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ABSTRACT

Sampling-based motion planning methods, while effective in high-dimensional
spaces, often suffer from inefficiencies due to irregular sampling distributions,
leading to suboptimal exploration of the configuration space. In this paper, we
propose an approach that enhances the efficiency of these methods by utilizing
low-discrepancy distributions generated through Message-Passing Monte Carlo
(MPMC). MPMC leverages Graph Neural Networks (GNNs) to generate point
sets that uniformly cover the space, with uniformity assessed using the the Lp-
discrepancy measure, which quantifies the irregularity of sample distributions.
By improving the uniformity of the point sets, our approach significantly reduces
computational overhead and the number of samples required for solving motion
planning problems. Experimental results demonstrate that our method outper-
forms traditional sampling techniques in terms of planning efficiency.

1 INTRODUCTION

Sampling-based motion planning is a key method for robot navigation in complex environments.
From Probabilistic Roadmaps (PRMs) Kavraki et al. (1996) to Rapidly-exploring Random Trees
(RRTs) LaValle & James J. Kuffner (2001), the focus of much of the research in this area has
been on developing more efficient and optimal motion planning algorithms Janson et al. (2015);
Karaman & Frazzoli (2011) that can handle high-dimensional spaces Orthey & Toussaint (2021;
2019), various types of constraints Karaman & Frazzoli (2013); Yershova & LaValle (2009), and
dynamic environments Phillips & Likhachev (2011); Otte & Frazzoli (2016).

Instead of refining motion planning algorithms, our work targets the fundamental building block un-
derlying these approaches—the core sampling process itself. We introduce a novel sampling strategy
based on Message-Passing Monte Carlo (MPMC) Rusch et al. (2024), a graph neural network ar-
chitecture trained to generate low discrepancy point sets on unit hypercubes of arbitrary dimension.
We expand the generic MPMC algorithm with the introduction of a novel training objective tailored
to high-dimensional spaces, ensuring that generated points are optimally distributed and scalable.

This leads to a potent unbiased state sampling technique, that can be seamlessly integrated into any
sampling-based planner, and that requires neither conditioning on the workspace description, nor
a steer function, nor past examples, nor start and goal information. This approach provides strong
theoretical guarantees and it also outperforms traditional techniques across various benchmarks, in
environments of varying complexity and dimensionality.

Our contributions are stated as follows:

• We introduce the first application of MPMC neural network point set generation in motion
planning, a significant novelty for unbiased sampling techniques.

• We propose a novel training objective tailored to high-dimensional configuration spaces,
ensuring the generated points are well-suited for complex planning problems.

• We support our approach with rigorous theoretical justification, linking the training objec-
tive of MPMC point sets to a tighter upper bound on the distance from the optimal path.
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• We establish superior planning efficiency against the current gold standard sampling ap-
proach in motion planning on a variety of PRM benchmarks, including challenging high-
dimensional environments.

• We demonstrate the effectiveness of our sampling technique on a real-world UR5 robot
arm, showing its potential for practical deployment in robotics.

Our MPMC-based sampling strategy offers a powerful and versatile alternative to traditional sam-
pling methods. By targeting the sampling process directly, we open up new possibilities for improv-
ing the efficiency of a wide array of motion planning algorithms in both simulated and real-world
robotic systems.

2 RELATED WORK

2.1 LEARNING FOR SAMPLING-BASED PLANNERS

The incorporation of machine learning into motion planning has opened up new ways to accelerate
pathfinding by learning from past experiences. One common strategy involves storing and reusing
previously computed paths or solutions. For example, methods such as path libraries Berenson et al.
(2012), sparse roadmaps Coleman et al. (2014), and local obstacle roadmaps Lien (2010) allow a
robot to retrieve and adapt previously successful solutions to new, but similar, planning problems.
These approaches reduce the computation time by narrowing the search space using knowledge from
past instances.

Another line of research enhances the sampling process by learning distributions that guide planners
toward more promising regions of the configuration space. Some methods employ problem-invariant
distributions Lehner & Albu-Schäffer (2018), while others adapt based on the workspace environ-
ment Chamzas et al. (2021). Deep learning further extends these concepts by learning from prior
planning tasks, enabling distributions that condition on both the workspace and specific start-goal
configurations of new problems Chamzas et al. (2022). These learned distributions effectively bias
the sampling process, improving convergence rates and solution quality in new planning scenarios.

In contrast, our method departs from these past learning-based approaches by introducing a deter-
ministic sampling strategy obtained via neural network training that does not depend on conditioning
or prior knowledge.

2.2 LOW-DISCREPANCY CONSTRUCTIONS

Over the past century, numerous constructions of low-discrepancy point sets and sequences have
been proposed. Most of the early constructions are deeply rooted in number theory and abstract alge-
bra. A widely used building block of previous low-discrepancy constructions is the one-dimensional
van der Corput sequence van der Corput (1935) in base b, which is generalized to a higher dimen-
sional setting via the Halton sequence Halton (1960a). Each of the d coordinates in a Halton se-
quence corresponds to a distinct van der Corput sequence in base b, with the bases selected to be
co-prime. Faure sequences, as introduced in Faure (1982), offer a similar construction to Halton
sequences but incorporate permutations of the digits in base b.

Another broad class of low-discrepancy constructions are today known as digital (t, s)-sequences,
first introduced in Niederreiter (1987). These constructions include the widely known Sobol se-
quence Sobol’ (1967a) which is constructed using tools from linear algebra involving primitive
polynomials and well-chosen generating matrices defined over finite fields.

A further distinct approach, rooted in a different branch of number theory, emerged with Korobov’s
introduction of the good-lattice method Korobov (1963). This technique utilizes modular arithmetic
and prime number properties to construct a structured, grid-like set of integration nodes. Since its
introduction, lattice rules have undergone significant extensions and refinements. Comprehensive
discussions and valuable reviews of these developments are available in Haber (1970); Sloan (1985);
Nuyens (2014); Dick et al. (2022).

Several approaches have recently emerged targeting the construction of points for fixed dimension
and number of points. In Doerr & De Rainville (2013), new low-discrepancy point sets were pro-
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posed by optimizing permutations applied to the Halton sequence. Another approach, known as
subset selection, was introduced to select k < N points from an N -element set that minimize the
discrepancy. An exact algorithm for this selection was presented in Clément et al. (2022), while
a swap-based heuristic approach was employed in Clément et al. (2024). Additionally, Clément
et al. (2023) proposed a non-linear programming method to generate point sets with optimal star-
discrepancy for fixed dimension and number of points. However, this approach faces significant
computational challenges, limiting its practical application to finding optimal sets for only up to 21
points in two dimensions and 8 points in three dimensions. Message-Passing Monte Carlo (MPMC)
falls into this class of constructions by optimizing the discrepancy of point sets that are fixed for a
chosen dimension and number of points. However, MPMC significantly differs from all previous
methods by its explicit use of machine learning. Moreover, it has been shown in Rusch et al. (2024)
that MPMC generates point sets with significantly better distributional properties compared to any
previous method, reaching optimal or near-optimal discrepancy.

3 METHODS

Message-Passing Monte Carlo (MPMC) is a machine learning approach designed to generate low-
discrepancy point sets, which are the key for efficiently covering space in a uniform manner. MPMC
leverages Graph Neural Networks (GNNs) and tools from Geometric Deep Learning to generate
these point sets. The method focuses on the geometric properties needed to ensure uniformity and
it is highly versatile for generating points across different dimensions. In this section we describe
MPMC and its extensions for the motion planning application domain.

3.1 MESSAGE-PASSING MONTE CARLO SAMPLING

Message-Passing Monte Carlo (MPMC) Rusch et al. (2024) leverages Graph Neural Networks
(GNNs) to generate point sets that cover the space in a uniform manner. This uniformity can be
assessed through measures of irregularity termed discrepancy. While there exist a plethora of dif-
ferent uniformity measures, we focus on the Lp-discrepancy here. That is, given a set of points
{Xi}Ni=1 in the unit hypercube [0, 1]d and p ≥ 1, the Lp-discrepancy is defined as,

Lp
p({Xi}Ni=1) :=

∫
[0,1]d

∣∣∣∣#({Xi}Ni=1 ∩ [0,x))

N
− µ([0,x))

∣∣∣∣p dx, (1)

where #({Xi}Ni=1 ∩ [0,x)) counts how many points of {Xi}Ni=1 fall inside the box [0,x) =∏d
i=1[0, xi) for x = (x1, . . . , xd) ∈ [0, 1]d, and µ(·) denotes the usual Lebesgue measure. A differ-

entiable closed-form solution to the high-dimensional integral in (1) for the case of p = 2, known as
Warnock’s formula Warnock (1972), can be computed in O(N2d). Consequently, MPMC utilizes
the L2-discrepancy as the objective function minimized during training to generate point sets with
low discrepancy. The full MPMC model transforming random input points into low-discrepancy
point sets via deep GNNs is depicted in Fig. 1.

3.1.1 FAST MPMC TRAINING IN HIGHER DIMENSIONS

As described in Rusch et al. (2024), the L2-discrepancy fails to distinguish random from highly uni-
form points in high dimensions for moderate amount of points. Therefore, it was suggested in Rusch
et al. (2024) to minimize the Hickernell L2-discrepancy DH,2 Hickernell (1998) in this case, that
sums over all L2-discrepancies of k-dimensional projections, with 1 ≤ k ≤ d. A straightforward
implementation of DH,2 has a computational complexity of O((2d − 1)N2d), which would involve
evaluating the L2-discrepancy for over a billion projections for d = 32, a relatively small number
of points. To mitigate this issue, the authors in Rusch et al. (2024) proposed limiting the summa-
tion to a smaller, randomly selected subset of projections. In contrast, in this work we leverage the
closed-form solution of the Hickernell L2-discrepancy from Joe (1997) that can be computed again
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Figure 1: Schematic of the MPMC model reproduced from Rusch et al. (2024). First, random
input points are encoded to a high dimensional representation. Second, the encoded representations
are passed through a deep GNN, where the underlying computational graph is constructed based
on nearest neighbors using the positions of the initial input points. Finally, the node-wise output
representations of the final GNN layer are decoded and clamped back into the unit hypercube.

in O(N2d) instead of O((2d − 1)N2d). More concretely,

D2
H,2({Xi}Ni=1) =

∑
∅̸=s⊆{1,...,d}

L2
2({X(s)

i }Ni=1)

=

(
4

3

)d

− 2

N

N∑
i=1

d∏
k=1

(
3

2
−

X2
i,k

2

)
+

1

N2

N∑
i=1

N∑
j=1

d∏
k=1

[2−max(Xi,k,Xj,k)],

where Xi,k is the k-th entry of Xi, and {X(s)
i }Ni=1 is the projection of {Xi}Ni=1 onto [0, 1]|s|. This

enables very fast training for generating MPMC points in higher dimensions that minimize the dis-
crepancy over all projections.

3.2 MOTION PLANNING VIA PROBABILISTIC ROAD MAPS

Algorithm 1 ps-PRM Algorithm
1: S ← Sample(N)
2: Sv ← PruneInvalid(S)
3: V ← {Xstart,Xgoal} ∪ Sv

4: E ← ∅
5: for all v ∈ V do
6: Pnear ← Near(V \ {v}, v, rN )
7: for all p ∈ Pnear do
8: if CollisionFree(v, p) then
9: E ← E ∪ {(v, p)} ∪ {(p, v)}

10: end if
11: end for
12: end for
13: return ShortestPath(Xstart,Xgoal, V, E)

In this work, the focus is on the efficiency of
sampling-based motion planning in the sense of
task success with respect to number of points
sampled. Furthermore, for convenience in deal-
ing with pre-trained sets of points of fixed
number, we use a particular instantiation of
the Probabilistic Roadmap (PRM) algorithm,
which we refer to as ps-PRM (for pre-sampled
PRM). This specific version of the PRM algo-
rithm is described in Algorithm 1.

The algorithm begins by sampling a fixed num-
ber N of points from the entire space to form
the set S. Next, we prune out milestones from
the initial set S that do not fall in free space,
resulting in a refined set of valid samples Sv ,
which is combined with the start and goal nodes
{Xstart,Xgoal} to obtain the PRM graph vertex set V . For each node v in V , the algorithm identifies
nearby nodes within a radius rN , with the set of such points denoted Pnear. For each neighbor p in
Pnear, the algorithm checks for collision-free paths between v and p. If the path is free of collisions,
a bidirectional edge is added between v and p to the edge set E. Finally, the algorithm attempts
to find a shortest path from Xstart to Xgoal and returns the path if one exists; otherwise, it indicates
failure.

3.3 THEORETICAL GUARANTEE

Next, we outline a theoretical justification of minimizing discrepancy as a means to improving effi-
ciency of sampling-based motion planning. To this end, we introduce another uniformity measure

4
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Figure 2: Hickernell L2-discrepancy in d = 10 for Uniform, Halton and MPMC sampling.

known as dispersion, which is commonly used in assessing the efficiency of sampling-based motion
planning. Given a point set {Xs

i}Ni=1 in [0, 1]d and p ≥ 1, the lp-dispersion is then defined as,

Dp({Xi}Ni=1) = sup
s∈[0,1]d

min
1≤i≤N

∥s−Xi∥p.

Dispersion is closely related to discrepancy through the following inequality established in Nieder-
reiter (1992),

D∞({Xs
i}Ni=1) ≤ L∞({Xs

i}Ni=1)
1/d,

with the L∞-discrepancy. Based on this and following Janson et al. (2018), one can provide a
deterministic sampling guarantee. Namely, using the PRM planning algorithm, assuming some
mild assumptions are satisfied (e.g., feasible path δ-clearance), and choosing a radius rN of the
PRM algorithm based on N samples according to,

rN = 2α
√
dL∞({Xs

i}Ni=1)
1
d ,

for some α > 1 and rN satisfying conditions corresponding to the path δ-clearance, one can guar-
antee that the cost of the returned path is within a factor of 1

α−1 of the optimal δ-clear path. Clearly,
a low discrepancy induces a guarantee of the resulting path to be close to the optimal δ-clear path.

4 EXPERIMENTAL EVALUATION

We evaluate our motion planning solution in simulation, using a variety of environments ranging
from 2D mazes to higher dimensional spaces and in a physical setting with a UR5 robot arm. We
assess performance according to the number of sampled points and success rate in finding a path.
Code for generating MPMC points can be found at https://github.com/tk-rusch/MPMC

4.1 SAMPLING METHODS

The performance of our method is evaluated against Uniform sampling and also against Halton
Halton (1960b) and Sobol Sobol’ (1967b) (for the 2-D maze setup only) sequences, two widely-
used low-discrepancy Quasi-Monte Carlo methods. Sobol sequences are designed to efficiently
cover spaces by minimizing gaps between sample points, making them ideal for complex problems.
Halton sequences, on the other hand, generate points using prime number bases, providing effective
uniform coverage. However, both Sobol and Halton sequences suffer from correlation issues in
higher dimensions Rusch et al. (2024).

To obtain a statistical measure of performance across repeated runs, we randomize the selection of
the MPMC points from the pool of trained point sets (batches can contain 8, 16 or 32 point sets based
on the training instance). Similarly for the deterministic Halton and Sobol sequences, we initialize
a new sequence where the previous one ended. Hence, when sampling point sets of size N , we take

5

https://github.com/tk-rusch/MPMC


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of the 2-D maze, SE(3) and UR5 simulation experiments. 2D mazes of
increasing difficulty are preseted on the first row: level 1 (left), level 2 (middle) and level 3 (right).
The start position is depicted in green and the end goal in orange. The SE(3) cubicle experiment is
on the bottom left, with the inverted L shaped object required to navigate the maze, then through the
passage to the other side of the board and back to reach the goal configuration (in the bottom right
corner). The SE(3) Twistycool setup is in the middle of the bottom row, the red object starting on
the left has to rotate its way through the passage in the wall to reach its goal. The 5-D UR5 robot
experiment is on the bottom right, it shows the arm reaching into a green box while avoiding contact
with the table or box.

the points indexed from (i− 1) N + 1 to i ∗N for the i-th run, with i taking integer values from 1
to the number of runs fixed for the experiment.

To illustrate differences between the sampling techniques considered in the context of this work, we
provide the Hickernell L2-discrepancies of point sets of sizes {128, 256, 512, 1024} in 10 dimen-
sions in Figure 2. Halton sequences never surpass a 2 times advantage over Uniform sampling, and
can even offer worse discrepancy for smaller N . MPMC points, on the other hand, reach substan-
tially lower Hickernell L2-discrepancy, consistently close to 3 times lower than that of Halton and
achieving up to a 5-fold improvement over Uniform sampling for larger point sets.

4.2 EXPERIMENTS

4.2.1 2-D MAZE

The initial experiments consist in using PRM to navigate a series of three 2-D mazes of increasing
difficulty depicted in Figure 3. These are designed only to be increasingly difficult to solve for PRM
with Uniform sampling before comparing to the other sampling techniques to avoid introducing any
bias favoring a specific scheme. The maps are of size 640 by 480 and the agent is assumed to be a
disk of radius 6 for collision checking. A single start and end goal is considered and 50 planning
attempts are run by level, number of sampled points and sampling technique. The shortest path
solver used is A∗ Hart et al. (1968).

4.2.2 OMPL BENCHMARKS

All of the Uniform, Halton and MPMC sampling schemes are put to the test on experiments from the
popular Open Motion Planning Library (OMPL) Moll et al. (2015). The base code PRM implemen-
tation is only modified to account for our fixed number pre-sampling. We ensure sufficient compute
time to reach failure and run 50 iterations per sampling method, per number of points sampled and
per scenario described below:

6
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Figure 4: Demonstration of a motion plan on hardware. The goal is to reach into the box without
making contact.

SE(3) rigid body puzzles The Special Euclidean Group in 3 Dimensions SE(3) is composed of
a 3-D translational component and a 3-D rotational component. The latter is often conveniently
sampled in quaternion space, with uniform sampling on the 4D unit sphere manifold. In keeping with
standard practice, we evaluate samplers’ efficient coverage only on the translational 3-D Euclidean
space component. Two such puzzles, Cubicle and Twistycool, are benchmarked from the OMPL.
For the latter example, we have reduced the default bounds to allow this harder problem to be solved
with the same list of n values used throughout. Both examples can be visualized in Figure 3

d-D hypercube corridor On the d-dimensional hypercube, the valid region is defined such that
there exists an index k with the following constraints: for all dimensions i < k, the i-th coordinate
must be less than or equal to a threshold edge width λ, and for all dimensions i > k, it must be
greater than or equal to 1 − λ. This results in a valid subspace that resembles narrow passageways
along the hypercube edges, leading from one corner of the hypercube to the diagonally opposite
corner. For dimension d ∈ {2, 3, 10}, the value of the edge width is tuned to ensure the point sets
available are of sufficient size to establish a meaningful comparison between samplers (respectively
λ ∈ {0.1, 0.2, 0.37}).

10-D kinematic chain The kinematic chain experiment features a robot with multiple links, op-
erating in a 10-dimensional configuration space. The robot must navigate through an environment
with obstacles represented as line segments. Initially, the robot’s first link is at zero radians, and
subsequent links are arranged with a specific angular offset. The goal is to move the robot from this
starting position to a target configuration where the first link aligns nearly with a desired orientation,
while avoiding collisions with the environment and itself.

4.2.3 UR5 ROBOT ARM

The UR5 robot arm is a popular collaborative robot with a 6 degree of freedom workspace. In this
benchmark, our goal is to reach into a sideways box without contacting the table or the box. We
forgo an end effector and thus we do not utilize the last DOF of the robot (which rotates the end
effector and in this setting does not effect the workspace of the manipulator). Simulation, sampling,
and planning is implemented in the Klamp’t software package. We compare our sampling method
to sampling from the uniform distribution. For a visualization of the task in simulation see Fig. 3.
We also demonstrate our results on real hardware.

5 RESULTS

5.1 2-D MAZE

The performance of the different sampling techniques for all three levels of the 2-D mazes are
presented in Figure 5. On all three levels and for all fixed number of points, MPMC offers the best
value per sampled point set size on all but two instances (outperformed by Halton by 2% on level 1
with N = 32 and by Sobol by 8% on level 3 with N = 128). Indeed, MPMC’s efficiency superiority
is all the more established on the harder level, where it can reach close to 90% with only 256 points
sampled, a feat that takes Halton and Sobol twice the number of points to reach, and a performance
level Uniform sampling fails to reach even with 4 times that number.

7
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Figure 5: Success rates of PRM on the 3 levels of 2-D maze motion planning versus the number of
points sampled. Results for each level are grouped by color and the data by sampler is identified by
marker and line styles.

In fact, Uniform sampling is substantially less efficient as it requires sampling at least 4 times the
number of points of low discrepancy methods to reach the 90% mark on all levels. Elsewhere, Sobol
and Halton sequences seem to offer comparable performance overall, with relative ranking seem-
ingly contingent on the level and number of points sampled. They often fail to meet the performance
of MPMC with significant margins (e.g. 34% success for Halton on level 1 with N = 64 against
MPMC’s 54%, under 64% for both Halton and Sobol on level 3 with N = 256 to MPMC’s 88%).

5.2 OMPL AND UR5 BENCHMARKS

The benchmarking success rates are provided in Table 1, along with the average number of valid
points sampled by each scheme and its standard deviation.

On the SE(3) Cubicle and Twistycool experiments, MPMC globally achieves the best performance,
although with somewhat marginal advantage. This tightness of margins can be linked to the impor-
tance of the SO(3) angle quaternion sampling which is done uniformly in all setups. Halton and
Uniform schemes appear to be relatively more contingent on the scenario and are harder to clearly
rank.

However, MPMC outperforms both Uniform and Halton samplers more consistently and signifi-
cantly when used on all the samples’ components. Indeed, over the 2 and 3 dimensional hypercube
examples, MPMC sampling solves around twice as many runs as its best competitor with 128 and
256 point regimes and maintains an advantage in the region of 50% with larger point sets.

The previous observation remains, to a solid extent, valid in higher dimensions. Although relative
performance gains are in multiple cases well reduced, MPMC sampling maintains top-performing
status. Furthermore, there remains instances where it offers large performance gains.

This is evident on the 10-D kinematic chain test, where MPMC reaches 24% success rate with 256
samples, compared to only 12% for Uniform and 14% for Halton. Similarly, a significant perfor-
mance gap is established between MPMC (80%) and its counterparts (Halton 56% and Uniform
62%) with 512 points on the 10-D hypercube benchmark. In the realistic scenario of the UR5 plan-
ning task (5-D), MPMC consistently surpasses Uniform and Halton sampling (3 to 8-fold higher
success rates). We also demonstrate that our approach is readily deployed to real hardware (Figure
4).

6 DISCUSSION

This work introduces the application of MPMC neural network point set generation in motion plan-
ning, offering a novel, unbiased approach to sampling. Our proposed method includes a custom
training objective specifically designed for high-dimensional configuration spaces, ensuring that the

8
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Table 1: Benchmark results on the OMPL suite and UR5 robot arm comparing performance in
terms of success rate (SR in %) versus N the number of points sampled {128, 256, 512, 1024}. Also
provided are the mean and standard deviation of the number of valid milestones in each experiment
(denoted |V |)

Experiment Space Sampler 128 256 512 1024
SR (%) |V| SR (%) |V| SR (%) |V| SR (%) |V|

Cubicle SE(3)
Uniform 0 56.4± 5.0 0 112.9± 7.2 2 221.8± 13.6 26 412.6± 60.8
Halton 0 57.4± 3.4 0 112.3± 4.8 4 221.1± 8.9 36 382.4± 98.9
MPMC 0 58.8± 3.3 0 112.3± 3.6 10 221.2± 14.5 46 367.4± 100.5

Twistycool SE(3)
Uniform 8 89.2± 14.7 4 180.4± 22.3 26 332.7± 71.6 70 485.0± 221.7
Halton 6 89.9± 10.8 16 171.4± 30.2 20 336.0± 63.0 56 584.1± 193.4
MPMC 10 89.5± 11.5 8 175.2± 27.6 30 327.7± 67.1 72 499.3± 212.7

Hypercube R2
Uniform 24 15.8± 13.5 24 19.1± 24.1 44 56.4± 50.0 60 104.1± 85.6
Halton 24 7.9± 11.1 36 19.2± 23.5 36 47.0± 48.9 36 67.5± 90.7
MPMC 48 15.4± 12.4 60 31.6± 24.4 68 69.3± 45.5 84 161.0± 71.0

Hypercube R3
Uniform 24 7.9± 7.5 34 17.1± 14.9 44 29.5± 27.4 54 64.1± 51.5
Halton 20 5.3± 6.5 32 15.0± 14.2 34 27.6± 27.3 28 42.4± 52.3
MPMC 56 10.3± 6.3 64 22.5± 12.7 76 40.6± 22.6 96 103.1± 20.1

Hypercube R10
Uniform 2 7.0± 2.0 12 9.7± 2.5 62 17.7± 4.3 88 33.9± 5.5
Halton 2 6.6± 1.8 12 10.4± 2.3 56 17.7± 2.9 98 32.6± 3.4
MPMC 0 6.3± 1.7 16 10.7± 2.4 80 18.9± 1.9 100 31.1± 2.9

Kinematic Chain R10
Uniform 4 30.2± 4.8 12 57.5± 9.6 22 103.5± 26.3 54 172.5± 64.9
Halton 2 30.0± 4.7 14 55.5± 9.1 22 103.7± 21.4 62 156.0± 64.5
MPMC 6 31.5± 4.3 24 51.8± 7.5 26 102.3± 21.5 60 161.7± 71.9

UR5 R5
Uniform 0 47.6± 5.8 10 92.2± 7.8 6 184.3± 11.5 12 368.6± 16.1
Halton 2 49.4± 6.9 4 93.1± 7.5 14 185.8± 10.8 18 369.2± 15.6
MPMC 6 49.1± 3.0 31 97.4± 3.5 75 181.4± 3.8 81 360.6± 4.3

generated points are optimized for complex planning tasks. Also, we provide theoretical proof that
the MPMC point sets offer a tighter upper bound on the distance from the optimal path.

Through extensive experiments on PRM benchmarks, we demonstrate that our method signifi-
cantly improves planning efficiency over commonly used sampling methods, especially in high-
dimensional and challenging environments. Furthermore, we validate the real-world applicability
of our technique by successfully implementing it on a UR5 robot arm, highlighting its potential for
deployment in practical robotic systems.

One limitation of our approach is the need to retrain the MPMC model for each specific number
of points N and dimensionality d to ensure optimal performance. This retraining requirement can
be computationally intensive, particularly for applications where the configuration space frequently
changes. Future work will focus on refining the neural network architecture and training procedure
to achieve generalization across both N and d, reducing the need for retraining and making the
method more flexible across different planning scenarios.

Moreover, while we have demonstrated the benefits of MPMC within the PRM framework, future
research will explore the potential advantages of integrating this technique into more sophisticated
sampling-based planners, potentially extending its impact across a broader class of planning algo-
rithms. Finally, an exciting avenue for future exploration lies in adapting our technique to compute-
critical applications, such as acrobatic flight or high-speed driving, where planners like the Model
Predictive Path Integral (MPPI) Williams et al. (2017) require real-time performance and could
greatly benefit from efficient, high-quality sampling methods.
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