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Figure 1. TimeWalker. Given a set of unstructured data from the Internet or photo collection across years, we build a personalized neural
parametric morphable model, TimeWalker, towards replicating a life-long 3D head avatar of a person. With the TimeWalker, we can control
and animate one’s avatar in terms of shape, expression, viewpoint, and appearance across his/her different age periods. In this Figure, We
show Leonardo Dicaprio’s life-long avatar reconstructed and animated by our proposed model.

Abstract

We present TimeWalker, a new framework that models
realistic, full-scale 3D head avatars of a person on life-
long scale. Unlike current human head avatar pipelines
that capture a person’s identity only at the momentary level
(i.e., instant photography, or short videos), TimeWalker
constructs a person’s comprehensive identity from unstruc-
tured data collection over his/her various life stages, offer-
ing a paradigm to achieve full reconstruction and animation
of that person at different moments of life. At the heart of
TimeWalker’s success is a novel neural parametric model
that learns personalized representation with the disentan-
glement of shape, expression, and appearance across ages.
Central to our methodology are the concepts of two aspects:
(1) We track back to the principle of modeling a person’s
identity in an additive combination of his/her average head

representation in the canonical space, and moment-specific
head attribute representations driven from a set of neural
head basis. To learn the set of head basis that could rep-
resent the comprehensive head variations of the target per-
son in a compact manner, we propose a Dynamic Neural
Basis-Blending Module (Dynamo). It dynamically adjusts
the number and blend weights of neural head bases, ac-
cording to both shared and specific traits of the target per-
son over ages. (2) We introduce Dynamic 2D Gaussian
Splatting (DNA-2DGS), an extension of Gaussian splatting
representation, to model head motion deformations like fa-
cial expressions without losing the realism of rendering and
reconstruction of full head. DNA-2DGS includes a set of
controllable 2D oriented planar Gaussian disks that utilize
the priors from a parametric morphable face model, and
move/rotate with the change of expression. Through exten-
sive experimental evaluations, we show TimeWalker’s abil-



ity to reconstruct and animate avatars across decoupled di-
mensions with realistic rendering effects, demonstrating a
way to achieve personalized “time traveling” in a breeze.

1. Method
Our pipeline aims to construct a comprehensive head avatar
of a person’s identity across their different life stages, as op-
posed to current head avatar methods that reconstruct and
animate a person at the momentary level. The main chal-
lenge of constructing the head avatar on a lifelong scale is
the additional embedding of the lifestage dimension dur-
ing the modelling process. The changes to the head brought
about by the different lifestage of a person cannot be explic-
itly defined, as it involves differences in appearance, facial
shape or even accessories, while at the same time it has to
be disentangled from the other dimension to enable the de-
coupled animation. To address the challenges, we introduce
a novel neural parametric model that models the average
representation of a person’s identity in the canonical space
with the form of set of 2D Gaussian Surfels [2] and spans to
moment-specific head attribute representations by driving a
set of Neural Head Basis. Further, we extend the 2DGS [2]
to DNA-2DGS module, a dynamic version to reconstruct
and drive the dense mesh with different motion signals.
Neural Head Basis. Building on the concept of traditional
3D Morphable Head Models [1, 5], we introduce the Neu-
ral Head Basis, which efficiently captures moment-specific
features of an individual’s head. To store these features
compactly, we utilize a Multi-resolution Hashgrid [6], a
hashmap-based cubic structure, which enables the storage
of learnable features in a condensed form. When given
a canonical point location xc from Gaussian kernels, the
hashgrid lookup nearby features at various scales, and cu-
bic linear interpolation is applied to obtain the final feature
corresponding to the location. By employing multiple hash-
grids {Hi}Ni=1, we encompass a comprehensive range of
head variations in our model, including both common fea-
tures and those specific to individual’s different life stages.
Our goal is to ensure that our neural basis learns these
deeper characteristics rather than solely memorizing super-
ficial appearances. To this end, we introduce the Dynamic
Neural Basis-Blending module (Dynamo), which dynami-
cally adjusts the number of basis during during the learn-
ing process of blending weight and hashgrid. Specifically,
we initialize a set of learnable blending weights {β}Ni=1

and perform a weighted sum of the features extracted from
the neural basis: f(xc) =

∑N
i=1 βiHi(xc). Throughout

the learning process, we continuously monitor the blend-
ing weights of the N hashgrids. If a hashgrid’s weight is
consistently low across data of multiple lifestages, it indi-
cates that the grid is not effectively learning the character’s
features. In response, we deactivate that particular hash-

grid. By the end of the training phase, we can guarantee
that all Neural Head Basis are actively learning valid ap-
pearance features, including deep invariant characteristics
of the character. The features from Dynamo are then feed
into compact MLPs to derive the attributes of the Gaussian
kernel. The network learns the deformations of the Gaus-
sian attributes, which are then additively combined with the
Gaussian average in canonical space.
Gaussian Surfels Representation. To characterise the av-
erage head representation of individuals, we define a set
of Gaussian surfels in canonical space, initially positioned
on the face of the FLAME template [5]. With addtion of
the deformation value produced from Neural Head Basis,
the canonical Gaussian Surfels are deformed from the av-
erage representation to a specific lifestage. Gaussian Sur-
fels after deformation perform appearance and underlining
characteristic in a static way. Afterwards, to add motion
and realize dynamic avatar animation, we utilize the motion
warping fields rooted from FLAME [5] expression & shape
parameters. This two deformation guidance, the deforma-
tion fields that drives the mean representation to moment-
specific static avatar, and motion warping fields that em-
powers the head model with dynamic motion, allows us to
create multi-dimensional realistic head avatar.
DNA-2DGS. The existing Gaussian Surfels [2] technique
allows for the reconstruction of high-quality surfaces after
training through Gaussian point cutting and Poisson mesh-
ing [3] with extracted data from rendering results. However,
this approach is primarily suitable for static scenes and can-
not be directly applied to dynamic head avatars. Further-
more, the Poisson reconstruction process employed in this
method is time-consuming, making it impractical to recon-
struct each frame individually. To address these limitations,
we propose an adaptation and extension of the Gaussian
surface reconstruction method specifically tailored for dy-
namic head reconstruction. Specifically, we do not perform
data extraction on the rendering results in deformed space,
but rather we take a step back and render the results under
moment-specific conditions, tailored to different appear-
ance data. This process effectively removes any interfer-
ence caused by motion, enabling us to obtain appearance-
specific static mesh. Unlike warping the Gaussian surfels
during the rendering process, here we warp the vertices
of the reconstructed mesh. By doing so, we can gener-
ate motion-driven mesh results that accurately capture the
dynamics of the subject. Notably, the above scheme, we
call Defer-Warping, allows us to obtain dynamic mesh se-
quences in a much shorter time comsume.
Training. We apply the end-to-end training manner that
enables the simultaneous optimization of the explicit Gaus-
sian surfels, multiple hashgrid, and implicit MLPs. For
the Gaussian Splatting, we follow the densify and prun-
ing strategies of 3DGS to adaptively adjust the number of



Age periods

(a) Rendering results along the axis of different age periods in Hugh Jackman’s (Upper)/Matt Damon’s (Down) personalized space, with fixed expression, camera view, and headpose   

(b) Rendering results of Michelle Yeoh (Upper)/ Jackie Chan (Down) under different age periods 

Figure 2. Personalized Space: Lifestage. We demonstrate multiple individuals and their replicas in different lifestages. (a) We adjust the
value in Dynamo to animate the lifestages of individuals, but keep other animation values unchanged. (b) We show the lifestages of more
individuals with another ethnicity.

Gaussian. To guide the optimization of the whole system,
our total loss Ltotal consists of three parts: (1) Image Level
Supervision. Similar to 3DGS [4], This term includes pho-
tometric L1 loss Lrgb and ssim loss Lssim. (2) Geometry
Level Supervision. We introduce Ldepth from INSTA [8]
to enforce a better Gaussian geometry, and Lnormal from
Guassian Surfels [2]. (3) Regulation. To avoid the Gaussian
attribute not walking far from its average representation, we
employ a L1 regulation to the deformation of the Gaussian
attributes and penalize large deformation.
Building a Life Long Personalized Space. We decouple
the driving of the head in multiple dimensions - lifestage,
expression, shape and novel view, - as described in the fol-
lowing – (1) Lifestage: During training, our pipeline learns
different blending weights for data in different life stages.
After training, we can adjust these weights to drive the
lifestage in a disentangled manner. Fig. 2 illustrates the ap-
pearance diversity of individuals as they progress through
different life stages. This demonstrates the effectiveness
of our pipeline in capturing a person’s identity across dif-
ferent moments in their life. (2) Expression: To achieve
expression and shape changes of the character while main-
taining a consistent appearance, we use a motion warping
field inspired from INSTA [8]. By manipulating expres-
sion parameters, we can update both the tracked mesh and

the transformation matrix that maps from canonical space
to deformation space. This enables us to achieve the de-
sired expression-based warping. (3) Shape: As the FLAME
mesh can be driven by expression and shape parameters in
a disentangle manner, our head avatar can also be animated
by shape with the same approach as expression. (4) Novel
view: The Gaussian Splatting, as type of 3D representation,
can be rendered with arbitrary camera pose.

2. Experiments

PSNR↑ SSIM↑ LPIPS↓

w/o Llpips 26.56 0.916 0.18
w/o Lgeometry 27.25 0.943 0.080
w/o Ldeform 24.79 0.886 0.165
w/o Dynamo 21.69 0.767 0.197
w/ 1 hashgrid 24.84 0.890 0.119
w/ all hashgrid 26.86 0.938 0.078
Ours 27.20 0.941 0.077

Table 1. Ablation study. Pink indicates the best and orange
indicates the second.

Dataset. To fully validate the effectiveness of our
pipeline, we construct a large-scale head dataset, named
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Figure 3. Self Reenactment. We demonstrate the cross-lifestage reenactment with TimeWalker-1.0 and cross-identity reenactment with
RenderMe-360 [7], in Leonardo personalized space.

All(a) w/o lpips Loss (c) w/o deform Reg. (d) w/o Dynamo (e) w/ 1 hashgrid(b) w/o geo. Loss (f) w/ all hashgrid

Figure 4. Ablation Study. Experiments with different loss setting are showed in (a − c), while ablation with Dynamo and hashgrid are
visualized in (d− f).

TimeWalker-1.0., which includes 20 celebrities’ lifelong
photo collections. The data volume ranges from 10K to
100K for each celebrity, with diverse variations over dif-
ferent lifestages (e.g., shape, headpose, expression, and ap-
pearance).

Reenactment. Fig. 3 performs expression animation
through two types of reenactments. The cross-lifestage
reenactment on the left showcases how head avatars from
different life stages can consistently perform the same ex-
pression, animated from a source avatar belonging to a dif-
ferent time period. In the right part Leonardos in differ-
ent lifestages are driven by unseen novel expression from
RenderMe-360 [7], and the rendering result shows that mul-
tiple head avatars generated by the same personal space
from TimeWalker are able to extrapolate novel expression.

Ablation Studies. To validate the effectiveness of our
method components, we conduct several ablation experi-
ments in terms of our Dynamo design and loss terms. All
the ablation experiments are conducted on 3 individuals
with each at least 9 lifestages. We keep other settings un-
changed except the ablation term, whose results are demon-
strated in Tab.1 and Fig. 4.

3. Conclusion
Limitations. Firstly, our personalized avatar fails to cap-
ture exaggerated expressions during the animation, result-
ing in noticeable artifacts around the mouth area. Secondly,
when rendering avatars with thin structures from a large
novel view, significant blurring occurs. We owe these two
limitations to the limited diversity of the expression and
head pose within the data from one life stage. Regardless
of the data source, a promising approach is to harness the
prior knowledge of head structure from pre-trained genera-
tive models, which we leave as a direction for future explo-
ration.
Conclusion. In this work, we present the TimeWalker,
a baseline solution to construct a personalized space with
long-horizon identity consistency preserving and explicit-
controlled animation in full scales. The key design lies
in the two components: a Dynamic Neural Basis-Blending
model to represent the head variations in a compact man-
ner and a Dynamic 2D Gaussian Splatting module to con-
struct dynamic dense head mesh. Our methods are capable
of building personalized space on a life-long scale.
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