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Abstract

In this paper, we propose Tortoise and Hare Guidance (THG), a training-free
strategy that accelerates diffusion sampling while maintaining high-fidelity gen-
eration. We demonstrate that the noise estimate and the additional guidance
term exhibit markedly different sensitivity to numerical error by reformulating
the classifier-free guidance (CFG) ODE as a multirate system of ODEs. Our
error-bound analysis shows that the additional guidance branch is more robust to
approximation, revealing substantial redundancy that conventional solvers fail to
exploit. Building on this insight, THG significantly reduces the computation of the
additional guidance: the noise estimate is integrated with the tortoise equation on
the original, fine-grained timestep grid, while the additional guidance is integrated
with the hare equation only on a coarse grid. We also introduce (i) an error-bound-
aware timestep sampler that adaptively selects step sizes and (ii) a guidance-scale
scheduler that stabilizes large extrapolation spans. THG reduces the number of
function evaluations (NFE) by up to 30% with virtually no loss in generation
fidelity (∆ImageReward ≤ 0.032) and outperforms state-of-the-art CFG-based
training-free accelerators under identical computation budgets. Our findings high-
light the potential of multirate formulations for diffusion solvers, paving the way for
real-time high-quality image synthesis without any model retraining. The source
code is available at https://github.com/yhlee-add/THG.

1 Introduction

Diffusion models (DMs) have become the state-of-the-art generative model for images [10, 40, 47]
and, more recently, for video [20, 1, 52, 21] and audio-visual content [5, 41]. Despite their impressive
quality, sampling is costly: each output is obtained by iteratively denoising a noisy sample, and the
latency scales with the total number of function evaluations (NFE) required by the solver.

Many practical scenarios, such as text-to-image synthesis, class-controlled synthesis, or in-context
image editing, require conditional generation. The dominant technique for high-quality conditioning is
classifier-free guidance (CFG) [18], which improves perceptual quality and controllability. However,
CFG runs the denoising network twice per timestep—once conditional and once unconditional—
thereby doubling the NFE. For real-time applications, such as interactive editing and large-scale
serving, evaluating a deep backbone at every timestep remains a major bottleneck.

A large body of work to accelerate these models has focused on two main approaches. Some
approaches reduce the number of steps using higher-order ODE/SDE solvers [45, 46, 30] or distilla-
tion [43, 34], while others—such as cache-based strategies like DeepCache [33] and Learning-to-
Cache [32]—lower the cost per step by reusing intermediate features. Nevertheless, both approaches
still perform two forward passes whenever CFG is enabled, implicitly assuming that conditional and
unconditional calls are equally indispensable.
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Figure 1: Conceptual illustration of Tortoise and Hare Guidance. We decompose the standard
diffusion ODE into a tortoise branch (Eq. 6), which is numerically sensitive and thus integrated
on a fine-grained grid, and a hare branch (Eq. 7), which is comparatively less sensitive and can be
integrated with larger step sizes. Our multirate scheme evaluates each branch at different timestep
grids, skipping unnecessary evaluations, thereby boosting inference efficiency without sacrificing
sample quality.

Through the lens of numerical analysis, we revisit CFG by reformulating the reverse diffusion process
as a two-state multirate system of ODEs whose trajectories are governed by the noise estimate
and the additional guidance term. Our error-bound analysis reveals a pronounced asymmetry: the
additional guidance term is more robust to approximation than the noise estimate, exposing substantial
redundancy that conventional solvers fail to exploit. This finding raises a natural question: Do we
need to compute the neural network twice at every fine-grained timestep?

Leveraging this asymmetry, we introduce Tortoise and Hare Guidance (THG), a training-free
sampler that bypasses most additional guidance computation. The noise estimate is integrated with
the tortoise equation on the original fine-grained timestep grid. Meanwhile, the additional guidance is
integrated with the hare equation only on a coarse grid. We further introduce (i) an error-bound-aware
timestep sampler that adaptively determines the coarse grid, and (ii) a guidance-scale scheduler that
keeps the trajectory stable over significant gaps.

With these components, THG achieves sampling speeds up to 1.43× faster by reducing the
NFE budget from 100 to as low as 70 while maintaining virtually identical generation fidelity
(∆ImageReward ≤ 0.032). Moreover, across Stable Diffusion 1.5 [40], 3.5 Large [47], and Audi-
oLDM 2 [28], our method outperforms state-of-the-art CFG-based training-free accelerators under
identical computation budgets. Our study highlights the potential of multirate formulations for
accelerating diffusion models and brings us a step closer to achieving real-time performance and
high-quality image synthesis without retraining the model.

In summary, our contributions are threefold:

• We are the first to cast the reverse diffusion ODE as a two-state multirate system of ODEs
and to provide an error-bound analysis showing that the additional guidance term can be
safely approximated at a much coarser temporal resolution.

• We design Tortoise and Hare Guidance (THG), a training-free sampler that eliminates the
need for a significant amount of additional guidance term evaluation. THG is compatible
with any diffusion backbone.

• Using image-text pairs from the COCO 2014 dataset, we demonstrate that THG can reduce
NFEs up to 30% with virtually no loss in generation fidelity (∆ImageReward ≤ 0.032).
THG outperforms state-of-the-art CFG-based accelerators under identical compute budgets.
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2 Related work

Diffusion models Denoising Diffusion Probabilistic Models (DDPMs) [19] laid the foundation
for modern diffusion models by introducing a probabilistic framework. A forward Markov process
gradually corrupts a data point x0 into Gaussian noise. In the reverse process, at each timestep t, a
neural network ϵ̂θ(xt, t) estimates and removes the noise component in xt to recover xt−1, ultimately
reconstructing x0. The denoising trajectory can be interpreted either as a stochastic differential
equation (SDE) or its deterministic counterpart, the probability flow ODE (PF-ODE) [46]. Denoising
Diffusion Implicit Models (DDIMs) [45] drop the strict Markov assumption of DDPMs and apply
Tweedie’s formula [9] to jump directly from xt to xs, cutting sampling steps from hundreds of steps
to as few as 50 and effectively solving the PF-ODE in a single deterministic pass [46].

ODE-based integrators Viewing diffusion sampling as an initial-value ODE problem enables
high-order integration techniques. Concretely, DPM-solver [30] observes that the diffusion ODE

dxt/dt = f(t)xt + (g2(t)/2σt)ϵ̂θ(xt) (1)
has a semi-linear term f(t)xt. The need for approximation for the linear term is eliminated by
solving the semi-linear ODE using the variation of constants formula. This semi-linear integrator
then affords large step sizes with minimal approximation error. Inspired by these semi-linear methods,
we introduce a multirate formulation for the classifier-free guidance (CFG) scheme [18] that adjusts
the step size of each component of CFG to its own dynamics, achieving further reductions in the
number of function evaluations (NFE) without degrading sample quality.

Classifier-free guidance and its variations In real-world applications, diffusion models must
produce samples that satisfy a given condition (e.g., class label or text prompt). Classifier Guidance
[8] achieves this by incorporating a pre-trained classifier pϕ(c|xt), effectively sampling from the
sharpened density p(x)p(c|x)ω , where ω controls the strength of the bias towards class c. Classifier-
Free Guidance (CFG) [18] eliminates the need for an external classifier by training a single denoising
network that gives both conditional and unconditional outputs. Concretely, if ϵ̂θ(xt, c) and ϵ̂θ(xt,∅)
denote the network’s noise predictions with and without condition c, respectively, then CFG defines

ϵ̂CFG
θ (xt, c) = ϵ̂θ(xt,∅) + ω · (ϵ̂θ(xt, c)− ϵ̂θ(xt,∅)). (2)

Subsequent variants focus on finding the optimal strength and timing of guidance for balancing
condition fidelity against sample diversity. Guidance Interval [26] restricts the use of CFG to mid-
level noise steps, avoiding over-conditioning at the beginning and final stages of the sampling process.
CADS and Dynamic-CFG [42] slowly anneal either the conditioning vector or the scale ω during
the early denoising steps, preserving diversity in the final samples. PCG [2] reformulates CFG as a
predictor-corrector method (with ω′ = 2ω − 1) that alternates between denoising and sharpening
phases. CFG++ [7] treats guidance as an explicit loss term rather than a sampling bias, splitting each
DDIM iteration into “denoising” and “renoising” phases. Unlike these methods, we reformulate the
diffusion ODE using a multirate method, integrating the noise estimate on a fine-grained grid and the
additional guidance term on a coarse grid, reducing the NFE while preserving sample quality.

Efficient diffusion models Beyond advanced ODE/SDE solvers, various methods have been
proposed to speed up pre-trained diffusion models. Distillation methods [43, 34] compress a pre-
trained “teacher” model into a “student” model that can advance multiple timesteps in one forward
pass. While these methods reduce the number of sampling steps, they incur substantial retraining
costs. Cache-based techniques exploit feature redundancy within the denoising neural network ϵ̂θ.
DeepCache [33] reuses high-level U-Net activations across adjacent steps. Learning-to-Cache [32]
introduces a layer-wise caching mechanism that dynamically reuses transformer activations across
timesteps via a timestep-conditioned router. ∆-Dit [4] leverages stage-adaptive caching of block-
specific feature offsets in DiT models to speed up inference without retraining. These methods deliver
inference speedups without retraining but depend heavily on the model’s internal architecture. More
recently, several works have noted that CFG doubles the NFE per denoising step and have proposed
methods to reduce this extra cost. Adaptive Guidance [3] adaptively skips redundant guidance steps
based on cosine similarity between conditional and unconditional predictions. FasterCache [31]
reuses attention features and conditional-unconditional residuals to mitigate CFG overhead. Although
these methods reduce the NFE, they lack a rigorous theoretical foundation and leave further savings
on the table. Our approach delivers a more efficient and theoretically grounded method of guided
diffusion by directly exploiting the CFG’s intrinsic dynamics.
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Figure 2: Time-derivative norms of the noise estimate ϵ̂c(xt) and additional guidance ∆ϵ̂c(xt).
We plot the L2 norms of the time derivatives d

dt ϵ̂c(xt) and d
dt∆ϵ̂c(xt) across diffusion timesteps

for Stable Diffusion 1.5 and 3.5 Large. The results confirm that the noise estimate exhibits greater
temporal sensitivity compared to the guidance term. Shaded areas denote two standard deviations
over multiple prompts.

3 Method

In this section, we introduce Tortoise and Hare Guidance (THG), which accelerates diffusion
model inference by leveraging the asymmetry between the noise estimate and the additional guidance
terms. Since the additional guidance term varies more slowly w.r.t. the denoising timestep t than the
noise estimate term, we apply a multirate integration scheme that uses a coarser timestep grid for the
additional guidance term (Sec. 3.1 and Sec. 3.2). We then perform an approximation error-bound
analysis to determine the appropriate grid granularity (Sec. 3.3). Finally, we propose an adaptive
guidance scale to compensate for any performance degradation resulting from the reduced number of
evaluation points (Sec. 3.4).

Preliminaries To accommodate different definitions of the diffusion process [19, 46, 49], we adopt
a general notation [30] so that the forward process and the diffusion ODE are described as follows:

q(xt|x0) := N (xt;αtx0, σ
2
t I),

dxt

dt
= f(t)xt +

g2(t)

2σt
ϵ̂θ(xt), xT ∼ N (0, σ2

T I), (3)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t , and t ∈ [0, T ]. (v-prediction models are covered

in Appendix A.) αt and σt are the predefined noise schedule of the diffusion model. Although
modern diffusion models primarily operate in the latent space [40], we adopt x (instead of z), as
our framework is agnostic to this choice. For brevity, we denote the unconditional noise estimate
ϵ̂∅(xt) := ϵ̂θ(xt,∅), the conditional noise estimate ϵ̂c(xt) = ϵ̂θ(xt, c), the difference of the two
∆ϵ̂c(xt) := ϵ̂c(xt)− ϵ̂∅(xt), and the CFG noise estimate ϵ̂ωc (xt) = ϵ̂CFG

θ (xt, c) following [7].

3.1 A multirate formulation

We propose a multirate formulation [39], in which the reverse diffusion process is decomposed into
numerically sensitive and less sensitive components to reduce the number of function evaluations
(NFE). We begin by writing the diffusion ODE in Eq. 3 by explicitly separating it into two distinct
terms, the noise estimate and the additional guidance term. By the definition of CFG, we have

ϵ̂θ(xt) := ϵ̂ωc (xt) = ϵ̂∅(xt) + ω ·∆ϵ̂c(xt) ≡ ϵ̂c(xt) + (ω − 1) ·∆ϵ̂c(xt). (4)

Substituting Eq. 4 into Eq. 3 yields the following:

d

dt
xt = f(t)xt +

g2(t)

2σt
ϵ̂ωc (xt) = f(t)xt +

g2(t)

2σt
ϵ̂c(xt)︸ ︷︷ ︸

sensitive

+
g2(t)

2σt
(ω − 1)∆ϵ̂c(xt)︸ ︷︷ ︸
less sensitive

. (5)

We observe a significant difference in temporal sensitivity between the noise estimate term and
the additional guidance term. Figure 2 plots the time-derivative norms of ϵ̂c(xt) and δϵ̂c(xt),
confirming that the noise estimate varies more rapidly than the additional guidance term. This result

4



Algorithm 1 Tortoise and Hare Guidance Algorithm

Require: xT ∼ N (0, σ2
T I) ▷ Initial noise

Require: ω ≥ 0 ▷ Guidance scale
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid
Require: C ⊂ {ti|0 ≤ i ≤ N}, 0 ∈ C, T ∈ C ▷ Coarse timestep grid

1: xT
T ← xT

2: xH
T ← 0

3: for i = 0 to N − 1 do
4: ϵ̂c ← ϵ̂θ(x

T
ti + xH

ti , c) ▷ 1 NFE
5: xT

ti+1
← Solver(xT

ti , ϵ̂c, ti, ti+1) ▷ Compute xT
ti+1

given xT
ti

6: if ti ∈ C then
7: ϵ̂∅ ← ϵ̂θ(x

T
ti + xH

ti ,∅) ▷ 1 NFE (only if ti ∈ C)
8: ∆ϵ̂c ← ϵ̂c − ϵ̂∅
9: j ← i

10: repeat ▷ Compute xH up to the next coarse timestep
11: j ← j + 1
12: xH

tj ← Solver(xH
ti , (ω − 1) ·∆ϵ̂c, ti, tj) ▷ Compute xH

tj given xH
ti

13: until tj ∈ C ▷ tj equals the next coarse timestep at inner loop exit
14: end if
15: end for
16: x0 ← xT

0 + xH
0

17: return x0

clearly demonstrates that the noise estimate exhibits greater numerical sensitivity than the additional
guidance.

This motivates the use of a multirate method [44] where the sensitive term is integrated on a fine-
grained grid, and the less sensitive term is integrated on a coarse grid. We split the diffusion ODE
(Eq. 5) into the following system of ODEs:

d

dt
xT
t = f(t)xT

t +
g2(t)

2σt
ϵ̂c(x

T
t + xH

t ), (6)

d

dt
xH
t = f(t)xH

t +
g2(t)

2σt
(ω − 1)∆ϵ̂c(x

T
t + xH

t ), (7)

where xT
T = xT , xH

T = 0, and xt := xT
t + xH

t . The tortoise xT
t covers the noise estimate part of

the diffusion ODE, while the hare xH
t takes care of the additional guidance term. We call the ODE

integrated on the fine-grained grid the tortoise equation (Eq. 6), and the ODE integrated on the coarse
grid the hare equation (Eq. 7). Intuitively, the hare equation uses coarser timestep intervals—i.e. larger
steps—allowing it to skip unnecessary computation and thus significantly improve the efficiency of
integrating the diffusion ODE. Moreover, because both equations retain the standard diffusion ODE
form, existing solvers such as DDIM [45] can be applied to each equation without modification.

3.2 Tortoise and Hare Guidance

Solving the hare equation (Eq. 7) on the coarse grid is straightforward, since every coarse timestep is
also a fine-grained timestep. By contrast, because the tortoise equation (Eq. 6) requires the full state
xt = xT

t + xH
t at every fine-grained timestep, we must infer xH

t at those intermediate points [39].
Instead of using generic extrapolation methods [31], we exploit a property of diffusion model solvers:
given xt and ϵ̂θ(xt), they can deterministically compute xs for any s < t by running the chosen solver
from t to s. From each coarse timestep, we run the solver not only to compute xH

t for the next coarse
timestep but also to populate xH

t for all intermediate fine-grained timesteps, thereby constructing the
full trajectory of xH

t on the fine-grained grid for use in integrating the tortoise equation.

Building on this formulation, we propose an implementation strategy summarized in Algorithm 1.
While the standard diffusion solver evaluates both ϵ̂c(xt) and ∆ϵ̂c(xt) at every fine-grained timestep,
our scheme evaluates ∆ϵ̂c(xt) only on the coarse grid C ⊂ {t0, . . . , tN}, thereby significantly
reducing NFE. At each coarse step ti ∈ C, the updated guidance term is used to integrate the hare
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Figure 3: Approximation error bounds of the tortoise xT
t and the hare xH

t . We show the per-
timestep error bound of the tortoise and the hare terms across sampling steps. The consistently higher
bounds for the tortoise curve indicate that the noise estimate is more sensitive to timestep resolution
than the additional guidance. Shaded areas denote two standard deviations over multiple prompts.

equation across the fine-grained grid until the next coarse step. We then use the resulting xH
t values

during the subsequent tortoise equation steps. As a result, the NFE is reduced from 2N to N+ |C|−1
while preserving the dynamics of the original diffusion ODE. Moreover, it slots seamlessly into
existing diffusion pipelines without any changes to their core logic.

3.3 Approximation error bound analysis

To determine an appropriate coarse grid C for the hare equation, we now turn to an error-based
criterion. Our objective is to ensure that the integration error of xH

t remains sufficiently small relative
to that of xT

t . To this end, we adopt a standard multirate strategy [11]. We select coarse step sizes
such that the ratio between the hare’s approximation error and the tortoise’s approximation error does
not exceed a user-specified threshold ρ such that ρ ≈ 1:∥∥x̂H

s − xH
s

∥∥
∥x̂T

s − xT
s ∥
≤ ρ. (8)

Here, xT
s and xH

s denote the analytical solutions to the tortoise and hare equations at timestep s,
while x̂T

s and x̂H
s are the corresponding numerical solutions obtained using the diffusion model solver.

Given that the solver has order p, the local integration error at a single step scales as [14]:

x̂s − xs = c · (∆t)p+1 +O((∆t)p+2) (9)

where ∆t is the fine-grained step size and c is an unknown constant. Let the coarse step size be m∆t,
meaning the hare leaps m tortoise steps per update. Then, the local integration error of the hare
equation over one coarse step becomes:

x̂H
s − xH

s = cH · (m∆t)p+1 +O
(
(∆t)p+2

)
. (10)

In contrast, the tortoise equation accumulates error over m fine-grained steps:

x̂T
s − xT

s = cT ·m(∆t)p+1 +O
(
(∆t)p+2

)
, (11)

Taking the ratio from Eq. 8 and ignoring higher-order terms, we obtain:∥∥x̂H
s − xH

s

∥∥
∥x̂T

s − xT
s ∥

=

∥∥cH∥∥mp+1(∆t)p+1

∥cT∥m(∆t)p+1
= mp

∥∥cH∥∥
∥cT∥ ≤ ρ, ∴ m ≤

(
ρ
∥∥cT∥∥/∥∥cH∥∥)1/p . (12)

Since m must be a positive integer, we define the maximum allowable value as:

mmax := max
(
1,
⌊(
ρ∥cT∥/∥cH∥

)1/p⌋)
. (13)

Estimating the error constants To compute mmax, we need estimates of ∥cT∥ and ∥cH∥ without
relying on the analytic solution xs. We accomplish this using the Richardson extrapolation method
[14] . First, solve the ODE once using step size ∆t:

x̂(1)
s − xs = c · (∆t)p+1 +O

(
(∆t)p+2

)
. (14)
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Algorithm 2 Look before you leap

Require: mmax(ti) ▷ Calculated mmax for each timestep
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid

1: C ← {} ▷ The result is initially an empty set
2: i← 0 ▷ Start advancing the fine-grained grid from the first timestep
3: while i < N do
4: C ← C ∪ {ti} ▷ Add current position
5: i← i+mmax(ti) ▷ Advance mmax(ti) steps
6: end while
7: C ← C ∪ {0} ▷ Include last timestep
8: return C

Next, solve again using two steps of size ∆t/2:

x̂(2)
s − xs = c · 2(∆t/2)p+1 +O

(
(∆t)p+2

)
. (15)

Subtracting Eq. 14 and Eq. 15 yields

x̂(1)
s − x̂(2)

s = c ·
(
1− 2−p

)
(∆t)p+1 +O

(
(∆t)p+2

)
. (16)

If we ignore the higher-order terms, the norm of this difference provides a direct estimate proportional
to ∥c∥. We apply this procedure independently to both the tortoise and hare equations to estimate
∥cT∥ and ∥cH∥, respectively. Empirical results (Fig. 3) on 30,000 prompts from the COCO 2014
dataset [27, 37] show that ∥cT∥ is greater than ∥cH∥ for most cases, confirming that the tortoise
equation is more sensitive to timestep resolution.

Example usage scenario To generate samples using Tortoise and Hare Guidance, we first calculate
mmax of each fine-grained timestep (Eq. 13) using the average ∥cT∥ and ∥cH∥ over a batch of inputs.
(More details are covered in Appendix C.) Then we build the coarse timestep grid C via the “look
before you leap” strategy (Algorithm 2). Starting at the first fine-grained timestep t0, we insert coarse
timesteps so that they lie mmax(ti) steps ahead, keeping the local error ratio below ρ. Finally, we
generate samples using Algorithm 1. Note that C could be reused for all subsequent inferences
without any additional NFEs.

3.4 Adjusting Guidance Scales

Approximating the hare at fine-grained timesteps can lead to a degradation in output quality. To
compensate for this, we propose adjusting the guidance scale whenever the additional guidance term
is used more than once per timestep. In particular, we introduce a constant boost factor b and scale
the guidance term: ∆ϵ̂c ← b ·∆ϵ̂c. This simple multiplicative adjustment improves sample quality,
especially in cases where the inner loop (which integrates the hare equation) is repeated multiple times
for each coarse step. Our method draws inspiration from prior work such as CFG-Cache [31], which
amplifies guidance in the frequency domain using FFT. However, unlike FFT-based methods, our
approach avoids the overhead of spectral transforms, which can be computationally expensive for high-
dimensional latent variables. The additional guidance term predominantly contains low-frequency
information in the early stages of sampling and vice versa [15]. Therefore, selectively enhancing the
frequency components of the additional guidance term per timestep has low significance.

Furthermore, CFG and the additional guidance term are of low significance at the later phase of the
reverse diffusion process [26, 3]. We leverage this fact by introducing a threshold timestep index ihi
and substituting ∆ϵ̂c ← 0 if i ≥ ihi. This simple adjustment helps reduce the NFE even further.

4 Experiments

4.1 Experimental Settings

Compared methods To demonstrate the effectiveness of our approach, we compare against CFG-
Cache [31], a training-free acceleration technique that reuses conditional and unconditional outputs in
video diffusion models. Given that CFG-Cache exploits a timestep-adaptive enhancement technique
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Table 1: Comparison of methods in terms of distributional similarity and prompt fidelity. Our method
is marked in blue , whereas vanilla CFG is marked in gray . The best results are highlighted.

Method NFE ↓ Distributional similarity Prompt fidelity
FID ↓ CMMD ↓ CS ↑ IR ↑

Stable Diffusion 1.5 with DDIM
CFG [18] 100 14.057 0.58885 26.294 0.14765
CFG-Cache w/o FFT [31] 70 14.240 0.59187 26.141 0.08757
CFG-Cache [31] 70 14.367 0.59556 26.180 0.09735
THG (Ours) 70 14.165 0.59223 26.189 0.11499
Stable Diffusion 1.5 with DPM-Solver-2 [30]
CFG [18] 100 13.255 0.60379 26.254 0.16148
CFG-Cache w/o FFT [31] 70 13.387 0.60665 26.107 0.10513
CFG-Cache [31] 70 13.468 0.60880 26.147 0.11474
THG (Ours) 70 12.909 0.60868 26.205 0.14926
Stable Diffusion 1.5 with 2nd-order Linear Multistep Method [29]
CFG [18] 100 13.540 0.60653 26.260 0.15966
CFG-Cache w/o FFT [31] 70 13.686 0.60844 26.107 0.09881
CFG-Cache [31] 70 13.798 0.61142 26.144 0.10805
THG (Ours) 70 13.686 0.61094 26.204 0.15184
Stable Diffusion 3.5 Large with Euler method
CFG [18] 56 68.158 0.81106 26.624 1.03569
CFG-Cache w/o FFT [31] 38 67.931 0.76448 26.643 1.00715
CFG-Cache [31] 38 67.914 0.75324 26.668 1.00745
THG (Ours) 38 68.252 0.80092 26.672 1.02365

Method NFE ↓ Distributional similarity Prompt fidelity
FAD ↓ CLAP Score ↑

AudioLDM 2 with DDIM
CFG [18] 100 2.596 0.2409
CFG-Cache w/o FFT [31] 70 2.901 0.2251
THG (Ours) 70 2.764 0.2342

to mitigate fine-detail degradation, we evaluate both the full CFG-Cache (with enhancement) and a
variant without this enhancement (denoted “CFG-Cache w/o FFT”). All variants are adapted to the
diffusion model’s modality for a fair comparison. More comparisons with CFG variants are given in
Appendix E.

Implementation details We build Tortoise and Hare Guidance with PyTorch [36], Diffusers [48],
and Accelerate [13]. We evaluate three pretrained diffusion models—Stable Diffusion 1.5 [40], Stable
Diffusion 3.5 Large [47, 10], and AudioLDM 2 [28]. For Stable Diffusion (SD) models, we use
prompt–image pairs randomly sampled from COCO 2014 [27, 37]: 30,000 pairs for SD 1.5 and
1,000 pairs for SD 3.5 Large. For AudioLDM 2, we use 2,230 prompt-audio pairs from the validation
set of AudioCaps [25]. Experiments are run on a server with an AMD EPYC 74F3 26934-core
CPU, 1 TB of RAM, and 8 NVIDIA A100 80GB GPUs. Hyperparameters (N,ω, ρ, b, ihi) are set to
(50, 7.5, 1.1, 1.1, 38) for SD 1.5, (28, 3.5, 1.0, 1.2, 21) for SD 3.5 Large, and (50, 3.5, 0.9, 1.15, 39)
for AudioLDM 2.

4.2 Main Results

Quantitative comparison Table 1 compares our method to the CFG-Cache variants in terms of
distributional similarity metrics such as FID [17, 35], CMMD [22], and FAD [24], together with
prompt fidelity metrics such as CLIP Score (CS) [16], ImageReward (IR) [51], and CLAP Score
[50] under the same number of function evaluations (NFE). Refer to Appendix F for more details
on metrics. On SD 1.5, all methods cut NFE from 100 to 70; ours lowers FID (14.165 vs. 14.240),
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SD 1.5 with DDIM, Prompt: A group of zebras grazing in the grass.

NFE = 100 NFE = 70 NFE = 70 NFE = 70

SD 1.5 with DDIM, Prompt: Two cows on a hill above a valley and mountains on the other side.

NFE = 100 NFE = 70 NFE = 70 NFE = 70

SD 3.5 Large with Euler method, Prompt: A single giraffe standing in the middle of tall grass

NFE = 56 NFE = 38 NFE = 38 NFE = 38

SD 3.5 Large with Euler method, Prompt: A bus that sign reads “Crosstown”. It is a metro bus.

NFE = 56

(a) CFG

NFE = 38

(b) CFG-Cache w/o FFT

NFE = 38

(c) CFG-Cache

NFE = 38

(d) THG (Ours)

Figure 4: Comparison of visual results for prompts from the COCO 2014 dataset.

matches CMMD, and improves CS and IR over CFG-Cache w/o FFT, and beats full CFG-Cache on
CS and IR while keeping FID competitive. On SD 3.5 Large, all cut NFE from 56 to 38; although
CFG-Cache slightly leads on FID and CMMD, our method delivers nearly equal FID/CMMD with
the highest IR and tied CS. On AudioLDM 2 [28], all cut NFE from 100 to 70; ours lowers FAD
(2.764 vs. 2.901) and improves CLAP Score over CFG-Cache w/o FFT. CFG-Cache is excluded since
its enhancement is inapplicable to the audio domain. These results show that THG generalizes across
solvers and scales, preserving sample distribution and text alignment under aggressive step reduction.
The tradeoff of distributional similarity and prompt fidelity is further discussed in Appendix G.

Qualitative comparison Figure 4 compares images generated by our method and the two CFG-
Cache variants. The results demonstrate that THG effectively preserves image fidelity and fine details.
More visual comparisons are shown in Appendix I.
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Table 2: Ablation study for the hyperparameter b.
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
b = 1.00 70 13.811 0.58364 26.137 0.09395
b = 1.05 70 13.988 0.58794 26.162 0.10456
b = 1.10 70 14.232 0.59354 26.197 0.11576
b = 1.15 70 14.472 0.59783 26.221 0.12639
b = 1.20 70 14.729 0.60260 26.246 0.13478

Table 3: Ablation study for the hyperparameter ρ.
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
ρ = 0.9 75 14.128 0.59044 26.193 0.11942
ρ = 1.0 73 14.148 0.59068 26.200 0.11949
ρ = 1.1 70 14.232 0.59354 26.197 0.11576
ρ = 1.2 69 14.336 0.59306 26.221 0.11262
ρ = 1.3 67 14.280 0.59521 26.197 0.10849

4.3 Ablation Studies

Boost factor b We perform ablation studies on hyperparameters using SD 1.5 with DDIM. Table 2
shows how varying the boost factor b affects inference quality at 70 NFE budget with the same latents
xT . As b increases from 1.00 to 1.20, we observe a steady rise in IR from 0.09395 up to 0.13478,
indicating stronger image–text alignment, and a modest gain in CS. However, this comes at the cost
of higher FID and CMMD values, reflecting a gradual drop in distributional similarity. We select
b = 1.10 as our default because it strikes the best balance: it substantially boosts IR (0.11576) with
only a moderate increase in FID (14.232) and CMMD (0.59354) relative to lower b values.

Error-ratio threshold ρ Table 3 summarizes the effect of varying ρ with the same latents xT .
Lowering ρ from 1.1 to 0.9 results in more conservative hare leaps—NFE rise from 70 to 75—and
yields slightly better FID (14.128 vs. 14.232) and CMMD (0.59044 vs. 0.59354), at the expense of
marginally lower IR (0.11942 vs. 0.11576). Increasing ρ to 1.3 reduces NFE to 67 but degrades FID
(14.280) and IR (0.10849). We choose ρ = 1.1 as our default since it achieves the best trade-off: a
30% NFE reduction (70 NFE) while maintaining competitive fidelity and alignment metrics.

5 Conclusion

We present Tortoise and Hare Guidance, a training-free acceleration framework for diffusion sampling
that leverages a multirate reformulation of classifier-free guidance (CFG). Exploiting the asymmetric
sensitivity of the noise estimate and the additional guidance term to numerical error, Tortoise and
Hare Guidance integrates the noise estimate on a fine-grained grid while integrating the additional
guidance term on a coarse grid. This approach allows for a substantial reduction in the number
of function evaluations (NFE) without sacrificing generation quality. With an error-bound-aware
timestep sampler and a guidance scale adjustment, our method achieves up to 30% faster sampling
while preserving fidelity across models like Stable Diffusion 1.5, 3.5 Large, and AudioLDM 2,
demonstrating the effectiveness of multirate integration for real-time high-quality generation.

Limitations Our experiments are currently limited to latent diffusion models and a few bench-
mark datasets such as COCO 2014 and AudioCaps. Extending the evaluation to a wider range of
architectures, modalities, and downstream tasks will help assess the generality and robustness of our
method.

Broader Impact By reducing sampling cost without retraining, Tortoise and Hare Guidance lowers
the barrier to deploying diffusion models in real-time applications such as creative tools, accessibility
services, and mobile environments. This could result in accelerating the production of synthetic
media, including deepfakes and misleading content. Nonetheless, the capabilities of Tortoise and
Hare Guidance remain bounded by those of the underlying diffusion model, introducing a limited
impact to the quality of such synthetic media.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are stated in Section 3 and
Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We specify the assumptions in the preliminaries (Section 3) and the beginning
of each algorithm. We also provide complete derivations of our formulas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full descriptions of the introduced algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We publicly release our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify which model, dataset, and hyperparameters are used in the experi-
ments in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide 2-sigma error ranges for figures in Section 3. Our main table
include results from repeated experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide machine specification in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts of our research in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce any new models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention the licenses of the used assets in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A v-prediction models

Recent models such as Stable Diffusion 3.5 [47] directly infer v, or the velocity field of the reverse
diffusion process. The diffusion ODE is then defined as

d

dt
xt = v̂θ(xt), xT ∼ N (0, I). (17)

By the definition of CFG [18], we have

v̂θ(xt) := v̂∅(xt) + ω · (v̂c(xt)− v̂∅(xt)) ≡ v̂c(xt) + (ω − 1) ·∆v̂c(xt) (18)

where ∆v̂c(xt) := v̂c(xt)− v̂∅(xt). Substituting Eq. 18 into Eq. 17 yields the following:
d

dt
xt = v̂c(xt) + (ω − 1) ·∆v̂c(xt). (19)

We split this diffusion ODE into a multirate system of ODEs similar to Section 3.1.
d

dt
xT
t = v̂c(x

T
t + xH

t ),
d

dt
xH
t = (ω − 1) ·∆v̂c(x

T
t + xH

t ). (20)

Both equations retain the form of Eq. 17 so that existing solvers as the Euler method can be applied
to each equation without modification. Furthermore, Algorithm 1 could be utilized unchanged since
it is agnostic to the form of equation or the type of the diffusion model solver.

B Proof for approximation error bound analysis

We provide a proof for error accumulation presented in Section 3.3. More rigourous analysis of error
bounds could be found in Section II. 3. of [14].
Theorem 1. Assume the local integration error of an ODE using a solver of order p and timestep
size ∆t is given by:

x̂t−∆t − xt−∆t = c · (∆t)p+1 +O((∆t)p+2) (21)
for sufficiently small ∆t. Then the error of using the same solver repeatedly for m steps is given by

x̂t−m∆t − xt−m∆t = c ·m(∆t)p+1 +O((∆t)p+2). (22)

Proof. We use mathematical induction. (Base step) For m = 1, Eq. 22 reduces to the assumption.
(Inductive step) Assume the error of using the solver m times is given by Eq. 22. We proceed to
the next iteration to obtain x̂t−(m+1)∆t. Let x̃t−(m+1)∆t be the exact solution given by solving the
ODE from t−m∆t to t− (m+ 1)∆t using x̂t−m∆t. The error in Eq. 22 is transported to the next
timestep as

x̃t−(m+1)∆t − xt−(m+1)∆t = (I +O(∆t)) (x̂t−m∆t − xt−m∆t) (23)

= c ·m(∆t)p+1 +O((∆t)p+2). (24)

On the other hand, the local error of the next iteration is also given by Eq. 21:

x̂t−(m+1)∆t − x̃t−(m+1)∆t = c · (∆t)p+1 +O((∆t)p+2). (25)

The error of using the solver m+ 1 times is thus

x̂t−(m+1)∆t − xt−(m+1)∆t = c · (m+ 1)(∆t)p+1 +O((∆t)p+2). (26)

Therefore the error of using the ODE solver m times is given by Eq. 22 for all positive integer m.

C More details for Richardson Extrapolation

We specify further details about the computation of the coarse timestep grid C. We calculate
∥x̂T(1)

s − x̂
T(2)
s ∥ and ∥x̂H(1)

s − x̂
H(2)
s ∥ by solving both the tortoise and hare equations on the fine-

grained timestep grid using Algorithm 3. In particular, for each denoising step ti, we first find x̂
(1)
ti+1

by using the diffusion model solver once from ti to ti+1. Then we find x̂
(2)
ti+1

by using the diffusion

model solver twice, from ti to (ti + ti+1)/2 and from (ti + ti+1)/2 to ti+1. We use x̂
(1)
ti+1

for the
next denoising step to ensure that we follow the reference trajectory of CFG [18]. Together with
Algorithm 2, we obtain the coarse timestep grid C specified in Table 4.
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Algorithm 3 Richardson Extrapolation

Require: xT ∼ N (0, σ2
T I) ▷ Initial noise

Require: ω ≥ 0 ▷ Guidance scale
Require: {ti}0≤i≤N , t0 = T, tN = 0 ▷ Fine-grained timestep grid

1: xT
T ← xT

2: xH
T ← 0

3: for i = 0 to N − 1 do
4: ϵ̂c ← ϵ̂θ(x

T
ti + xH

ti , c)

5: ϵ̂∅ ← ϵ̂θ(x
T
ti + xH

ti ,∅)
6: ∆ϵ̂c ← ϵ̂c − ϵ̂∅
7: x̂

T(1)
ti+1
← Solver(xT

ti , ϵ̂c, ti, ti+1) ▷ x̂
(1)
ti+1

of the tortoise

8: x̂
H(1)
ti+1
← Solver(xH

ti , (ω − 1) ·∆ϵ̂c, ti, ti+1) ▷ x̂
(1)
ti+1

of the hare
9: tm = (ti + ti+1)/2 ▷ Midpoint of current and next timesteps

10: x̂
T(2)
tm ← Solver(xT

ti , ϵ̂c, ti, tm)

11: x̂
H(2)
tm ← Solver(xH

ti , (ω − 1) ·∆ϵ̂c, ti, tm)

12: ϵ̂c ← ϵ̂θ

(
x̂
T(2)
tm + x̂

H(2)
tm , c

)
13: ϵ̂∅ ← ϵ̂θ

(
x̂
T(2)
tm + x̂

H(2)
tm ,∅

)
14: ∆ϵ̂c ← ϵ̂c − ϵ̂∅
15: x̂

T(2)
ti+1
← Solver(x̂T(2)

tm , ϵ̂c, tm, ti+1) ▷ x̂
(2)
ti+1

of the tortoise

16: x̂
H(2)
ti+1
← Solver(x̂H(2)

tm , (ω − 1) ·∆ϵ̂c, tm, ti+1) ▷ x̂
(2)
ti+1

of the hare

17: xT
ti+1
← x̂

T(1)
ti+1

▷ Tortoise of next step

18: xH
ti+1
← x̂

H(1)
ti+1

▷ Hare of next step
19: end for
20: return ∥x̂T(1)

ti+1
− x̂

T(2)
ti+1
∥, ∥x̂H(1)

ti+1
− x̂

H(2)
ti+1
∥

Table 4: Obtained coarse timestep grid for different ρ values. Our choice is marked in blue . For
brevity, only indices of the timesteps are shown. Note that only i < ihi is actually used in the final
algorithm.
ρ {i|ti ∈ C}
Stable Diffusion 1.5 with DDIM
0.9 {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49}
1.0 {0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49}
1.1 {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49}
1.2 {0, 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 20, 23, 26, 29, 31, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47,

48, 49}
1.3 {0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 31, 34, 36, 38, 40, 42, 44, 45, 46, 47, 48, 49}

Stable Diffusion 3.5 Large with Euler method
0.9 {0, 1, 2, 3, 5, 7, 10, 13, 16, 18, 20, 22, 23, 24, 25, 26}
1.0 {0, 1, 2, 4, 6, 9, 12, 15, 18, 20, 22, 23, 24, 25, 26}
1.1 {0, 1, 2, 4, 6, 9, 13, 17, 20, 22, 23, 24, 25, 27}
1.2 {0, 1, 2, 4, 7, 11, 15, 19, 21, 23, 25, 27}
1.3 {0, 1, 3, 6, 10, 15, 19, 22, 24, 26}
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Table 5: Obtained coarse timestep grid for different ω values. Our choice is marked in blue . For
brevity, only indices of the timesteps are shown. Note that only i < ihi is actually used in the final
algorithm. The results show that while a bigger ω results in a denser C, the overall trend is consistent.

Variant {i|ti ∈ C}
Stable Diffusion 1.5 with DDIM
ω = 6.5, ρ = 0.93 {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34, 36, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
ω = 6.5, ρ = 1.1 {0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 28, 31, 33, 35, 37, 39, 41, 43, 44,

45, 46, 47, 48, 49, 50}
ω = 7.5, ρ = 1.1 {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34, 36, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
ω = 8.5, ρ = 1.1 {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
ω = 8.5, ρ = 1.22 {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34, 36, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

Table 6: Obtained coarse timestep grid with fewer sample trajectories. Our original choice is marked
in blue . For brevity, only indices of the timesteps are shown. Note that only i < ihi is actually used
in the final algorithm. The results show that C can be computed accurately with only 1,000 sample
trajectories.

Batch size IoU {i|ti ∈ C}
Stable Diffusion 1.5 with DDIM

30k – {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

1k (trial 1) 100% {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

1k (trial 2) 100% {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

1k (trial 3) 100% {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

. . .
1k (trial 8) 57.5% {0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 30, 32, 34, 36,

38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}
. . .

1k (trial 30) 100% {0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 26, 28, 30, 32, 34,
36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}

D Sensitivity of C

Guidance weight ω The coarse timestep grid C depends on guidance weight ω, since the error
bounds computed by Algorithm 3 depend on ω. As ω increases, both the hare term and its approxi-
mation error grow, resulting in a denser coarse grid C. Table 5 shows C evaluated under different ω
values. While a bigger guidance scale results in a denser C, the overall trend is consistent; one can
obtain the same C by adjusting ρ.

Batch size While we computed C with sample trajectories on 30,000 prompts from the COCO
2014 dataset, it is possible to compute C using fewer sample trajectories. Table 6 shows C computed
on a batch of 1,000 prompts, compared to C computed on 30,000 prompts. The results closely
matched our original, large-scale estimate. Compared to the original estimate, the 1,000 sample
estimate demonstrated 95.25% IoU (i.e., Jaccard index) in average over 30 trials.
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Table 7: Comparison of methods in terms of distributional similarity and prompt fidelity. Our method
is marked in blue , whereas vanilla CFG is marked in gray . The parameters of THG correspond to
(ρ, b, ihi). The best results are highlighted.

Method N NFE ↓ Distributional similarity Prompt fidelity
FID ↓ CMMD ↓ CS ↑ IR ↑

Stable Diffusion 1.5 with DDIM
CFG [18] 50 100 14.133 0.58948 26.295 0.14764
Selective Guidance [12] 50 70 12.895 0.56052 25.602 −0.06691
Guidance Interval [26] 50 70 14.555 0.62227 26.153 0.09658
CFG-Cache [31] 50 70 14.422 0.59759 26.179 0.09705
THG (1.1, 1.1, 38) 50 70 14.232 0.59354 26.197 0.11576
CFG [18] 35 70 13.342 0.57232 26.321 0.12694
Selective Guidance [12] 35 49 12.299 0.54550 25.623 −0.09007
Guidance Interval [26] 35 49 14.490 0.61178 26.140 0.05919
CFG-Cache [31] 35 49 13.773 0.58162 26.120 0.05246
THG (1.7, 1.1, 30) 35 49 13.468 0.57637 26.265 0.09202
CFG [18] 20 40 13.366 0.56159 26.370 0.10090
Selective Guidance [12] 20 30 12.839 0.54740 25.900 −0.04452
Guidance Interval [26] 20 30 14.937 0.61333 26.244 0.02827
CFG-Cache [31] 20 30 13.675 0.56815 26.211 0.04604
THG (3.5, 1.1, 17) 20 30 13.345 0.56719 26.278 0.07212

E More comparisons with CFG variants

Table 7 extends our comparison to include additonal baselines [12, 26] across a wider range of NFEs.
Note that we used a different number of fine-grained timesteps N to control the NFE of CFG. The
results demonstrate that our approach achieves superior image quality with the same NFE budget.
While Selective Guidance [12] shows lower FID and CMMD values, they generate images with low
prompt fidelity and degraded details indicated by lower CS and IR values as noted in Appendix G.
Aside from this phenomenon, THG achieves superior overall performance.

Comparison with vanilla CFG Although vanilla CFG with 70 NFE yields a FID of 13.342 (better
than THG’s 14.232 with 70 NFE), its PSNR drops substantially to 19.42 dB compared to 24.16 dB
for THG. This aligns with observations in [6], where reducing N sometimes lowers FID. Moreover,
[35, 23] show that FID may not reliably reflect perceptual quality when the image structures diverge,
so we focus on comparisons at the same N .

F More details for metrics

FID, FAD Fréchet Inception Distance [17] (FID) is a ubiquitously used metric for developing and
adopting image generative models. It measures the distance between real and generated images in a
deep feature space to capture relevant features of the two distributions [35]. Therefore, a lower FID
value indicates realistic generation. To measure FID, one first uses an InceptionV3 feature extractor
model to compute features from real and generated images. Under the assumption that the resulting
feature sets follows a multidimensional Gaussian distribution, the distance of the two distributions
N (µr,Σr) and N (µg,Σg) is given by the Fréchet distance

FD = ||µr − µg||22 + tr(Σr +Σg − 2(ΣrΣg)
1/2). (27)

Similarly, Fréchet Audio Distance [24] (FAD) measures the distance between real and generated
audio by using a VGGish embedding model to extract features from audio clips.

CMMD CMMD [22] is a recently proposed alternative for FID. It uses CLIP [38] embeddings and
the Maximum Mean Discrepancy (MMD) distance instead of InceptionV3 features and the Fréchet
distance. CLIP is trained on 400 million images with corresponding text descriptions and therefore
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Table 8: Ablation study for the guidance scale ω with CFG [18].
Method NFE ↓ FID ↓ CMMD ↓ CS ↑ IR ↑
Stable Diffusion 1.5 with DDIM
ω = 2.5 100 8.438 0.56672 25.153 -0.28577
ω = 3.5 100 9.143 0.54192 25.687 -0.09190
ω = 4.5 100 10.644 0.54764 25.935 0.00670
ω = 5.5 100 12.030 0.56171 26.110 0.07195
ω = 6.5 100 13.222 0.57673 26.225 0.11582
ω = 7.5 100 14.133 0.58948 26.295 0.14764
ω = 8.5 100 14.902 0.60343 26.369 0.17431

Figure 5: Generated images using ω = 2.5 for the prompts “A group of zebras grazing in the grass.”,
“A yellow commuter train traveling past some houses.”, “A couple of men standing on a field playing
baseball.”, and “Zoo scene of children at zoo near giraffes, attempting to pet or feed them.” from the
COCO 2014 dataset.

much more suitable for capturing rich and diverse content. MMD does not make any assumptions
about the underlying distributions, unlike the Fréchet distance which assumes multidimensional
Gaussian distributions. By combining CLIP and MMD, CMMD avoids the drawbacks of FID.

CLIP Score, CLAP Score CLIP Score [16] uses CLIP [38] to assess image-caption compatibility.
CLIP learns a multimodal embedding space by jointly traning an image encoder and a text encoder,
while the cosine similarity of matching image and text embeddings are maximized. Leveraging this
design, CLIP score is defined by the cosine similarity of the image embedding EI and text prompt
embedding EC as

CLIPScore(I,C) = max(100 · cos(EI , EC), 0). (28)

We report the average CLIP score over the generated image set. Similarly, CLAP Score [50] uses the
CLAP model to assess audio-caption compatibility.

ImageReward ImageReward [51] is a general-purpose text-to-image human preference reward
model, effectively encoding human preferences by traning on actual human feedback. Experiments
shows that ImageReward aligns with human ranking better than zero-shot FID and CLIP Score. Also,
ImageReward values have larger quantile value range than that of CLIP Score, demonstrating that
it can well distinguish the quality of images from each other. We report the average ImageReward
value over the generated image set.

G Tradeoff of distributional similarity and prompt fidelity

Tables 1 and 2 demonstrate a tradeoff between distributional similarity metrics (FID, CMMD) and
prompt fidelity metrics (CS, IR). When the prompt fidelity metrics improve so that each image matches
better with the given prompt, the distributional similarity metrics worsen so that the distribution of
the images is further from that of real images.

We further investigate this phenomenon by conducting an additional ablation study for the guidance
scale ω using Stable Diffusion 1.5 and CFG. Table 8 shows how the metrics change as ω is changed.
The minimum FID is achieved at ω = 2.5 and the minimum CMMD is achieved at ω = 3.5. However,
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they suffer from low CS and IR. Generated images using ω = 2.5 are visualized in Fig. 5, showing
degraded details or insufficient text alignment. This suggests that lower FID or CMMD does not
always indicate better generation quality. While these distributional similarity metrics measure both
image plausibility and diversity, they can possibly fail to report high-quality details of the images
with lower values.

Since the global structure of each image is determined by the initial few steps of the reverse diffusion
process [26, 3], the images generated by the methods in Table 1 have mostly shared global structures
and differ on delicate details. Given that, we suggest that the human-perceived quality of generated
samples could be better explained by the prompt fidelity metrics compared to the distributional
similarity metrics. Our results in Table 1 with slightly higher FID or CMMD therefore do not indicate
a significant degradation of generation quality.

H Licenses

• Stable Diffusion 1.5 – weights released under the CreativeML Open RAIL-M license (v1.0;
https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)

• Stable Diffusion 3.5 Large – weights released under the Stability AI Community Licence
v3 (research & commercial use for organizations or individuals with < USD 1 M annual
revenue; https://stability.ai/license)

• FID – clean-FID implementation by Parmar et al., released under the MIT License (v1.0;
https://github.com/GaParmar/clean-fid/blob/main/LICENSE)

• CMMD – PyTorch implementation of CLIP Maximum Mean Discrepancy by Sayak
Paul, released under the Apache License 2.0 (v2.0; https://github.com/sayakpaul/
cmmd-pytorch/blob/main/LICENSE)

• CLIP Score – TorchMetrics’ CLIPScore module released under the Apache License
2.0 (v2.0; https://github.com/Lightning-AI/metrics/blob/master/LICENSE;
Lightning-AI)

• ImageReward – model and evaluation code released under the Apache License 2.0 (v2.0;
https://github.com/THUDM/ImageReward/blob/main/LICENSE; Xu et al., 2023)

• MS COCO 2014:
– Annotations released under the Creative Commons Attribution 4.0 International license

(CC BY 4.0; https://creativecommons.org/licenses/by/4.0/)
– Underlying images governed by Flickr Terms of Use; users must comply with Flickr’s

rules when reusing or redistributing any COCO images.
• AudioLDM 2 – weights released under the Creative Commons Attribu-

tion–NonCommercial–ShareAlike 4.0 International License (https://github.com/
haoheliu/AudioLDM2/blob/main/LICENSE)

• AudioCaps – dataset released under the MIT License (v1.0; https://github.com/
cdjkim/audiocaps/blob/master/LICENSE)

• FAD – PyTorch implementation of Frechet Audio Distance by Hao Hao Tan, released under
the MIT License (v1.0; https://github.com/gudgud96/frechet-audio-distance/
blob/main/LICENSE)

• CLAP Score – model and evaluation code released under the Creative Commons CC0 1.0
Universal License; public domain dedication (https://github.com/LAION-AI/CLAP/
blob/main/LICENSE)

I More qualitative results

Figure 6 shows more qualitative results for Stable Diffusion 1.5. Figures 7 and 8 show more qualitative
results for Stable Diffusion 3.5 Large.
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Prompt: Two horses are frolicking as spectators take pictures.

Prompt: a male with a purple jacket on skies posing for a picture

(a) CFG (baseline)
NFE = 100

(b) CFG-Cache w/o FFT
NFE = 70

(c) CFG-Cache
NFE = 70

(d) Ours
NFE = 70

Figure 6: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 1.5.

Prompt: A woman and a man are playing the nintendo wii video game system

Prompt: A cat sitting on a window sill near a basket.

(a) CFG (baseline)
NFE = 56

(b) CFG-Cache w/o FFT
NFE = 38

(c) CFG-Cache
NFE = 38

(d) Ours
NFE = 38

Figure 7: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 3.5 Large.
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Prompt: A red fire hydrant is set up in a grassy clearing.

Prompt: A stop sign and one way sign are in front of a large building

(a) CFG (baseline)
NFE = 56

(b) CFG-Cache w/o FFT
NFE = 38

(c) CFG-Cache
NFE = 38

(d) Ours
NFE = 38

Figure 8: Comparison of visual results for prompts from the COCO 2014 dataset using Stable
Diffusion 3.5 Large.
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