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ABSTRACT

This paper investigates a range of empirical risk functions and regularization
methods suitable for self-training methods in semi-supervised learning. These ap-
proaches draw inspiration from f -divergences. In the pseudo-labeling and entropy
minimization techniques as self-training methods for effective semi-supervised
learning, the self-training process has some inherent mismatch between the true
label and pseudo-label (noisy pseudo-labels) and our empirical risk functions are
robust with respect to noisy pseudo-labels. Under some conditions, our empiri-
cal risk functions demonstrate better performance when compared to traditional
self-training methods.

1 INTRODUCTION AND PROBLEM FORMULATION

Many applications of machine learning, such as in finance, natural language processing and computer
vision, are rich in data but lack labeling. This poses a challenge for traditional supervised learning
methods. Via semi-supervised learning (SSL), labeled and unlabeled data samples are leveraged to
have better performance with respect to supervised learning scenarios. One such SSL technique is
self-training algorithms. These algorithms employ confident predictions from a supervised model to
assign labels to unlabeled data. The two primary approaches to self-training-based SSL are entropy
minimization and pseudo-labeling.
In this work, we propose new empirical risk functions and regularizers based on divergence between
the empirical distribution data samples and conditional discrete distribution over the label set. Then,
we apply these empirical risk functions to self-training approaches, i.e., pseudo-labeling and entropy
minimization, in SSL applications. Our empirical risk functions are more robust to noisy pseudo-
labels ( the pseudo-label is different from the true label) of unlabeled data samples, which are
generated by self-training approaches. Related works are provided in Appendix B.
Problem Formulation: We denote the space of labels and features by Y and X , respectively. The
set of labeled and unlabeled data samples1 are defined with Xl

n := {X l
i}ni=1 and Xu

m := {Xu
j }mj=1,

where the X l
i and Xu

j are the labeled and unlabeled data samples drawn of distribution PX . The set
of all labeled and unlabeled data samples is defined by Xl,u := Xl

n ∪Xu
m. The labeled dataset is

denoted by Zl
n, which contains n samples, Zl

n = {(X l
i , Y

l
i )}ni=1, where X l

i ∈ X l ⊂ X and Y l
i ∈ Y

are labeled features and the corresponding labels, respectively. For classification problems with k

classes, we consider |Y| = k. We define the uniform distribution over Y with Unif(k). Let P̂ (Y|Xi)
denote the distribution over labels given the feature Xi. Our model is able to predict the underlying
conditional distributions of labels given features, i.e., Pθ(Y|Xi) := {Pθ(Y = yi|Xi)}ki=1, where
θ ∈ Θ is the parameter of our model. This means that our model can estimate the probability of each
possible label for each given feature vector. For example, the output of the Softmax layer in neural
networks can be considered as an estimation of the conditional distribution of labels given the feature.

1We use features and data samples terms interchangeably.
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f -divergence: The f -divergence Polyanskiy and Wu (2022) between two discrete distributions,
P = {pi}ki=1, and Q = {qi}ki=1, is defined as, Df (P∥Q) :=

∑k
i=1 qif

(
pi

qi

)
where f : (0,∞)→ R

is a convex generator function with f(1) = 0. Note that Df (P∥Q) = 0, if P = Q. For ease of
notation, we define the general divergence and D-entropy as Df (P∥Q). Different f -divergences are
introduce in Polyanskiy and Wu (2022).

2 FDP-SSL ALGORITHM

In SSL applications, we are focused on self-training approaches, which include methods such as
pseudo-labeling and entropy minimization (Appendix D).
Pseudo-labeling: In this scenario, we assign a pseudo-label to each unlabeled feature through a
pseudo-labeling process. We define the pseudo-labeled dataset as Ẑ := {Ŷ j , Xu

j }mj=1, where Ŷ j

is the pseudo-labeled assigned to unlabeled data sample. Therefore, we define P̂ (Ŷu|Xu
j ) and

P̂ (Yl|X l
i) as the empirical true label distribution and empirical distribution2 over unlabeled dataset

inspired by pseudo-label generation process for unlabeled feature Xu
j , respectively. To apply our

divergence based ERM (FD-ERM) approach in this setup, we define a convex combination of the
empirical distribution over label set for all labeled and unlabeled datasets by

P̂ (Yl, Ŷu|Xl,u) :=
{{β

n
P̂ (Yl|X l

i)
}n

i=1
,
{ (1− β)

m
P̂ (Ŷu|Xu

j )
}m

j=1

}
,

where β ∈ [0, 1]. Similarly, the estimated conditional distribution as a joint distribution over the set
Yl ×Xl,u

Pθ(Y|Xl,u) :=
{{β

n
Pθ(Y|X l

i)
}n

i=1
,
{ (1− β)

m
Pθ(Y|Xu

j )
}m

j=1

}
.

Note that both Pθ(Y|Xl,u) and P̂ (Yl, Ŷu|Xl,u) are joint probability distributions over Y ×Xl,u.
We can define the FD-ERM for SSL application based on f -divergence,

R̂Df
(θ,Zl, Ẑ) = Df

(
P̂ (Yl, Ŷu|Xl,u)∥Pθ(Y|Xl,u)

)
.

FDP-SSL Algorithm: We propose a f -divergence-based pseudo-labeling SSL (FDP-SSL) algorithm
(Algorithm 1 in Appendix C). In this algorithm, we first generate pseudo-labels for unlabeled data
samples based on a process in an iterative manner. Let us define Q(j) := maxi∈[k] Pθ(yi|Xu

j ) where
q := argmaxi∈[k] Pθ(yi|Xu

j ), then we have, Ŷj
q := 1

[
Q(j) ≥ τp

]
. If Ŷj

q = 0, then the unlabeled
sample would be neglected to reduce the confirmation bias incurred by pseudo-labeling. Otherwise,
we select the pseudo-label for the q-th class.

3 EXPERIMENTS
We conduct the experiments for KL-ERM, JS-ERM, P-ERM, and χ2-ERM. More Experiments and
details are provided in Appendix E.
Results: In Table 1, we conducted experiments involving the FDP-SSL algorithm. In the case of
the FDP-SSL algorithm, we set τp = 0.3. For the CIFAR-100 dataset, the JS-ERM achieves the
highest accuracy at 72.43± 1.06, outperforming other FD-ERMs. Among the FD-ERMs, JS-ERM
achieved the highest accuracy in the LETTER dataset. We consider KL-ERM (Pseudo-labeling based
on cross-entropy) as baseline.

Table 1: Accuracy of FDP-SSL. We consider τp = 0.3.
FD-ERM LETTER CIFAR-100
KL(Baseline) 58.87± 2.13 67.80± 0.75
χ2 56.52± 0.67 68.02± 1.06
Pow, (p = 1.2) 58.55± 1.04 67.20± 0.34
JS 61.67± 0.94 72.43± 1.06

4 CONCLUSION AND FUTURE WORKS

We provide novel empirical risk functions and regularizers inspired by f -divergence for self-training
algorithms in semi-supervised learning scenarios. Our algorithms can be applied to both pseudo-
labeling and entropy-minimization. As future works, our framework can be combined with other
methods for semi-supervised learning, e.g., Fixmatch Sohn et al. (2020), MixMatch Berthelot et al.
(2019), and Meta pseudo-label Pham et al. (2020).

2The empirical pseudo-label distribution can be either empirical hard pseudo-label or empirical soft pseudo-
label distributions.
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A NOTATIONS

Throughout the paper, upper-case letters denote random variables (e.g., Z), lower-case letters denote
the realizations of random variables (e.g., z), and calligraphic letters denote sets (e.g., Z). All the
logarithms are natural ones, and all the information measure units are nats. We denote the set of
integers from 1 to N by [N ] ≜ {1, . . . , N}.

B RELATED WORKS

We provide an overview of relevant works concerning self-training techniques in SSL, as well as
other SSL methodologies.

Self-training and SSL: Entropy minimization methods incorporate an entropy function as a regular-
ization term, aiming to penalize uncertainty in label predictions for unlabeled data Grandvalet et al.
(2005). The underlying assumption behind entropy minimization algorithms can be attributed to either
the manifold assumption Iscen et al. (2019), which assumes that labeled and unlabeled data samples
are drawn from a common data manifold, or the cluster assumption Chapelle et al. (2003), which
suggests that similar data features tend to share the same label. Pseudo-labelling, introduced in Lee
et al. (2013), involves training a model using labeled data and subsequently assigning pseudo-labels
to the unlabeled data based on the model’s predictions. These pseudo-labels are then used to construct
another model, which is trained in a supervised manner using both labeled and pseudo-labeled data.
Network predictions may exhibit inaccuracies, as is commonly observed in neural networks. This
issue is further exacerbated when these erroneous predictions are employed as labels for unlabeled
samples, a characteristic inherent in the practice of pseudo-labeling. The phenomenon of overfitting
to incorrect pseudo-labels generated by the network is widely recognized as confirmation bias Arazo
et al. (2020). Under different experiments, it is shown that the pseudo-labeling is effective, Arazo
et al. (2020) and Rizve et al. (2021). Kou et al. (2023) shows that semi-supervised learning with
pseudo-labelling can achieve near-zero test loss under some conditions. The study by Pham et al.
(2020) introduced meta pseudo labelling. This method enhanced the accuracy of pseudo-labels by
incorporating feedback from the student model. Rizve et al. (2021) proposed confidential-based
pseudo-label generation for training networks with unlabeled data. Arazo et al. (2020) suggests
soft-labeling with the MixUp method to reduce over-fitting to model predictions and confirmation
bias. Oymak and Gulcu (2020) and Lee (2013) analyzed both theoretical and algorithmic side of
self-training. In this work, we propose a more general framework as a combination of self-training
methods which outperforms previous self-training algorithms.

Other SSL methods: Some methods use a combination of consistency regularization and pseudo-
labeling. MixMatch Berthelot et al. (2019) computes k augmentations for each unlabeled sample,
and one for labeled sample in the batch, then sharpens the average output probability of the model
for k augmented data and applies the Mix-Up approach Zhang et al. (2018). Continuing the idea
of MixMatch, Berthelot et al. (2020) introduced ReMixMatch; this method adds distributional
alignment between unlabeled and labeled data, moreover, augmentation anchoring and utilizing
the output of weakly-augmented data as labels for k strongly-augmented unlabeled data. Li et al.
(2020) established DivideMix proposed a new method for learning with noise based on the Gaussian
Mixture Model (GMM) and MixMatch method. Sohn et al. (2020) presents FixMatch, which uses
weakly-augmented input model prediction pseudo-label as a label for strongly-augmented input
model prediction. This line of research differs from ours as our focus is self-training algorithms
despite consistency regularization methods.

C FDP-SSL

The FDP-SSL algorithm is presented in Algorithm 1. Note that, after each pseudo-labeling iteration,
we balance the pseudo-labeled data samples.
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Algorithm 1: FDP-SSL Algorithm

Data: Zl = {(X l
i , Y

l
i )}ni=1 sampled from PXY , Xu

m = {Xu
j }mj=1 sampled from PX ,

hyper-parameters β, τp, R̂Df
(θ,Zl), and R̂Df

(θ, Zl ∪ Ẑ), the Pθ model based on a
divergence, Iteration index by tg and max Iterations I

Result: A trained neural network with parameter θ and output of softmax Pθ which minimizes
the FD-ERM

tg ← 1

Train model (Warm-Up) Pθ with SGD based on R̂Df
(θ, Zl)

while tg ≤ I do
1. Select pseudo-labels based on all unlabeled data samples Xu

m based on
Ŷj

q = 1
[
Q(j) ≥ τp

]
,

2. ∀j ∈ [m], if Ŷj
q > 0, then Ẑ← {(X̂u

j , Ŷ
j
q ) ∪ Ẑ}

3. Initial your model Pθ

4. Ẑ← Balance(Ẑ)
5. Train your model Pθ with SGD based on R̂Df

(θ, Zl ∪ Ẑ)
6. tg ← tg + 1

end

D D-ENTROPY

We can also define the f -entropy, for discrete distribution P as,

Hf (P ) = −Df (P∥Unif(k)), (1)

where f(·) is the same generator function for f -divergence and Unif(k) is the uniform distribution
over set with size k. For example, for f(t) = t log(t), we have KL-divergence and the entropy is
equal to the summation of traditional entropy and a constant term,

HKL(P ) = hKL(P )− log(k), (2)

where hKL(P ) = −
∑k

i=1 Pi log(Pi). Different FD-ERMs and the corresponding entropy are
introduced in Table 2.

Table 2: FD-ERM and D-Entropy for KL divergence, Power divergence, JS divergence, Le Cam, and
Total variation distance. We have Pi := Pθ(y

l
i|X l

i).
Name/ Generator f(t) FD-ERM D-Entropy

KL,

t log(t) −1

n

n∑
i=1

log(Pi) − log k −
∑k

i=1 Pi logPi

χ2,
(1− t)2 1

n

(∑n
i=1(P

−1
i − 1)

)
− 1

k

∑k
i=1(1− kPi)

2

Power,
tp − 1 1

n

(∑n
i=1(P

−p+1
i − 1)

)
1− kp−1 ∑k

i=1 P
p
i

Jensen-Shannon,

t log
(

2t
1+t

)
+ log

(
2

1+t

) 1

n

( n∑
i=1

Pi log(Pi)− (Pi + 1) log (Pi + 1)
)

+2 log(2)

−
k∑

i=1

Pi log

(
1 +

1

kPi

)

+

k∑
i=1

1

k
log(1 + kPi)

− 2 log(2)

D.1 SOFT-LABEL AND HARD-LABEL

Our study uses two distinct label types: hard-label and soft-label. In the case of hard-label, the
distribution over the label set is such that P̂ (Y = yi|Xi) = 1, indicating a certainty that the label is
yi, while P̂ (Y = yj |Xi) = 0 for all yj ∈ Y not equal to yi. Conversely, in the soft-label scenario,
we have P̂ (Y = yj |Xi) ≥ 0 for all labels yj , and

∑k
j=1 P̂ (Y = yj |Xi) = 1. It is worth noting that
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for labeled datasets, we employ hard-labels. However, for unlabeled datasets, we have the flexibility
to adopt either hard-label or soft-label.

D.2 ENTROPY MINIMIZATION

Building upon the ideas presented in Grandvalet et al. (2005), we delve into the concept of D-entropy,
denoted as Hf as defined in equations equation 1. In this approach, we compute D-entropy as a
regularization term over the distribution of predicted labels, denoted as Pθ(Y|Xu

m), for the unlabeled
dataset. It’s worth noting that the minimization of D-entropy can be interpreted as the maximization
of Df (Pθ(Y|Xu

m)|Unif(k)). Essentially, this means we are actively seeking predicted labels for
each unlabeled feature with the maximum dissimilarity with the uniform distribution in terms of
f -divergence. However, the minimization of D–entropy can cause the system to predict the same
class for each data sample.

To avoid the prediction of one class for each unlabeled feature, Tanaka et al. (2018) and Arazo
et al. (2020) proposed to use a KL divergence between the mean distribution of Softmax outputs for
all unlabeled data samples, i.e., P̄θ(Y

l|Xu
m) := 1

m

∑m
j=1 Pθ(Y|Xu

j ), and the uniform distribution
as another regularization. In a similar approach, we propose to minimize the divergence, i.e., f -
divergence, between P̄θ(Y

l|Xu
m) and uniform distribution. Minimizing this divergence would help

the system predict uniform distribution over all classes. Note that, if we have the balance assumption
for all classes, then we expect that P̄θ(Y

l) would be uniform. Therefore, this regularization can
also help in the case when we have an imbalanced number of data samples from classes during
pseudo-labeling process. In particular, after pseudo-labeling (with soft-label or hard-label), we can
expect an imbalance pseudo-labeled dataset.

Our final regularized risk minimization for entropy minimization would be,

R̂D̃(θ,Zl,Xu
m, λ) := R̂D̃(θ,Zl) + λhHD̃(Pθ(Y|Xu

m))

+ λuDf (P̄θ(Y
l|Xu

m)∥Unif(k)), (3)

where D̃ ∈ {KL, JS,P, χ2} and D ∈ {DKL, JS, DP, χ
2}.

D.3 FDEM-SSL

Motivated by the concept of entropy minimization, we introduce a novel approach, Divergence-based
entropy minimization Semi-Supervised Learning (FDEM-SSL), in this paper. In developing this
algorithm, we build upon the techniques presented in Rizve et al. (2021), incorporating D-entropy
minimization. In each iteration of the algorithm, we adopt the previous predictions of unlabeled data
samples as soft-labels for these unlabeled data samples. Our objective is to minimize the FD-ERM
with respect to the true labels for labeled features and the soft-labels assigned to unlabeled data
samples. As discussed before, we introduce the minimization of D-entropy and the divergence term
Df (P̄θ(Y

l|Xu
m)|Unif(k)) as regularization terms. The utilization of soft-labels for unlabeled data

samples serves to reduce confirmation bias, enhancing the effectiveness of our approach.

E EXPERIMENT DETAILS AND DISCUSSION

Anonymized code is provided at https://anonymous.4open.science/r/Robust_DEM_
SSLv_1/README.md.

τp: The selection of τp would help us to select the most certain predictions for unlabeled data
samples. In addition, increasing the τp would reduce the number of unlabeled samples that can be
utilized in the training process. It is worth mentioning that unlabeled data are not included in the
first iteration. Therefore, the model derived in the first iteration (Warm-up), is utilized to generate a
pseudo-label based on Ŷj

q := 1
[
Q(j) ≥ τp

]
in the next iteration. After each iteration of the pseudo-

labeling process, we balance the set of pseudo-labeled dataset. For this purpose, we under-sample the
pseudo-labeled dataset, based on the data samples from the minority class.

Datasets: We ran different experiments to validate our proposed algorithms, FDEM-SSL and FDP-
SSL on two datasets: CIFAR-100 Krizhevsky (2009) and the Letter Chang and Lin (2011) datasets.
For the SSL scenario, we have allocated n = 104 labeled data samples and m = 17896 unlabeled
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data samples for the Letter dataset and n = 400 labeled data samples and m = 49600 unlabeled data
samples for CIFAR-100. We utilized the CNN-13 network architecture for CIFAR-100 (Iscen et al.
(2019), Shi et al. (2018), Tarvainen and Valpola (2018), Verma et al. (2022), Ke et al. (2019),Berthelot
et al. (2020), Athiwaratkun et al. (2018)) and 2-layer Feedforward neural network inspired by Zhu
and Yang (2021) for letter.

Hyper-parameters: We use a combination of manual and automatic hyper-parameter tuning for
the learning rate values and regularization coefficients. For parameter β, we select β = n

n+m . For
FDP-SSL, we have one hyper-parameters, i.e., τp. We set τp = 0.3 in Ŷj

q := 1
[
Q(j) ≥ τp

]
.

We used 20%/80% of CIFAR-100 and 10%/90% of Letter datasets for test/training process. In the
FSL scenario, we only train our network with all 80% of labeled data. The implementation uses the
PyTorch framework Paszke et al. (2019), training was optimized using SGD with nesterov momentum
of 0.9 Botev et al. (2016), learning rate of 0.03, cosine annealing for 5 iterations and 512 epoch for
each iteration. More implementation details are provided in Table 3. Experiments are executed on
Nvidia volta V100 GPU with 32 GB VM.

Table 3: Experiment setup details for CIFAR-100 and Letter
CIFAR-100 Letter

Optimizer SGD SGD
Learning rate 0.03 0.03

Network CNN-13 FFNN
Max epochs (M ) 512 512

Labeled dataset size (n) 400 104
Unlabeled dataset size (m) 49600 17896

Train/Test size 50000/10000 18000/2000
Batch size 512 512

Max Iterations (I) 5 5
λu 0.8 0.8
λh (0.4, 0.04) (0.4, 0.04)
τp (0.3,0.7) (0.3,0.7)
β 0.992 0.994

For FDEM-SSL, regularization weights (λu, λh) inspired by Arazo et al. (2020), we selected λu = 0.8
and λh = 0.4 for FDEM-SSL across all FD-ERMs. By setting a small τp, we assign more pseudo-
labels to unlabeled data samples. However, this increase in pseudo-labeled data samples is expected
to result in more inaccurate pseudo-labels, where we have mismatches between the pseudo-labels
and the true labels of the unlabeled data samples. In addition, our experiments show that for the
τp ∈ (0.5, 1) the results won’t change significantly.Inspired by Aminian et al. (2022), we set β to

n
m+n .

E.1 τp EFFECT

We simulate the FDP-SSL for Letter Dataset with different τp in Table 4. We consider JS-ERM
function and the baseline (KL) for this part.

Table 4: Accuracy of FDP-SSL for different τp with Letter Dataset
Loss 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

KL(Baseline) 52.60± 1.72 53.15± 2.02 55.45± 2.45 58.87± 2.13 60.50± 1.20 61.45± 0.98 61.69± .74 61.72± 0.35 61.95± 0.86 62.20± 1.04
JS 61.0± 0.32 61.1± 0.34 61.3± 0.70 61.67± 0.94 61.70± 0.57 62.60± 0.89 62.40± 0.73 62.50± 0.90 62.90± 0.68 62.45± 0.60

As we observe the JS-ERM, which is the best performing FDP-SSL, is robust to the label noise with
small variance at different τp. However, FDP-SSL based on KL divergence is sensitive to variation
in τp. Note that, by decreasing τp, we have more noise in pseudo-labels. However, more unlabeled
samples are utilized.
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E.2 FDP-SSL AND FDEM-SSL

We also compare the results of FDEM-SSL with FDP-SSL in Table 5. We can observe that FDEM-
SSL has a better performance in comparison with FDP-SSL in CIFAR-100.

Table 5: Accuracy of FDP-SSL and FDEM-SSL. We consider τp = 0.3. For FDEM-SSL, we assume
λu = 0.8 and λh = 0.4.

FD-ERM
LETTER CIFAR-100

FDP-SSL FDEM-SSL FDP-SSL FDEM-SSL
KL 58.87± 2.13 59.14± 0.65 67.80± 0.75 70.49± 0.51
χ2 56.52± 0.67 57.60± 0.93 68.02± 1.06 69.05± 0.48
Pow, (p = 1.2) 58.55± 1.04 59.10± 0.93 67.20± 0.34 71.14± 0.46
JS 61.67± 0.94 57.49± 1.29 72.43± 1.06 73.34± 0.50

E.3 BALANCE EFFECT

As mentioned in FDP-SSL and FDEM-SSL, after each pseudo-labeling iteration, we balance the
pseudo-labeled data samples. In Table 6, we conducted FDP-SSL and FDEM-SSL algorithms without
balancing (imbalance), in order to show how FDP-SSL and FDEM-SSL can handle imbalance
pseudo-labels in the training stage. Note that in this setup, we set τp = 0.3. We can observe that
under the imbalance scenario in pseudo-labeled data samples, the χ2-ERM has a better performance
in comparison with other FD-ERMs. For example, the accuracy of χ2-ERM under balancing and
imbalance for τp = 0.3 and FDEM-SSL in CIFAR-100 is 54.17± 0.50 and 50.0± 0.48, respectively.

Table 6: Accuracy of FDP-SSL and FDEM-SSL under no Balancing. We consider τp = 0.3 for
FDP-SSL. For FDEM-SSL, we assume λu = 0.8 and λh = 0.04.

FD-ERM
LETTER CIFAR-100

FDP-SSL
/NB

FDEM-SSL
/NB

FDP-SSL
/NB

FDEM-SSL
/NB

KL 45.55± 0.75 52.1± 2.48 19.46± 0.24 35.84± 0.94
χ2 53.9± 1.25 54.17±0.50 43.14±0.47 50.0± 0.48

Pow, (p = 1.2) 43.74± 0.56 53.7± 1.09 31.45± 0.11 45.36± 1.18
JS 39.05± 1.15 41.13± 1.01 7.46± 0.12 46.45± 2.16

E.4 ACCURACY OF PSEUDO-LABELING AND NUMBER OF SELECTED SAMPLES

As we discussed, it is worthwhile to mention that the pseudo-labeling procedure can incur label noise
during the training phase. To facilitate a more meaningful comparison, we present the accuracy of the
pseudo-labeling process during the final iteration for both FDP-SSL and FDEM-SSL algorithms. In
the case of FDEM-SSL, we determine pseudo-labels based on the highest softmax output (soft-labels).
As presented in Table 7, when considering a value of τp = 0.7, the quantity of pseudo-labeled
samples is notably lower compared to the number of pseudo-labeled samples observed for τp = 0.3,
as depicted in Table 8. The accuracy of the pseudo-labeling process for τp = 0.7 is higher than
the accuracy of pseudo-labeling for τp = 0.3. Therefore, using higher τp can help us to reduce
the noise of the pseudo-labeling process. For the balance effect, we also provided the accuracy of
pseudo-labeling process in Table 9.
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Table 7: Comparison of accuracy of the pseudo-labeling process for the last iteration (number
of pseudo-labeled samples) in FDP-SSL for CIFAR-100 (n = 400, m = 49600) and LETTER
(n = 104, m = 17896) datasets with assuming τp = 0.7.

D-ERM LETTER CIFAR-100
KL 81.41± 0.72 (595± 6) 96.76± 0.59 (39800± 87)
χ2 62.23± 2.07 (179± 14) 97.04± 0.13 (10700± 132)

Pow, (p = 1.2) 80.36± 0.58 (523± 15) 97.53± 1.28 (39100± 124)
JS 70.51± 0.49 (4836± 121) 87.00± 0.28 (2350± 32)

Table 8: Comparison of accuracy of the psuedo-labeling process for the last iteration (number of
pseudo-labeled samples) in FDP-SSL and FDEM-SSL. For FDEM-SSL, we consider the pseudo-label
with the maximum output of softmax. We consider τp = 0.3. For FDEM-SSL, we assume λu = 0.8
and λh = 0.4.

D-ERM
LETTER CIFAR-100

FDP-SSL FDEM-SSL FDP-SSL FDEM-SSL
KL 58.76± 1.87 (9117± 546) 5677± 2.02 (8684± 470) 86.18± 1.25 (34200± 470) 87.72± 1.40 (38066± 208)
χ2 68.84± 0.46 (625± 4) 68.05± 0.84 (627± 12) 81.79± 1.5 (34850± 500) 85.49± 1.09 (28766± 404)
Pow, (p = 1.2) 63.43± 0.50 (1872± 150) 62.21± 0.47 (1092± 177) 85.53± 1.4 (33666± 660) 86.40± 1.53 (35600± 400)
JS 57.66± 1.38 (11136± 380) 51.26± 0.86 (13693± 439) 86.15± 0.37 (2391± 11) 85.02± 0.93 (38600± 529)

Table 9: Comparison of accuracy of the psuedo-labeling process for the last iteration (number of
pseudo-labeled samples) in FDP-SSL and FDEM-SSL under no Balancing. For FDEM-SSL, we
consider the pseudo-label with the maximum output of softmax. We consider τp = 0.3 for FDP-SSL.
For FDEM-SSL, we assume λu = 0.8 and λh = 0.04.

D-ERM
LETTER CIFAR-100

FDP-SSL
/NB

FDEM-SSL
/NB

FDP-SSL
/NB

FDEM-SSL
/NB

KL 43.18± 1.18 (16540± 250) 56.27± 2.89 (12351± 394) 20.16± 0.80 (49472± 130) 40.48± 0.81 (47688± 817)
χ2 61.58± 1.21 (8462± 450) 67.38± 1.01 (6543± 484) 51.95± 0.23 (48986± 264) 62.51±1.17 (46315±1012)

Pow, (p = 1.2) 44.62± 1.94 (14729± 511) 60.44± 1.20 (9763± 502) 37.35± 0.36 (49259± 416) 53.61±1.31 (47292±1353)
JS 34.04± 1.41 (17881± 100) 40.53± 1.33 (16912± 314) 51.61± 1.82 (48531± 612) 48.62± 5.37 (48802± 563)
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