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ABSTRACT

Uncertainty estimation is an essential step in the evaluation of the robustness for
deep learning models in computer vision, especially when applied in risk-sensitive
areas. However, most state-of-the-art deep learning models either fail to obtain
uncertainty estimation or need significant modification (e.g., formulating a proper
Bayesian treatment) to obtain it. Most previous methods are not able to take an
arbitrary model off the shelf and generate uncertainty estimation without retraining
or redesigning it. To address this gap, we perform a systematic exploration into
training-free uncertainty estimation for dense regression, an unrecognized yet im-
portant problem, and provide a theoretical construction justifying such estimations.
We propose three simple and scalable methods to analyze the variance of outputs
from a trained network under tolerable perturbations: infer-transformation, infer-
noise, and infer-dropout. They operate solely during inference, without the need
to re-train, re-design, or fine-tune the model, as typically required by state-of-the-art
uncertainty estimation methods. Surprisingly, even without involving such pertur-
bations in training, our methods produce comparable or even better uncertainty
estimation when compared to training-required state-of-the-art methods.

1 INTRODUCTION

Deep neural networks have achieved remarkable or even super-human performance in many
tasks (Krizhevsky et al., 2012; He et al., 2015; Silver et al., 2016). While most previous work
in the field has focused on improving accuracy in various tasks, in several risk-sensitive areas such as
autonomous driving (Chen et al., 2015) and healthcare (Zhang et al., 2019), reliability and robustness
are arguably more important and interesting than accuracy.

Recently, several novel approaches have been proposed to take into account an estimation of uncer-
tainty during training and inference (Huang et al., 2018). Some use probabilistic formulations for
neural networks (Graves, 2011; Hernández-Lobato & Adams, 2015; Wang et al., 2016; Shekhovtsov
& Flach, 2018) and model the distribution over the parameters (weights) and/or the neurons. Such
formulations naturally produce distributions over the possible outputs (Ilg et al., 2018; Yang et al.,
2019). Others utilize the randomness induced during training and inference (e.g., dropout and ensem-
bling) to obtain an uncertainty estimation (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
Kendall et al., 2015).

All methods above require specific designs or a special training pipeline in order to involve the
uncertainty estimation during training. Unfortunately, there are many cases where such premeditated
designs or pipelines cannot be implemented. For example, if one wants to study the uncertainty of
trained models released online, retraining is not always an option, especially when only a black-box
model is provided or the training data is not available. Moreover, most models are deterministic and
do not have stochasticity. A straightforward solution is to add dropout layers into proper locations and
finetune the model (Gal & Ghahramani, 2016). However, this is impractical for many state-of-the-art
and published models, especially those trained on large datasets (e.g. ImageNet (Deng et al., 2009))
with a vast amount of industrial computing resources. In addition, models that have already been
distilled, pruned, or binarized fall short of fitting re-training (Han et al., 2015; Hou et al., 2016).

To fill this gap, we identify the problem of training-free uncertainty estimation: how to obtain an
uncertainty estimation of any given model without re-designing, re-training, or fine-tuning it. We
focus on two scenarios: black-box uncertainty estimation (BBUE), where one has access to the
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Figure 1: Method description of our training-free uncertainty estimation: apply infer-transformation
T (left) and infer-noise or infer-dropout P (right) to a trained neural network F during inference.

model only as a black box, and gray-box uncertainty estimation (GBUE), where one has access
to intermediate-layer neurons of the model (but not the parameters). Our work is a systematic
exploration into this unrecognized yet important problem.

We propose a set of simple and scalable training-free methods to analyze the variance of the output
from a trained network, shown in Fig. 1. Our main idea is to add a tolerable perturbation into inputs
or feature maps during inference and use the variance of the output as a surrogate for uncertainty
estimation. This is theoretically inspired by Chebyshev’s inequality, which establishes the connection
between the variance of the output and model sensitivity, as well as a simple triangle inequality that
connects model sensitivity to prediction uncertainty (see Sec. 3.3 for details).

The first method, which we call infer-transformation, is to apply transformation that exploits the
natural characteristics of a CNN – it is variant to input transformation such as rotation (Cohen &
Welling, 2016). Transformations have been frequently used as data augmentation but rarely evaluated
for uncertainty estimation. The second method, infer-noise, is to inject Gaussian noise with a
zero-mean and a small standard deviation into intermediate-layer neurons. The third one, called infer-
dropout, is to perform inference-time dropout in a chosen layer. Although at first blush infer-dropout
is similar to MC-dropout, where dropout is performed during both training and inference in the same
layers, they are different in several aspects: (1) Infer-dropout is involved only during inference. (2)
Infer-dropout can be applied to arbitrary layers, even those without dropout training. Surprisingly, we
find that even without involving dropout during training, infer-dropout is still comparable to, or even
better than, MC-dropout for the purpose of uncertainty estimation.

In our paper, we focus on regression tasks. We note that for classification tasks, the softmax output is
naturally a distribution. Methods that use entropy for uncertainty estimation qualify as a training-free
method and have outperformed MC-Dropout (Bahat & Shakhnarovich, 2018; Gal & Ghahramani,
2016; Hendrycks & Gimpel, 2016; Wang et al., 2019) (See Appendix Sec. H for experiment results).
Regression tasks are more challenging than classification problems since there is no output distribution.
Our major contributions are:

1. We perform a systematic exploration of training-free uncertainty estimation for regression models
and provide a theoretical construction justifying such estimations.

2. We propose simple and scalable methods, infer-transformation, infer-noise and infer-dropout,
using a tolerable perturbation to effectively and efficiently estimate uncertainty.

3. Surprisingly, we find that our methods are able to generate uncertainty estimation comparable or
even better than training-required baselines in real-world large-scale dense regression tasks.

2 RELATED WORK

Probabilistic Neural Networks for Uncertainty Estimation. Probabilistic neural networks con-
sider the input and model parameters as random variables which take effect as the source of stochas-
ticity (Nix & Weigend, 1994; Welling & Teh, 2011; Graves, 2011; Hernández-Lobato & Adams,
2015; Wang et al., 2016). Traditional Bayesian neural networks model the distribution over the
parameters (weights) (MacKay, 1992; Hinton & Van Camp, 1993; Graves, 2011; Welling & Teh,
2011) and obtain the output distribution by marginalizing out the parameters. Even with recent
improvement (Balan et al., 2015; Hernández-Lobato & Adams, 2015), one major limitation is that
the size of network at least doubles under this assumption, and the propagation with a distribution is
usually computationally expensive. Another set of popular and efficient methods (Gal & Ghahramani,
2016; Teye et al., 2018) formulate dropout (Srivastava et al., 2014) or batch normalization (Ioffe
& Szegedy, 2015) as approximations to Bayesian neural networks. For example, MC-dropout (Gal
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& Ghahramani, 2016) injects dropout into some layers during both training and inference. Unlike
most models that disable dropout during inference, MC-dropout feed-forwards the same example
multiple times with dropout enabled, in order to form a distribution on the output. Meanwhile, other
works (Wang et al., 2016; Shekhovtsov & Flach, 2018) propose sampling-free probabilistic neural
networks as a lightweight Bayesian treatment for neural networks.

Non-probabilistic Neural Networks for Uncertainty Estimation. Other strategies such as deep
ensemble (Lakshminarayanan et al., 2017; Huang et al., 2017a) train an ensemble of neural networks
from scratch, where some randomness is induced during the training process, i.e. the initial weight is
randomly sampled from a distribution. During inference, these networks will generate a distribution
of the output. Though simple and effective, training multiple networks costs even more time and
memory than Bayesian neural networks. Another efficient method log likelihood maximization
(LLM) is to train the network to have both original outputs and uncertainty predictions, by jointly
optimizing both (Zhang et al., 2019; Poggi et al., 2020). However, such a design requires re-training,
introduces heavy implementation overhead, and sometimes makes the optimization process more
challenging.

3 METHODOLOGY

Three Cases on Parameter Accessibility. We distinguish among three cases based on accessibility
of the original model. 1. Black-box case: the model is given as a trained black box without any access
to its internal structure. 2. Gray-box case: the internal representations (feature maps) of the model is
accessible (while the parameters are not) and can be modified during inference. 3. White-box case:
the model is available for all modifications (e.g. its weights can be modified, which requires training).
In this paper we focus on the black-box and gray-box cases, for which we offer, correspondingly,
two classes of methods. For the black-box case, we propose infer-transformation, which exploits the
model’s dependence on input transformations, e.g. rotations/flips. For the grey-box case, we propose
infer-noise and infer-dropout, which introduce an internal embedding/representation manipulation
- injecting a noise layer or a dropout layer during inference. These three methods are illustrated in
Fig. 1. The description of our methods and a theoretical construction are presented as below.

3.1 BLACK-BOX UNCERTAINTY ESTIMATION: INFER-TRANSFORMATION

Given a black-box model, we explore the behavior of the outputs for different transformed versions
of the input. Specifically, we transform the input with tolerable perturbations, e.g. perturbations
that do not cause significant increase in the loss (see Sec. 3.3 for details), and then use the variance
of the perturbed outputs as estimated uncertainty. Here we focus on transformations that preserve
pertinent characteristics of the input, such as rotations, flips, etc. Formally, given an input image X,
our measured uncertainty is defined as V[Z] = VT [T

′ ◦F ◦T (X)], where T ∈ T is a transformation,
T ′ is T ’s inverse operation, and F is a function representing the black-box neural network. Z =
T ′ ◦ F ◦ T (X) is a sample from the perturbed output distribution. Note that it is possible to sample
Z = F (X), where P happens to be a 360-degree rotation.

3.2 GRAY-BOX UNCERTAINTY ESTIMATION: INFER-NOISE AND INFER-DROPOUT

Given a gray-box model, we consider another class of methods for generating multiple outputs from a
distribution: randomly perturbing latent codes. Compared with the black-box case, this provides finer
granularity on modulating the perturbation strength to ensure tolerability. Specifically we propose
infer-noise, which introduces Gaussian noise at an intermediate layer of the trained model, and
infer-dropout, which uses dropout instead. For infer-noise, the noise will be added to the feature
maps of a certain layer. This noise is randomly sampled multiple times during inference to form
a set of diverse outputs. For infer-dropout, random dropout is performed for multiple forwards to
generate output samples, the variance of which are then used as uncertainty estimation. Formally,
given an input image X, our measured uncertainty is defined as V[Z] = VP [F2 ◦ P ◦ F1(X)], where
P is sampled from a perturbation set P (e.g. Gaussian noise with σ = 1). F1 is the function of
network layers before the perturbation P , F2 represents network layers after P , and F2 ◦ F1(X) is
the gray-box network F (X). Z = F2 ◦P ◦F1(X) is a sample from the perturbed output distribution.
Note that it is possible to sample Z = F (X), where P happens to be a perturbation noise of all zeros.
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3.3 SENSITIVITY AS A SURROGATE MEASURE

The idea at the core of our approach is to impose tolerable perturbations on the original trained
model’s input or intermediate representations (feature maps). Given a perturbation output sample
Z and ground truth Y , the perturbation tolerability is defined using C = |E[Z]− Y | ≤ ε, where ε
denotes the perturbation error threshold; smaller ε indicates better tolerability. Such perturbations
generate a sensitivity map V[Z] as a surrogate measure of the model’s uncertainty. Note that our
method involves no sacrifice in the predictive performance of original model. One can use our method
to produce uncertainty estimation while still use the original model to make predictions.
Lemma 3.1 (Chebyshev’s Inequality). Let Z be any random variable with variance V[Z] < ∞.
Then for a constant margin t ≥ 0, P(|Z − E[Z]| ≥ t) ≤ V[Z]/t2.
Variance and Sensitivity. If Z is the model prediction, the probability P(|Z − E[Z]| ≥ t) translates
to ‘how possible the model prediction Z deviates from E[Z] by a margin larger than t’ and therefore
measures the ‘model sensitivity’. Such sensitivity is bounded by a scaled variance V[Z]/t2 (where t2
is a constant). Therefore, Lemma 3.1 connects our output variance V[Z] to model sensitivity.
Theorem 3.1. Let Y be the ground truth and Z be a random variable representing the model
prediction, where randomness comes from our perturbation. We have that

P(|Z − Y | ≥ t) ≤ V[Z]/(t− C)2, (1)

for any constant margin t ≥ C, where C = |E[Z]− Y | is the prediction error for E[Z].
Variance and Uncertainty. Similar to Lemma 3.1, P(|Z − Y | ≥ t) in Theorem 3.1 translates to
‘how possible the model prediction Z deviates from the ground truth Y by a margin larger than t’ and
therefore measures the ‘uncertainty’. Theorem 3.1 establishes V[Z]/(t− C)2 as an upper bound for
the ‘uncertainty’. In practice, we directly use V[Z] since C is the unknown ground-truth prediction
error. In Sec. 4, we empirically show that V[Z] as a rough approximation for V[Z]/(t − C)2 can
already obtain uncertainty estimation on par with or even better than state-of-the-art baselines.

Why We Need Tolerability. (1) Wider valid region: The upper bound in Eqn. 1 is valid only when
t ≥ C; therefore since C ≤ ε by definition, better tolerability (i.e. lower ε) leads to smaller C,
giving the bound a wider valid region w.r.t. the margin t. (2) Tighter bound: Better tolerability also
guarantees smaller C and V[Z], making V[Z]/(t− C)2 smaller and consequently a tighter bound
given a constant margin t (see Sec. 4.3 and Fig. 5 for details).

4 EXPERIMENTS

In this section, we evaluate our three proposed approaches in two representative real-world large-scale
dense regression tasks, super resolution and depth estimation.

4.1 SINGLE IMAGE SUPER RESOLUTION

The task of Single Image Super Resolution (SR) is to reconstruct a high-resolution (HR) image from
a low-resolution (LR) input. Here we focus on analyzing the state-of-the-art SRGAN model (Ledig
et al., 2017), which can restore photo-realistic high-quality images. SRGAN always outputs determin-
istic restorations since the conditional GAN (Mirza & Osindero, 2014) used in this model involves no
latent variable sampling. However, we can still evaluate its uncertainty with our proposed methods.

We apply our methods to estimate uncertainty in one open-source version of this work (Dong et al.,
2017). The package provides two models trained with different loss functions: 1) SRresnet model
with L2 loss and 2) SRGAN model with a combination of L2 loss and adversarial loss. We evaluate
our methods on both models in the black-box/gray-box settings.

Infer-Transformation. For infer-transformation, we apply rotation of K × 90 degrees (K =
0, 1, 2, 3) as well as horizontal flip to the LR input, feed it into the trained model during the inference,
and apply the inverse transformation to its output. We could generate at most 8 samples using this
strategy, and then calculate the pixel-wise variance.

Infer-Noise. In infer-noise, we take the trained model and add a Gaussian-noise layer, which has
standard deviation σ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and mean 0, at different locations (layers).
We choose 4 different locations for noise injection, including the layers right after the input and some
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Figure 2: Visualization of block-wise and pixel-wise uncertainty (variance) maps (log scale) generated
by infer-transformation, infer-dropout, MC-dropout (Gal & Ghahramani, 2016), using SRGAN (Ledig
et al., 2017) for the super resolution task. L1 loss map (log scale) is also provided for comparison.
Correlation between the L1 loss map and the uncertainty map is also presented.

intermediate layers (see details in Appendix Sec. C). For each experiment, we only add the noise into
one layer with a specific σ value. Sample numbers of 8 and 32 are evaluated.

Infer-Dropout. In infer-dropout, we take the trained model and add a dropout layer with varied
dropout rates. We choose the dropout rate ρ from the set {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and use the
same set of locations as the infer-noise. For each experiment, we only add the layer into one location
with one specific dropout rate. Sample numbers of 8 and 32 are evaluated.

Baselines. We compare our methods with three training-required baselines. The first baseline is
MC-dropout (Gal & Ghahramani, 2016) with a dropout rate ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
For each experiment, we add dropout layer only into one location with one dropout rate during
training. The same dropout rate is used for sampling during inference. We try different sample
numbers of 8 and 32. The second baseline is deep ensemble (Lakshminarayanan et al., 2017). We
follow Lakshminarayanan et al. (2017) to train ensembles as 4 and 8 networks, respectively. We train
these networks with the same number of epochs until they converge. During inference, each of them
generates a single deterministic output, with 4 or 8 samples generated in total. The third baseline is a
sampling-free method log likelihood maximization (LLM) (Zhang et al., 2019; Poggi et al., 2020),
where a network is trained to predict a output distribution with log likelihood maximization.

4.2 MONOCULAR DEPTH ESTIMATION

For depth estimation (Postels et al., 2019; Kendall & Gal, 2017), we use one of the commonly applied
models based on fully convolutional residual network (FCRN) (Laina et al., 2016). We directly use
the trained model released by the original author; this is consistent with the scenarios of black-box
and gray-box cases, since the code for training is not released.

We evaluate the model on NYU Depth Dataset V2. For infer-transformation, we avoid applying
90-degree rotation to input, since the orientation is a strong prior to predict depth which can violate
the tolerability, and only apply horizontal flip to generate 2 samples for uncertainty estimation. For
infer-dropout, we choose two locations (intermediate layers) to add the dropout layer. For infer-noise,
we choose three locations to add the noise layer (two intermediate layers and one layer before the
final FC layer). Then we conduct similar experiments as described in the SR task. For the baseline
MC-dropout, note that the model has a dropout layer before the final fully connected (FC) layer
during training, we directly perform sampling from the existing dropout layer. Sample numbers of 2
and 8 are evaluated for both infer-dropout and infer-noise (see details in Appendix Sec. C).

4.3 EXPERIMENT RESULTS

Evaluation Metrics. Commonly used metrics to evaluate uncertainty estimation include Brier score
(BS), expected calibration error (ECE), and negative log-likelihood (NLL) (Lakshminarayanan et al.,
2017; Guo et al., 2017). However, BS and ECE are for classification tasks only and hence not
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Figure 3: Visualization of pixel-wise uncertainty (variance) maps from infer-transformation, infer-
dropout, MC-dropout (Gal & Ghahramani, 2016) compared with the L1 loss map in depth estimation
task. Correlation between the L1 loss map and the uncertainty map is also presented.

Figure 4: Top: L1 loss of perturbed model for MC-dropout (Gal & Ghahramani, 2016), infer-dropout
and infer-noise. Various dropout rates and noise levels have been evaluated. Location 0 is right after
the input; location 1, 2, 3 are intermediate layers. Bottom: Correlation between error and variance
with different locations and perturbation strength. For infer-dropout, note that location 2 and 3 cause
minimal increase in the L1 loss after perturbation (i.e. high tolerability), leading to high correlation.

applicable in our setting. We therefore use the following metrics for evaluations: (1) NLL, which is
defined in regression tasks by assuming a Gaussian distribution. However, note that NLL depends on
not only the quality of uncertainty estimation but also the prediction accuracy itself. Therefore contrary
to previous belief, we argue that it is not an ideal metric for evaluating uncertainty estimation. (2)
Area Under the Sparsification Error (AUSE), which quantifies how much uncertainty estimation
coincides with the true errors (Ilg et al., 2018). (3) Correlation between the estimated uncertainty
and the error. Here we define four variants of correlation (see details in Appendix Sec. E): pixel-wise,
mean, block-wise, and patch-wise correlations to evaluate performance at the pixel, image, block,
and patch levels, repsectively. The intuition is that in many situations it is more instructive and
meaningful when uncertainty is visualized in each region (e.g. a region with a possible tumor for a
medical imaging application). Note that block-wise correlation depends on specific segmentation
algorithms, while patch-wise correlation defines regions in an algorithm-independent way. Similarly
we also define four evaluation forms for AUSE.

For our training-free methods, these metrics are computed between uncertainty and the error from the
original model (without perturbation), because we will still use the original model for prediction. For
training-required methods such as MC-dropout (i.e. MC-drop2 in Table 1) (Gal & Ghahramani, 2016),
deep ensemble (Lakshminarayanan et al., 2017) and log likelihood maximization (LLM) (Zhang
et al., 2019; Poggi et al., 2020), the mean of output samples are used as prediction. Meanwhile, we
also evaluate another MC-dropout variant, denoted as MC-drop1, where the output of the original
model is used as prediction, to be consistent with training-free methods. The evaluation results using
metrics described above are shown in Table 1 and Table 2. The evaluations between uncertainty and
L2 loss are shown in Appendix Sec. F.

Qualitative Results. Fig. 2 shows some qualitative results for an example image in the SR task.
We can see that the variance maps generated in our task are consistent to the level of ambiguity.
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SRGAN model: Super Resolution
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.006 0.006 0.013 0.013 0.016 0.016 0.008 0.009 0.007 0.007 0.018 0.020 0.035
patch L1 0.021 0.022 0.029 0.030 0.040 0.039 0.029 0.029 0.025 0.025 0.033 0.033 0.044
block L1 0.023 0.023 0.032 0.031 0.044 0.043 0.030 0.029 0.028 0.028 0.033 0.033 0.042
pixel L1 0.128 0.121 0.154 0.141 0.173 0.162 0.141 0.131 0.137 0.129 0.152 0.144 0.137

Corr

mean L1 0.931 0.930 0.884 0.882 0.774 0.780 0.942 0.943 0.938 0.936 0.692 0.694 0.484
patch L1 0.765 0.770 0.722 0.731 0.590 0.598 0.748 0.755 0.734 0.741 0.674 0.677 0.565
block L1 0.757 0.767 0.717 0.730 0.579 0.592 0.735 0.747 0.698 0.710 0.651 0.664 0.588
pixel L1 0.367 0.394 0.323 0.376 0.245 0.288 0.339 0.390 0.330 0.379 0.290 0.326 0.393

NLL 17.910 9.332 4.889 4.804 4.899 4.791 6.804 6.013 6.365 5.541 11.520 5.994 1.320
SRresnet model: Super Resolution

Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble LLM
Samples 4 8 8 32 8 32 8 32 8 32 4 8 0

AUSE

mean L1 0.044 0.044 0.042 0.043 0.067 0.066 0.041 0.047 0.036 0.039 0.073 0.066 0.036
patch L1 0.045 0.044 0.048 0.047 0.055 0.055 0.046 0.045 0.040 0.041 0.066 0.066 0.037
block L1 0.047 0.045 0.049 0.048 0.062 0.061 0.048 0.046 0.041 0.042 0.073 0.070 0.031
pixel L1 0.164 0.153 0.165 0.155 0.190 0.181 0.163 0.152 0.150 0.144 0.194 0.185 0.133

Corr

mean L1 0.340 0.359 0.401 0.404 0.056 0.055 0.408 0.379 0.527 0.512 0.016 0.048 0.622
patch L1 0.501 0.520 0.508 0.518 0.371 0.385 0.535 0.545 0.547 0.542 0.323 0.361 0.648
block L1 0.462 0.486 0.498 0.509 0.358 0.370 0.505 0.521 0.531 0.529 0.274 0.286 0.673
pixel L1 0.237 0.269 0.258 0.303 0.172 0.216 0.264 0.309 0.288 0.322 0.184 0.206 0.393

NLL 107.243 43.071 5.155 4.955 4.941 4.788 8.430 7.221 8.018 6.688 13.559 7.906 1.422

Table 1: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and un-
certainty, and NLL on SR benchmark dataset Set 14. Our infer-transformation, infer-dropout and
infer-noise are compared with MC-dropout (Gal & Ghahramani, 2016), deep ensemble (Lakshmi-
narayanan et al., 2017) and log likelihood maximization (LLM) (Zhang et al., 2019). MC-drop1 uses
the output of the original model as prediction while MC-drop2 uses the mean of output samples from
the re-trained model (with added dropout) as prediction. Models evaluated: SRGAN and SRresnet.

FCRN model: Depth Estimation
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean
Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2

Samples 2 2 8 2 8 2 8 2 8

AUSE

mean L1 0.051 0.044 0.041 0.046 0.041 0.062 0.062 0.060 0.062
patch L1 0.106 0.109 0.092 0.108 0.091 0.127 0.126 0.122 0.125
block L1 0.056 0.057 0.047 0.053 0.045 0.065 0.065 0.063 0.065
pixel L1 0.165 0.168 0.135 0.167 0.134 0.208 0.193 0.207 0.193

Corr

mean L1 0.596 0.630 0.677 0.651 0.708 0.473 0.471 0.469 0.469
patch L1 0.324 0.306 0.409 0.312 0.411 0.258 0.268 0.266 0.269
block L1 0.354 0.354 0.449 0.364 0.447 0.215 0.220 0.220 0.221
pixel L1 0.208 0.182 0.284 0.188 0.288 0.075 0.134 0.076 0.134

NLL 8.634 8.443 4.889 3.526 1.006 12.365 9.842 12.503 9.866

Table 2: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L1 loss and uncer-
tainty, and NLL on NYU Depth Dataset V2. Our infer-transformation, infer-dropout and infer-noise
are compared with MC-dropout (Gal & Ghahramani, 2016). MC-drop1 uses the output of the original
model as prediction while MC-drop2 uses the mean of output samples from the re-trained model
(with added dropout) as prediction. Models evaluated: FCRN model.

Specifically, in our methods, high variance occurs in areas with high randomness and high frequency.
For the depth estimation task shown in Fig. 3, high variance usually occurs in the area with high
spatial resolution and large depth. As expected, these high-variance areas usually correspond to large
prediction error.

The Role of Tolerable Perturbations. Tolerable perturbations play a crucial role in obtaining effec-
tive uncertainty estimation. Better tolerability means smaller decrease in accuracy after perturbation
(i.e. smaller ε in Sec. 3.3). Fig. 4 shows the correlation for different amount of perturbations (noise
or dropout) in different locations, and the corresponding predictive performance C = |E[Z] − Y |
(evaluated as L1 loss) after perturbations. As we can see, the optimal cases to generate uncertainty
maps with high correlation require that C should remain small after perturbation (high tolerability).
Interestingly, different methods have different ways of achieving high tolerability: (1) For MC-
dropout, involving dropout during training increases the robustness of model against perturbations,
keeping the loss relatively small after adding dropout layer in most locations during inference; (2) for
infer-dropout, adding dropout layer in intermediate locations (i.e. location 2 and location 3) where
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Figure 5: Visualization of probability P(|Z−Y | ≥ t) and the upper bound V[Z]/(t−C)2 (only valid
when t ≥ C). The increasing area between curves (looser bound) is caused by the larger perturbation
strength (dropout rate), which violates the condition of tolerability (i.e. small C).

Method MC-drop1 MC-drop2 Ensemble LLM Infer-trans Infer-drop Infer-noise
Baselines Proposed PB Proposed PB Proposed PB

pixel L1
AUSE 0.131 0.129 0.144 0.137 0.121 0.097 0.141 0.085 0.162 0.106
Corr 0.390 0.379 0.326 0.393 0.394 0.424 0.376 0.590 0.288 0.583

Table 3: Comparison of our methods and baselines as well as performance bound (PB). We mark the
best performance bound in bold face and the best method by underlining. Model evaluated: SRGAN.

the information is the most redundant (He et al., 2014), can effectively alleviate disturbance; (3) for
infer-noise, adding noise with small standard deviation effectively limits the perturbation level. More
interestingly, we further find that for both MC-dropout and infer-dropout, adding perturbation in
intermediate layers are usually the optimal choices for uncertainty estimation. Applying infer-dropout
in these intermediate layers, we could achieve comparable or even better correlation compared to
training-required baselines. For infer-noise, locations do not have similar effect; one can therefore
further tune the noise strength σ to achieve higher correlation. The conclusion above is also consistent
with the evaluation of other models in Appendix Sec. D.

Comparable Performance with Training-required Baselines. We report correlation, AUSE and
NLL using the optimal hyper-parameters in different methods in Table 1 and Table 2. As depicted in
both tasks, based on these metrics, our methods infer-transformation, infer-dropout and infer-noise are
able to provide comparable or even better results than the training-required state-of-the-art baselines.
Even a small number of samples are able to guarantee sufficient quality. For the super-resolution task,
we find infer-transformation achieves the highest performance and even outperforms training-required
baselines. Note that SRGAN has a higher correlation than the SRresnet model. For depth estimation,
we find that using infer-noise in the intermediate layers outperforms other methods. For baseline
MC-dropout, we perturb right before the last convolutional layer – the only dropout layer during the
original model training, and therefore produce a highly localized variance map with poor correlation,
shown in Fig. 3. If we are allowed to perform MC-dropout in intermediate layers and re-train the
model, a correlation value comparable to that of infer-dropout should be expected.

Theorem 3.1 and Performance Bound. Theorem 3.1 establishes V[Z]/(t−C)2 as an upper bound
for the ‘uncertainty’ P(|Z − Y | ≥ t). Correspondingly, Fig. 5 shows V[Z]/(t− C)2 (dashed lines)
and P(|Z − Y | ≥ t) (solid lines) versus t for three representative pixels, empirically verifying the
validity of V[Z]/(t−C)2 as the uncertainty’s upper bound. Note that as the perturbation strength (i.e.
dropout rate) gets larger, both V[Z] and C increase and consequently loosen the bound (as mentioned
in Sec. 3.3); reflected in Fig. 5, we can see the area between the probability curve and the bound curve
of each pixel also gets larger from Fig. 5 (left) to Fig. 5 (right), which leads to the worse performance
(lower average pixel-wise correlation). This highlights the need for tolerable perturbations (i.e. low ε
and C in Sec. 3.3). Table 3 shows correlation and AUSE for different methods compared to the oracle
(performance bound) V[Z]/(t− C)2. Our methods, especially infer-transformation, are reasonably
close to the oracle and compare favorably with baselines. More details are in Appendix Sec. G.

5 CONCLUSION

In this work, we perform a systematic exploration into training-free uncertainty estimation for
dense regression, an unrecognized yet important problem, and provide a theoretical construction
justifying such estimations. We propose three simple, scalable, and effective methods, i.e. infer-
transformation, infer-noise, and infer-dropout, for uncertainty estimation in both black-box and
gray-box cases. Surprisingly, our training-free methods achieve comparable or even better results
compared to training-required state-of-the-art methods. Furthermore, we demonstrate adding tolerable
perturbations is the key to generating high quality uncertainty maps for all methods we studied.
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Figure 6: The first application using uncertainty map estimated in our methods to improve the quality
of SR results. We compare SR results that use L2 loss re-weighted by variance map (middle) and
that do not (right). HR (left) represents high resolution image. Results evaluated in Set 14.

Method SSIM PSNR L1 Method SSIM PSNR L1 Method SSIM PSNR L1

original 0.772 23.841 11.623 random 0.773 23.616 12.344 high uncertainty 0.790 23.942 11.497

Table 4: The second application of active learning on our generated uncertainty maps to improve the
performance with more efficiency. Here we select samples with high uncertainty yields better results
than select randomly. Results evaluated in Set 14 on SSIM, PSNR and L1 loss.

A PROOF OF THEOREM 3.1.

Proof. Replacing t in Lemma 3.1 with (t − C) where t ≥ C, we have P(|Z − E[Z]| + C ≥ t) ≤
V[Z]/(t − C)2, meaning that P(|Z − E[Z]| + C < t) > V[Z]/(t − C)2. Notice the triangle
inequality:

|Z − Y | ≤ |Z − E[Z]|+ |E[Z]− Y | = |Z − E[Z]|+ C.

We therefore have P(|Z − Y | < t) > V[Z]/(t − C)2, which is equivalent to P(|Z − Y | ≥ t) ≤
V[Z]/(t− C)2, completing the proof.

B APPLICATIONS BENEFIT FROM UNCERTAINTY ESTIMATION

The first application is to improve the quality of SR results. We propose a novel and efficient
method which takes the pixel-wise uncertainty map as a weight term for the regression loss, while
keeps the original adversarial loss, which could provide a more photo-realistic SR output with finer
structures and sharper edges, shown in Fig. 6. Another application is active learning (Gal et al., 2017),
which aims to use uncertainty to guide annotations, then only a small subset of data are required to
improve training. We find active learning based on our generated uncertainty maps can improve the
performance with more efficiency, shown in Table 4.

C DETAILS ON NETWORK NOISE/DROPOUT INJECTION LOCATIONS

To perform uncertainty estimation using infer-noise and infer-dropout and baseline MC-dropout
on both SRGAN model and SRresnet model, we choose 4 different locations for noise injection,
including the layers right after the input, as well as some intermediate layers, as shown in Fig. 7.

To perform uncertainty estimation using infer-noise and infer-dropout on FCRN model, we choose 3
different locations for noise injection, including the layers right before the output, as well as some
intermediate layers, as shown in Fig. 8. For baseline MC-dropout, we choose location 3 where the
dropout layer added during training for the original model.

D TOLERABILITY ON SRRESNET MODEL AND FCRN MODEL

Fig. 9 shows the perturbation on the SRresnet model, and Fig. 10 shows the perturbation on the
FCRN model for depth estimation. The correlation for different amount of perturbations (noise or
dropout) in different locations, and the corresponding predictive performance (evaluated as L1 loss)
after perturbations. For SRresnet mode, We find that for both MC-dropout and infer-dropout, adding
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Figure 7: Different locations for infer-noise and infer-dropout in SRGAN and SRresnet for super
resolution. For each experiment, the noise or dropout is injected at a single location with one
perturbation level.

Figure 8: Different locations for noise or dropout injection in the FCRN model for depth estimation.

perturbation in intermediate layers are usually the optimal choices for uncertainty estimation. For
infer-noise, locations do not have similar effect; one can therefore further tune the noise strength σ to
achieve higher correlation. For FCRN model, using infer-dropout or infer-noise, intermediate layers
are also usually the optimal choices for uncertainty estimation. The results are consistent with the
results of SRGAN model.

E DETAILS ON EVALUATION METRICS

In this section, we provide the details on our proposed correlation-based evaluation metrics. Assuming
we have N outputs given the same input x from our infer-transformation, infer-drop and infer-noise,
each output is represented by Yw. Given the output image with the size of H ×W , the error we
define for regression task is pixel-wise L1 loss and L2 loss, represented by L1,ij and L2,ij , where i,
j is the corresponding coordinates of the pixel Pij in the output image. The uncertainty (variance)

estimated in these methods is also a pixel-wise value, represented by Vij =
∑N

w=1(Yw,ij−Y ij)
2

N . The
pixel-wise L1 correlation is defined as corr({Vij}, {L1,ij}). The second metric is mean correlation,

the mean L1 error L1,z =
∑W

i=1

∑H
j=1 L1,ij

W×H is defined as the average error of a single image z,

correspondingly, the mean variance is defined as V z =
∑W

i=1

∑H
j=1 Vij

W×H , the mean L1 correlation is
defined as corr({V z}, {L1,z}). This metric has been used in (Zhang et al., 2019). The third metric
for evaluation is the block-wise correlation – a new metric we propose in this work. To compute
block-wise correlation, we need to firstly apply a local segmentation algorithm to the output of the
trained model to cluster pixels with similar low-level context. Here we use the local-center-of-mass
approach (Aganj et al., 2018) to perform segmentation. We denote each cluster as Ci. The variance
of KCi

pixels inside each cluster (block) Ci is then averaged and replaced with the mean value

Ṽi =

∑KCi
Pij∈Ci

Vij

KCi
. The block-wise L1 loss L̃1,i can be calculated similarly. After that, we calculate

the pixel-wise correlation of each pixels with the updated value as the L1 block-wise correlation
corr({Ṽi}, {L̃1,i}). For the fourth metric, patch-wise correlation, where the segmentation clusters in
block-wise correlation are replaced by patches. In our analysis, each image is divided into 10× 10
patches. And then the patch-wise correlation is calculated with following the same rule as block-wise
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Figure 9: Evaluation on SRresnet model for super resolution. Top: The L1 loss of perturbed model
for infer-dropout and infer-noise and baseline MC-dropout (Gal & Ghahramani, 2016). Various
dropout rates and noise levels have been evaluated. Location 0 is right after the input; location 1, 2, 3
are intermediate layers. Bottom: Correlation between error and variance with different locations and
perturbation strength. Note that location 2 cause minimal increase in the L1 loss after perturbation
(i.e., high tolerability), leading to high correlation for MC-dropout and infer-dropout.

Figure 10: Evaluation on FCRN model for depth estimation. Top: The L1 loss of perturbed model for
infer-dropout and infer-noise and baseline MC-dropout (Gal & Ghahramani, 2016). Various dropout
rates and noise levels have been evaluated. Location 1, 2 are intermediate layers, location 3 is right
before the last convolutional layer. Bottom: Correlation between error and variance with different
locations and perturbation strength. Note that location 1 and 2 cause minimal increase in the L1 loss
after perturbation (i.e., high tolerability), leading to high correlation for infer-dropout.

correlation. Besides correlation, we also define four similar metrics in terms of AUSE. More details
related with the definition of AUSE are in (Ilg et al., 2018).

Meanwhile, as illustrated in Fig. 11, we find that sparsification error has a strong association with
correlation, when the oracle sparsifications of different methods are the same. As a result, when AUSE
of infer-dropout and MC-dropout (defined as MC-drop1 here) is nearly identical, so is correlation.

F PERFORMANCE EVALUATION WITH L2 LOSS

We report AUSE, correlation with L2 loss using the optimal hyper-parameters in different methods
for SRGAN model, SRresnet model in Table 5, and FCRN model in Table 6. Our methods infer-
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Figure 11: Left: The sparsification error plot using the mean of uncertainty and L1 loss of each
image sample for infer-dropout and MC-dropout, the values of AUSE are also presented. Right: The
scatter plot using the mean of uncertainty and L1 loss of each image sample, the values of mean L1

correlation are also presented.

SRGAN model: trained with adversarial loss and L2 loss
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble
Samples 4 8 8 32 8 32 8 32 8 32 4 8

AUSE

mean L2 0.011 0.011 0.011 0.011 0.009 0.009 0.012 0.012 0.009 0.009 0.030 0.034
patch L2 0.025 0.026 0.032 0.035 0.037 0.036 0.035 0.035 0.035 0.035 0.049 0.050
block L2 0.030 0.030 0.038 0.038 0.042 0.041 0.037 0.036 0.043 0.042 0.053 0.054
pixel L2 0.147 0.140 0.176 0.163 0.192 0.182 0.162 0.151 0.178 0.159 0.197 0.183

Corr

mean L2 0.885 0.885 0.871 0.862 0.844 0.846 0.896 0.896 0.947 0.943 0.660 0.669
patch L2 0.684 0.691 0.652 0.662 0.625 0.633 0.686 0.692 0.734 0.740 0.653 0.647
block L2 0.673 0.684 0.650 0.661 0.601 0.615 0.668 0.678 0.720 0.730 0.644 0.649
pixel L2 0.268 0.296 0.268 0.311 0.219 0.257 0.278 0.320 0.305 0.351 0.249 0.274

SRresnet model: trained with L2 loss
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean

Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2 Ensemble
Samples 4 8 8 32 8 32 8 32 8 32 4 8

AUSE

mean L2 0.051 0.051 0.050 0.050 0.056 0.056 0.048 0.052 0.061 0.062 0.133 0.128
patch L2 0.048 0.047 0.053 0.052 0.055 0.055 0.050 0.049 0.063 0.064 0.115 0.117
block L2 0.053 0.051 0.057 0.056 0.062 0.062 0.054 0.052 0.069 0.069 0.131 0.128
pixel L2 0.184 0.174 0.188 0.179 0.209 0.202 0.185 0.174 0.214 0.202 0.285 0.275

Corr

mean L2 0.238 0.251 0.266 0.270 0.266 0.266 0.292 0.261 0.525 0.517 0.061 -0.032
patch L2 0.429 0.447 0.419 0.429 0.357 0.369 0.461 0.470 0.521 0.520 0.299 0.333
block L2 0.373 0.395 0.407 0.412 0.338 0.348 0.417 0.432 0.529 0.525 0.263 0.266
pixel L2 0.185 0.210 0.200 0.234 0.144 0.180 0.206 0.241 0.238 0.267 0.157 0.174

Table 5: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L2 loss and uncer-
tainty on SR benchmark dataset Set 14. Our infer-transformation, infer-dropout and infer-noise are
compared with MC-dropout (Gal & Ghahramani, 2016) and deep ensemble (Lakshminarayanan et al.,
2017). MC-drop1 uses the output of the original model as prediction while MC-drop2 uses the mean
of output samples from the re-trained model (with added dropout) as prediction. Models evaluated:
SRGAN trained with L2 loss and adversarial loss and SRresnet trained with L2 loss.

transformation, infer-dropout and infer-noise are able to provide results that are comparable to or
even better than those from training-required state-of-the-art methods such as MC-dropout, and they
consistently outperform deep ensemble.

G THEOREM 3.1 AND PERFORMANCE BOUND

Table 7 shows correlation and AUSE with four variants (pixel-wise, mean, block-wise, patch-wise)
for different methods compared to the oracle (performance bound) V[Z]/(t − C)2. Our methods,
especially infer-transformation, are reasonably close to the oracle and compare favorably with
baselines. The oracle (performance bound) is calculated with a empirically chosen constant margin
t = 5σ, where σ2 is average of V[Z] for all the pixels across the entire image.
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FCRN model: Depth Estimation
Condition Training Free (Ours) Training Required
Prediction Original Output Outputs Mean
Method Infer-trans Infer-drop Infer-noise MC-drop1 MC-drop2

Samples 2 2 8 2 8 2 8 2 8

AUSE

mean L2 0.083 0.070 0.064 0.078 0.067 0.110 0.110 0.108 0.110
patch L2 0.156 0.160 0.132 0.160 0.131 0.205 0.204 0.199 0.203
block L2 0.085 0.085 0.067 0.080 0.067 0.113 0.113 0.111 0.113
pixel L2 0.237 0.243 0.184 0.244 0.187 0.325 0.308 0.324 0.307

Corr

mean L2 0.600 0.590 0.638 0.631 0.675 0.407 0.404 0.401 0.403
patch L2 0.346 0.328 0.438 0.325 0.431 0.225 0.233 0.233 0.234
block L2 0.375 0.370 0.471 0.378 0.461 0.187 0.190 0.193 0.191
pixel L2 0.205 0.175 0.272 0.178 0.271 0.054 0.096 0.056 0.096

Table 6: Mean/patch-wise/block-wise/pixel-wise AUSE and correlation between L2 loss and un-
certainty on NYU Depth Dataset V2. Our infer-transformation, infer-dropout and infer-noise are
compared with MC-dropout (Gal & Ghahramani, 2016). MC-drop1 uses the output of the original
model as prediction while MC-drop2 uses the mean of output samples from the re-trained model
(with added dropout) as prediction. Models evaluated: FCRN model for depth estimation.

Method MC-drop1 MC-drop2 Ensemble LLM Infer-trans Infer-drop Infer-noise
Baselines Proposed PB Proposed PB Proposed PB

AUSE

mean L1 0.009 0.007 0.020 0.035 0.006 0.004 0.013 0.002 0.016 0.002
patch L1 0.029 0.025 0.033 0.044 0.022 0.021 0.031 0.024 0.043 0.027
block L1 0.029 0.028 0.033 0.042 0.023 0.020 0.030 0.024 0.039 0.022
pixel L1 0.131 0.129 0.144 0.137 0.121 0.097 0.141 0.085 0.162 0.106

Corr

mean L1 0.943 0.936 0.694 0.484 0.930 0.938 0.882 0.956 0.780 0.966
patch L1 0.755 0.741 0.677 0.565 0.770 0.766 0.731 0.794 0.598 0.746
block L1 0.747 0.710 0.664 0.588 0.767 0.765 0.730 0.789 0.592 0.745
pixel L1 0.390 0.379 0.326 0.393 0.394 0.424 0.376 0.590 0.288 0.583

Table 7: Comparison of our methods and baselines as well as performance bound (PB). We mark the
best performance bound in bold face and the best method by underlining. Model evaluated: SRGAN.

H EVALUATIONS ON CLASSIFICATION TASKS

We compare the simple training-free method using entropy and the training-required method MC-
dropout on classification tasks. For classification tasks, the most straightforward and commonly used
method is to calculate the entropy of output probability as uncertainty, which already qualifies as
a training-free method. We then compare it with a sampling-based and training-required method –
MC-dropout, tuned on different locations and using 8 samples. Here we conduct three experiments:
the first one is multi-class segmentation using Densenet (Huang et al., 2017b) on CamVid dataset, the
second one is binary segmentation using UNET (Ronneberger et al., 2015) on a biomedical public
benchmark dataset from the SNEMI3D challenge, and the third one is classification on CIFAR100
using ResNet (He et al., 2016). We calculate the correlation between entropy of softmax output and
the cross-entropy loss. We find that using entropy outperforms MC-dropout based on the correlation
metric, as shown in Table 8.

Densenet UNET Resnet
Entropy MC-drop Entropy MC-drop Entropy MC-drop

Mean Correlation 0.928 0.718 0.964 0.881 0.669 0.537
Pixel-wise Correlation 0.502 0.209 0.789 0.317 – –

Table 8: Correlation of uncertainty and cross-entropy loss, comparing using entropy with the baseline
MC-dropout, models evaluated are Densenet for the segmentation on CamVid dataset, UNET for
segmentation on SNEMI3D dataset and Resnet for classification on CIFAR100 dataset.

I VISUALIZATION OF UNCERTAINTY MAPS

The uncertainty maps generated using infer-transformation, infer-dropout, infer-noise compared
with MC-dropout, and the corresponding error maps for images are shown in Fig. 12 for the super-
resolution task and in Fig. 13 for the depth estimation task.
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Figure 12: Visualization of uncertainty maps (log scale) and error map (log scale) from infer-
transformation, infer-dropout, infer-noise compared with the baseline MC-dropout, evaluated on the
SRGAN model on Set14 dataset for super-resolution task.

One interesting observation is that MC-dropout tends to capture local variance and ignore high-level
semantics, in part because the dropout layer is always at the end of the network. As a result, it is
difficult for MC-dropout to produce uncertainty estimates in detail-rich regions. For example, the
input image in the bottom row of Fig. 13 contains a lot of details with chairs and desks. Unfortunately
MC-dropout tends to ignore these details and only produce high variance in the upper half of the
image (region with large depth), leading to poor correlation.
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Figure 13: Visualization of uncertainty maps and the error map from infer-transformation, infer-
dropout, infer-noise compared with the baseline MC-dropout, evaluated on the FCRN model on NYU
depth dataset V2 for the depth estimation task.
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