM
singer ORDER BY
age DESC

What are the names,
ages, and countries of
all singers from a spe-
cific country, sorted by
age in descending or-
der?

1. Identify the desired columns: name, age, and
country.
2. Specify the table: singer.
3. Sort the results by age in descending order.

Semantic similarity =
10 Structural Similarity
= 10 Reasoning path =
10 Relevance score =
(10+10+10)/3 = 10

Question2: Return the
names and template ids
for documents that con-
tain the letter w in their
description.

SELECT
document_name,
template_id FROM
Documents WHERE
Document_Description
LIKE "%w%"

Retrieve the titles and
category IDs of articles
whose summaries con-
tain the word "data".

1. Identify the necessary columns: extract title
and category_id from the Articles table.
2. Locate the relevant table: use the Articles table
as it contains the required data.
3. Define the filtering condition: apply a WHERE
clause to check if the summary column contains
the substring "data".
4. Use the LIKE operator: employ LIKE
’%data%’ to search for any instance of "data"
within the summary.
5. Retrieve the results: return the title and
category_id values for all matching records.

Semantic similarity =
7 Structural Similarity
= 9 Reasoning path =
8 Relevance score =
(7+9+8)/3 = 8

Question3: What is the
number of car models
that are produced by
each maker and what is
the id and full name of
each maker?

SELECT Count(*),
T2.FullName, T2.id
FROM MODEL_LIST AS
T1 JOIN CAR_MAKERS
AS T2 ON T1.Maker
= T2.id GROUP BY
T2.id;

List all employees who
work in the IT depart-
ment along with their
employee ID and hire
date.

1. Identify required details: employee ID and hire
date.
2. Filter condition: find employees who work in
IT.
3. Retrieve data: select only emp_id and
hire_date.

Semantic similarity =
6 Structural Similarity
= 3 Reasoning path =
2 Relevance score =
(6+3+2)/3 = 3.67

Table 5: Comparative examples of gold-questions and GPT-4o-generated SQL questions, including detailed
reasoning paths and the process of computing relevance scores.

α β γ Easy Medium Hard Extra EX

0.33 0.33 0.33 93.4 89.3 88.4 75.8 87.9

1 0 0 90.7 84.2 82.3 68.3 82.8
0 1 0 89.8 85.6 81.2 69.2 83.1
0 0 1 89.2 85.1 84.3 71.7 83.7

0.5 0.5 0 91.2 87.3 82.5 69.4 84.4
0.5 0 0.5 92.5 87.9 83.5 70.3 85.3
0 0.5 0.5 92.7 86.8 88.5 72.4 86.1

Table 6: Execution accuracy across difficulty levels un-
der different weights: semantic similarity (α), structural
similarity (β), and reasoning path quality (γ).

structural similarity have a greater influence on the530

Easy and Medium levels. This is because these531

queries tend to be relatively straightforward, mean-532

ing that having structurally similar SQL questions533

in the example set often provides sufficient guid-534

ance for generating correct queries. In these cases,535

direct pattern matching and schema alignment play536

a larger role. Overall, the findings demonstrate that537

a balanced combination of all three components is538

essential for optimizing performance across differ-539

ent levels of query complexity.540

4.7 Case Study541

As shown in Table 5, test questions from the Spider542

dev set alongside their generated similar examples,543

evaluated based on semantic similarity, structural544

similarity, and the reasoning path score, which to-545

gether determine the relevance score. The first546

example achieves a perfect relevance score of 10,547

as the generated question closely aligns with the548

original in meaning, structure, and reasoning. The549

SQL formulation remains nearly identical, and the 550

reasoning path explicitly details each step, ensur- 551

ing full alignment. The second example receives 552

a relevance score of 8, with semantic similarity of 553

7 due to minor differences in terminology ("doc- 554

uments" vs. "articles" and "letter ’w’" vs. "word 555

’data’"). However, its structural similarity remains 556

high, as the SQL structure is nearly identical. The 557

reasoning path score of 8 reflects a clear expla- 558

nation of query formulation, though slightly less 559

detailed than the first example. The third example 560

has the lowest relevance score due to significant 561

differences. The generated question shifts focus 562

from counting car models to listing IT employees, 563

resulting in semantic similarity of 6 and structural 564

similarity of 3. These results emphasize the impor- 565

tance of fine-grained example selection due to the 566

varing quality of generated examples. 567

5 Conclusion 568

We introduce SAFE-SQL, a novel unsupervised 569

framework designed for Text-to-SQL. SAFE-SQL 570

generates and filters high-quality self-augmented 571

examples for in-context learning. Extensive ex- 572

periments demonstrated that both the fine-grained 573

example generation process and optimal thresh- 574

old filtering contribute significantly to performance 575

gains. Our method achieves state-of-the-art results, 576

showing notable improvements over ablated ver- 577

sions and excelling particularly in challenging extra 578

hard and unseen scenarios. 579

8

Limitations580

While SAFE-SQL demonstrates strong perfor-581

mance in generating accurate and semantically582

valid SQL queries, there are a few limitations that583

should be addressed in future work. Although the584

model performs well on the tested datasets, its585

ability to generalize to highly diverse or domain-586

specific SQL tasks remains to be fully evaluated.587

The current framework also relies on large lan-588

guage models like GPT-4o, which may not be easily589

scalable to low-resource settings or environments590

with limited computational resources. Handling591

edge cases and extremely complex queries, which592

might require deeper schema understanding and593

more sophisticated reasoning, is another challenge594

for the model.595

Ethics Statement596

While our approach enhances SQL generation with-597

out additional fine-tuning, it relies on LLMs, which598

may inherit biases from training data. We mitigate599

potential biases and inaccuracies through structured600

filtering and relevance scoring. Our study uses pub-601

licly available datasets, ensuring compliance with602

data privacy standards. We encourage responsi-603

ble use of our method, particularly in applications604

requiring high accuracy and fairness.605

References606

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama607
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,608
Diogo Almeida, Janko Altenschmidt, Sam Altman,609
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.610
arXiv preprint arXiv:2303.08774.611

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin612
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-613
sql: Robust schema linking in text-to-sql generation.614
Preprint, arXiv:2411.00073.615

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,616
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang617
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.618
Preprint, arXiv:2307.07306.619

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,620
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,621
Akhil Mathur, Alan Schelten, Amy Yang, Angela622
Fan, et al. 2024. The llama 3 herd of models. arXiv623
preprint arXiv:2407.21783.624

Farida El Boujddaini, Ahmed Laguidi, and Youssef Mej-625
doub. 2024. A survey on text-to-sql parsing: From626
rule-based foundations to large language models. In627
International Conference on Connected Objects and628
Artificial Intelligence, pages 266–272. Springer.629

Yujian Gan, Xinyun Chen, and Matthew Purver. 630
2021. Exploring underexplored limitations of 631
cross-domain text-to-sql generalization. Preprint, 632
arXiv:2109.05157. 633

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 634
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 635
Text-to-sql empowered by large language models: A 636
benchmark evaluation. Preprint, arXiv:2308.15363. 637

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, 638
Junnan Dong, Feiran Huang, and Xiao Huang. 2024. 639
Next-generation database interfaces: A survey of llm- 640
based text-to-sql. Preprint, arXiv:2406.08426. 641

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 642
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 643
trow, Akila Welihinda, Alan Hayes, Alec Radford, 644
et al. 2024. Gpt-4o system card. arXiv preprint 645
arXiv:2410.21276. 646

Fei Li and Hosagrahar V Jagadish. 2014. Constructing 647
an interactive natural language interface for relational 648
databases. Proceedings of the VLDB Endowment, 649
8(1):73–84. 650

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 651
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, 652
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao 653
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang, 654
Reynold Cheng, and Yongbin Li. 2023. Can llm 655
already serve as a database interface? a big bench for 656
large-scale database grounded text-to-sqls. Preprint, 657
arXiv:2305.03111. 658

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin, 659
and Yujiu Yang. 2024. Ptd-sql: Partitioning and 660
targeted drilling with llms in text-to-sql. Preprint, 661
arXiv:2409.14082. 662

Ali Mohammadjafari, Anthony S. Maida, and Raju 663
Gottumukkala. 2025. From natural language to sql: 664
Review of llm-based text-to-sql systems. Preprint, 665
arXiv:2410.01066. 666

Mohammadreza Pourreza and Davood Rafiei. 2023. 667
Din-sql: Decomposed in-context learning of text-to- 668
sql with self-correction. Preprint, arXiv:2304.11015. 669

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly 670
Miculicich, Tomas Pfister, and Sercan O. Arik. 2024. 671
Sql-gen: Bridging the dialect gap for text-to-sql 672
via synthetic data and model merging. Preprint, 673
arXiv:2408.12733. 674

Torsten Scholak, Nathan Schucher, and Dzmitry Bah- 675
danau. 2021. Picard: Parsing incrementally for 676
constrained auto-regressive decoding from language 677
models. Preprint, arXiv:2109.05093. 678

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023. 679
Automatic prompt augmentation and selection with 680
chain-of-thought from labeled data. arXiv preprint 681
arXiv:2302.12822. 682

9

https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2409.14082
https://arxiv.org/abs/2409.14082
https://arxiv.org/abs/2409.14082
https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093

Ruoxi Sun, Sercan Ö. Arik, Alex Muzio, Lesly Miculi-683
cich, Satya Gundabathula, Pengcheng Yin, Hanjun684
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,685
and Tomas Pfister. 2024. Sql-palm: Improved large686
language model adaptation for text-to-sql (extended).687
Preprint, arXiv:2306.00739.688

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya689
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,690
Tatiana Matejovicova, Alexandre Ramé, Morgane691
Rivière, et al. 2025. Gemma 3 technical report. arXiv692
preprint arXiv:2503.19786.693

Rishit Toteja, Arindam Sarkar, and Prakash Mandayam694
Comar. 2025. In-context reinforcement learning with695
retrieval-augmented generation for text-to-sql. In696
Proceedings of the 31st International Conference on697
Computational Linguistics, pages 10390–10397.698

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr699
Polozov, and Matthew Richardson. 2021. Rat-sql:700
Relation-aware schema encoding and linking for text-701
to-sql parsers. Preprint, arXiv:1911.04942.702

Xubin Wang, Jianfei Wu, Yichen Yuan, Mingzhe Li,703
Deyu Cai, and Weijia Jia. 2024. Demonstration selec-704
tion for in-context learning via reinforcement learn-705
ing. Preprint, arXiv:2412.03966.706

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa707
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh708
Hajishirzi. 2023. Self-instruct: Aligning language709
models with self-generated instructions. Preprint,710
arXiv:2212.10560.711

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten712
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and713
Denny Zhou. 2023. Chain-of-thought prompting elic-714
its reasoning in large language models. Preprint,715
arXiv:2201.11903.716

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas,717
Amin Ahmadi, and Oskar Holmström. 2024. Un-718
derstanding the effects of noise in text-to-sql: An719
examination of the bird-bench benchmark. Preprint,720
arXiv:2402.12243.721

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,722
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,723
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5724
technical report. arXiv preprint arXiv:2412.15115.725

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang726
Lin, and Chang Zhou. 2024b. Synthesizing text-727
to-sql data from weak and strong llms. Preprint,728
arXiv:2408.03256.729

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,730
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-731
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir732
Radev. 2018. Spider: A large-scale human-labeled733
dataset for complex and cross-domain semantic pars-734
ing and text-to-SQL task. In Proceedings of the 2018735
Conference on Empirical Methods in Natural Lan-736
guage Processing, pages 3911–3921, Brussels, Bel-737
gium. Association for Computational Linguistics.738

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen 739
Xu, and Kai Yu. 2023. Act-sql: In-context learning 740
for text-to-sql with automatically-generated chain-of- 741
thought. Preprint, arXiv:2310.17342. 742

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, 743
Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan, 744
Jun Wang, Chung-Wei Hang, Sheng Zhang, Marvin 745
Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vitto- 746
rio Castelli, and Bing Xiang. 2022. Importance of 747
synthesizing high-quality data for text-to-sql parsing. 748
Preprint, arXiv:2212.08785. 749

10

https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2412.03966
https://arxiv.org/abs/2412.03966
https://arxiv.org/abs/2412.03966
https://arxiv.org/abs/2412.03966
https://arxiv.org/abs/2412.03966
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2408.03256
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2212.08785
https://arxiv.org/abs/2212.08785
https://arxiv.org/abs/2212.08785

A Appendix750

B Prompts for SAFE-SQL751

B.1 Prompt for example generation.752

For example generation, we use zero shot prompt753

as shown in the figure 7.

You are a powerful text-to-SQL reasoner. Your
task is to generate ten similar questions, ten SQL
queries, and ten reasoning paths for how the SQL
queries are derived. To ensure high-quality exam-
ples, focus on the following three key aspects:

Semantic Similarity
Ensure that all generated questions have the same
underlying meaning as the test question. Variations
in wording, synonyms, and phrasing are allowed
as long as they preserve the intended query objec-
tive. Avoid introducing ambiguity or additional
constraints that alter the intent.

Structural Similarity
While key terms (such as table names, column
names, and numerical values) may vary, their func-
tional roles and relationships should remain intact.

Reasoning Path
The logical reasoning required to construct the SQL
query should remain consistent across examples.
Clearly outline each step, including how key con-
ditions are identified and mapped to SQL opera-
tions.Maintain coherence in how joins, aggrega-
tions, filters, and sorting operations are applied.
Do not explain me about the result and just give me
ten examples.

Schema linking: schema_linking[i]
Tables: test_table[i]
Foreign keys: test_foreign_keys[i]
Question: test_question[i]

Similar Question:
SQL query:
Reasoning Path:

Table 7: The zero-shot prompt used for example genera-
tion

754

B.2 Prompt for filtering examples.755

For example generation, we use zero shot prompt756

as shown in figure 8.757

B.3 Prompt for final inference.758

For final inference, we use zero shot prompt as759

shown in figure 9.760

You are a powerful text-to-SQL reasoner. Given a test question
and a set of examples, compute the relevance score for each
example based on the following criteria. Do not explain me
about the answer, just give me scores.

Semantic Similarity
Compare the overall meaning of the test question and the
example question. Higher scores should be assigned if the
two questions have the same intent, even if they are phrased
differently. Consider synonyms, paraphrasing, and minor
wording variations that do not alter the fundamental meaning.
Assign lower scores if the test and example questions focus on
different database operations (e.g., aggregation vs. filtering)
or require fundamentally different types of information.(up to
10 points).
10: Almost identical meaning and intent.
7–9: Minor paraphrasing but highly relevant.
4–6: Some overlap but different focus.
1–3: Mostly unrelated meaning.
0: Completely different intent.

Structural Similarity
Evaluate the structural alignment between the test question and
the example question by analyzing how key elements (such
as entities, attributes, and numerical values) are connected.
Even if individual nouns, verbs, or numbers differ, the overall
relational structure should be considered. Focus on whether
the dependencies between key components (e.g., how entities
relate to each other in the database) remain consistent.(up to
10 points).
10: Nearly identical structural relationships and dependencies.
7–9: Mostly similar structure, with minor differences in entity
connections.
4–6: Some overlap, but noticeable differences in how key
components interact.
1–3: Few shared structural relationships, making alignment
weak.
0: No meaningful structural similarities.

Reasoning Path
Evaluate whether the logical steps needed to answer the ex-
ample question align with those required for the test question.
Consider whether the database operations (e.g., filtering, ag-
gregation, joins, subqueries) are similar.A high score should
be given if the example follows the same logical sequence to
derive the SQL query.Lower scores should be assigned if the
reasoning process differs significantly, even if the questions
seem similar at a surface level.(up to 10 points).
10: Exact reasoning process to get right SQL query.
7–9: Mostly similar but with minor differences.
4–6: Some alignment but different key steps.
1–3: Largely different reasoning.
0: Completely unrelated logic.

Question: test_question[i]
Similar Question: similar_question[i]
Reasoning Path: reasoning_path[i]
Relevance score:

Table 8: The zero-shot prompt used for filtering exam-
ples.

11

You are a powerful text-to-SQL reasoner. Your task
is to generate the final SQL query using a set of
selected examples that provide guidance on query
construction. Utilizing Selected Examples. Do not
explain me about the answer, just give me SQL
query.
A set of chosen examples, each containing: A nat-
ural language question similar to the test question
A corresponding SQL query A detailed reasoning
path explaining how the SQL query was derived
These examples are selected based on three key
criteria:

Semantic Similarity The selected examples
closely match the intent of the test question. Varia-
tions in wording do not change the meaning.
Structural Similarity The database schema ele-
ments (tables, columns, joins) used in the examples
align with the test question. The SQL syntax and
structure are relevant to the expected query.
Reasoning Path Similarity The logical steps used
to construct the SQL query align with the reasoning
required for the test question. Key transformations,
filtering conditions, and aggregation logic are simi-
lar.
Final SQL Query Construction
Using the selected examples, generate the final
SQL query that correctly retrieves the desired result
for the given test question. Follow the reasoning
patterns observed in the examples. Now, generate
the final SQL query for the given test question:

##Tables: test_table[i]
##Foreign_keys: test_foreign_keys[i]
##Question: text_question[i]
##Filtered_example: filtered_example[i]

Table 9: The zero-shot prompt used for Final SQL query
inference.

Easy Med Hard Extra All

Qwen 2.5-3B 62.4 61.2 58.6 48.8 59.1
Qwen 2.5-7B 80.0 78.0 67.2 51.8 72.3
Qwen 2.5-14B 81.2 80.3 69.5 56.4 74.7

Table 10: Execution accuracy performance of different
size of models of Qwen series across difficulty levels of
spider dev set.

C Impact of model size 761

Performance based on generated examples 762

across different model size As shown in Ta- 763

ble 10, We investigate the impact of model size 764

on example generation with different variants of 765

the Qwen2.5 Models. The results demonstrate that 766

the 14B model achieves the highest overall perfor- 767

mance, followed by the 7B and the 3B. This trend 768

is consistent across all difficulty levels, with large 769

model size generating higher-quality examples that 770

lead to more accurate SQL query generation. The 771

performance improvement with increasing model 772

size can be attributed to the enhanced capacity of 773

larger models to capture SQL question patterns and 774

semantic relationships. Moreover, larger models 775

possess more extensive information, allowing them 776

to generate more appropriate questions and con- 777

struct detailed reasoning paths, which contribute to 778

the overall accuracy of SQL query generation. 779

D Spider dev training set embedding 780

clusters. 781

100 75 50 25 0 25 50 75
t-SNE Dimension 1

75

50

25

0

25

50

75

t-S
NE

 D
im

en
sio

n
2

Sentence Embedding Clusters

Clusters
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure 5: Embedding of spider dev set training ques-
tions.

Although questions within the same category 782

share semantic similarities, they may belong to 783

12

different clusters, leading to inconsistencies when784

retrieving examples from the training set. This785

highlights the limitations of training set retrieval in786

Text-to-SQL tasks.787

13

	Introduction
	Related Work
	Fine-grained Self-Augmentation for Text-to-SQL
	Schema Linking
	Example Generation
	Relevance Scoring
	Threshold Selection
	Final Inference

	Experiment
	Experimental Setup
	Baselines
	Evaluation Metrics
	Performance Comparison
	Ablation Study
	Analysis
	Case Study

	Conclusion
	Appendix
	Prompts for SAFE-SQL
	Prompt for example generation.
	Prompt for filtering examples.
	Prompt for final inference.

	Impact of model size
	Spider dev training set embedding clusters.

