
 
Abstract: Cancer researchers test thousands of potential drugs every year, yet only 5% of those that 
are selected for clinical testing succeed in the patient setting1. This is fundamentally a prediction 
problem: we know that initial results in cancer cell lines don’t accurately reflect their efficacy in the clinic, 
yet we have to use results from various imperfect laboratory models to make expensive decisions about 
which potential drugs to invest in translating to clinical trials2. Predictive validity measures the accuracy 
of laboratory models’ results relative to the same intervention’s ultimate performance in the clinic3,4. 
However, it is not routinely measured in any form of drug development and it is absent from current 
datasets5–7, both for common laboratory models and for patient data. This absence is expensive, both 
for drug developers and for machine learning (ML) research approaches, where the lack of clear 
predictive validity metrics restricts best-in-class ML predictions to the type of data on which they were 
trained. Here we propose the development of a vertically integrated colorectal cancer (CRC) dataset 
that characterizes patient samples and preclinical models over time to rigorously measure the predictive 
validity of each model for different drug perturbations. This dataset, as a common good for academia 
and industry alike, will enable clearer measurement of predictive value for both wet lab and ML model 
results, which in turn will empower researchers to develop new types of ML models that predict efficacy 
across multiple models, investors to assess clinical likelihood of success more rigorously, and clinicians 
to match patients to treatment regimens most likely to deliver curative results. 

AI Task Definition: Current ML efforts in drug development and oncology are largely limited to within-
data-type predictions, such as in vitro drug screening results or modeling a limited set of cancer 
progression drivers in mathematical models. In cases where there are datasets that track predictive 
validity of results in preclinical models, such as acute myeloid leukemia (AML), recent ML work has 
successfully modeled the genetic evolution of disease, predicted specific kinds of resistance, and 
created personalized treatment algorithms with high clinical success8,9. This quality of data is, however, 
currently available only for AML and not for any kind of solid cancers, where rising incidence rates in 
CRC and the recent glut of failed immunotherapy trials has highlighted how the absence of predictive 
validity metrics contributes to low clinical success rates for new drug development. The proposed 
dataset will knit together several currently disparate efforts in CRC to introduce measures of clinical 
predictive validity at each stage of drug development. This will enable multi-modal transformer 
architectures to learn representations across different experimental contexts, meta-learning 
approaches that predict experimental reliability in drug development investment, and dynamic flow 
matching models of tumor and model evolution through treatment. This will accelerate ML in oncology 
drug development via creating a field-wide standard for predictive validity, better calibrate translational 
model selection and drug candidate investment10, and bring the personalized treatment prediction 
paradigm from AML to solid cancers2. 

Dataset Rationale: Novel datasets in oncology have been instrumental in developing revolutionary 
new drugs, such as the pan-cancer finding of NTRK mutations in The Cancer Genome Atlas enabling 
the rapid and successful development of Larotrectinib11,12. However, current best-in-class data 
collection efforts, such as the Human Tumor Atlas Network (HTAN), are prioritizing data breadth over 
model creation or measurement of predictive validity13. Meanwhile, use of live/die screens in cancer 
cell lines and animal studies is pervasive in drug development, also without quantification of predictive 
validity. Without this measurement, ML-driven efforts to improve drug development, model selection, or 
patient personalization are restricted to within-data-type predictions with low translational potential and 
low impact on drug development timelines or success. Colorectal cancer (CRC) was selected as a first 



 
solid cancer to focus on measurement of clinical validity for several reasons. First, it is rising in 
incidence in young populations with a large current patient population and is—relative to other solid 
cancers—accessible for longitudinal sampling and model creation. Second, there is established 
precedent of treatment results in patient derived CRC organoid systems, which retain key 3D and 
immune characteristics of the human setting, matching those seen in patients and delivering high 
clinical predictive validity to measure against14,15. Finally, third, in immunotherapy and other CRC 
clinical trials, there is frequently a mix of non-responders and hyper-responders, where differential 
characterization and comparison is immensely valuable for new model creation, developing more 
predictive models for treatment response, and understanding which molecular signals in patients are 
highest value for ML model development, preclinical model selection, and biotech investment. Ideally, 
the proposed dataset will be developed in 2 complementary phases. First, in an exploratory phase, 
multiple techniques and models will be tested in parallel on a small n of ~20 patient sources to identify 
which models and biological characterization techniques deliver the greatest predictive value, both in 
clinical success and in ML model results. Then, in a scaling phase that will also be applicable to other 
solid cancers, a narrower set of models and characterization techniques will be used to generate a 
dataset of 500+ longitudinal profiles matching patient data with preclinical model data given the same 
treatments. Measurement of predictive validity across timepoints will establish new standards for 
measuring experimental reliability in both wet lab and ML model results, enabling every stakeholder in 
drug development to make better decisions based on ML predictions they can trust. 

Data Creation Pathways: The development of post-genomics characterization technologies such as 
3D spatial transcriptomics has revealed new features of cancer biology with direct translational 
relevance. Many of these features are absent from common preclinical models10. As a result, there are 
ongoing efforts to use as many characterization technologies as possible on real patient samples, such 
as the Human Tumor Atlas Network, which includes a CRC cohort being characterized in a federally-
funded academic consortium13. In parallel, developing patient-derived organoid models and tracking 
their responses to the same treatments given to patients has been piloted at several leading academic 
cancer centers, demonstrating both technical and logistical feasibility14. From these efforts, the 
proposed dataset can be built via a public-private consortium of academic labs and specialist 
companies via highly targeted “infill” studies that strategically add predictive validity metrics to studies 
already underway. These studies will focus on assessing predictive validity of results in each model 
type relative to that seen in patients, with an initial phase designed to determine if this is best measured 
at the proteomic, genetic, transcriptomic, or morphological layer. Results from this will be used to create 
a rich open dataset with standardized data attributes that can be used for the wide variety of ML tasks 
outlined above. Technical, logistical, and personnel resources developed over the course of generating 
this data can then be applied to other solid cancer types or even chronic inflammatory conditions. 

Cost/Scalability: By leveraging current HTAN data generation efforts and ongoing academic clinical 
trials in CRC, which can cost upwards of $120,000/patient, the most expensive aspect of the proposed 
dataset—primary patient data—is already addressed. Generation and characterization of the various 
models in Phase 1 is estimated, based on comparable academic projects, to cost ~$50,000/patient 
source, for a total of $1M across 20 patients. The narrower set of models and characterization in 
techniques for Phase 2 is estimated on the same basis to cost $15,000/patient source for a total of 
$7.5M. Delivering even a modest 5% improvement in drug development success will, in turn, save 
billions of dollars currently spent on testing low validity predictions in poorly matched patients. 
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